
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 33rd USENIX Security Symposium and appends
to the paper of the same name that appears in the Proceedings of

the 33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Artifact Appendices
to the Proceedings of the 33rd USENIX

Security Symposium is sponsored
by USENIX.

Fast RS-IOP Multivariate Polynomial
Commitments and Verifiable Secret Sharing

Zongyang Zhang, Weihan Li, Yanpei Guo, and Kexin Shi, Beihang University;
Sherman S. M. Chow, The Chinese University of Hong Kong; Ximeng Liu,

Fuzhou University; Jin Dong, Beijing Academy of Blockchain and Edge Computing
https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-zongyang

USENIX Security ’24 Artifact Appendix: Fast RS-IOP Multivariate
Polynomial Commitments and Verifiable Secret Sharing

Weihan Li*†, Yanpei Guo*‡, Kexin Shi*§

A Artifact Appendix

A.1 Abstract

In this paper, We propose PolyFRIM, a multivariate polyno-
mial commitment from fast Reed-Solomon interactive oracle
proof of proximity with optimal linear prover complexity, 5-
25× faster than prior arts while ensuring competent proof
size and verification. We also propose PolyFRIM with one-
to-many proof for proving multiple evaluations to multiple
verifiers. PolyFRIM surpasses Zhang et al.’s (Usenix Sec. ’22)
one-to-many univariate PCS, accelerating proving by 4-7×
and verification by 2-4× with 25% shorter proof. Leverag-
ing PolyFRIM, we propose an asynchronous verifiable secret
sharing (AVSS) scheme FRISS with a better efficiency trade-
off than prior arts from multivariate PCS, including Bingo
(Crypto ’23) and Haven (FC ’21).

In the artifact evaluation, we conduct performance eval-
uations for PolyFRIM, one-to-many PolyFRIM, FRISS, and
some baselines for comparison.

A.2 Description & Requirements

We implement PolyFRIM, one-to-many PolyFRIM, and
FRISS using approximately 3.5k code in Rust.

As shown in Figure 2 of the paper, we compare PolyFRIM
with transparent multivariate PCSs: HyperPlonk (imple-
mented by ourselves), Virgo (mainly implemented by our-
selves), and Bulletproofs (modified from open-source code).

As in Figure 3, we compare one-to-many PolyFRIM (re-
duced to univariate for fair comparison) with univariate one-
to-many PCSs: ZXH+22, KZG (trivially), and AMT.

As in Figure 4, we compare the performance of PCSs
in different AVSS schemes (eAVSS, HAVEN, and Bingo)
for varying numbers of parties n = 3t +1 and size-t polyno-
mials. Note that we omit PCS-irrelevant parts (e.g., broad-
cast/encryption) and only focus on how PCS improves AVSS.

*Beihang University, China.
†E-mail: weihan.lee.wickham@gmail.com
‡E-mail: gyp2847399255@gmail.com
§E-mail: SY2139209@buaa.edu.cn

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact is open-sourced in Git repository https:
//github.com/gyp2847399255/PolyFRIM with the stable
URL https://github.com/gyp2847399255/PolyFRIM/
tree/9beb37f643e9c43beea81771d77f4f6235ff7f7c
submitted in the Artifact Evaluation.

A.2.3 Hardware dependencies

We strongly recommend readers compile and run the program
on Linux machines since we do not fully test the configura-
tions on other platforms. We developed and tested this artifact
with AMD processors and 80 GB RAM.

A.2.4 Software dependencies

As for Linux distributions, we recommend Ubuntu 22.04 LTS
as a platform, on which we ran all experiments.

A.2.5 Benchmarks

None.

A.3 Set-up
Follow the "Requirement" of Readme in the Git repos-
itory, which will guide you through setting up the re-
quired workspace. Specifically, first install Rust. For post-
installation, ensure everything is set up correctly with: cargo
--version and rustup --version. Then on Linux, you can
execute the following code to use the nightly toolchain of
Rust: rustup default nightly.

We implement Virgo ourselves except for the GKR sub-
protocol (in Python). To run GKR (/virgo/bench_gkr.py,
installing python3 is required.

