
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

ResolverFuzz: Automated Discovery of DNS Resolver
Vulnerabilities with Query-Response Fuzzing

Qifan Zhang and Xuesong Bai, University of California, Irvine;
Xiang Li, Tsinghua University; Haixin Duan, Tsinghua University;

Zhongguancun Laboratory; Quan Cheng Laboratory; Qi Li,
Tsinghua University; Zhou Li, University of California, Irvine

https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-qifan

USENIX Security ’24 Artifact Appendix:
RESOLVERFUZZ: Automated Discovery of DNS Resolver Vulnerabilities with

Query-Response Fuzzing

Qifan Zhang†, Xuesong Bai†, Xiang Li∗�, Haixin Duan∗§¶, Qi Li∗, and Zhou Li†�
†University of California, Irvine, ∗Tsinghua University
§Zhongguancun Laboratory, ¶Quan Cheng Laboratory

A Artifact Appendix

A.1 Abstract
Domain Name System (DNS) is a critical component of the
Internet. DNS resolvers, which act as the cache between DNS
clients and DNS nameservers, are the central piece of the DNS
infrastructure, essential to the scalability of DNS. However,
finding the resolver vulnerabilities is non-trivial, and this
problem is not well addressed by the existing tools. To list a
few reasons, first, most of the known resolver vulnerabilities
are non-crash bugs that cannot be directly detected by the
existing oracles (or sanitizers). Second, there lacks rigorous
specifications to be used as references to classify a test case as
a resolver bug. Third, DNS resolvers are stateful, and stateful
fuzzing is still challenging due to the large input space.

In this paper, we present a new fuzzing system termed
RESOLVERFUZZ to address the aforementioned challenges
related to DNS resolvers, with a suite of new techniques be-
ing developed. First, RESOLVERFUZZ performs constrained
stateful fuzzing by focusing on the short query-response se-
quence, which has been demonstrated as the most effective
way to find resolver bugs, based on our study of the published
DNS CVEs. Second, to generate test cases that are more likely
to trigger resolver bugs, we combine probabilistic context-
free grammar (PCFG) based input generation with byte-level
mutation for both queries and responses. Third, we leverage
differential testing and clustering to identify non-crash bugs
like cache poisoning bugs. We evaluated RESOLVERFUZZ
against 6 mainstream DNS software under 4 resolver modes.

To facilitate functionalities of the core experiments pre-
sented in RESOLVERFUZZ, our artifacts consist of the follow-
ing 4 parts: (1) Docker images (“images”) of 6 evaluated DNS
software, attacker client and attacker-controlled authoritative
nameserver, (2) evaluation environments and dependencies,
(3) testing infrastructure for test case generation and DNS
software testing, and (4) differential analysis on results gener-
ated by the testing infrastructure. Together, these components

� Corresponding authors. Most of Xiang Li’s work was done when
visiting UCI as a project specialist.

could enable the functionality of our artifact and support the
claims.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

As discussed in our paper, fuzzing the resolver within the
standard DNS infrastructure could affect the other remote
nameservers. Hence, we localize the root and TLD servers
in our lab network, which improves the efficiency of RE-
SOLVERFUZZ. The local nameserver is implemented in Go
and available on GitHub1. The installation and execution of
this local nameserver is optional, and, to our best knowledge,
will not affect performance or results of RESOLVERFUZZ.

A.2.2 How to access

The testing infrastructure and differential analysis of this arti-
fact are available on GitHub2. The images are available on
Docker Hub, where their links are listed in the README3 of
the GitHub repository. In addition, the images could be built
from Dockerfiles provided in the GitHub repository4.

To start evaluation, please first clone the GitHub repository
on a computer running Linux, install necessary environments
and dependencies. And then, with Docker engine installed,
pull and tag the images from Docker Hub as instructed in
README5.

