
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

AcAi: Protecting Accelerator Execution with
Arm Confidential Computing Architecture

Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, Mark Kuhne,
Fabio Aliberti, and Shweta Shinde, ETH Zurich

https://www.usenix.org/conference/usenixsecurity24/presentation/sridhara

USENIX Security ’24 Artifact Appendix: ACAI: Protecting Accelerator
Execution with Arm Confidential Computing Architecture

Supraja Sridhara Andrin Bertschi Benedict Schlüter Mark Kuhne Fabio Aliberti Shweta Shinde
ETH Zurich

A Artifact Appendix

ACAI enables Arm CCA protected computation to securely
connect and use accelerators. To demonstrate the feasibility
and overheads of ACAI we evaluate its design on 2 accelera-
tors: GPU and FPGA. We prototype ACAI on Arm’s public
simulator that supports CCA. We perform our experiments
using a standard set of benchmarks from the Rodinia test suite
for the GPU and custom-coded examples for the FPGA.

A.1 Abstract
This artifact appendix provides source code and build envi-
ronments to download, compile, and run ACAI. We prototype
our implementation on a publicly available simulation soft-
ware, called Fixed Virtual Platform (FVP). To implement
ACAI we change the TF-A, RMM, and Linux kernels. Our
artifact includes different toolchains cross-compiled for Arm
platforms, Linux kernels, and root file systems along with
our benchmarks. These components are required to launch
a realm VM on the FVP. The FVP does not provide inter-
faces to connect to PCIe devices. To evaluate ACAI, we build
an FVP escape mechanism. To enable the FVP escape and
communication with PCIe accelerators, our artifact relies on
host kernel patches. To reproduce the results of our evalua-
tion, our artifact requires specific accelerators which we are
unable to provide access to. Therefore, we only aim for Arti-
facts Available and Artifacts Functional badges. We provide
a minimal working example that doesn’t require specialized
accelerators and demonstrates ACAI’s functionality. We have
automated the build process of all software components in a
Docker container. Further, the build can also be reproduced
by continuous integration.

A.2 Description & Requirements
Software Requirements. We provide scripts that automate
the build process for the artifact. We require an x86-64 Linux
host machine with a running instance of X11, Docker, make,
bash, and Distrobox1. Distrobox is a set of bash wrapper
scripts to ease the use of Docker. X11 is required to run the
simulation software and to show the terminal output on the

1Distrobox: https://github.com/89luca89/distrobox

screen. We have automated the build process using a self-
hosted GitHub runner. The runner executes and replicates the
precise steps needed to build ACAI. Throughout the artifact
evaluation period, this self-hosted runner remains accessible
and serves as a resource to solve build-related challenges that
may arise. While any Linux distribution can be used to launch
Docker, the GitHub runner operates on Ubuntu 20.04 which
is the version we recommend.

Hardware Requirements. The build process for this arti-
fact is resource-intensive and can be time-consuming. Our
scripts build several Linux kernels and cross-compile root file
systems. We recommend using a powerful machine with sev-
eral cores. The build requires ≈ 100 GB of available storage.
Our self-hosted Github runner which uses an Intel Xeon Gold
6346 clocked at 3.1GHz with 62 GB of RAM and requires
≈ 3 hours to build the artifact.

A.2.1 Security, privacy, and ethical concerns

Our artifact operates within a simulated Aarch64 environment
on x86, made possible by the pre-built FVP provided by Arm.
The entire process of building and launching ACAI, alongside
the FVP, is encapsulated within a Docker container. To stream-
line the setup process, we simplify access by mapping the
user’s home directory into the container. Additionally, Docker
requires access to X11, which is required to launch the FVP
simulation software from within the Docker container.

The artifact does not involve destructive actions. Beyond
the Docker permissions mentioned above, it does not compro-
mise or disable security mechanisms.

A.2.2 How to access

We host the artifact on GitHub in a multi-repository, where the
main repository downloads dependencies with git submodules.
The submodules are also hosted on GitHub. A GitHub runner
provides continuous integration (CI) by building the artifact
on a new commit.

Github Organization https://github.com/
sectrs-acai/

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 215

https://github.com/89luca89/distrobox
https://github.com/sectrs-acai/
https://github.com/sectrs-acai/

Main Repository https://github.
com/sectrs-acai/acai/tree/
490966daf6f3be8798db2de99e2ecdce4deccd0e

GitHub Runner https://github.com/sectrs-acai/
acai/actions/workflows/build-acai.yml

A.2.3 Hardware dependencies

We evaluate ACAI with two PCIe-based accelerators. The
FVP does not provide a functional interface to connect to
PCIe accelerators. We implement an escape mechanism to
allow realm VMs in the FVP to communicate with functional
accelerators on the underlying x86 host machine. The accel-
erators we used are:
(1) Nvidia GeForce GTX 460 SE GPU
(2) Xilinx Virtex Ultrascale+ VCU118 FPGA

Interacting with these accelerators requires a custom host
kernel. While we provide and build these software compo-
nents, we do not provide the hardware to evaluate their bench-
marks. Therefore, we aim for the available and functional
badges and do not impose other hardware dependencies apart
from a commodity x86 host machine to build and run a mini-
mal working example.