A.3.1 Installation

Run cargo bench.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 203

https://github.com/gyp2847399255/PolyFRIM
https://github.com/gyp2847399255/PolyFRIM
https://github.com/gyp2847399255/PolyFRIM/tree/9beb37f643e9c43beea81771d77f4f6235ff7f7c
https://github.com/gyp2847399255/PolyFRIM/tree/9beb37f643e9c43beea81771d77f4f6235ff7f7c

A.4 Evaluation workflow

A.4.1 Major Claims

Our repository supports tests for PolyFRIM, Virgo, Hyper-
Plonk, one-to-many PolyFRIM, and PCS costs for FRISS.
(C1): PolyFRIM is 6-25× faster in prover time than Hyper-

Plonk, Virgo, and Bulletproofs. PolyFRIM has a 4-10×
faster verifier and a 2-3× smaller proof size than Hyper-
Plonk. The verifier time and proof size of PolyFRIM are
competitive with Virgo (less than 50% and 10% worse,
respectively). As for Bulletproofs, PolyFRIM has a 100-
200× larger proof size but can be 1000× faster for veri-
fication. This is proven by experiment E1 described in
Section 5.1 with results reported in Figure 2.

(C2): One-to-many PolyFRIM is 4-7×, 25-100×, and 103-
106× faster in prover time than ZXH+22, AMT, and
KZG, respectively. One-to-many PolyFRIM is 3-9×
(resp., 2-4×) faster in verifier time than AMT (resp.,
ZXH+22). Our verifier time is concretely faster than
KZG when party number n <∼ 214. This is proven
by experiment E2 described in Section 5.2 with results
reported in Figure 3.

(C3): The dealer time of FRISS caused by the PCS is 4-800×
faster than AVSS using a similar method (eAVSS and
HAVEN-1/2). Our party time is 0.5-1.2× of eAVSS and
HAVEN-1. Compared with Bingo, FRISS is 10× slower
for the dealer but 10× faster for parties. This is proven
by experiment E3 described in Section 5.3 with results
reported in Figure 4.

A.4.2 Experiments

(E1): [Multivariate PCS]: Test of transparent multivariate
PCS as shown in (C1), A.4.1
PolyFRIM: Run cargo bench -p pcs for the prover and
verifier time. It prints type (commit, open, i.e., prover,
and verifier), variable (from 5 to 20, corresponding
to polynomial size 25 to 220), and the estimated time
(the bold one of three). Run cargo test -p pcs --
--nocapture for the proof size. It prints the variable
number and corresponding proof size (in bytes).

HyperPlonk: Run cargo bench -p gemini-fri for
the prover and verifier time. Run cargo test -p
gemini-fri -- --nocapture for the proof size.

Virgo: Virgo includes two parts: Virgo main protocol
provided in our repository, and the Virgo GKR. The
final performance is the sum of the two parts. For the
main protocol, run cargo bench -p virgo for the
prover and verifier time. Run cargo test -p virgo
-- --nocapture for the proof size. For Virgo GKR, in
/virgo, run python3 bench_gkr.py to see the prover
time, verifier time, and proof size. To explain as an
example, the printed “size 5” means polynomial size 25.

Bulletproofs: We modify the open-source code1, avail-
able at github.com/frolling-paper/bulletproofs.
The modification mainly adds a PCS based on the ex-
isting inner product argument. The newest version of
nightly Rust led to errors in package simd. To solve this,
install an older version of nightly Rust. We installed
rust toolchain install nightly-2023-07-16.
Then set rustup default nightly-2023-07-16. Run
cargo -bench for the prover (printed prover/open
point) time, verifier time, and proof size. The com-
mit time (printed commit) is also outputted, and used in
AVSS experiment.

We note that except Bulletproofs, the proof sizes are
not fixed as the verification size of multiple entries on a
Merkle tree is not fixed.

(E2): [One-to-many univariate PCS]: Test of one-to-many
univariate PCS as shown in (C2), A.4.1.
For all one-to-many univariate PCS, the x-axis is party
number n. The relation between n and polynomial size t
is n = 2t. Here, the verifier time is per time. The prover
time is total time. The proof size is per size.

One-to-many PolyFRIM: Run cargo bench -p vss
for the prover and verifier time of party number 210-220.
To explain for example, “vss prove 2ˆ10 party” means
the prover time of party number 210. Run cargo test
-p vss -- --nocapture for the proof size. Here, for
example, the printed “vss proof size of 2ˆ10 parties”
means party number n = 210.

