
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

AI Psychiatry: Forensic Investigation of
Deep Learning Networks in Memory Images
David Oygenblik, Georgia Institute of Technology; Carter Yagemann,

Ohio State University; Joseph Zhang, University of Pennsylvania; Arianna Mastali,
Georgia Institute of Technology; Jeman Park, Kyung Hee University;

Brendan Saltaformaggio, Georgia Institute of Technology
https://www.usenix.org/conference/usenixsecurity24/presentation/oygenblik

USENIX Security ’24 Artifact Appendix AI Psychiatry: Forensic Investigation of
Deep Learning Networks in Memory Images

David Oygenblik1, Carter Yagemann2, Joseph Zhang3, Arianna Mastali1,
Jeman Park4 , Brendan Saltaformaggio 1

1Georgia Institute of Technology 2Ohio State University
3University of Pennsylvania 4Kyung Hee University

A Artifact Appendix

A.1 Abstract
The artifact is a code repository (with supporting documenta-
tion) for AiP, an automated memory forensics pipeline used
to recover uniquely deployed ML models from system mem-
ories. AiP consists of a memory forensics application built
on top of the Volatility framework to recover the ML model.
AiP also includes a ML project hook, to rehost a deployed
ML model into a live DL system.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact should not pose any inherent security, privacy, or
ethical concerns. No preexisting data is read or transmitted.
For security and ethical reasons, the artifact does not include
ML backdooring tools nor does it include any active malware
to perform a runtime attack on any ML models.

A.2.2 How to access

The artifact is a code repository and well-documented tutorial
that can can be accessed on GitHub: https://github.com/
CyFI-Lab-Public/AiP/tree/aip-stable

A.2.3 Hardware dependencies

While AiP does not require any specific hardware with regards
to where it is deployed, AIP does require a valid OS profile (of
a Linux machine) as well as a system to perform rehosting on
(OS agnostic). AiP also requires a valid CUDA memory dump
(for recovery of models deployed on the GPU) in addition to
the main memory. For models not deployed on the GPU, a
CUDA memory dump is not required.

A.2.4 Software dependencies

The preferred environment for running AiP is Ubuntu 22.04
LTS (Long Time Support). However, AiP should work with
any recent version of Ubuntu. Given the fact that Ubuntu is

a Debian based operating system, AiP should also work on
Debian 11 and up (64 bit).

Another important component of AiP is the rest of
the volatility framework (version 3) which enables AiP
to identify the OS and process in which the ML model
is deployed. Volatility 3 requires numerous other soft-
ware dependencies to function, and the instructions can be
found at https://github.com/volatilityfoundation/
volatility3/tree/v2.7.0. The maintaining and the build-
ing of this project does not require a specific machine as long
as the machine supports the Volatility 3 framework and is
capable of running Python 3.7.0 or higher. The preferred en-
vironment for AiP is any Ubuntu 22.X setup or newer with a
Python 3.7.X interpreter. This project also requires a Volatility
3 setup, and will not function with Volatility 2. However, AiP
can, with some effort be ported to Volatility 2. Main memory
dumps analyzed by AiP are collected with LiME which can
be found at https://github.com/504ensicsLabs/LiME/
tree/v1.9.1. GPU memory dumps are collected with Cuda-
GDB. More information about memory aquisition can be
found in the appendix of the paper.

A.2.5 Benchmarks

The primary bench mark used in the paper is the recovery and
rehosting of multiple ML models (i.e. weights, layers, shapes,
architecture, etc), such as those of MobileNetV2, ResNet, Bi-
LSTM, and other model types used in real world applications.
As these models are utilized in a variety of real world settings,
and can be used during online and federated learning, AiP
is evaluated on deployments of these models to verify its
effectiveness. The benchmark was run on the Ubuntu 22.04
LTS operating system with AiP deployed, and the results
are shown in Table 2 of the paper. We also performed an
evaluation of AiPs rehosting capability in Table 3.

A.3 Set-up

A.3.1 Installation

Users should follow the Setup section of the README to
deploy AiP.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 109

https://github.com/CyFI-Lab-Public/AiP/tree/aip-stable
https://github.com/CyFI-Lab-Public/AiP/tree/aip-stable
https://github.com/volatilityfoundation/volatility3/tree/v2.7.0
https://github.com/volatilityfoundation/volatility3/tree/v2.7.0
https://github.com/504ensicsLabs/LiME/tree/v1.9.1
https://github.com/504ensicsLabs/LiME/tree/v1.9.1

A.3.2 Basic Test

Users should follow the Usage section of the README,
which covers includes a step-by-step tutorial of running AiP
on a SOTA ML model, namely YoloV8, which utilizes ob-
ject detection to identify and bound various objects within
images taken in various settings. Prior to deployment of AiP
we ensured that the YoloV8 model was trained and had high
accuracy.

Running AiP on a memory image containing a process
deploying YoloV8 should reveal:

1. A complete summary of the types of objects within the
Python process that the ML model is deployed in. Like-
wise, AiP will directly output the model identified (being
YoloV8) and its in-memory type.