1https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/l
ocal_ns

2https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1
3https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1?t
ab=readme-ov-file#list-of-dns-software-tested

4https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/d
ocker_images

5https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1?t
ab=readme-ov-file#02-pulling-docker-images-from-docker-hu
b

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 297

https://faculty.sites.uci.edu/zhouli/research/
https://faculty.sites.uci.edu/zhouli/research/
https://netsec.ccert.edu.cn/people/lx19
https://netsec.ccert.edu.cn/people/duanhx/
https://netsec.ccert.edu.cn/people/qli/
https://faculty.sites.uci.edu/zhouli/
https://uci.edu/
https://www.tsinghua.edu.cn/en/
https://www.qcl.edu.cn/
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/local_ns
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/local_ns
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1?tab=readme-ov-file#list-of-dns-software-tested
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1?tab=readme-ov-file#list-of-dns-software-tested
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/docker_images
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/docker_images
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1?tab=readme-ov-file#02-pulling-docker-images-from-docker-hub
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1?tab=readme-ov-file#02-pulling-docker-images-from-docker-hub
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1?tab=readme-ov-file#02-pulling-docker-images-from-docker-hub

A.2.3 Hardware dependencies

The hardware specs of our workstation for RESOLVERFUZZ
development and testing are:

• CPU: AMD Ryzen 5950X

• Memory: 128 GB

• 1TB SSD

SSD, rather than HDD, is recommended for storage to ensure
the best performance.

RESOLVERFUZZ is configurable to fit workstations with
different specs to boost the maximum performance by cus-
tomizing the number of units deployed and tested during
execution (flag --unit_size) and the number of payloads
to be tested in each unit (flag --payload_num). Details are
introduced in the README6 of the testing infrastructure.

A.2.4 Software dependencies

RESOLVERFUZZ is developed and tested on Ubuntu 22.04
with Python 3.8 and Docker Engine. To set up the software
dependencies, you first need to install Docker Engine7 and
Anaconda8. Installation of a Go compiler will be also needed
as instructed9 if the optional local nameserver is chosen to be
installed.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Please be advised that, after installation of Docker Engine,
it is recommended to enable to use Docker as a non-root
user10. With this setting, docker commands do not have to be
prefaced with sudo. Otherwise, sudo privilege is required for
all docker commands.
Docker image installation. After installing the Docker En-
gine, the images needs to be pulled from the Docker hub.
All Docker containers (“containers”) are created from those
images.

First, we need to first pull images of 6 DNS software, and
tag them for local use:

6https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1/t
est_infra/README.md

7https://docs.docker.com/engine/install/ubuntu/
8https://docs.anaconda.com/free/anaconda/install/linux/
9https://go.dev/doc/install
10https://docs.docker.com/engine/install/linux-postinstall
/#manage-docker-as-a-non-root-user

docker pull qifanz/resolverfuzz-bind9:9.18.0
docker pull qifanz/resolverfuzz-unbound:1.16.0
docker pull qifanz/resolverfuzz-knot:5.5.0
docker pull qifanz/resolverfuzz-powerdns:4.7.0
docker pull

qifanz/resolverfuzz-maradns:3.5.0022
docker pull

qifanz/resolverfuzz-technitium:10.0.1

docker tag qifanz/resolverfuzz-bind9:9.18.0
bind9:9.18.0

docker tag qifanz/resolverfuzz-unbound:1.16.0
unbound:1.16.0

docker tag qifanz/resolverfuzz-knot:5.5.0
knot:5.5.0

docker tag qifanz/resolverfuzz-powerdns:4.7.0
powerdns:4.7.0

docker tag
qifanz/resolverfuzz-maradns:3.5.0022
maradns:3.5.0022

docker tag
qifanz/resolverfuzz-technitium:10.0.1
technitium:10.0.1

Then, we need to pull the images of the attacker client, the
authoritative server and DNSTap Listener:

docker pull qifanz/resolverfuzz-dnstap-listener
docker pull qifanz/resolverfuzz-attacker
docker pull qifanz/resolverfuzz-auth-srv

docker tag qifanz/resolverfuzz-dnstap-listener
dnstap-listener

docker tag qifanz/resolverfuzz-attacker
attacker

docker tag qifanz/resolverfuzz-auth-srv
auth-srv

Docker network configuration. To create a isolated environ-
ment, a separate Docker network is used solely for Resolver-
Fuzz. All the queries and responses generated by Resolver-
Fuzz are transmitted via the Docker network. To create such
a Docker network named test_net_batch with a subnet
172.22.0.0/16, run the command:

docker network create --subnet "172.22.0.0/16"
test_net_batch

Since the authoritative server is implemented to send re-
sponse packets via monitoring network traffic, enabling ICMP
will automatically send back ICMP packets before our gen-
erated DNS responses are sent back. In consequence, the
resolvers will never receive the packets with generated DNS
responses. Therefore, we need to drop all the ICMP packets
within the network.

