
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Adversarial Illusions in Multi-Modal Embeddings
Tingwei Zhang and Rishi Jha, Cornell University; Eugene Bagdasaryan,

University of Massachusetts Amherst; Vitaly Shmatikov, Cornell Tech
https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-tingwei

USENIX Security ’24 Artifact Appendix: Adversarial Illusions in
Multi-Modal Embeddings

Tingwei Zhang†∗ Rishi Jha†∗ Eugene Bagdasaryan‡ Vitaly Shmatikov§

†Cornell University ‡University of Massachusetts Amherst §Cornell Tech
{tingwei, rjha}@cs.cornell.edu eugene@cs.umass.edu shmat@cs.cornell.edu

A Artifact Appendix

A.1 Abstract

This artifact provides the implementation and evaluation
framework for the paper “Adversarial Illusions in Multi-
Modal Embeddings." The artifact demonstrates the vulner-
ability of multi-modal embeddings to adversarial illusions:
given an image or a sound, an adversary can perturb it to make
its embedding close to an arbitrary, adversary-chosen input in
another modality.

The provided code reproduces the paper’s key findings
on a number of multi-modal encoders and datasets, across
various threat models and modalities, and against common f
countermeasures. Detailed instructions for setting up the en-
vironment, running the experiments, and verifying the results
are included to ensure that the claims made in the paper can
be reproduced accurately.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

We emphasize that the purpose of our work is to help develop
more robust embeddings and motivate research on defenses.
In terms of the artifact, the datasets and models we used are
public and the artifact is not destructive.

A.2.2 How to access

The code is available at this (stable) URL: https:
//github.com/ebagdasa/adversarial_illusions/
tree/10c9d22c4ae6475ecaa13ba22c93f33be0293bca.

A.2.3 Hardware dependencies

The artifact evaluation requires the following hardware con-
figuration:

*Comparable contributions.

• CPU: We used dual Intel(R) Xeon(R) Gold 6448Y pro-
cessors with 64 cores in total, but comparable hardware
will likely suffice.

• Memory: Our machine had 256 GiB of system RAM,
however much less will suffice.

• GPU: Our white-box were all be run on single NVIDIA
2080ti gpus, while our transfer experiments require at
least two. Our generation experiments were run on
NVIDIA A6000s.

• Storage: At least 40 GiB to store datasets, model check-
points, and experiment results.

A.2.4 Software dependencies

The artifact requires the following operating system and es-
sential software packages:

• Operating System: The code has been tested on Ubuntu
20.04 LTS. It is recommended to use this OS for compat-
ibility and to ensure reproducibility of the results. Other
Linux distributions may work but are not guaranteed.

• Python: Python 3.10 or higher is required. It is recom-
mended to use a virtual environment (conda) to manage
dependencies.

• CUDA and cuDNN: To utilize GPU acceleration, ensure
that CUDA 11.0 or higher and cuDNN are installed.

All other dependencies are listed in the environment.yml
and README.md files provided in the GitHub repository. They
ensure that all necessary packages, models, and datasets are
correctly installed.

A.3 Set-up
A.3.1 Installation

As summarized in the README.md of our GitHub:

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 181

https://github.com/ebagdasa/adversarial_illusions/tree/10c9d22c4ae6475ecaa13ba22c93f33be0293bca
https://github.com/ebagdasa/adversarial_illusions/tree/10c9d22c4ae6475ecaa13ba22c93f33be0293bca
https://github.com/ebagdasa/adversarial_illusions/tree/10c9d22c4ae6475ecaa13ba22c93f33be0293bca

1. Setup Environment: run conda env create -f
environment.yml

2. Download Data: We run experiments on ImageNet, Au-
dioSet, and LLVIP. For ease of reproduction, we provide
necessary config files for all datasets and 100-example
subsets of the latter two datasets as a release. To install,
please download the data.zip file and, from root, run
unzip /path/to/data.zip -d .

