é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

SSRF vs. Developers: A Study of SSRF-Defenses
in PHP Applications

Malte Wessels and Simon Koch, Technische Universitét Braunschweig;
Giancarlo Pellegrino, CISPA Helmholtz Center for Information Security;
Martin Johns, Technische Universitét Braunschweig

https://www.usenix.org/conference/usenixsecurity24/presentation/wessels

This artifact appendix is included in the Artifact Appendices to the

Proceedings of the 33rd USENIX Security Symposium and appends

to the paper of the same name that appears in the Proceedings of
the 33rd USENIX Security Symposium.

August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX
Security Symposium is sponsored
by USENIX.

ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

USENIX Security *24 Artifact Appendix: SSRF vs. Developers: A Study
of SSRF-Defenses in PHP Applications

Malte Wessels*", Simon Koch*', Giancarlo Pellegrino¥, Martin Johns'
T Technische Universitit Braunschweig
 CISPA Helmholtz Center for Information Security

{malte.wessels, simon.koch, m.johns } @tu-braunschweig.de, pellegrino@cispa.de

A Artifact Appendix

A.1 Abstract

A new PHP code property graph (CPG) generator. It is based
on PHP bytecode lifted directly from the PHP interpreter.
Additionally, we supply a static analysis pipeline (slicing
and string reconstruction) to find SSRF candidates. We are
applying for the functional badge.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Security and Ethics Concerns: We use a publicly available
PHP web shell with an SSRF candidate flow to demonstrate
the functionality. Since a web shell is vulnerable by design,
it should not be hosted. Privacy: We pull dependencies from
GitHub, Docker, and via sbt. This requires connections to
these servers.

A.2.2 How to access

An overview is available at: https://github.com/
SSRF-vs-Developers.

Version-fixed docker files for our code property
graph generation and experiment runner are avail-
able at: https://github.com/SSRF-vs-Developers/
CpgGeneration/tree/artifact.

SURFER, an SSRF candidate detection tool to run on the
generated PHP CPG, is available at: https://github.com/
SSRF-vs-Developers/surfer/tree/artifact.

The GitHub organization contains an overview, which we
used as an entry point for this artifact evaluation'.

A.2.3 Hardware dependencies

None, for the sake of demonstration we use small examples.

*Both authors contributed equally to this research.
"https://github.com/SSRF-vs-Developers/.github/tree/
ed093a0443fefd4a8a2d8cl34df813e80a6dfaSa/profile

A.2.4 Software dependencies

A recent Linux system with docker and git installed.

A.2.5 Benchmarks

None.

A.3 Set-Up

We provide several tools which are automatically built by the
docker containers.

PHP-src We patched the PHP interpreter to output more data
in its bytecode debug output.

CPG A code property graph generator based on PHP byte-
code.

Slicer A slicing utility for this CPG.
Plotter A plotting utility for slices.

SURFER Our tool to identify SSRF candidates in these
CPGs.

Optional: Install Joern

Install Joern” via its README or docker. We can confirm that
Joern version 2.0.223 is suitable, but we recommend trying
the latest version first. Pulling the docker image might require
a GitHub login”.

pull docker image
docker pull ghcr.io/joernio/joern:nightly

Zhttps://github.com/joernio/joern/

3nttps://docs.github.com/en/packages/
working-with-a-github-packages-registry/
working-with-the-container-registry

USENIX Association

Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 437

https://github.com/SSRF-vs-Developers
https://github.com/SSRF-vs-Developers
https://github.com/SSRF-vs-Developers/CpgGeneration/tree/artifact
https://github.com/SSRF-vs-Developers/CpgGeneration/tree/artifact
https://github.com/SSRF-vs-Developers/surfer/tree/artifact
https://github.com/SSRF-vs-Developers/surfer/tree/artifact
https://github.com/SSRF-vs-Developers/.github/tree/ed093a0443fefd4a8a2d8c134df813e80a6dfa5a/profile
https://github.com/SSRF-vs-Developers/.github/tree/ed093a0443fefd4a8a2d8c134df813e80a6dfa5a/profile
https://github.com/joernio/joern/
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry

