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A Artifact Appendix

A.1 Abstract
This document presents the artifact of our Usenix Security’24
paper: “Enabling Contextual Soft Moderation on Social Me-
dia through Contrastive Textual Deviation.” We first present a
brief description of our artifact, alongside the hardware and
software requirements needed to run the models and repro-
duce the experimental results associated with the artifact. We
then describe the steps necessary to download the models and
benchmarks used in the artifact, followed by a simple func-
tionality test ensuring that the model proposed as part of the
artifact can run inference properly against all the benchmarks.
Next, we detail the evaluation workflow by discussing the
major claims made in our paper, and subsequent experiments
associated with the claims.

A.2 Description & Requirements
The primary evaluation environment of this artifact is pre-
ferred through interactive Python Jupyter notebooks. The
datasets and models of the artifacts are interfaced through
the Huggingface framework for easy and robust running of
experiments for artifact evaluation purposes. Additionally, we
also provide a Github repository with helper evaluation scripts
to reproduce the benchmarking results.

A.2.1 Security, privacy, and ethical concerns

There are no risk for evaluators when executing this artifact
in their machines or in the cloud. All datasets used in this
work were either publicly released by other researchers or
were collected using publicly available APIs and following
those API’s terms of service.

A.2.2 How to access

All the models and datasets associated with this artifact are
publicly hosted in the archived Huggingface collection 1. A
set of companion Jupyter notebooks with experimental setup
for the major claims, and detailed software dependencies

1https://huggingface.co/collections/ppaudel/
contrastive-textual-deviation-65e20c48680724cc9a809062

listed in requirements.txt is available in our Github repos-
itory2.

A.2.3 Hardware dependencies

The CTD models forming the core of the artifact have some
important hardware requirements to run succesfully. Both
the Google’s FLAN-T5-XXL model (bootstrapped) and the
fine-tuned CTD model need an estimated GPU vRAM of 22
GB to load the models and run evaluation on the benchmarks.
Therefore, it is recommended to have access to an evalua-
tion machine with a minimum of 22GB GPU memory, and a
recommended GPU compute capability of 7.0. Additionally,
2 CPU cores alongside the aforementioned GPU hardware
requirements are recommended for seamless evaluation.

A.2.4 Software dependencies

The major environmental dependencies needed during the
artifact evaluation period is listed below.

• CUDA Toolkit (v11.3)

• CUDNN (v8.2)

• GCC (v9.3.0)

The list of software packages and the corresponding ver-
sion and commit reference for these packages is available
in requirements.txt of the companion repository. It is recom-
mended that for succesful evaluation of the artifact, proper
environmental dependencies as listed above are met, and ap-
propriate packages are installed with the command pip install
-r requirements.txt

A.2.5 Benchmarks

The 4 different datasets and the fine-tuned CTD model re-
quired by the experiments with this artifact are organized
in the models and datasets category of the corresponding
Huggingface collection. Each of the experimental notebooks
associated with the claim load the corresponding models and
datasets at the beginning, and once the models and datasets
are downloaded, they are cached internally as per transformer
library’s default behavior.

2https://github.com/codepujan/ctd-artifact/tree/v1.0.0
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A.3 Set-up
The setup procedure for this artifact includes ensuring appro-
priate hardware requirementsand software requirements are
met.

A.3.1 Installation

The process of downloading and installing the dependencies
can be completed by running the script setup.py on the artifact
companion repository.

A.3.2 Basic Test

A basic functionality test ensuring all the models and datasets
are loaded properly can be verified by running the script ba-
sic_test.py on the artifact companion repository. The script
loads all the benchmarks and runs an inference test with the
bootstrapped model and the fine-tuned CTD model on all the
benchmark dataset. Evaluators can expect the model’s predic-
tion output (i.e. Support, or Refute) for each of the dataset,
alongside the expected output label from the groundtruth
dataset.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Bootstrapped Contrastive Textual Deviation (CTD)
achieves better performance in stance detection over
supervised baselines. This is proven by the experiment
(E1) described in [Section 4.2 Bootstrapping CTD using
LLMs] whose results are illustrated/ reported in [Table
6].

(C2): CTD Fine-tuned on the Perspectrum dataset (Fine-
tuned CTD) achieves better performance in stance detec-
tion over bootstrapped CTD and other supervised base-
lines. This is proven by the experiment (E2) described in
[Section 5.2 Comparison with existing baselines] whose
results are illustrated / reported in [Table 7].

(C3): CTD Fine-tuned on the Perspectrum dataset (Fine-
tuned CTD) can be integrated as a post-retrieval filter
on results of existing soft moderation systems to further
improve their F1 score.

A.4.2 Experiments

(E1): [Bootstrapping CTD] [2 human-minutes + 0.5
compute-hour + 1 GB disk]: Bootstrapped CTD per-
forms better than supervised methods in Climate Skepti-
cism dataset .
How to: The step-by-step flow to reproduce the results
of this experiment is packaged in the Python script
experiment1_bootstrapping.py present in the artifact
companion repository.

Preparation: Make sure the “Basic Setup” test run suc-
cesfully.
Execution: Once the basic setup tests are
confirmed succesfully, run the Python script
experiment1_bootstrapping.py and observe the re-
sults for each benchmarks.
Results: The results corresponding to Table 6 are
printed in the terminal.

(E2): [Evaluating Fine-tuned CTD] [2 human-minutes + 1
compute-hour + 1 GB disk]: CTD Fine-tuned on the
Perspectrum dataset (Fine-tuned CTD) achieves better
performance in stance detection over bootstrapped CTD
and other supervised baselines.
How to: The step-by-step flow to reproduce the results
of this experiment is packaged in the Python script
experiment2_evaluating.py present in the artifact com-
panion repository.
Preparation: Make sure the “Basic Setup” tests run
succesfully.
Execution: Once the basic setup tests are
confirmed succesfully, run the Python script
experiment2_evaluating.py and observe the results for
each benchmarks.
Results: The results corresponding to Table 7 are
printed in the terminal.

(E3): [Integrating CTD on Election Denial Dataset] [2
human-minutes + 0.5 compute-hour + 1 GB disk]: Fine-
tuned CTD can be integrated as a post-retrieval filter
on results of existing soft moderation systems to further
improve their F1 score.
How to: The step-by-step flow to reproduce the results
of this experiment is packaged in the Python script
experiment3_integrating.py alongside the artifact com-
panion repository.
Preparation: Make sure the “Basic Setup” tests run
succesfully.
Execution: Once the basic setup tests are
confirmed succesfully, run the Python script
experiment3_integrating.py and observe the results for
each benchmarks.
Results: The results corresponding to Table 9 will
printed in the terminal.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

272    Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


