
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Bending microarchitectural weird
machines towards practicality

Ping-Lun Wang, Riccardo Paccagnella, Riad S. Wahby,
and Fraser Brown, Carnegie Mellon University

https://www.usenix.org/conference/usenixsecurity24/presentation/wang-ping-lun

USENIX Security ’24 Artifact Appendix: Bending microarchitectural
weird machines towards practicality

Ping-Lun Wang, Riccardo Paccagnella, Riad S. Wahby, and Fraser Brown
Carnegie Mellon University

A Artifact Appendix

A.1 Abstract

This artifact provides the source code of our weird machine
compiler that can generate Flexo weird machines, as well as
our weird machine packer, UPFlexo. Our weird machines sup-
port eight x86_64 processors from AMD and Intel, and these
processors are available on the AWS EC2 cloud platform. It
takes roughly 12 hours to reproduce the experiment results in
our paper.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The stable reference to our artifact is accessible
via: https://github.com/joeywang4/Flexo/tree/
00186b46205497e87db78add5f2c86e69593a2e7.

A.2.3 Hardware dependencies

Our weird machines are tested on eight AWS EC2 instances
running x86_64 processors from AMD or Intel. Table 1 lists
the microarchitecture, instance type, and processor of these
eight instances.

Microarchitecture Instance Type Processor
Zen 1 t3a.xlarge AMD EPYC 7571
Zen 2 c5a.xlarge AMD EPYC 7R32
Zen 3 c6a.xlarge AMD EPYC 7R13
Zen 4 m7a.xlarge AMD EPYC 9R14
Skylake c5n.xlarge Intel Xeon 8124M
Cascade Lake m5n.xlarge Intel Xeon 8259CL
Icelake m6in.xlarge Intel Xeon 8375C
Sapphire Rapids m7i.xlarge Intel Xeon 8488C

Table 1: The AWS EC2 instances and processors we use to
perform our evaluation.

Our weird machines may be able to run on other x86_64
processors with similar microarchitectures as these eight in-
stances. However, we cannot guarantee the accuracy when
running our weird machine on processors not listed in Table 1,
since it may require further tuning for our weird machines to
work on other types of processors.

A.2.4 Software dependencies

Any 64-bit Linux operating system can run our artifact, while
we suggest using Ubuntu 22.04 or a later version. To build our
compiler and run the evaluation script, podman and python3
are required.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Clone the git repository of our artifact (including the
submodules), and install the dependencies: podman and
python3. After that, run the bash script located at
reproduce/scripts/build_all.sh to install our compiler
and compile the weird machines. The installation takes
roughly one hour, and it consumes about ten gigabytes of
disk space.

A.3.2 Basic Test

To test the installation, run the Python script located at
reproduce/scripts/test_install.py.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Size, accuracy, and runtime of the circuits Our arti-
fact can reproduce the results in Table 2, 3, 4 and 5 of
our paper. These tables contain the circuit size, accuracy,
and runtime of our Flexo circuits.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 71

https://github.com/joeywang4/Flexo/tree/00186b46205497e87db78add5f2c86e69593a2e7
https://github.com/joeywang4/Flexo/tree/00186b46205497e87db78add5f2c86e69593a2e7

(C2): Runtime of the packer Our artifact can reproduce the
results in Table 6 of our paper. This table contains the
unpacking time of our weird machine packer.

A.4.2 Experiments

(E1): [Circuits] [5 human-minute + 8 compute-hour]:
How to: To run the circuits, execute the Python script
located at reproduce/scripts/run_WM.py. The script
will output the accuracy and runtime for each circuit.
Preparation: Make sure the installation is successful
before running the Python script.
Execution: Run the Python script. For more informa-
tion about how to configure the experiment or the com-
mand line arguments for the script, please refer to the
read me file located at reproduce/README.md.
Results: The script will output the accuracy and run-
time for each circuit. The results are also recorded in the
results folder located at reproduce/results/. Run the
Python script with -r command line argument to print
out the results in the folder. The circuit size is recorded
at reproduce/build/circuits.log. The results gen-
erated in this experiment should be similar to the results
in Table 2, 3, 4, 5 in our paper.

(E2): [Packer] [5 human-minute + 4 compute-hour]:
How to: Run the Python script located at
reproduce/scripts/run_packed.py. The script
will output the runtime for each packer.
Preparation: Make sure the installation is successful
before running the Python script.
Execution: Run the Python script. For more infor-
mation about the command line arguments for the
script, please refer to the read me file located at
reproduce/README.md.
Results: The script will output the results. The re-
sults are also recorded in the results folder located at
reproduce/results/. Run the Python script with -r
command line argument to print out the results in the
folder. The results generated in this experiment should
be similar to the results in Table 6 in our paper.

A.5 Notes on Reusability

Compiling a custom circuit It is possible to use our com-
piler to create a new weird machine using a custom circuit.
Please refer to the read me file for instructions about how to
use our compiler. The circuits folder provides several ex-
amples about how to write a weird machine circuit in C/C++.

Using a custom encryption scheme for UPFlexo UPFlexo
currently supports Simon and AES encryption schemes. To
customize the encryption scheme for UPFlexo, add a new
weird machine under the UPFlexo/WM/ folder.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

72 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