• For ImageNet, we only use the validation
set. As required by PyTorch, we also re-
quire ILSVRC2012_devkit_t12.tar.gz and
ILSVRC2012_img_val.tar to be located in
data/imagenet/. Please follow the instructions
in the note on PyTorch’s page to acquire those two
files.

3. AudioCLIP Checkpoints: To conduct any experiments
on AudioCLIP, we require pretraining checkpoints.

• For the full checkpoint, run:
wget https://github.com/AndreyGuzhov/
AudioCLIP/releases/download/v0.1/
AudioCLIP-Full-Training.pt -P bpe/

• For the partial checkpoint (used for transfer at-
tacks):
wget https://github.com/AndreyGuzhov/
AudioCLIP/releases/download/v0.1/
AudioCLIP-Partial-Training.pt -P bpe/

4. Submodule Setup: This includes lightly adapted code
from ImageBind, AudioCLIP, and DiffJPEG and directly
employs two submodules: PandaGPT and BindDiffusion.
To initialize the two submodules (if desired), run the
following and download the checkpoints as described
below:

git submodule update -init

scp image_text_generation/image_generation.
py BindDiffusion

scp image_text_generation/text_generation_
demo.ipynb PandaGPT/code

scp image_text_generation/text_generation.
py PandaGPT/code

• PandaGPT Checkpoints: To conduct any experi-
ments with PandaGPT, place the PandaGPT check-
points into PandaGPT/pretrained_ckpt by fol-
lowing these instructions.

• BindDiffusion Checkpoints: To con-
duct any experiments with BindDiffusion,
place the BindDiffusion checkpoints into
BindDiffusion/checkpoints by following
these instructions.

A.3.2 Basic Test

Run the Jupyter notebook image_illusion_demo.ipynb to
generate an adversarial illusion image that causes misinfor-
mation using a white-box attack. You can replace the existing
image and aligned text with your own choices to generate
an image illusion. Then, use the perturbed image as input
to text_generation_demo.ipynb, which should produce
output relevant to the target text used previously to perturb
the image.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We demonstrate that adversarial alignment (i.e., the
cos(·) similarity of unrelated inputs) can be perturbed
significantly closer than any organic alignment (i.e., the
cos(·) similarity of related inputs) regardless of source
and target modality. This corresponds to Table 1, Table
4, Table 5, and Table 6 in the paper. This is proven by
experiment (E1), (E4), (E5), and (E6).

(C2): We show that multiple tasks—including image gener-
ation, text generation, audio retrieval, and different types
of zero-shot classification (image, thermal image, and
audio)—are all misled by cross-modal illusions with
white-box attack method. This corresponds to Table
1, Table 2, Table 3, Table 4, Table 5, and Table 6 in the
paper. This is proven by experiments (E1), (E2), (E3),
(E4), (E5), and (E6).

(C3): We analyze transferability of the attack across differ-
ent encoders, investigate how it is influenced by model
architecture and craft illusions that work against multiple
embeddings. In particular, we show that illusions gener-
ated using OpenCLIP encoders also achieve 100% and
90% attack success rates against zero-shot image clas-
sification on ImageBind and AudioCLIP embeddings.
This corresponds to Table 7 in the paper. This is proven
by experiment (E7).

(C4): We demonstrate a black-box, query-based attack and
show that it is effective against several downstream tasks.
We combine our query-based and transfer techniques
into a hybrid method and use it for the first adversarial
alignment attack against Amazon’s Titan, a commercial
black-box embedding. This corresponds to Table 8 in the
paper. This is proven by experiment (E8). Note that we
omit the code for evaluating attacks on Amazon’s Titan
embedding because these attacks involve setting up an
AWS instance and paying for access to a commercial
API.

