
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

SmartCookie: Blocking Large-Scale SYN Floods with a
Split-Proxy Defense on Programmable Data Planes

Sophia Yoo, Xiaoqi Chen, and Jennifer Rexford, Princeton University
https://www.usenix.org/conference/usenixsecurity24/presentation/yoo

USENIX Security ’24 Artifact Appendix - SMARTCOOKIE: Blocking Large-Scale
SYN Floods with a Split-Proxy Defense on Programmable Data Planes

Sophia Yoo, Xiaoqi Chen, Jennifer Rexford - Princeton University

A Artifact Appendix

A.1 Abstract

The artifact consists of two major pieces: 1) source code for
the switch agent and server agent of SMARTCOOKIE’s split-
proxy SYN-flooding defense, related benchmark code, and
measurement scripts (showing availability), and 2) a hardware
testbed for running and evaluating SMARTCOOKIE under key
attack scenarios (showing functionality and reproducibility).

A.2 Description & Requirements

For the purposes of this artifact evaluation, our testbed con-
sists of five servers and an Intel Tofino Wedge32X-BF pro-
grammable switch. Three machines act as attack machines.
Two of the attack machines have 4-core Intel Core i5-6500
CPUs and Mellanox ConnectX-4 1x100Gbps NICs, gener-
ating attack traffic using DPDK 21.11.0 and pktgen-DPDK
21.11.0. The third attack machine has a 20-core Intel Xeon E5-
2680 CPU and an Intel Xl710 2x40 Gbps NIC, generating at-
tack traffic using DPDK 19.11.11 and pktgen-DPDK 19.12.0.
Two other machines act as server and client, each with 8-core
Intel Xeon D-1541 CPUs and Intel X552 2x10Gbps NICs. For
simplicity of artifact evaluation, we are providing evaluators
with access to our preconfigured testbed (access instructions
below). Instructions for installations and dependencies are
briefly included for completeness, but all installations and de-
pendencies are already in place for the evaluation testbed.The
remainder of this section describes how to access the source
code and testbed, what hardware and software dependencies
are required (these are preconfigured for the testbed), and
what additional benchmarks can be run.

A.2.1 Security, privacy, and ethical concerns

There are no security, privacy, or ethical concerns or risks to
evaluators or their machines. All experiments can be run on
the authors’ testbed, which is provisioned for the planned at-
tack rates. For testbed access, please do not share or distribute
the private key (discussed further below).

A.2.2 How to access

Accessing the code: Source code for the switch agent,
server agent, benchmarks, and measurements are hosted
on Github: https://github.com/Princeton-Cabernet/
SmartCookie-Artifact/releases/tag/v1.0.1. De-
tailed instructions (encompassing the information in this
appendix and much more) are also included in the README
of the Github artifact.
Accessing the testbed:

• Save the SSH private access key (shared with you di-
rectly on the submission site) to your local machine un-
der ~/.ssh/usenixsec24ae.priv.id_rsa. Note your
sudo password was also shared with you on the sub-
mission site. Update the permissions with chmod 600
~/.ssh/usenixsec24ae.priv.id_rsa. Start the ssh-
agent and load the key: eval $(ssh-agent -s) and
ssh-add ~/.ssh/usenixsec24ae.priv.id_rsa.

A.2.3 Hardware dependencies

The switch agent requires an Intel Tofino Wedge32X-BF pro-
grammable switch. In order to compare the defense perfor-
mance of the switch agent to that of other benchmark defenses,
the adversarial machines must be capable of generating at
least 60 Mpps of combined adversarial traffic. This can, for
example, be accomplished with either two attack machines
with 20 cores and 2x100Gbps links, or with three or more
machines with fewer cores. (Note: to reach the full defense ca-
pacity without any packet loss on the SMARTCOOKIE switch
agent, at least 150 Mpps of combined adversarial traffic should
be generated, but this can be difficult to accomplish within a
limited hardware setting.)

A.2.4 Software dependencies

Switch Agent Prerequisite1: please use bf-sde version 9.7.1
or newer to compile the P4 program.
Server Agent Prerequisite: please use kernel 5.10 or newer
and the latest version of the bcc toolkit.
Adversary Machine Prerequisite: please use DPDK 19.12.0
or newer and a matching pktgen-DPDK version.

1For evaluation simplicity, all software dependencies are pre-installed
and configured on the artifact testbed.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 11

https://github.com/Princeton-Cabernet/SmartCookie-Artifact/releases/tag/v1.0.1
https://github.com/Princeton-Cabernet/SmartCookie-Artifact/releases/tag/v1.0.1

A.2.5 Benchmarks

Hashing: We compare the cookie hashing performance of
SMARTCOOKIE’s switch-based HalfSipHash to that of AES
(on the switch) and XDP (on the server). Source code for
running the benchmarks are under /p4src/benchmark and
/ebpf/benchmark/ respectively.