A.2.4 Software dependencies

See A.2 for the list of software dependencies.

A.2.5 Benchmarks

For GPU benchmarks, we require an additional data set which
we download in a script2. We use the Rodinia dataset v3.13.
Benchmark files are available in the following repositories.

GPU Benchmarks https://github.com/sectrs-acai/
acai-rodinia

For FPGA benchmark, we hand-code benchmarks using ex-
isting algorithms from existing from Vitis Libraries and Vitis
HLS.

FPGA Bitstreams https://github.com/sectrs-acai/
acai-fpga-bench

FPGA Runs Scripts https://github.com/
sectrs-acai/acai/tree/trusted-periph/
master/src/benchmarking/fpga/scripts

2https://github.com/sectrs-acai/acai-rodinia/blob/
trusted-periph/master/download-assets.sh

3http://www.cs.virginia.edu/~skadron/lava/Rodinia/
Packages/rodinia_3.1.tar.bz2

A.3 Set-up
A.3.1 Installation

To build the artifact, follow the tutorial hosted in the main
GitHub repository at /doc/artifact-evaluation.md.

The steps listed in the tutorial include:
(a) Download all submodules and build dependencies,
(b) Build and enter the docker container,
(c) Build the artifact, and
(d) Launch the FVP and run a minimal working example.

The build is automated and only requires the execution of
a few scripts.

A.3.2 Minimal Working Example

Follow the steps in /doc/artifact-evaluation.md#
minimal-working-example to run a minimal working ex-
ample. The example launches a realm VM on the FVP and
uses ACAI to delegate realm private memory to a PCIe test
engine.

A.4 Evaluation workflow
We list all our claims and the experiments we performed to
support them. For the Artifacts functional badge, we provide a
minimal working example in Section A.4.2. For completeness,
we list all the experiments we performed in Section A.4.3.

A.4.1 Major Claims

(C1): ACAI maintains compatibility with existing accelerator
applications, runtimes, and drivers.

(C2): The bounce buffer design executes more instructions
than ACAI (e.g., 26.8× more for GPU benchmarks)

(C3): ACAI adds a minimal overhead for normal world oper-
ation (e.g., 3.8% for GPU benchmarks)

A.4.2 Feasible experiments without special hardware

(E1): Minimal Working Example [9 human minutes + 20
compute minutes]: The minimal working example,
demonstrates ACAI on an Arm FVP with CCA sup-
port and uses a test engine in the FVP to emulate de-
vice accesses. This example first sets up all components
that ACAI requires to verify functionality: (a) 2 GPTs
at boot, (b) SMMU configurations in the monitor, (c)
new interface to the realm to delegate memory to be
device accessible. Once the realm boots, the example in-
vokes rsi_delegate_prot_mem to correctly configure
the GPTs and the SMMU. Then, it uses the test engine
on the FVP to access the delegated memory.
How to: Please follow the build and run instructions in
A.3.1, A.3.2.

216 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/sectrs-acai/acai/tree/490966daf6f3be8798db2de99e2ecdce4deccd0e
https://github.com/sectrs-acai/acai/tree/490966daf6f3be8798db2de99e2ecdce4deccd0e
https://github.com/sectrs-acai/acai/tree/490966daf6f3be8798db2de99e2ecdce4deccd0e
https://github.com/sectrs-acai/acai/actions/workflows/build-acai.yml
https://github.com/sectrs-acai/acai/actions/workflows/build-acai.yml
https://github.com/sectrs-acai/acai-rodinia
https://github.com/sectrs-acai/acai-rodinia
https://github.com/sectrs-acai/acai-fpga-bench
https://github.com/sectrs-acai/acai-fpga-bench
https://github.com/sectrs-acai/acai/tree/trusted-periph/master/src/benchmarking/fpga/scripts
https://github.com/sectrs-acai/acai/tree/trusted-periph/master/src/benchmarking/fpga/scripts
https://github.com/sectrs-acai/acai/tree/trusted-periph/master/src/benchmarking/fpga/scripts
https://github.com/sectrs-acai/acai-rodinia/blob/trusted-periph/master/download-assets.sh
https://github.com/sectrs-acai/acai-rodinia/blob/trusted-periph/master/download-assets.sh
http://www.cs.virginia.edu/~skadron/lava/Rodinia/Packages/rodinia_3.1.tar.bz2
http://www.cs.virginia.edu/~skadron/lava/Rodinia/Packages/rodinia_3.1.tar.bz2
https://github.com/sectrs-acai/acai/blob/trusted-periph/master/doc/artifact-evaluation.md
https://github.com/sectrs-acai/acai/blob/trusted-periph/master/doc/artifact-evaluation.md#minimal-working-example
https://github.com/sectrs-acai/acai/blob/trusted-periph/master/doc/artifact-evaluation.md#minimal-working-example

Results: The example first demonstrates that the test
engine fails to access the memory. After ACAI has dele-
gated the memory, the access succeeds.

