
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Towards an Effective Method of ReDoS Detection
for Non-backtracking Engines

Weihao Su, Hong Huang, and Rongchen Li, Key Laboratory of System Software
(Chinese Academy of Sciences) and State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences; University of Chinese Academy
of Sciences; Haiming Chen, Key Laboratory of System Software (Chinese Academy
of Sciences) and State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences; Tingjian Ge, Miner School of Computer
& Information Sciences, University of Massachusetts, Lowell

https://www.usenix.org/conference/usenixsecurity24/presentation/su-weihao

USENIX Security ’24 Artifact Appendix: <Towards an Effective Method
of ReDoS Detection for Non-backtracking Engines>

Hong Huang†‡ Rongchen Li†‡ Weihao Su†‡ Haiming Chen† � Tingjian Ge¶

†Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences

‡University of Chinese Academy of Sciences
¶Miner School of Computer & Information Sciences, University of Massachusetts, Lowell

A Artifact Appendix

A.1 Abstract

Regular expressions (regexes) are a fundamental concept
across the fields of computer science. However, they can
also induce the Regular expression Denial of Service (Re-
DoS) attacks, which are a class of denial of service attacks,
caused by super-linear worst-case matching time. Due to the
severity and prevalence of ReDoS attacks, the detection of
ReDoS-vulnerable regexes in software is thus vital. Although
various ReDoS detection approaches have been proposed,
these methods have focused mainly on backtracking regex en-
gines, leaving the problem of ReDoS vulnerability detection
on non-backtracking regex engines largely open.

In our paper “Towards an Effective Method of ReDoS De-
tection for Non-backtracking Engines”, we systematically an-
alyze the major causes that could contribute to ReDoS vulner-
abilities on non-backtracking regex engines. We then propose
a novel type of ReDoS attack strings that builds on the con-
cept of simple strings. Next we propose EVILSTRGEN, a tool
for generating attack strings for ReDoS-vulnerable regexes on
non-backtracking engines. It is based on a novel incremental
determinisation algorithm with heuristic strategies to lazily
find the k-simple strings without explicit construction of finite
automata. In this artifact, we provide the source code of EVIL-
STRGEN, the benchmarks used in the paper and the required
materials to reproduce our results as described in our paper.
This appendix describes how to replicate the experiments as
described in §6.2 to §6.5 in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

All the experiments are conducted within a Docker container,
which will not perform destructive operations or disable se-
curity mechanisms to harm the computer.

A.2.2 How to access

The source code and all the experimental mate-
rials required can be found on Zenodo: https:
//doi.org/10.5281/zenodo.12270846. A copy
of the implementation is also available at https:
//github.com/Anonymous89813/EvilStrGen/tree/
a07d7a989d9b817524846668712a4b7e038d0226.

A.2.3 Hardware dependencies

We recommend using a machine with 3.40GHz Intel i7-6700
8 CPU, 8GB of RAM and 2TB of disk. However a CPU
with higher performance could reproduce similar results in a
shorter amount of time.

A.2.4 Software dependencies

Ubuntu 20.04 or an equivalent virtual machine and Docker
will suffice.

A.2.5 Benchmarks

The benchmarks used in the experiments are included in
the repository named Benchmarks as shown in Figure 1.
SET736535 is a large-scale real-world benchmark from var-
ious sources, used in the experiments E1 and E2 described
below. We offered a script as described in E2 below for se-
lecting all regexes in sub-classes mentioned in the paper,

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 15

https://doi.org/10.5281/zenodo.12270846
https://doi.org/10.5281/zenodo.12270846
https://github.com/Anonymous89813/EvilStrGen/tree/a07d7a989d9b817524846668712a4b7e038d0226
https://github.com/Anonymous89813/EvilStrGen/tree/a07d7a989d9b817524846668712a4b7e038d0226
https://github.com/Anonymous89813/EvilStrGen/tree/a07d7a989d9b817524846668712a4b7e038d0226

Figure 1: Repository of benchmarks used for experiments.

from SET736535, e.g. counting-free regexes, etc. The script
will automatically generate the subsets of benchmarks un-
der Benchmarks/Sub-Class folder. ABOVE20 is the dataset
from [1], which GadgetCA is specialized in, and is used in E3.
The Real-World benchmark is used in E4, which contains
the collection of regexes from Table 8 in our paper.

A.3 Set-up

A.3.1 Installation

After downloading the Docker image, please refer to the “Pre-
requisites” section of the README file in the Zenodo repository
to import the image. Since the working directory for subse-
quent commands is /Evaluation, execute the command: cd
/Evaluation to make sure that your terminal is working in
this directory.

A.3.2 Basic Test

We provide a basic test to quickly check all experiment scripts
are functioning. To run this basic test, you can execute the
command: ./BasicEvaluation.sh. It takes about 60 min-
utes to run this command. If the command executes success-
fully, the results will be output to the BasicResults directory
and “Successfully” will be printed in the shell.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): EVILSTRGEN detects more ReDoS vulnerabilities
than baselines for non-backtracking regex engines on
the large-scale real-world benchmark SET736535 (§6.2
and Table 5).

(C2): EVILSTRGEN outperforms GadgetCA in the severity
of vulnerabilities detected on the large-scale real-world
benchmark SET736535 (§6.2, Table 5 and Figure 4 (a)-
(h)).