2. The types, ordering and shapes of the layers utilized
in the YoloV8 model. These will be in order, and will
correspond to exactly two tensors for each layer (acti-
vation and bias). The pointers to tensor buffers will be
outputted, alongside each tensor’s shape and number of
weights.

3. Whether the tensor was on the GPU or not, and if so will
output the pointer to the location in the GPU memory
dump where the buffer can be found.

4. What is recovered and rehosted in AiP such that the
deployed YoloV8 can be reused on the investigator’s
system.

The README contains step-by-step instructions for de-
ployment and provides running examples to assist users in
verifying the successful completion of each phase.

A.4 Evaluation workflow
This subsection serves to illustrate the assertions made in our
paper. However, due to memory dump sizes and restrictions
on testing systems, original memory dumps are not available
for testing. We provide memory dumps in our accessible
server for YoloV8 and MobileNetV2 implemented in PyTorch.
However, upon following the instructions in the README
to setup AiP and acquire memory dumps of deployed ML
models, users should be able to correctly recover and rehost
deployed ML models.

A.4.1 Major Claims

(C1): AiP is able to correctly recovery 30 deployed ML mod-
els out of 30 total models (100% accuracy). This is high-
lighted in experiment (E1) described in Section 4.2 of
the paper and illustrated in Table 2.

(C2): AiP recovered all parameters of models ranging from
2.7M to 94M parameters with 100% accuracy. This is

described in experiment (E2), section 4.2 of the paper,
and illustrated in Table 2.

(C3): AiP correctly recovers all layers, shapes, and tensors
for the deployed ML model, sucessfully filtering all ten-
sors that are not from the ML model. This is proven by
experiment (E3) described in Section 4.2 of the paper
and illustrated in Table 2.

(C4): AiP recovers pointers to tensors in GPU memory for
all 30 ML models. This is proven by experiment (E4)
described in Section 4.1 of the paper and illustrated in
Table 2.

(C5): AiP successfully rehosted all models, and all layer
types, into the investigators testing system. Likewise,
the models will have the same accuracy when deployed
and on the investigators system. This is proven by ex-
periment (E5) described in Section 4.3 of the paper and
illustrated in Table 3.

A.4.2 Experiments

(E1): [6 human-days + 2 compute-days + 2TB storage]: Eval-
uate the performance of AiP in recovering deployed ML
models.
Preparation: Train various ML models across multiple
DL frameworks and deploy them on a Linux machine
with a GPU. Collect CPU/GPU memory images during
deployment.
Execution: Run AiP on memory images collected from
the system when a ML model is ran on the Linux ma-
chine and collect results corresponding to the model’s
layers, layer shapes, and tensors.
Results: AiP should be able to recover the deployed
DL model, with precision. Meaning that it has 100%
accuracy on the subsequent experiments.

(E2): [6 human-days + 2 compute-days + 2TB storage]: Re-
cover the parameters of each deployed ML model.
Preparation: Train various ML models across multiple
DL frameworks and deploy them on a Linux machine
with a GPU. Collect CPU/GPU memory images during
deployment.
Execution: Run AiP on memory images collected from
the system when a ML model is ran on the Linux ma-
chine and collect results corresponding to the parameters
(weights) of the ML model.
Results: AiP should be able to recover the deployed DL
model parameters, with precision. Meaning that it has
100% accuracy on the weight recovery.

(E3): [6 human-days + 2 compute-days + 2TB storage]: Ex-
ecute AiP to recover all the layers, shapes, and tensors
for the deployed ML model.
Preparation: Train various ML models across multiple
DL frameworks and deploy them on a Linux machine
with a GPU. Collect CPU/GPU memory images during
deployment.

110 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

Execution: Run AiP on memory images collected from
the system when a ML model is ran on the Linux ma-
chine and collect results corresponding to the the recov-
ery of high level attributes of the ML model such as layer
types, shapes, and tensors.
Results: AiP should be able to recover the deployed
the high level attributes of the DL model with 100%
accuracy.

(E4): [6 human-days + 2 compute-days + 2TB storage]: Run
AiP to recover all tensors hosted on GPU memory for
deployed ML models.
Preparation: Train various ML models across multiple
DL frameworks and deploy them on a Linux machine
with a GPU. Collect CPU/GPU memory images during
deployment.
Execution: Run AiP on memory images collected from
the system when a ML model is ran on the Linux ma-
chine and collect results corresponding to the the recov-
ery of GPU pointers/buffers of tensors corresponding to
the layers of the ML model when the model is deployed
on the GPU.
Results: AiP should be able to recover the tensors
placed in GPU memory.

(E5): Correctly rehost the layers and parameters recovered
from the deployed ML model into an investigator’s sys-
tem.
Preparation: Utilizing the output of AiPs recovery (i.e.
recovered tensors, layers, tensor buffers, etc), the investi-
gator can begin AiP’s rehosting process.
Execution: Run the rehosting script (following the
README) to get the model in the live environment
to utilize what was recovered from the deployed ML
model.
Results: AiP correctly recovers and rehosts all of the
layers and parameters (weights) of the ML model in an
investigative environment.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 111

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