A.3 Set-up
This section includes basic installation and configuration steps
to launch SMARTCOOKIE and prepare the testbed environ-
ment for evaluation. It also walks through a simple func-
tionality test of the switch agent and server agent, with an
end-to-end connection test between a client and server.

A.3.1 Installation

All hardware and software dependencies have been
preconfigured on the artifact testbed, so there are
no additional installation steps for the purposes of
this evaluation. However, for completeness, basic
installation steps will be included in the artifact
repo: https://github.com/Princeton-Cabernet/
SmartCookie-Artifact/releases/tag/v1.0.1.
The source code can cloned from the repo with
"git clone git@github.com:Princeton-Cabernet/
SmartCookie-Artifact.git".

A.3.2 Basic Test

Terminal 1 - Compile and Launch the Switch
Agent: First, open a new terminal window and SSH
into the switch. Clone the SMARTCOOKIE artifact
repo and cd SmartCookie-Artifact/p4src. Run the
./switchagent_compile.sh script to compile the program.
This may take a few seconds, and you will see some warnings,
but these can safely be ignored. Once the compilation
is complete, run ./switchagent_load.sh to load the
SMARTCOOKIE-HalfSipHash.p4 program onto the switch.
A successful load should output "bfruntime gRPC server
started" as the last log line and land on the switch driver
shell starting with bfshell>. Keep this terminal open
while running experiments, and open other terminals for
other operations. If, for any reason you need to restart the
switch driver, run sudo killall bf_switchd first, then
run ./switchagent_load.sh to reload the program again.
Next, to configure the switch interfaces, copy and paste the
below in the bfshell> to manually bring up ports:

ucli
pm
port-add 1/1 10G NONE
an-set 1/1 2
port-enb 1/1

an-set 1/1 1
port-add 1/3 10G NONE
an-set 1/3 2
port-enb 1/3
an-set 1/3 1
port-add 3/0 100G RS
port-enb 3/0
port-add 4/0 100G RS
port-enb 4/0
port-add 5/0 40G NONE
an-set 5/0 2
port-enb 5/0
an-set 5/0 1
port-add 6/0 40G NONE
an-set 6/0 2
port-enb 6/0
an-set 6/0 1
show
rate-period 1
rate-show

The last three commands will list packet counts and
throughput rates for each of the switch interfaces.
Terminal 2, 3, & 4 - Launch the Server Agent:
Open three other terminal windows and access the
server agent in each window. Clone the artifact repo if
you haven’t already, and cd SmartCookie-Artifact/ebpf.
Run ./configure/configure_server.sh once to config-
ure static IP addresses and ARP entries. Next, use the provided
python scripts in the separate terminals to compile and load
the eBPF programs to the interface connected to the switch:

1) sudo python3 xdp_load.py enp3s0f1 for ingress
2) sudo python3 tc_load.py enp3s0f1 for egress
You should see output that the programs have been loaded.

Finally, run the following python script to sync timestamps
between the server agent and switch agent, which is necessary
for cookie checks: sudo python3 send_ts.py.
Terminal 5 & 6 - A Quick Functionality Test: To test a
simple end-to-end connection between the client and server
(protected by the intermediate switch agent and server agent),
open two more terminals. SSH into the client and SSH once
more into the server. On the server, start up a netcat server
with nc -l -p 2020. On the client, connect to the nc server
with nc 131.0.0.6 2020. The client will seamlessly con-
nect to the server after verification at the switch agent, and
you can send messages between the client and server, with the
messages popping up on the receiving side. If you are curious,
you can use tcpdump -evvvnX -i enp3s0f1 on both client
and server to view the full packet sequence during connection
setup, and map it to that of Figure 4 in the paper2.

2Note that tcpdump is positioned after XDP on the ingress pipeline, and
after TC on the egress pipeline (XDP–>tcpdump–> network stack on ingress,
and network stack–>TC->tcpdump on egress).

12 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/Princeton-Cabernet/SmartCookie-Artifact/releases/tag/v1.0.1
https://github.com/Princeton-Cabernet/SmartCookie-Artifact/releases/tag/v1.0.1
git@github.com:Princeton-Cabernet/SmartCookie-Artifact.git
git@github.com:Princeton-Cabernet/SmartCookie-Artifact.git

A.4 Evaluation workflow
There are three main experiments that showcase the key re-
sults and major claims of our work. These are described next.