(C3): EVILSTRGEN is able to identify ReDoS vulnerabilities
for non-backtracking regex engines on some seemingly
safe regex sub-classes from the large-scale real-world
benchmark SET736535 (§6.2 and Table 6).

(C4): EVILSTRGEN also outperforms GadgetCA on
ABOVE20, the benchmark which GadgetCA is special-
ized in, in terms of the number of vulnerabilities detected
and the severity of vulnerabilities (§6.3, Figure 4 (i)-(p)
and Table 7).

(C5): Each heuristic strategy improves the effectiveness of
candidate attack string generation in EVILSTRGEN, that
the efficiency boost provided by heuristic strategies helps
EVILSTRGEN to detect more ReDoS vulnerabilities,
on both SET736535 and ABOVE20 (§6.4, Table 5 and
Table 7).

(C6): EVILSTRGEN can be used to detect unrevealed ReDoS
vulnerabilities when applied to practical programs using
non-backtracking engines (§6.5 and Table 8).

A.4.2 Experiments

We designed four experiments to demonstrate the claims C1-
C6. Please refer to the section “Evaluating the Artifact” in
the README file and execute the experiments as listed follows.
It takes about 10 days to run all experiments in our hard-
ware dependencies (§A.2.3). If you want to quickly check the
functionality of the experiment scripts, you can follow the
instructions in §A.3.2.
(E1): [Large-Scale][5 human-minutes + over 200 compute-

hours + 1TB disk]: If E1 is successfully executed, the
results are found in E1/Table/ and E1/Figure/.
Preparation: Run the command cd /Evaluation to
enter the working directory.
Execution: Run the command ./E1.sh.
Results: The output format of the results in E1/Table/
is shown in Figure 2. C1 is confirmed by crosschecking
the results with Table 5 in the paper. The output format
of the results in E1/Figure/ is shown in Figure 31, and
C2 is confirmed by crosschecking the results in Figure 2
with Table 5 in the paper and the results in Figure 3 with
Figure 4 (a)-(h) in the paper. The rows 1-4 in Figure 2
also confirm C5 on the large-scale benchmark.

(E2): [Sub-Classes][5 human-minutes + 40 compute-hours
+ 100GB disk]: If E2 is successfully executed, the results
are found in E2/Table/.
Preparation: Run the command cd /Evaluation to
enter the working directory.
Execution: Run the command ./E2.sh.
Results: The output format of the results is shown in
Figure 4 and C3 is confirmed by crosschecking the re-

1Note that the results presented in E1/Figure/ are identical in
content to those in Figure 4 of the paper. However, for reasons
stated in §6.2 of the paper, we have made some visual optimiza-
tions to highlight the issues we wish to address. We used hexscat-
ter (https://ww2.mathworks.cn/matlabcentral/fileexchange/45639-hexscatter-
m) and FigureBest (https://mbd.pub/o/bread/mbd-YpyUmJlq) to visualize
the results as in the paper. The very same plots can be obtained by passing the
time results of EVILSTRGEN and GadgetCA as two arrayes to hexscatter, and
using the adjustment/color mapping function of FigureBest, if needed.

16 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

Figure 2: This figure corresponds to Table 5 in the paper.

Figure 3: This figure corresponds to the Figure 4(f) in the
paper.

Figure 4: This figure corresponds to Table 6 in the paper.

Figure 5: This figure corresponds to Table 7 in the paper.

Figure 6: This figure corresponds to Table 8 in the paper.

sults with Table 6 in the paper.
(E3): [ABOVE20][5 human-minutes + 3 compute-hours +

10GB disk]: If E3 is successfully executed, the results
are found in E3/Table/ and E3/Figure/.
Preparation: Run the command cd /Evaluation to
enter the working directory.
Execution: Run the command ./E3.sh.
Results: The output formats of the results in E3/Table/
and the results in E3/Figure/ are shown in Figure 5 and
Figure 3, respectively. C4 is confirmed by crosschecking
these results with Table 7 and Figure 4 (i)-(p) in the
paper. The rows 1-4 in E3/Table/ confirm C5 on the
ABOVE20 benchmark.

(E4): [Real-World][5 human-minutes + 1 compute-hour +
25GB disk]: If E4 is successfully executed, the results
are found in E4/Table/.
Preparation: Run the command cd /Evaluation to
enter the working directory.
Execution: Run the command ./E4.sh.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 17

Results: The output format of the results is shown in
Figure 6 and C6 is confirmed by crosschecking the re-
sults with Table 8 in the paper.

A.5 Notes on Reusability
EVILSTRGEN is designed to uncover ReDoS vulnerabilities
for non-backtracking engines, which is commonly used in
shell scripts, e.g. grep. To apply EVILSTRGEN to applications
using non-backtracking engines, we provide commands to
run EVILSTRGEN in Reusability section of README file in
the Zenodo repository.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

References

[1] L. Turoňová, L. Holík, I. Homoliak, O. Lengál, M. Veanes,
and T. Vojnar. Counting in Regexes Considered Harm-
ful: Exposing ReDoS Vulnerability of Nonbacktracking
Matchers. In USENIX Security ’22, pages 4165–4182,
2022.

18 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

