
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

ShadowBound: Efficient Heap Memory Protection
Through Advanced Metadata Management and

Customized Compiler Optimization
Zheng Yu, Ganxiang Yang, and Xinyu Xing, Northwestern University

https://www.usenix.org/conference/usenixsecurity24/presentation/yu-zheng

USENIX Security ’24 Artifact Appendix: SHADOWBOUND: Efficient
Heap Memory Protection Through Advanced Metadata Management and

Customized Compiler Optimization

Zheng Yu
Northwestern University

Ganxiang Yang
Northwestern University

Xinyu Xing
Northwestern University

A Artifact Appendix

A.1 Abstract

In this paper, we present SHADOWBOUND, a unique heap
memory protection design. At its core, SHADOWBOUND is
an efficient out-of-bounds defense that can work with vari-
ous use-after-free defenses (e.g., MarkUs, FFMalloc, PUMM)
without compatibility constraints. We harness a shadow
memory-based metadata management mechanism to store
heap chunk boundaries and apply customized compiler opti-
mizations tailored for boundary checking. This artifact is seek-
ing the Artifacts Available badge, the Artifacts Functional
badge, and the Results Reproduced badge. To facilitate the
artifact evaluation, we have provided multiple Docker environ-
ments. These Docker environments are designed to provide
main evidence to support the claims of SHADOWBOUND.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

All experiments are conducted in Docker, ensuring they will
not harm the host computer.

A.2.2 How to access

https://github.com/cla7aye15I4nd/shadowbound/
tree/1.0.0

A.2.3 Hardware dependencies

• Processor: We recommend using a 12th Gen Intel i7-
12700 CPU with a clock speed of 4.9 GHz to achieve
results similar to our experiments. However, comparable
hardware may also suffice.

• Memory: A minimum of 32GB RAM.

• Storage: At least 1TB of SSD storage.

A.2.4 Software dependencies

• Docker & Compose

• Ubuntu 22.04

A.2.5 Benchmarks

It is preferable to use the SPEC CPU2017 benchmarks (a
license is required). With these benchmarks, you can man-
ually use SHADOWBOUND for compilation. If you do not
have access to these benchmarks, you can use our Docker in-
stead. Our Docker provides the SPEC binaries compiled with
SHADOWBOUND, allowing you to reproduce the evaluation
results.

A.3 Set-up
You should first clone our Github repository to directory
named shadowbound under your home directory.

A.3.1 Installation

You should use the following command to build the base
image of SHADOWBOUND, all evaluation is based on the
image.

$ cd shadowbound
$ docker compose up --build shadowbound

A.3.2 Basic Test

Our basic test includes using SHADOWBOUND to compile
nginx and run it. You can achieve this by following the steps
below:

1. Navigate to the shadowbound directory.

2. Build and run the Docker container for the nginx evalua-
tion using the provided command.

$ cd shadowbound
$ docker compose up --build nginx -eval

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 451

https://github.com/cla7aye15I4nd/shadowbound/tree/1.0.0
https://github.com/cla7aye15I4nd/shadowbound/tree/1.0.0

After running the command, you can access the result
at artifact/nginx/results/shadowbound.txt, the file
content should be like this:

Running 1m test @ http://localhost:80/index.html
8 threads and 100 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 816.19us 418.18us 50.10ms 99.18%
Req/Sec 14.96k 717.36 30.03k 92.40%
Latency Distribution
50% 786.00us
75% 805.00us
90% 0.85ms
99% 1.15ms

7149133 requests in 1.00m, 5.68GB read
Requests/sec: 118955.36
Transfer/sec: 96.77MB

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The system is able to work with other UAF defenses,
as proven by the experiments (E1).

(C2): The system can defend against heap out-of-bound bugs,
as demonstrated by the experiments (E2).

(C3): The system has a small time overhead, as shown by
the experiments (E3) and (E4).

