
This artifact appendix is included in the Artifact Appendices to the 
Proceedings of the 33rd USENIX Security Symposium and appends 
to the paper of the same name that appears in the Proceedings of 

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices 
to the Proceedings of the 33rd USENIX 

Security Symposium is sponsored 
by USENIX.

When Threads Meet Interrupts: Effective Static 
Detection of Interrupt-Based Deadlocks in Linux

Chengfeng Ye, Yuandao Cai, and Charles Zhang, 
The Hong Kong University of Science and Technology

https://www.usenix.org/conference/usenixsecurity24/presentation/ye



USENIX Security ’24 Artifact Appendix: When Threads Meet
Interrupts: Effective Static Detection of Interrupt-Based Deadlocks in

Linux

Chengfeng Ye Yuandao Cai Charles Zhang
The Hong Kong University of Science and Technology

{cyeaa, ycaibb, charlesz}@cse.ust.hk

A Artifact Appendix

A.1 Abstract

This appendix describes the software artifact that imple-
ments algorithms and evaluation proposed in the ’When
Threads Meet Interrupts: Effective Static Detection of
Interrupt-Based Deadlocks in Linux.’

Specifically, the artifact includes the implementation of
ARCHERFISH in the form of binary, LLVM Bitcode com-
piled from Linux v6.4 (benchmark), and several scripts to
reproduce the experiment described in §7.1 and §7.2, corre-
sponding to RQ1 and RQ2 of the paper. We also prepare a
docker image to simplify the workflow.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The artifact includes information about detected bugs, but
there is no need to address any ethical concerns because they
have all been reported to the developers.

A.2.2 How to access

Artifact is available at https://doi.org/10.5281/zenodo.13117816.
Docker image is also provided, based on Ubuntu 20.04, at
cyeaa/archerfish:1.0. The Docker image includes all the
necessary libraries and environments required to run the
experiments.

A.2.3 Hardware dependencies

The experiments were run on a server with two 20-core In-
tel(R) Xeon @2.20GHz CPUs with 256GB of DRAM and
128GB of swap space. Having a similar hardware setup
(which includes memory available to docker) is suggested
to run the experiments.

Additionally, at least 20GB of disk space is required.

A.2.4 Software dependencies

Linux-based operating system (e.g., Ubuntu) with docker in-
stalled.

A.2.5 Benchmarks

LLVM Bitcode compiled from Linux v6.4 stable branch.

A.3 Set-up
A.3.1 Installation

To obtain the docker image :
$ docker pull cyeaa/archerfish:1.0

To create a docker container with the docker image :
$ docker run -it cyeaa/archerfish:1.0

/bin/bash
Enter the artifact folder :
$ cd ARCHERFISH_ARTIFACT

This will create a docker container with the docker image,
and you will get a bash terminal to run the experiments.
Note that the ARCHERFISH implementation is provided in
the form of binary, and all the benchmarks have been com-
piled into LLVM IR. Thus, no extra compilation effort is re-
quired.

A.3.2 Basic Test

If everything is correct, the evaluator should be inside
the docker environment, and the current directory should
be ’ARCHERFISH_ARTIFACT’ including a README.md
file, several shell scripts, and several sub-folders for experi-
ment purposes.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): ARCHERFISH has been used to uncover 76 new
interrupt-based deadlocks in the Linux kernel. This is

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium    395

https://doi.org/10.5281/zenodo.13117816


proven by the experiment described in §7.1 of the paper.
(C2): Several critical design can effectively improve

ARCHERFISH. This is proven by the ablation evalua-
tions described in §7.2 of the paper.

A.4.2 Experiments

(E1): [Interrupt-Based Deadlock Detection] [20 human-
minutes + 30 compute-minutes]:
Description: The experiment involves running
ARCHERFISH on Linux kernel v6.4 LLVM Bitcode to
detect interrupt-based deadlocks, corresponding to §
7.1 of the paper. The statistical data related to the bug
detection would be printed out, and the bug reports
would be generated inside corresponding folders.
Workflow:

• (30 compute-minutes) Execute the script:
$ ./1_run_archerfish.sh

• Next, execute the script:
$ ./2_show_archerfish_statistics.sh

Result: The script ./1_run_archerfish.sh is
to perform the bug detection. This step produces
bug reports with the name "deadlocks.txt" inside
folders corresponding to different Linux kernel
subsystems. The reported bugs include those de-
scribed in Table 5 of the paper appendix. The script
./2_show_archerfish_statistics.sh is to print
out some statistical data related to bug detection,
corresponding to most data in Table 1 of the paper.
Also, a summary of the detected bugs would be printed
out. Furthermore, detailed information on the reported
bugs (LKML links and Linux commits) can be found
in the file reported_bug_detail.xlsx inside the
artifact main folder.

(E2): [LLVM-Assisted ISR Identification] [10 human-
minutes + 30 compute-minutes]:
Description: The experiment involves evaluating the
accuracy of LLM-Assisted ISR specification and eval-
uating its effect on interrupt-based deadlock detection,
corresponding to §7.2.1 of the paper. For ease of evalu-
ation, we skip the GPT query process and directly pro-
vide the generated specification.
Workflow:

• Execute the script:
$ ./3_spec_accuracy.sh

• (30 compute-minutes) Execute the script:
$ ./4_llm_comparision.sh

Result: The script ./3_spec_accuracy.sh would
produce the accuracy of the specification corre-
sponding to Table 2 of the paper. The script
./4_llm_comparision.sh would turn off the

LLM-assisted ISR specification and perform interrupt-
based bug detection again, then print out the differential
result corresponding to Figure 12 of the paper.

(E3): [Effectiveness of Preemption Unit] [5 human-minute
+ 1 compute-hour]:
Description: The experiment involves evaluating the
effectiveness of the Preemption Unit in increasing the
analysis performance, corresponding to §7.2.2 of the
paper. To do so, we execute an ablation version of
ARCHERFISH in which the Preemption Unit is disabled
and compare the time and memory consumption.
Workflow:

• (60 compute-minutes) Execute the script:
$ ./5_preempt_unit_comparison.sh

Result: The script would disable the Preemption Unit
and perform interrupt-based bug detection again, then
printed out the corresponding differential data de-
scribed in the section Ablation Study 2: Preemption
Unit of §7.2.2 in the paper.

A.4.3 Notes

• The three experiments should be performed in the order
they are described in this documentation.

• If the experiment is interrupted due to unexpected rea-
sons, you can use the script clear.sh to clean up all
the results and then perform the experiment again.

• Slight variability is to be expected in the results since
some experiments are sensitive to execution environ-
ments, such as memory and CPU, and we recommend
running all the experiments in the same environment for
consistent results.

A.5 Version
Based on the LaTeX template for Artifact Evalua-
tion V20231005. Submission, reviewing and badging
methodology followed for the evaluation of this arti-
fact can be found at https://secartifacts.github.io/
usenixsec2024/.

396    Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