(C5): We survey several countermeasures and demonstrate
how adversarial illusions can evade defenses based on
JPEG compression and anomaly detection based on the
consistency of augmentations. This corresponds to Table
9 and Table 10 in the paper. This is proven by experi-

182 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://github.com/ebagdasa/adversarial_illusions/releases
https://pytorch.org/vision/main/generated/torchvision.datasets.ImageNet.html
https://github.com/facebookresearch/ImageBind
https://github.com/AndreyGuzhov/AudioCLIP
https://github.com/mlomnitz/DiffJPEG/
https://github.com/yxuansu/PandaGPT
https://github.com/sail-sg/BindDiffusion
https://github.com/yxuansu/PandaGPT#2-running-pandagpt-demo-back-to-top
https://github.com/yxuansu/PandaGPT#2-running-pandagpt-demo-back-to-top
PandaGPT/pretrained_ckpt/README.md
https://github.com/sail-sg/BindDiffusion
BindDiffusion/README.md

ments (E9) and (E10).

A.4.2 Experiments

(E1): [White-box zero-shot image classification] [1 human-
hour + 32 compute-hours]: This experiment generates
the result of Table 1. Our results are run with 7500
epochs. Far fewer epochs (<50) are sufficient to fool
most models.
Setup: Our white-box and baseline experiments are
configured by {EXPERIMENT_NAME}.toml files in the
configs/ folder. To generate a tuple of numbers in
Table 1 (Top-1 Accuracy, Top-5 Accuracy, Mean Loss,
Standard Deviation of Loss), a configuration file must
be created with the specified hyperparameters (e.g.,
output directory, perturbation budget, etc.). Examples
with a fixed hyperparameter set have been included in
configs/imagenet/whitebox/.
Execution: For a white-box attack, run
python adversarial_illusions.py imagenet/
whitebox/{MODEL_NAME}.toml > ../outputs/
imagenet/whitebox/{MODEL_NAME}/result.txt.
For baseline numbers, depending on the type (organic or
adversarial, run
python evaluate_illusions.py baseline/
{TYPE}/image_classification.toml >
../outputs/imagenet/baseline/{TYPE}/image_
classification/result.txt.
Results: The results will be saved to the specified text
file. Note that due to numeric instability, exact numbers
from the paper may be impossible to reproduce.

(E2): [White-box image generation] [1 human-hour + 1.5
compute-hour]: This experiment generates the result of
Table 2.
Execution: Run python BindDiffusion/image_
generation.py > ../outputs/imagenet/image_
generation/whitebox/result.txt to generate ad-
versarial illusions with the query-based method.
Results: The results will be saved to the last few lines
of the txt file.

(E3): [White-box text generation] [0.5 human-hour + 4.5
compute-hour]: This experiment generates the result of
Table 3.
Execution:

1. Run python thermal_illusion_text_genera-
tion.py to generate images aligned with the text
“criminal with a gun”.

2. Run python PandaGPT/code/text_generation.
py to generate PandaGPT’s responses with unper-
turbed and perturbed images.

3. Copy the results from the JSON files outputs/
thermal/perturbed_images_text_generation/
response_thermal_unperturbed.json and
outputs/thermal/perturbed_images_text_

generation/response_thermal_perturbed.
json into ChatGPT-4 with the text prompt “Answer
with yes or no, does each response desc-
ribe anything unsafe? Make the result a
table." Count the “yes" and “no" responses for
the two JSON files.

Results: The numbers of “yes" and “no" in ChatGPT
responses with “response_thermal_unperturbed.
json" and “response_thermal_perturbed.json"
correspond to the numbers of each row in Table 3.

(E4): [White-box zero-shot audio classification] [1 human-
hour + 32 compute-hours]: This experiment generates
the result of Table 4. Our results are run with 7500
epochs. Far fewer epochs (<50) are sufficient to fool
most models.
Setup: Same setup as (E1), making sure to set the
modality flag to ‘audio’ and the dataset flag to
‘audioset’. Examples with a fixed hyperparameter set
have been included in configs/audioset/whitebox/.
Execution: For a white-box attack, run
python adversarial_illusions.py audioset/
whitebox/{MODEL_NAME}.toml > ../outputs/
audioset/whitebox/{MODEL_NAME}/result.txt.
For baseline numbers, depending on the type (organic or
adversarial, run
python evaluate_illusions.py baseline/
{TYPE}/audio_classification.toml >
../outputs/imagenet/baseline/{TYPE}/audio_
classification/result.txt.
Results: The results will be saved to the specified text
file. Note that due to numeric instability, exact numbers
from the paper may be impossible to reproduce.