A.3.1 Installation

Our toolchains are docker-based. We will provide recent
toolchain versions in the GitHub organization at https:
//github.com/PHP-CPG. However, for the purpose of this
artifact evaluation, we created dockerfiles that pin the versions.
To build these, clone their repository: https://github.com/
SSRF-vs-Developers/CpgGeneration. We provide scripts
that create (build and test) these docker containers. Change
the directory to their folders and run them in this order:

1. CPG/resources/docker/PHP-StringPatched/create.sh
2. CPGf/resources/docker/multilayer-php-cpg/create.sh
3. ExperimentRunner/template/create.sh

Each dockerfile will build the toolchain, including pulling
dependencies and running test cases. We, finally, build our
tool SURFER by running the following commands:

¢ Clone https://github.com/SSRF-vs-Developers/
surfer

¢ cd resources/docker

e ./create.sh

A.3.2 Basic Test

The repositories ships with the most basic SSRF
example to test the pipeline. Run this command:
./surfer_docker_run.sh ./basictestfiles/in/
./basictestfiles/cpg ./basictestfiles/out

This creates a cpg in the cpg folder. Additionally, a festpro-
Jject.json file is created in the out folder. This JSON contains
one candidate:

"reversedString": ["<G:_GET>[x]"],

"sink"™: ["/in/testproject/test.php", "1"],
"sinkName": "file_get_contents",

"sources": [["/in/testproject/test.php", "1"]]

Additionally, a dot file is generated, which visualizes our
slice. It can be rendered with utilities like Graphviz.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We provide a bytecode PHP code property graph
(CPG) generator.
(C2): SURFER can find SSRF candidates in these CPGs.

A.4.2 Experiments

We will use one of the repositories from our dataset to show

the functionality. For the sake of demonstration, instead of

using a productive application as an analysis subject, we use

a publicly available PHP reverse shell, which we found in our

dataset and classified as a ‘hacking tool’*.

El addresses C1, and E2 addresses C2, respectively.

(E1): [~ I compute-minute + < 100 MB disk]: Creating a
CPG from a project: We fetch the source code and create
a CPG. Additionally, this runs SURFER on the created
CPG.
Preparation: Install docker, wget, and a tool to unpack
zip files, e.g., unzip.
How to: First, cd into the ‘in’ folder: ‘surfer/ba-
sictestfiles/in’. Then download and extract https:
//github.com/ivan-sincek/php-reverse-shell/
archive/refs/tags/v2.6.zip.
Execution: Rerun the command from A.3.2:
./surfer_docker_run.sh ./basictestfiles/in/
./basictestfiles/cpg ./basictestfiles/out
Results: Cd into the ‘basictestfiles/cpg‘ folder and ob-
serve that a .cpg file was created. Optionally: Load
it into joern’ via ‘joern file.cpg’ and run queries, e.g.,
‘cpg.call.size’. If using dockererized joern:

docker run --rm -it -v /tmp:/tmp -v
$(pwd) :/app:rw -w /app -t ghcr.io
/joernio/joern:nightly Jjoern /app
/file.cpg

joern> cpg.call.size

(E2): [SURFER] [1 min]: The previous experiment also ran
SURFER automatically. Navigate to the ‘out’ folder and
confirm that a JSON file with the project’s name was
created. It should have 2 SSRF candidate flows under
the ‘candidates’ key. Each candidate contains a reversed
string. Additionally, .dot files are created to visualize the
slice through our CPG.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

4https://github.com/ivan-sincek/php-reverse-shell/
Shttps://github.com/joernio/joern/

438 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium

USENIX Association

https://github.com/PHP-CPG
https://github.com/PHP-CPG
https://github.com/SSRF-vs-Developers/CpgGeneration
https://github.com/SSRF-vs-Developers/CpgGeneration
https://github.com/SSRF-vs-Developers/surfer
https://github.com/SSRF-vs-Developers/surfer
https://github.com/ivan-sincek/php-reverse-shell/archive/refs/tags/v2.6.zip
https://github.com/ivan-sincek/php-reverse-shell/archive/refs/tags/v2.6.zip
https://github.com/ivan-sincek/php-reverse-shell/archive/refs/tags/v2.6.zip
https://secartifacts.github.io/usenixsec2024/
https://github.com/ivan-sincek/php-reverse-shell/
https://github.com/joernio/joern/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-Up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

