
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Windows into the Past: Exploiting Legacy Crypto
in Modern OS’s Kerberos Implementation

Michal Shagam and Eyal Ronen, Tel Aviv University
https://www.usenix.org/conference/usenixsecurity24/presentation/shagam

USENIX Security ’24 Artifact Appendix: Windows into the Past:
Exploiting Legacy Crypto in Modern OS’s Kerberos Implementation

Michal Shagam Eyal Ronen

Tel-Aviv University

A Artifact Appendix

A.1 Abstract

The Kerberos protocol is used by millions of users and net-
work administrators worldwide for secure authentication, key
distribution, and access control management to enterprise net-
works and services. Since its initial public deployment in
1989, the protocol has undergone many revisions to incor-
porate new cryptographic primitives and improve security.
For example, initially based solely on users’ passwords and
symmetric cryptographic primitives, current implementations
also support smartcard-based authentication with asymmet-
ric cryptographic primitives for improved security. However,
this iterative revision process has resulted in implementations
riddled with legacy crypto primitives and protocol designs.

In this work, we show how we can exploit this legacy crypto
to completely break the security of the enterprise network.
Firstly, while arguably more secure, smartcard-based authen-
tication uses RSA encryption with the notorious PKCS #1
v1.5 padding scheme. Although the RSA decryption is done
securely inside the smartcard, a non-constant time unpadding
code runs on the client’s CPU. This makes both Windows’s
and several Linux distributions’ implementations vulnerable
to the Bleichenbacher attack that can recover cryptographic
session tokens. Secondly, we show that the RSA smartcard-
based authentication does not provide forward secrecy to the
cryptographic tokens that the server provisions to the client.
Thirdly, we propose and analyze different algorithmic ap-
proaches to minimize the overhead required to handle noisy
oracles in the Bleichenbacher attack. This general Bleichen-
bacher attack analysis may be of independent interest.

Finally, we demonstrate microarchitectural side channel-
based end-to-end attacks on the Windows Kerberos imple-
mentation. We start by showing how to recover tokens used
to encrypt session transferred remote files by Samba. We then
show how to amplify the number of decryptions performed
with a single user’s PIN code input, allowing us to accelerate
our attack and recover users’ (and admins’) credentials before
expiration. In addition, we describe a remote attack vector
that allows us to perform the attack and generate queries.

We provide attack evaluation artifacts offering access to a

network setup of our attack model, code implementing both
the client side native attack code and the malicious machine-
in-the-middle attacker code for our end-to-end-attack, a de-
tailed tutorial on how to use the attack code and tools provided,
code for classification and detection of messages, data from
experiments performed and code generating the graphs shown
in the paper. The code we provide for packet modification can
additionally be utilized as a tool enhancing network security
analysis.

A.2 Description & Requirements

We will provide access to a live setup including instructions
on how to access it and create a similar setup. The artifacts
which will describe the major claims and experiments to be
evaluated will be available in a dedicated repository (Section
A.2.2) along with a tutorial containing instructions and steps
for attack benchmarks.

A.2.1 Security, privacy, and ethical concerns

We are providing a live setup and do not expect to modify
anything on the evaluators’ end. We started a responsible dis-
closure process with Microsoft, the maintainers of the Heim-
dal Kerberos implementation, and the OpenSC maintainers.
OpenSC have fully patched their PKCS #1 v1.5 code to be
constant-time. We were allocated CVE-BLINDED with a
high severity jointly with a disclosure from a concurrent work.
Microsoft acknowledged our findings as an Elevation of Priv-
ilege attack. They are currently working on a fix which they
plan to release in July 2024. Although they don’t have access
to exact numbers, they estimate that a large number of users
use smartcards for Kerberos authentication and are affected
by our findings. The Heimdal team has confirmed our find-
ings, and we are waiting for updates regarding their patching
plans.

A.2.2 How to access

The artifacts will be available in a dedicated Github repository:
KerberosSmartcardPaddingOracleAttack
The repository will include:

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 415

https://github.com/MichalSha/KerberosSmartcardPaddingOracleAttack/releases/tag/EvalFinal

• Attack Documentation

• Attack threat model description

• Attack source code

• Simulation source code

• Data from experiments performed

• Graph generation code

• Installation instructions

• Tutorial and instructions for accessing the live setup

We will provide access to the Client and Server components.
For simplicity, on the live setup we will run an equivalent
MiTM on the Server component that will modify the packets
before they reach the Server.

A.2.3 Hardware dependencies

Our threat model assumes a network with honest servers and
an honest user trying to log in using an uncompromised smart-
card and client machine. A malicious MiTM is able to inter-
cept and modify packets over the network and to communicate
with an unprivileged malicious program running on the Client.

Therefore we will address the requirements for the different
components in the system and refer to them as the Smartcard
component, Client component, MiTM component, and Server
component.
Smartcard Component Smartcard that can perfrom RSA
decryption. The current setup uses a YubiKey 5 NFC CSPN
smartcard which can support RSA keys up to 2048 bits.
Client Component The requirements for the microarchitec-
tural attack hold (Flush+Reload). The current setup has an
Intel dual core CPU (i7-7600U).
MiTM Component A component on the network that can
hijack and modify network packets before they reach the
Server component.
Server Component The requirements for Windows Server
hardware requirements hold.

