
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

VulSim: Leveraging Similarity of Multi-Dimensional
Neighbor Embeddings for Vulnerability Detection

Samiha Shimmi, Ashiqur Rahman, and Mohan Gadde, Northern Illinois University;
Hamed Okhravi, MIT Lincoln Laboratory; Mona Rahimi, Northern Illinois University

https://www.usenix.org/conference/usenixsecurity24/presentation/shimmi

USENIX Security ’24 Artifact Appendix: VulSim: Leveraging Similarity
of Multi-Dimensional Neighbor Embeddings for Vulnerability Detection

Samiha Shimmi
Northern Illinois University

sshimmi@niu.edu

Ashiqur Rahman
Northern Illinois University

ashiqur.r@niu.edu

Mohan Gadde
Northern Illinois University

mgadde1@niu.edu

Hamed Okhravi
MIT Lincoln Laboratory

hamed.okhravi@ll.mit.edu

Mona Rahimi
Northern Illinois University

mrahimi1@niu.edu

A Artifact Appendix

This section provides a clear description of the hardware, soft-
ware, and configuration requirements of the paper mentioned
in the title.

A.1 Abstract

Our artifact is the source code to reproduce the result of
the paper. It contains the source code to run our model. We
provided a full pre-processed dataset to reproduce the results
of Table 3 of the paper which is our major claim. Our model
relies on three pre-existing models namely Code2vec, SBERT
and CodeBERT. To run our model, it is not necessary to run
all three models if you use the pre-processed data to run our
model. These three models are publicly available. If you want
to run the pre-processing part as well, you need to download
all the models and setup according to their instructions. We
provided the download link and also our code where we used
their model to generate a set of features.

A.2 Description & Requirements

To run our model (Table 3 in the paper), we only need some
basic Python library and that is provided in the Python script.
This part runs our model on pre-processed data. No additional
requirements are required if you run our model on the pre-
processed data. Data is also provided and all the instructions
are available in the Readme file.

However, if we want to run the data pre-processing,
you need to download Code2vec and CodeBERT
model. Code2vec is implemented using the approach
by https://github.com/dcoimbra/dx2021. In order to
download, one needs to follow the instructions provided
in their repository. Once downloaded, our part of code is
available and the instructions are provided in the Readme. For
CodeBERT, we utilized https://github.com/microsoft/
CodeXGLUE/tree/main/Code-Code/Defect-detection

following their instruction. We have provided our part of the
code and instructions are provided in the Readme.

A.2.1 Security, privacy, and ethical concerns

None

A.2.2 How to access

The artifact can be accessed via following link:
https://github.com/SamihaShimmi/VulSim/tree/
f08ab42dc8131b97887ee6e6d547df2a7915ee02

A.2.3 Hardware dependencies

No additional hardware resource is required to run our
model. We ran our model in Google Colab, using CPU. To
pre-process data, when we utilized other models such as
Code2vec, we used High-RAM mode.

A.2.4 Software dependencies

None

A.2.5 Benchmarks

We used Devign dataset from CodexGlue Benchmark that
is available in https://sites.google.com/view/devign.
We had to discard 71 records from the original benchmark
and our dataset without those 71 records are available
here https://drive.google.com/drive/folders/
1AGFr3Z3yfhwY5HYW3vvMSY5KGrVzFG7K?usp=sharing.
In order to run the model with pre-processed data, you can
use the data available in our github repository. This dataset is
only required if you want to run the pre-processing steps.

A.3 Set-up
All setup steps are embedded in corresponding scripts.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 119

https://github.com/dcoimbra/dx2021
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection
https://github.com/SamihaShimmi/VulSim/tree/f08ab42dc8131b97887ee6e6d547df2a7915ee02
https://github.com/SamihaShimmi/VulSim/tree/f08ab42dc8131b97887ee6e6d547df2a7915ee02
https://sites.google.com/view/devign
https://drive.google.com/drive/folders/1AGFr3Z3yfhwY5HYW3vvMSY5KGrVzFG7K?usp=sharing
https://drive.google.com/drive/folders/1AGFr3Z3yfhwY5HYW3vvMSY5KGrVzFG7K?usp=sharing

A.3.1 Installation

You have to download the repository from the provided
GitHub link. No additional installation is required.

A.3.2 Basic Test

Since there is not any prerequisite to run our model, there is
no basic test. You can run our decision tree-based classifier to
reproduce Table 3.

A.4 Evaluation workflow
This section describes the basic workflow.

A.4.1 Major Claims

(C1): Our major claim is that our model outperforms exist-
ing State-Of-The-Art (SOTA) methods. Table 3 is the
outcome of this claim.

A.4.2 Experiments

(E1): [Basic claim in pre-processed dataset (replicate table
3)] [5 mins max]: If you only want to generate the result
on the hybrid model, it will only take approximately 2-5
minutes with the pre-processed data
How to: Just following the Readme file and using the
appropriate dataset will be sufficient. All required data
and the classifier code is available.
Preparation: No preparation is required. You can just
run the decision tree based classifier on pre-processed
data which are available in the GitHub repository.
Execution: You have to follow the python script sequen-
tially provided in the Github repository.
Results: The last part of the python script gives the
accuracy which is reported in Table 3.

(E2): [Basic claim without pre-processed data (replicate ta-
ble 3 with pre-processing the data)] [2 human-hour + 120
hours approximately (if run separately for each model.
If you run parallel, it will be 48-72 hours in CPU mode.
If you have more advanced hardware, it will be less)]:
How to: We leveraged three existing models to pre-
process our data. As we mentioned in the Section A.2.5,
we used Devign dataset and discarded 71 records (down-
load link is provided in both Section A.2.5 and Readme
file). You have to download this dataset in order to pre-
process.
Preparation: Code2vec and CodeBERT model
should be downloaded using the following links:
https://github.com/dcoimbra/dx2021 and
https://github.com/microsoft/CodeXGLUE/
tree/main/Code-Code/Defect-detection
Execution: Once you download the models, you can
leverage the models using our provided scripts. We have

three models namely Code2vec, CodeBERT, and SBERT.
For each three models, in the Github link, we have pro-
vided our scripts. Name of the each file is given in the
Readme files. You have to run two scripts for each model.
The first one generates the embeddings and calculates
cosine similarity. The second script applies our ranking
formula and generates the features to feed our model.
SBERT part takes less time. For code2vec and Code-
BERT, generating the embedding and cosine similarity
takes some time (48-72 hours for each model) to exe-
cute depending on the hardware. Once we generate the
embeddings, we manually need to run some scripts step
by step (following the Readme) to generate the features.
Once we have all the features from three models, we
merge 2 sets of features from each model and thus get
the pre-processed data to feed to the decision tree based
classifier. We need to follow the steps provided in E1 to
regenerate Table 3.
Results: The last part of the python script gives the
accuracy which is reported in Table 3.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

120 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/dcoimbra/dx2021
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