298 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1/test_infra/README.md
https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1/test_infra/README.md
https://docs.docker.com/engine/install/ubuntu/
https://docs.anaconda.com/free/anaconda/install/linux/
https://go.dev/doc/install
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user

To drop all the ICMP packets, We need to first check the
interface of the Docker network via the command:

ip addr

Then, all the network interfaces will be displayed. We
need to identify the interface with the IP range 172.22.0.1/16
assigned. For example, on our workstation, we could find:

6: br-0ed6b350123e:
<NO-CARRIER,BROADCAST,MULTICAST,UP>
mtu 1500 qdisc noqueue state DOWN group default

link/ether 02:42:6e:e1:47:92
brd ff:ff:ff:ff:ff:ff

inet 172.22.0.1/16 brd 172.22.255.255
scope global br-0ed6b350123e

valid_lft forever preferred_lft forever

In this case, the network interface in the OS for the Docker
network test_net_batch is br-0ed6b350123e. Then, we
drop all the ICMP packets on the network interface with the
command:

sudo iptables -I FORWARD -i [network_interface]
-p icmp -j DROP

On our workstation, for example, the command will be:

sudo iptables -I FORWARD -i br-0ed6b350123e
-p icmp -j DROP

Optional local nameserver. We implemented a local name-
server in Go to avoid possible effects on other remote name-
servers. Installation of this local nameserver is optional, and
will not affect the performance of RESOLVERFUZZ.

To install the local nameserver, a Go compiler should first
be installed. After that, to compile the local nameserver, we
first need to change the terminal directory to the local_ns11

folder:

cd local_ns

Then, initialize the packet dependencies for the local name-
server, and compile it:

go mod init local_ns
go mod tidy
go build -o local_ns local_ns.go

The executable binary local_ns will be created.
Finally, run the executable with two arguments. The first

one is the network interface of the Docker network which we
found in the earlier step, and the second one is the zone file
in JSON format:
11https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1
/local_ns/

sudo ./local_ns [network_interface] [zone_file]

For example, on our workstation, the command will be:

sudo ./local_ns br-35582c1d0a12 test-zone.json

Keep it running on the background during the execution
of RESOLVERFUZZ so that all the NS referral queries for
root servers, .com TLDs and attacker-controlled domains
(i.e., qifanzhang.com and its sub-domains) will be answered
locally by this program.
Python environment installation. After the installation of
Anaconda, the Python environment named resolverfuzz could
be imported from environment.yml12 via the command:

conda env create -n resolverfuzz
--file environment.yml

To run the scripts, we first need to switch to the conda
environment named resolverfuzz:

conda activate resolverfuzz

And then, get the path towards the Python interpreter of the
resolverfuzz environment. This path will be used during
evaluation.

which python

A.3.2 Basic Test

Running the Installation (Section A.3.1) without errors will
ensure the testing infrastructure and differential analysis func-
tion properly. To validate, reviewers could run any of the four
modes of the testing infrastructure listed in the test_infra13

folder. For example, if you would like to run main_cdns.py
for validation, you could run the following command in the
test_infra folder:

sudo /path/to/conda/env/bin/python
main_cdns.py

where /path/to/conda/env/bin/python is the path
you got when executing the command which python in Sec-
tion A.3.1. If the program could finish execution without any
error, it means the evaluation environment has been set up
properly.