A.2.4 Software dependencies

Our end-to-end attack targets a Client running a Microsoft
Windows operating system that allow the use of RSA smart-
card based login.
For our live setup:
Client Component Windows 10 Pro Version 22H2 OS build
19045.2486.
Server Component Windows Server 2019

A.2.5 Benchmarks

None

Figure 1: Role based Active Directory Server Configuration

A.3 Set-up
In addition to the provided live setup, we will provide instruc-
tions for reproducing the setup.
Live setup information:
Windows build 19045 (Verified up to July 2024 - artifact
creation)
Client setup used a Dell Inspiron 5520 with Dual core intel
KabyLake.
Server version Windows Server 2019 (Verified up to July
2024 - artifact creation)
Server is a virtual machine set at 2 cores and hosted on a
NUC.

A.3.1 Installation

Server Component This component can be installed on a
virtual machine. Install Windows Server 2019. Install Active
Directory as a role-based installation and install the roles as
shown in Figure 1.

Use the Yubikey tutorial to create a certificate template
and choose the default options which are RSA and 2048 bits:
Setting up Smart Card Login for Enroll on Behalf of
Generate user credentials for the smartcard: Smartcard Com-
ponent Smartcard deployment
Client Component Install the required drivers for the smart-
card used. After the Server Component is running add the
Client to the domain. Server host may need to be added to the
hosts file.
MiTM Component In order to allow hijacking and modifica-
tion of the network packets, the WinDivert tool and pydivert
should be installed on either the Server or on any component
in the network flow between the Server and the Client.

A.3.2 Basic Test

Verify Smartcard Login Verify that the smartcard login is
being performed correctly. Run network tracing tool on the

416 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://learn.microsoft.com/en-us/windows-server/get-started/hardware-requirements
https://learn.microsoft.com/en-us/windows-server/get-started/hardware-requirements
https://www.microsoft.com/en-us/evalcenter/download-windows-server-2019
https://support.yubico.com/hc/en-us/articles/360015669119
https://support.yubico.com/hc/en-us/articles/360015668799-Smart-Card-Deployment-Manually-Importing-User-Certificates
https://reqrypt.org/windivert.html
https://github.com/ffalcinelli/pydivert/releases/tag/2.1.0

Client and perform a Smartcard login. Apply packet filter "ker-
beros.msg_type ==11". If no packets are found, the smartcard
network login isn’t being performed. This can happen when
the Client has a network issue and uses the cached credentials
to perform the local login.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Our End-to-End attack can decipher tokens using the
padding oracle. This is proven in (E1) where the end-to-
end attack will be used to decipher a token.

(C2): Our detection with early abort attack can find messages
likely to be deciphered in less than 10 hours. This is
shown in (E2).

A.4.2 Experiments

(E1): End-to-End attack on a fast message [20 human-
minutes + 10 compute-hour + 16 GB RAM]: The attack
will be performed on a message that can be deciphered
by a perfect oracle in under 10k queries.
How to: On a setup as described in the threat model in
Section 3.2, run the End-to-End attack with the example
message.
Preparation: Connect a smartcard to the Client. Run
native malicious code on the Client computer from any
user (preferably not the victim). Run MiTM attacker in
End-to-End attack mode and verify it has connected to
the malicious code running on the Client.
Execution: Perform actions as the victim generating
queries. This can be done either by performing actions
such as trying to open a remote file or by opening the
example local html file in a browser such as Google
Chrome or Microsoft Edge.
Results: Results can be found on the MiTM attacker
which will output information on how long the experi-
ment took and the deciphered message as well as infor-
mation on the amount of false negatives or false positives
and how the traceback method was used.
Notes: The attack can be performed on additional mes-
sages and will output information on the amount of un-
known bytes. In cases where one of the hosts has gone
to sleep, we had to restart the browser to keep generating
queries. We will be glad to assist to help everything run
smoothly.

(E2): Detect and Early Abort attack [60 human-minutes + 50
compute-hour + 16 GB RAM]: The attack will attempt
to find a fast message that can be deciphered in less than
10 hours for different messages generated by the server.
How to: On a setup as described in the threat model in
Section 3.2, run the Detect and Early Abort attack.
Preparation: Connect a smartcard to the Client. Run
native malicious code on the Client computer from any

user (preferably not the victim). Run MiTM attacker in
Detect and Early Abort attack mode and verify it has
connected to the malicious code running on the Client.
Execution: Perform actions as the victim generating
queries. This can be done either by performing actions
such as trying to open a remote file or by opening the
example local html file in a browser such as Google
Chrome or Microsoft Edge.
Results: Results can be found on the MiTM attacker
which will output information on the amount of mes-
sages attempted, how many fast messages were found
and how long the attack took. For deciphered messages,
the deciphered message will be given as well as informa-
tion on the amount of false negatives or false positives
and how the traceback method was used.
Notes: The attack can be performed with different limits
for the amount of queries. In cases where one of the hosts
has gone to sleep, we had to restart the browser to keep
generating queries. We will be glad to assist to help
everything run smoothly.

A.5 Notes on Reusability
On a different domain, the public key for the victim needs to
be added to the code. The attack doesn’t rely on the use of a
specific Smartcard.

While the end-to-end attack targeted a Windows Client,
several adaptations can be made to allow additional setups.
Although we didn’t check, we have no reason to believe the
query generation methods our attack used on Windows can’t
be extended to other operating systems and configurations
with an equivalent oracle.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 417

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