A.4.1 Major Claims

(C1): SMARTCOOKIE defends against attacks without
packet loss until high rates (up to 136 Mpps), signifi-
cantly outperforming the benchmarks of other defenses,
which become exhausted at attack rates starting at only
~1.3 Mpps up to ~52 Mpps. This is proven by experiment
(E1), and described in Section 8.2 of the paper.

(C2): During attacks, SMARTCOOKIE protects benign
clients from performance penalties and protects servers
from additional CPU usage. It adds little to no latency
overhead to benign connections during attacks, and any
latency is comparable to the baseline latency with no on-
going attack. Additionally, it protects the server’s CPU
during attacks, fully keeping the CPU resources for other
applications. This is proven by experiments (E2) and
(E3), and shown in Section 8.3 and 8.4 of the paper.

A.4.2 Experiments

Please note that due to space constraints, only the min-
imal instructions for experiments are listed here. We
strongly recommend you follow the experiment work-
flow with all the detailed steps using the README of
our artifact: https://github.com/Princeton-Cabernet/
SmartCookie-Artifact.
(E1): [Hashing Throughput] [1 human-hour]: Compare the

hashing throughput SMARTCOOKIE can achieve without
packet loss to the the maximum hashing throughput of
the benchmarks: SMARTCOOKIE-AES (SC-AES) and
XDP-HalfSipHash (XDP-HSH). The Tx (response) rates
should exactly match Rx (received) rates for as long as
SMARTCOOKIE or the benchmark is handling the attack
without any packet loss. Once a defense begins to reach
its capacity, the Tx rate will begin to dip below Rx rates.
Preparation: There are different preparation steps for
each of the benchmarks. Due to space limitations, we re-
fer evaluators to the README for the individual bench-
marks. For just the SMARTCOOKIE system, launch the
switch agent, as described in §A.3.2. In three additional
terminals, SSH into the attack machines where DPDK
and pktgen are already configured for you. For each
attack terminal, cd /home/shared/pktgen-dpdk and
launch pktgen with sudo -E tools/run.py testbed.
Execution: From within the Pktgen:/> console of
each of the attack machines, launch the SYN flood
against the server. Use the commands specified in the
artifact README (Section 4.1).
Results: To verify the attack rates that SMARTCOOKIE
can handle before any packet loss, increase the sending

attack rates on the attack servers. As long as the Rx/Tx
rates match in the switch agent, the switch agent is suc-
cessfully defending against the SYN flood attack packets
without any packet loss.

(E2): [Latency Overhead] [1 human-hour]: Measure the end-
to-end setup latency for benign client connections during
an attack, to show that SMARTCOOKIE adds little to no
latency overhead to the baseline without any attack.
Preparation: Bring up the SMARTCOOKIE switch
agent and server agent as described previously and in the
README. Start up an HTTP server on port 8090 on the
server (see README for details).
Execution: Launch the attack, following the instruc-
tions from E1 (refer to the README for details).
On the client machine, measure the connection la-
tency across multiple clients by running the script
./experiments/measurements/collect_latency.sh
<attack_rps> <local_port>, specifying the current
attack rate and desired local source port.
Results: The latency collection script will print out con-
nection latency. You can turn off the attack and verify
what the average end-to-end connection latency is for the
baseline without the attack, and compare it to the latency
during an attack, which should be relatively close.

(E3): [Server CPU Usage] [1 human-hour]: Measure the
server’s CPU usage during attack, to show that SMART-
COOKIE fully protects server CPU usage during attacks.
Preparation: The preparation is identical to that of E2.
Bring up the SMARTCOOKIE switch agent and server
agent as described previously and in the README. Start
up an HTTP server on port 8090 on the server (see
README for details).
Execution: Launch the attack, following the instruc-
tions from E1 (refer to the README for details).
The simplest way to verify and visualize the CPU
usage is with ‘htop‘ on the server machine. You
can keep a terminal open to continually track CPU
usage during the experiment. The more robust
way of measuring the CPU usage is to run the script
./experiments/measurements/collect_cpu_instr.sh
<attack_rps>, while specifying the current attack rate
and where the collected data should be stored.
Results: The CPU usage collection script will store
CPU usage rates in the specified directory. You can turn
off the attack and verify what the CPU usage is for the
baseline without the attack, and it should directly match
the CPU usage during an attack (effectively none).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 13

https://github.com/Princeton-Cabernet/SmartCookie-Artifact
https://github.com/Princeton-Cabernet/SmartCookie-Artifact
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

