
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Racing on the Negative Force: Efficient Vulnerability
Root-Cause Analysis through Reinforcement

Learning on Counterexamples
Dandan Xu, SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences,
China, and School of Cyber Security, University of Chinese Academy of Sciences, China;
Di Tang, Yi Chen, and XiaoFeng Wang, Indiana University Bloomington; Kai Chen,
SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China,

and School of Cyber Security, University of Chinese Academy of Sciences, China;
Haixu Tang, Indiana University Bloomington; Longxing Li, SKLOIS, Institute of
Information Engineering, Chinese Academy of Sciences, China, and School of

Cyber Security, University of Chinese Academy of Sciences, China
https://www.usenix.org/conference/usenixsecurity24/presentation/xu-dandan

USENIX Security ’24 Artifact Appendix: Racing on the Negative Force:
Efficient Vulnerability Root-Cause Analysis through Reinforcement

Learning on Counterexamples

Dandan Xu1,2, Di Tang3, Yi Chen3, XiaoFeng Wang3, Kai Chen1,2, Haixu Tang3, Longxing Li1,2

1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

3Indiana University Bloomington

{xudandan, chenkai, lilongxing}@iie.ac.cn, {tangd, chen481, xw7, hatang}@iu.edu

A Artifact Appendix

A.1 Abstract
RACING is an efficient statistical Root-Cause Analysis (RCA)
solution that employs reinforcement learning on counterexam-
ples for acceleration. In this artifact, we provide RACING’s
source code and automation scripts for analyzing the 30 test-
ing programs used in our evaluations. The code and programs
have been tested to work on a 64-bit Ubuntu 20.04 server
with 32 Intel Xeon(R) Silver 4110@2.10 GHz CPU cores and
128 GB memory. Please note that due to the nature of fuzzing,
a machine with more powerful CPUs can potentially achieve
better results than those reported in the original paper.

This appendix contains the necessary steps for setting up a
proper testing environment, along with a detailed manual for
reproducing the major results in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The code is available via https://github.com/0xdd96/
Racing-code/releases/tag/artifact-evaluation.

A.2.3 Hardware dependencies

The results in our paper were obtained on a server with 32
Intel Xeon(R) Silver 4110@2.10 GHz CPU cores and 128 GB
memory. Note that our current implementation of RACING
is single-threaded. Therefore, the analysis time for a single
vulnerability is primarily determined by the CPU’s frequency.
Nevertheless, for the 30 vulnerabilities in our testing dataset,
one can start multiple instances of RACING on multiple cores
to reduce the total running time of the experiments.

A.2.4 Software dependencies

RACING was evaluated on a 64-bit Ubuntu 20.04 server.
To ensure a consistent testing environment, we provide
a Dockerfile that initializes a fresh Ubuntu 20.04 OS
container and installs the necessary software dependencies.
Please ensure your machine supports Docker and can run
the Ubuntu:20.04 image. Additionally, ensure you have root
access to your host machine as required by the setup of RAC-
ING.

A.2.5 Benchmarks

Our evaluation dataset contains 30 vulnerabilities. These vul-
nerabilities were found in 21 programs with varying scales,
ranging from 857 to 980,019 lines of source code. The
examples folder of our GitHub Repository contains the nec-
essary data for reproducing the 30 vulnerabilities, with each
vulnerability stored in a separate folder numbered following
the IDs in Table 2 & Table 3 of our paper. For each vulner-
ability, we provide a PoC that triggers it in the seed folder,
along with 4 automated scripts to reproduce the results:

1. 01_build_trace.sh: downloads the source code of the
vulnerable program (via Internet), and builds a debug
version of the program for tracing.

2. 02_PocExecutionInspector.sh: executes the vulner-
able program using the PoC as input, using Intel PIN
to collect execution traces, then maps binary addresses
to source code locations using two Python3 scripts
tracing.py, addr2line.py.

3. 03_build_fuzz.sh: builds an instrumented program
for RACING’s fuzzing process.

4. 04_racing.sh: starts RACING’s fuzzing process, and
produces a ranked list of predicates in the end.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 267

https://github.com/0xdd96/Racing-code/releases/tag/artifact-evaluation
https://github.com/0xdd96/Racing-code/releases/tag/artifact-evaluation
https://github.com/0xdd96/Racing-code

A.3 Set-up
Before you start everything, make sure to set the following
configurations on your host machine (for AFL & statistical
analysis):

use root permission if necessary
$ echo core >/proc/sys/kernel/core_pattern
$ cd /sys/devices/system/cpu
$ echo performance | tee

cpu*/cpufreq/scaling_governor↪→

disable ASLR
$ echo 0 | tee

/proc/sys/kernel/randomize_va_space↪→

A.3.1 Installation

1. Clone RACING’s GitHub Repository:

$ git clone
https://github.com/0xdd96/Racing-code↪→

2. RACING was evaluated on Ubuntu 20.04. Our repository
provides a Dockerfile that handles the installation of
necessary dependencies and the compilation of RACING.

