
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

FraudWhistler: A Resilient, Robust and
Plug-and-play Adversarial Example

Detection Method for Speaker Recognition
Kun Wang, Zhejiang University; Xiangyu Xu, Southeast University;

Li Lu, Zhongjie Ba, Feng Lin, and Kui Ren, Zhejiang University
https://www.usenix.org/conference/usenixsecurity24/presentation/wang-kun

USENIX Security ’24 Artifact Appendix: FraudWhistler: A Resilient,
Robust and Plug-and-play Adversarial Example Detection Method for

Speaker Recognition

Kun Wang
Zhejiang University

Xiangyu Xu
Southeast University

Li Lu
Zhejiang University

Zhongjie Ba
Zhejiang University

Feng Lin
Zhejiang University

Kui Ren
Zhejiang University

A Artifact Appendix

A.1 Abstract

In our Artifact, we provide the source code, experiment de-
sign, and some raw results of FraudWhistler. Specifically, we
provide the implementation source code of FraudWhistler
for performing the experiments described in this paper, the
instruction for running code to reproduce our major experi-
ment results, and the raw anonymous results of our audibil-
ity study. This appendix will introduce details of our open-
source code available on GitHub: https://github.com/
kuang22/FraudWhistler/releases/tag/v1.3, including
environment installation, dataset preparation, running evalua-
tion, result collection and how to deploy FraudWhistler on a
new SR system.

A.2 Description & Requirements

Software Requirements: Conda or miniconda, python, py-
torch, and CUDA. It is advised to run the experiments by
following the instructions provided in the repository.
Hardware Requirements: To produce the experiments, we
expect a machine with at least 128GB RAM, and 24GB
NVIDIA GPU.

A.2.1 Security, privacy, and ethical concerns

This artifact will not lead to any security, privacy and ethical
issues.

A.2.2 How to access

Use the following link to access our code on GitHub:
https://github.com/kuang22/FraudWhistler/
releases/tag/v1.3. You can either download the

project without git on your machine or simply use the "git
clone" command to clone the project.

A.2.3 Hardware dependencies

We recommend a machine with Linux operating system
equipped with at least 128GB RAM and 24GB NVIDIA GPU.
In our experiment setup, we use a machine running Ubuntu
hirsute 21.04 with 40 Intel Xeon Silver 4210R CPU, 256GB
RAM, and four 48GB NVIDIA RTX A6000 GPU.

A.2.4 Software dependencies

The code is tested with Python 3.11, Pytorch 2.0.1, and CUDA
11.7. We also require some libraries like torchaudio, torch-
metrics. You can follow the instructions in the README file
in our repository to create the environment.

A.2.5 Benchmarks

We require VCTK corpora and OpenRIR dataset to reproduce
the main results in our paper. You need to prepare the dataset
before running the codes. Please follow the instructions pro-
vided in our repository.

A.3 Set-up
A.3.1 Installation

Please follow thses steps to install the software dependencies:
1. CUDA Installation: You need to make sure a CUDA
toolkit with a version later than 11.7 is properly installed
on your machine. Plase check the official website of CUDA
Toolkit for instructions: https://developer.nvidia.com.
2. Anaconda Installation: You need to install conda to pre-
pare the running environment. Please check the official web-
site of anaconda: https://www.anaconda.com/download.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 457

https://github.com/kuang22/FraudWhistler/releases/tag/v1.3
https://github.com/kuang22/FraudWhistler/releases/tag/v1.3
https://github.com/kuang22/FraudWhistler/releases/tag/v1.3
https://github.com/kuang22/FraudWhistler/releases/tag/v1.3

3. Environment Creation: You need to create the running en-
vironment based on the env.yaml file in our repo. The detailed
instructions are described in the README file.

A.3.2 Basic Test

Run the following commands in shell to validate the the
environment:

$ py thon
>>> i m p o r t t o r c h
>>> t o r c h . cuda . i s _ a v a i l a b l e ()

If the outout is "True", then the dependencies are installed
properly.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): FraudWhistler achieves about 98.7% on detecting ad-
versarial examples for speaker recognition, outperform-
ing state-of-the-art works by about 13% with a minor
degradation of 6.1% on benign audio samples.

(C2): FraudWhistler achieves an accuracy of 84% in the
worst case against an adaptive adversary, considering the
imperceptibility to the human involved.

A.4.2 Experiments

(E1): [Dataset Preparation] [5 human-minutes + 1 compute-
hour + 12GB disk]: Run the "prepare_dataset.sh" to
download the dataset needed and generate some auxiliary
files.
Preparation: None
Execution: Run "prepare_dataset.sh" in the cloned
repository.
Results: There should be a directory named "dataset"
and a file named "reverb.csv" is created.

(E2): [Evaluation on Static Attacks] [10 human-minutes +
several compute-days]: Generate adversarial examples
with various algorithms, train FraudWhistler on benign
data, and evaluate the system on detecting AEs (Table.
3).
Preparation: Create and activate the conda environ-
ment named "fraudwhistler" with the provided file
env.yaml in our repository.
Execution: Extract features from benign examples and
adversarial examples with the following commands:

$ py thon p r e p a r e _ d a t a . py
$ py thon p r e p a r e _ a d v _ d a t a . py

and perform the detection by running the following com-
mand:

$ py thon r u n _ d e t . py 3

Results: The extracted features are stored in "Result-
s/scores_data.npy" and "Results/scores_adv_data.npy",
and the detection results are stored in "Results/det.txt".
You can show the detection results by running "cat Re-
sults/det.txt" and the output should be in the format as
follows:
————
DefenseSystemName:
Accuracy on benign examples (ACC_be): XX
Detector’s accuracy on adversarial examples (ACC_ae):
Average: XX
Robust Accuracy of whole system on AEs (ACC_rob):
Average: XX
Note that there are three defense systems evaluated at de-
fault including FraudWhistler, WaveGuard, and TimeDe-
pendent.

(E3): [Evaluation on Adaptive Attacks] [5 human-minutes
+ several compute-days]: Generate adaptive adversar-
ial examples against FraudWhistler system, evaluate the
performance of FraudWhistler, and compare the perfor-
mance with human accuracy (Figure. 8 and 9).
Preparation: Activate the conda environment, and
make sure that "Results/scores_data.npy" has been cre-
ated in E2.
Execution: Generate adaptive adversarial examples and
extract features from them for performing detection by
running the following command:

$ py thon run_adap_adv . py 3

Results: The detection results are stored in "Result-
s/det_adap.txt" and the output should be in the format as
follows:
—————epsilon_0.XX
SNR: XXXX PESQ: XXXX
Adaptive Attack Success Rate: XX
Robust Accuracy of whole system on AEs: XX
The raw anonymous result of our audibility study is
also provided in the repository in a file named listen-
ing_res.csv.

A.5 Notes on Reusability
In this artifact, we provide detailed instructions on how to
deploy FraudWhistler on a new speaker recognition system
and how to evaluate the system on a new dataset. You can
follow the instructions in the section "Deploy FraudWhistler
on New SR/Dataset" of the README file.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

458 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