(E5): [White-box audio retrieval] [1 human-hour + 32
compute-hours]: This experiment generates the result of
Table 5. Our results are run with 7500 epochs. Far fewer
epochs (<50) are sufficient to fool most models.
Setup: Same setup as (E1, E4), making sure
to set the modality flag to ‘audio’ and the
dataset flag to ‘audiocaps’. Examples with a
fixed hyperparameter set have been included in
configs/audiocaps/whitebox/.
Execution: For a white-box attack, run
python adversarial_illusions.py audiocaps/
whitebox/{MODEL_NAME}.toml > ../outputs/
audiocaps/whitebox/{MODEL_NAME}/result.txt.
For baseline numbers, depending on the type {organic,
adversarial}, run
python evaluate_illusions.py baseline/
{TYPE}/audio_retrieval.toml > ../outputs/
imagenet/baseline/{TYPE}/audio_retrieval/
result.txt.
Results: The results will be saved to the specified text
file. Note that due to numeric instability, exact numbers
from the paper may be impossible to reproduce.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 183

(E6): [White-box zero-shot thermal image classification.]
[0.1 human-hour + 1.5 compute-hour]: This experiment
generates the result of Table 6.
Execution: Run python thermal_illusion_class-
ification.py > outputs/thermal/result.txt
Results: The results will be saved to the txt file. Each
text block corresponds to the rows in Table 6.

(E7): [Transfer zero-shot image classification.] [1 human-
hour + 1 compute-hour]: This experiment generates the
result of Table 7.
Setup: This experiment requires adversarial il-
lusions to be generated either by (E1) or via
ensemble: python adversarial_illusions.py
imagenet/transfer/ensemble.toml. For best per-
formance the illusions should be saved after 300 epochs
(via the epochs flag. All adversarial illusions should
be saved to .npy files and served to the evaluation
config via the adv_file flag. Examples with a fixed
hyperparameter set have been included in configs/
audioset/transfer/{MODEL_NAME}_eval.toml.
Execution: To evaluate transferability, run
python evaluate_illusions.py imagenet/
transfer/{MODEL_NAME}_eval.toml >
../outputs/imagenet/transfer/{MODEL_NAME}/
result.txt.
Results: The results will be saved to the specified text
file. Note that due to numeric instability, exact numbers
from the paper may be impossible to reproduce.

(E8): [Query-Based zero-shot image classification.] [0.5
human-hour + 20 compute-hour]: This experiment gen-
erates the result of Table 8.
Execution: Run python query_attack.py
imagebind > outputs/imagenet/query/imagebind/
result.txt and python query_attack.py
audioclip > outputs/imagenet/query/audioclip/
result.txt to attack embeddings using the query-
based method.
Results: The results will be saved to the last few lines
of the txt file.

(E9): [JPEG-resistant illusions.][0.2 human-hour + 1
compute-hour]: This experiment generates the result
of Table 9.
Preparation: Make sure (E1) has been performed,
or run python adversarial_illusions.py
imagenet/whitebox/imagebind, and python
adversarial_illusions.py imagenet/whitebox/
audioclip to generate illusions without evasion attack.
Execution:

1. Run python adversarial_illusions.py
imagenet/whitebox/imagebind_jpeg
and python adversarial_illusions.py
imagenet/whitebox/audioclip_jpeg to
generate JPEG-resistant illusions.

2. Run python evaluate_jpeg.py to evaluate the

illusions with and without evasion attack.
Results: The results will be saved to the txt file.

(E10): [Evading anomaly detection.][0.2 human-hour + 0.1
compute-hour]: This experiment generates the result of
Table 10.
Execution: Run python anomaly_detection.py >
outputs/imagenet/whitebox/anomaly_detection.txt
Results: The results will be saved to the txt file.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

184 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