A.4.3 Experiments with special hardware

We demonstrate ACAI with GPU and FPGA accelerators.
The subsequent benchmarks use the same datasets but differ
in their implementation variant.

Preparation: Boot a realm VM with 1 GB of RAM, nice-
ness -20, and pin it to the third core. In the hypervisor, reserve
core 3 from being used by the scheduler. Use the PCIe bypass
mechanism to exchange memory mappings between the x86
host machine and the FVP.

GPU Benchmarks: In the realm VM, load the ACAI-Helper
kernel module and install the GPU kernel driver4.

FPGA Benchmarks: In the realm VM, load the ACAI-Helper
kernel module and install the FPGA kernel driver.

Execution: Run the corresponding benchmark with the
setup script. The script configures the number of iterations
for the benchmark.

Results: Find a capture file on the underlying host ma-
chine in /tmp/arm* with the number of executed instructions,
context, and security domain switches.

Source code of TFA, RMM, and Linux kernel for different
variants:

ACAI in (Ae) and (Bv):
branch trusted-periph/unmodified

ACAI in (Ap) and (Av):
branch trusted-periph/master

Implementation variants for GPU 5:
(I1): ACAI in encryption mode (Ae):

Run cuda_enc/setup.sh run in a realm VM.
(I2): ACAI in protection mode (Ap):

Run cuda/setup.sh run in a realm VM.
(I3): ACAI changes on Normal World (Av):

Run cuda_ns/setup.sh run in normal world.
(I4): Normal world with unmodified software (Bv):

Run cuda_ns/setup.sh run in normal world.

Implementation variants for FPGA6:
(I1): ACAI in encryption mode (Ae):

Run setup.sh{xdma_enc|svd_32_enc|svd_48_enc|
{matmul_enc} in a realm VM.

4Run experiments: https://github.com/sectrs-acai/acai/blob/
trusted-periph/master/doc/run_experiments.md

5Script directory /src/gpu_driver/rodinia-bench/ in https://
github.com/sectrs-acai/acai

6Script directory /src/benchmarking/fpga/scripts in https://
github.com/sectrs-acai/acai

(I2): ACAI in protection mode (Ap):
Run setup_devmem.sh{xdma|svd_32|svd_48|matmul}
in a realm VM.

(I3): ACAI changes on Normal World (Av):
Run setup.sh{xdma|svd_32|svd_48|matmul} in
normal world.

(I4): Normal world with unmodified software (Bv):
Run setup.sh{xdma|svd_32|svd_48|matmul} in
normal world.

Experiments:
(E2): Compare results of I1 and I2 for claim C2. All imple-

mentation variants execute the benchmarks with unmod-
ified application, runtime and driver code. This validates
claim C1.

(E3): Compare results of I3 and I4 for claim C3.

A.5 Notes on Reusability
• We implement a reusable setup to build TFA, RMM,

Linux kernels, and Aarch64 root file systems based on
Buildroot. The setup can be used for further development
on the platform.

• We implement a PCIe escape mechanism that can be
used for accelerators other than an FPGA and GPU. To
enable computation in a realm VM to escape the FVP,
we implement stub drivers in the realm VM which use
a page fault-based mechanism. To control these page
faults and identify pages allocated to the devices, we
modify the memory allocation routines on the host for
the FVP process. The page-fault mechanism coupled
with the memory allocation routines can be reused to
implement the escape mechanism for other PCIe devices.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 217

https://github.com/sectrs-acai/acai/blob/trusted-periph/master/doc/run_experiments.md
https://github.com/sectrs-acai/acai/blob/trusted-periph/master/doc/run_experiments.md
/src/gpu_driver/rodinia-bench/
https://github.com/sectrs-acai/acai
https://github.com/sectrs-acai/acai
/src/benchmarking/fpga/scripts
https://github.com/sectrs-acai/acai
https://github.com/sectrs-acai/acai
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Minimal Working Example

	Evaluation workflow
	Major Claims
	Feasible experiments without special hardware
	Experiments with special hardware

	Notes on Reusability
	Version