ZXH+22: We modify the open-source code2, avail-
able at github.com/frolling-paper/eVSS. The main
modification is changing the code rate and query number
of FRI to be the same as ours, as shown in the commit
history. First, in the /Virgo, run cmake ., then run
make -j4 for building. Second, in the /eVSS, run bash
transparent_version.sh to obtain the results. The
printed "N" is the party number, “Prove Time (s)” is the
prover time, and “Verification Time (s)” is the verifier
time. The code does not output the proof size. We con-
tacted the author Jiaheng Zhang for the proof size. For
N = 2k, k ∈ {12,13, . . . ,20}, the proof size (KB) is 97,
115, 134, 154, 175, 202, 224, 252, and 288.

KZG: We follow the open-source code3. For set-
up, make sure the gcc version is 11.4.0 and install
the NTL package following the Readme. Then, run
TestDKGandVSS to see the performance of (trivial) one-
to-many KZG for party number n= 2t where polynomial
size t varies from 25 to 220. The proof size is always 96
bytes. The prover time is “proof time (s)”. The verifier
time is “verify time (s)”. The commit time is “commit
time (s)” (used in AVSS experiment).

1github.com/frolling-paper/bulletproofs
2github.com/sunblaze-ucb/eVSS
3github.com/frolling-paper/libpolycrypto

204 Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium USENIX Association

github.com/frolling-paper/bulletproofs
github.com/frolling-paper/eVSS
github.com/frolling-paper/bulletproofs
github.com/sunblaze-ucb/eVSS
github.com/frolling-paper/libpolycrypto

AMT: In libpolycrypto/libpolycrypto/test/
TestDKGandVSS.cpp, modify line 159 from
“KatePlayer” to “MultipointPlayer”. Then, run
make.sh and TestDKGandVSS again to see the perfor-
mance of AMT for party number n where polynomial
size t varies from 25 to 220. The prover time is “proof
time (s)”. The verifier time is “verify time (s)”. The
proof size is 96 · logn bytes.

(E3): [PCS costs for AVSS]: Test of PCS-relevant costs for
AVSS (C3), as shown in A.4.1.
Preparation. For all AVSS schemes, the relation be-
tween party number n and polynomial size t is n= 3t+1.
The performances of most compared schemes are com-
puted, as we only consider PCS cost in the experiment.
For preparation, first compute the KZG polynomial com-
mitment performance using the KZG results in experi-
ment (E2). Denote the prover time in (E2) when party
number n = 2t is Ptotal,n. Then, the prover time Pt of a
single proof for a size-t polynomial satisfies

Pt = Ptotal,n/n.

The verifier time Vt of a single proof for polynomial size
t is the verifier time in (E2). The commit time Ct of a
polynomial with size t is also the commit time in (E2).
FRISS: In Polyfrim/, run cargo bench -p avss for
prover and verifier time from party number of 3 ·25 +1
to 3 · 29 + 1. For example, the printed “avss prove 32
degree and 97 parties” means party number 3 · 25 + 1.
“avss prove” means the dealer time. “avss verify” means
the verifier time of a single proof. As one verifier verifies
n proofs, the party time is the multiplication of the single-
proof verifier time and party number n.
eAVSS: In eAVSS, the dealer commits one bivariate
(t, t)-size polynomial, which equals committing n t-size
polynomial. The dealer also generates n proofs on each
polynomial, which occupies the majority. Each party
verifies n proofs. So the dealer time DeV SS,n = Ct · n+
Pt ·n2. The party time PAeV SS,n =Vt ·n.
Bingo: In Bingo, the dealer only needs to commit t +1
size-2t polynomials. So the dealer time DBingo,n =C2t ·
(t+1). Each party needs to commit a size-2t polynomial
and verify n proofs on the polynomial. Hence, the per-
party time is PABingo,n =C2t +V2t ·n.
HAVEN-1: In HAVEN-1, the dealer needs to commit one
size-2t polynomial, and n size-t polynomials. The dealer
also generates n2 proofs on a size-t polynomial, and n
proofs on a size-2t polynomial. So the dealer time is

DHAVEN−1,n =C2t +n ·Ct +n2 ·Pt +n ·P2t .

Each party needs to verify n proofs on the size-t poly-
nomial and n proofs on the size-2t polynomial. So the
per-party time is PAHAVEN−1,n = n · (Vt +V2t).

HAVEN-2: The computation of dealer and per-party time
is the same as HAVEN-1, except using Bulletproofs. Note
that Bulletproofs in the experiment (E1) (commit, prover,
and verifier time) results are all in polynomial size in-
stead of party number.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging method-
ology followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2024/.

USENIX Association Artifact Appendices to the Proceedings of the 33rd USENIX Security Symposium 205

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation

	Evaluation workflow
	Major Claims
	Experiments

	Version