A.4.2 Experiments

(E1): [1 human-minutes + 10 compute-minutes]: To show
SHADOWBOUND can cooperate with other UAF de-
fenses, we show how we use SHADOWBOUND + FF-
Malloc and SHADOWBOUND + MarkUS to compile
nginx and run it, you can run the following command to
achieve it:

$ TARGET=shadowbound -ffmalloc \
docker compose up --build nginx -eval

$ TARGET=shadowbound -markus \
docker compose up --build nginx -eval

After running the command, you can access the result at
the following two files

• artifact/nginx/results/shadowbound-ffmalloc.txt

• artifact/nginx/results/shadowbound-markus.txt

Warning: You may encounter a Segmentation fault dur-
ing the test. It is due to UAF defense issues, not Shad-
owBound. If this occurs, try running the test again. In
our experience, such issues are relatively rare.
Result: You should get similar results as you see in the
basic tests.

(E2): [1 human-minute + 1 compute-hour]: To show SHAD-
OWBOUND meet the security requirements, we show
how we use SHADOWBOUND to handle real world vul-
nerabilities.
Preparation: First, you should download our pre-built
Docker image. If you want to check the building process,

you can also build it yourself by following the instruc-
tions in our GitHub repository.

$ docker pull
↪→ ghcr.io/cla7aye15i4nd/shadowbound/
↪→ shadowbound -sec-eval:1.0.0

Execution: Enter the docker container and run test
script:

$ docker run -it
↪→ ghcr.io/cla7aye15i4nd/shadowbound/
↪→ shadowbound -sec-eval:1.0.0
↪→ /root/test.sh

Result: You should see results like which means all
testcases passed:

[+] 2017-9164-9166
[+] 2017-9167-9173
[+] CVE -2006-6563
[+] CVE -2009-2285
[+] CVE -2013-4243
[+] CVE -2013-7443
[+] CVE -2014-1912
[+] CVE -2015-8668
[+] CVE -2015-9101
[+] CVE -2016-10270
[+] CVE -2016-10271
...

(E3): [1 human-minute + 3 compute-hour]: To show the
performance of SHADOWBOUND, we evaluate SHAD-
OWBOUND on the SPEC CPU 2017
Preparation: First, you should download our pre-built
Docker image. If you want to check the building process,
you can also build it yourself by following the instruc-
tions in our GitHub repository.

$ docker pull
↪→ ghcr.io/cla7aye15i4nd/shadowbound/
↪→ shadowbound -spec2017 -eval:1.0.0

Execution: Enter the docker container and run test
script:

$ docker run --privileged -it
↪→ ghcr.io/cla7aye15i4nd/shadowbound/
↪→ shadowbound -spec2017 -eval:1.0.0
↪→ /bin/bash

$ python3 /root/scripts/spectest.py | tee
↪→ /root/spectest.log

Result: After running the command, you can check the
result at /root/spectest.log. Please note that since
our original experiment was conducted on a bare metal
machine without running any other processes, it is nor-
mal for the overhead in the artifact to have some variance
compared to the result in the paper.

(E4): [1 human-minute + 2 compute-hour]: To show the
performance of SHADOWBOUND on the real world ap-
plication, we evaluate SHADOWBOUND on the nginx
and chakra.
Preparation: First, you should build Docker image. If
you want to check

452 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

$ docker pull
↪→ ghcr.io/cla7aye15i4nd/shadowbound/
↪→ shadowbound -nginx:1.0.0

$ docker pull
↪→ ghcr.io/cla7aye15i4nd/shadowbound/
↪→ shadowbound -chakra :1.0.0

Execution: Enter the docker container and run test
script:

$./artifact/nginx/test.sh
$ docker compose up chakra -eval

Result: After running the command, You can compare
the result at artifact/nginx/results/native.txt
and artifact/nginx/results/shadowbound.txt to
see the nginx performance overhead. You can
check the ChakraCore performance overhead at
artifact/chakra/results/shadowbound.txt.

A.5 Notes on Reusability
Our tool is implemented atop LLVM 15, and we provide
simple arguments (-fsanitize=overflow-defense) to use
SHADOWBOUND, which shows high compatibility. In this
artifact, we excluded some auxiliary experiments designed to
strengthen our claims but which did not affect the paper’s con-
clusions. The reason for this exclusion is the significant time
these experiments require. For instance, integrating PUMM
involves fuzzing and analyzing each program, a process that
can take over 10 days.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 453

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