12https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1
/environment.yml

13https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1
/test_infra

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 299

https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1/local_ns/
https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1/local_ns/
https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1/environment.yml
https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1/environment.yml
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/test_infra
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/test_infra

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): RESOLVERFUZZ has managed to implement the work-
flow demonstrated in Figure 2 in the full paper. In de-
tail, as introduced in Section 4.1 in the full paper, RE-
SOLVERFUZZ could 1) first generate two-dimensional
query-response test cases based on probabilistic context-
free grammar (PCFG), and 2) collect the information
about DNS cache, network traffic, and process informa-
tion when each generated test case is tested.

A.4.2 Experiments

In general, reviewers should follow the README in the
test_infra folder for C1. Each python script will automati-
cally complete the evaluation of the testing infrastructure in
each mode. There are in total 4 experiments involved, named
as E1-E4, to address C1.
(E1): [Conditional DNS (CDNS) without fallback mode] [5

human-minutes + 10 compute-minutes + 1GB disk]:
Execution: The reviewers should first change the termi-
nal directory to the test_infra folder:

cd test_infra

After that, the Python script, main_cdns.py, should be
executed:

sudo /path/to/conda/env/bin/python
main_cdns.py

Notice that sudo privilege is required here since we need
to control the Docker network infrastructure of the sys-
tem. Replace “/path/to/conda/env/bin/python” with the
path we got from the command which python in Sec-
tion A.3.1.
Results: Once the testing is finished, you will get the
results of testing in the structure:

./cdns_test_res/[unit_no]
/[round_no]/[dns_sw_name]/...

where unit_no refers to the number of a specific unit,
round_no refers to the round number of a specific test,
and dns_sw_name refers to the results of which DNS
software (Bind9, Unbound, PowerDNS, Knot Resolver,
MaraDNS or Technitium DNS Server) are stored in this
folder. The detailed result folder structure should follow
the one demonstrated in the Result structure section14 in
the test_infra folder.

(E2): [CDNS with fallback mode] [5 human-minutes + 10
compute-minutes + 1GB disk]:
Execution: Still in the test_infra folder,
main_cdns_fallback.py should be executed:

14https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1
/test_infra#result-structure

sudo /path/to/conda/env/bin/python
main_cdns_fallback.py

Results: Once the testing is finished, you will get the
results of testing in the structure:

./cdns_fallback_test_res/[unit_no]
/[round_no]/[dns_sw_name]/...

The result folder structure should also follow the one
demonstrated in the Result structure section in the
test_infra folder.

(E3): [Forward-only mode] [5 human-minutes + 10 compute-
minutes + 1GB disk]:
Execution: Still in the test_infra folder,
main_fwd_global.py should be executed:

sudo /path/to/conda/env/bin/python
main_fwd_global.py

Results: Once the testing is finished, you will get the
results of testing in the structure:

./fwd_test_res/[unit_no]
/[round_no]/[dns_sw_name]/...

The result folder structure should also follow the one
demonstrated in the Result structure section in the
test_infra folder.

(E4): [Recursive-only mode] [5 human-minutes + 10
compute-minutes + 1GB disk]:
Execution: Still in the test_infra folder,
main_recursive.py should be executed:

sudo /path/to/conda/env/bin/python
main_recursive.py

Results: Once the testing is finished, you will get the
results of testing in the structure:

./recursive_test_res/[unit_no]
/[round_no]/[dns_sw_name]/...

The result folder structure should also follow the one
demonstrated in the Result structure section in the
test_infra folder.

A.5 Notes on Reusability
In README15 in the test_infra folder, we demonstrated
the customized settings of the testing infrastructure, includ-
ing script arguments, IP address assignment, result structure,
explanation of results, etc. We have also shared our implemen-
tation of the cache oracle and the resource consumption oracle
in the data_process16 folder. We hope this explanation will
help the understanding and re-usability of RESOLVERFUZZ,
in particular the testing infrastructure, better.

15https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1
/test_infra/README.md

16https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1
/data_process

300 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/test_infra#result-structure
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/test_infra#result-structure
https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1/test_infra/README.md
https://github.com/ResolverFuzz/ResolverFuzz/blob/v1.1.1/test_infra/README.md
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/data_process
https://github.com/ResolverFuzz/ResolverFuzz/tree/v1.1.1/data_process

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 301

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