$ docker build -t racing-eval:latest .

3. Start RACING’s container. Note that all subsequent steps
should be carried out within the racing-eval container.

docker run --name racing-eval --init -d -v
$PWD/examples:/Racing-eval/examples
racing-eval:latest tail -f /dev/null

↪→

↪→

A.3.2 Basic Test

Here we use V20 (CVE-2020-19497 in matio:bcf0447) from
our dataset (/Racing-eval/examples) to showcase the ba-
sic usage of RACING.

1. [15 compute-seconds] Compile a matio binary with
debugging symbols for tracing:

$ docker exec -ti racing-eval bash
$ cd ./examples/20-matio-integer-overflow
$./01_build_trace.sh

2. [5 compute-seconds] Inspect PoC execution:

$./02_PocExecutionInspector.sh

3. [40 compute-seconds] Compile an instrumented matio
binary for fuzzing:

$./03_build_fuzz.sh

4. [15 compute-seconds] Start RACING’s fuzzer and wait
for it to terminate. The ranking results are stored in the
ranked_file in the afl-workdir-batch0 directory:

$./04_racing.sh

A.4 Evaluation workflow

RACING was evaluated using 30 vulnerabilities. we provide
two scripts run-all.sh and check_all.py to automate the
running of the experiments and the analysis of the final re-
sults.

A.4.1 Preprocessing

[1 human-minute + 30∼60 compute-minutes + 8.5 GB disk]
Before evaluating RACING on the 30 test cases, you should
invoke the following script to download source code and
build instrumented binaries. Our script provides a -j flag that
spawns multiple threads to speedup this process.

$ docker exec -ti racing-eval bash
$ cd ${RACING_DIR}/examples
$./run-all.sh -j${NUM_THREADS} build

Note that the script may fail to download source code due
to network errors. You can check 01_build_trace.log for
details and re-run the build script to compile the remaining
test cases.

A.4.2 Major Claims

(C1): RACING significantly improves the efficiency of sta-
tistical RCA. This is proven by the experiments (E1) in
Section 5.2, whose results are illustrated in Table 3.

(C2): RACING achieves high rankings for root cause analy-
sis. This is proven by the experiment (E2) in Section 5.2,
whose results are illustrated in Table 3.

A.4.3 Experiments

(E1): [2 human-minutes + 12 compute-hours + 30GB disk]:
This experiment will use RACING to analyze the root
causes of 30 vulnerabilities, measuring the running time
of each test case.
How to: First invoke the run-all.sh script to start
analyzing the 30 vulnerabilities (the multi-threading
flag -j is optional). The script should output the run-
ning time of each test case when it’s finished. After
all the test cases have been analyzed, please check
overall_status.run.log for the running time of
RACING.
Preparation: The preprocessing step in appendix A.4.1
is obligatory to obtain correct results.
Execution: Execute the following commands in the
racing-eval container.
$ docker exec -ti racing-eval bash
$ cd ${RACING_DIR}/examples
$./run-all.sh -j${NUM_THREADS} run
$ cat overall_status.run.log

268 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/0xdd96/Racing-code

Results: The output of overall_status.run.log
should match RACING’s execution time (Tall) in Table 3
(with acceptable deviations) in Section 5.2 of the paper.

(E2): [1 human-minute + 2 compute-minutes]: This experi-
ment will use check_all.py to analyze the final rank-
ings of the root causes for the 30 vulnerabilities.
How to: Please run check_all.py to collect the final
rankings of the root causes. The ground truths are stored
in examples/ground_truth.txt.
Preparation: The preprocessing step in appendix A.4.1
and the steps in E1 are obligatory to obtain correct
results.
Execution: Execute the following commands in the
racing-eval container.
$ docker exec -ti racing-eval bash
$ cd ${RACING_DIR}/examples
$ python3 check_all.py check_all

ground_truth.txt $PWD↪→

Results: The output of check_all.py should match
RACING’s rankings in Table 3 (with acceptable devia-
tions) in Section 5.2 of the paper.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 269

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Preprocessing
	Major Claims
	Experiments

	Version

