
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Abandon All Hope Ye Who Enter Here:
A Dynamic, Longitudinal Investigation

of Android’s Data Safety Section
Ioannis Arkalakis, Michalis Diamantaris, Serafeim Moustakas,

and Sotiris Ioannidis, Technical University of Crete; Jason Polakis,
University of Illinois Chicago; Panagiotis Ilia, Cyprus University of Technology

https://www.usenix.org/conference/usenixsecurity24/presentation/arkalakis

Abandon All Hope Ye Who Enter Here:
A Dynamic, Longitudinal Investigation of Android’s Data Safety Section

Ioannis Arkalakis
Technical University of Crete

iarkalakis@tuc.gr

Michalis Diamantaris
Technical University of Crete

mdiamantaris@tuc.gr

Serafeim Moustakas
Technical University of Crete
seraf.moustakas@gmail.com

Sotiris Ioannidis
Technical University of Crete

sioannidis@tuc.gr

Jason Polakis
University of Illinois Chicago

polakis@uic.edu

Panagiotis Ilia
Cyprus University of Technology

panagiotis.ilia@cut.ac.cy

Abstract
Users’ growing concerns about online privacy have led to

increased platform support for transparency and consent in
the web and mobile ecosystems. To that end, Android recently
mandated that developers must disclose what user data their
applications collect and share, and that information is made
available in Google Play’s Data Safety section.

In this paper, we provide the first large-scale, in-depth in-
vestigation on the veracity of the Data Safety section and
its use in the Android application ecosystem. We build an
automated analysis framework that dynamically exercises
and analyzes applications so as to uncover discrepancies be-
tween the applications’ behavior and the data practices that
have been reported in their Data Safety section. Our study on
almost 5K applications uncovers a pervasive trend of incom-
plete disclosure, as 81% misrepresent their data collection and
sharing practices in the Data Safety section. At the same time,
79.4% of the applications with incomplete disclosures do not
ask the user to provide consent for the data they collect and
share, and 78.6% of those that ask for consent disregard the
users’ choice. Moreover, while embedded third-party libraries
are the most common offender, Data Safety discrepancies
can be traced back to the application’s core code in 41% of
the cases. Crucially, Google’s documentation contains vari-
ous “loopholes” that facilitate incomplete disclosure of data
practices. Overall, we find that in its current form, Android’s
Data Safety section does not effectively achieve its goal of in-
creasing transparency and allowing users to provide informed
consent. We argue that Android’s Data Safety policies require
considerable reform, and automated validation mechanisms
like our framework are crucial for ensuring the correctness
and completeness of applications’ Data Safety disclosures.

1 Introduction

Android is the most prevalent mobile operating system, pow-
ered by an ecosystem of diverse devices and millions [9]
of applications. Throughout its lifetime, Android has under-
gone major changes aiming to address its underlying security

and privacy issues. In particular, one of its most critical com-
ponents that has received much scrutiny from the research
community is the permission system, and a large body of
work has explored the permission system’s limitations and
proposed modifications and countermeasures [46, 69, 74, 76].
This has resulted in Android’s permission system evolving
significantly over time and deviating from its original design.

While early Android versions required users to accept con-
fusing blocks of information (i.e., permissions) prior to in-
stalling an application [39], later versions allowed users to
accept or reject permission requests at runtime. Prior to in-
stalling an app, Android users can access information pertain-
ing to the app’s permissions in the Google Play store. This
permission list is automatically generated during the app’s vet-
ting process by parsing the app’s Manifest file. Nonetheless,
many users may still not fully grasp how permissions work
and what information is collected by a granted permission.
In fact, Eling et al. [34] showed that users are more likely to
deny a permission request when a detailed description of the
accessed personal information is provided. Moreover, a study
on the runtime permission model [70] found that misunder-
standings are common among users, and that most are unable
to accurately infer the resources that are protected and the
actions that are permitted by each permission group.

To further simplify permissions, and following Apple’s
Privacy Nutrition Labels for iOS [61], Google recently intro-
duced the Data Safety section which allows applications to
disclose the personal data that they collect and share. The
Data Safety section, which came into effect in July 2022 [11],
requires developers to complete a comprehensive Data Safety
form and declare all the data that their application collects
or shares. While Google Play’s permission list section was
removed from the official store [18], considerable pushback
from the developer community showed that the permission
list is useful and shortly after was reinstated [16]. Currently,
both the Data Safety information and permission list remain
available in the Google Play store.

Even though the information provided in the Data Safety
section can help users better understand how their personal

USENIX Association 33rd USENIX Security Symposium 5645

data is being used, it relies solely on the developer to declare
what data the application will collect and share. Essentially,
this approach considers developers to be truthful and trans-
parent (which may not always be the case), as well as fully
cognizant of the data their app collects. In reality, this can be
complicated by embedded third-party libraries, since develop-
ers may not be fully aware of the embedded code’s function-
ality and its privacy implications [41]. As developers already
spend considerable effort handling third-party libraries’ pri-
vacy issues [75], being responsible for ensuring the accuracy
of the Data Safety section can be challenging.

To make matters worse, the official Data Safety documen-
tation [11] outlines a set of different policies that determine
when data collection and sharing should be disclosed in the
Data Safety section. We find that these policies are relaxed
in many cases and, in general, can be vague and confusing.
This not only inhibits users from being informed about the
collection and handling of their data, but may also affect de-
velopers’ ability to accurately declare all relevant information.
Importantly, these policies also create “loopholes” that al-
low developers to misuse the system and deliberately avoid
declaring certain pieces of information.

Motivated by these observations, we design a methodology
and analysis pipeline that searches for discrepancies between
the information declared in the Data Safety section on Google
Play and the actual information that Android apps collect and
share, as well as the extent to which such violations occur. To
that end, we develop a framework that collects applications
with their metadata and Data Safety sections from the Play
Store, and dynamically exercises them to identify the informa-
tion that each app accesses and shares over the network. Our
framework monitors all API methods that lead to sensitive
personal information or device data, which we have manually
mapped to the corresponding Data Safety labels, and dynami-
cally traverses the apps to trigger these calls. Furthermore, our
tool identifies and interacts with in-app consent dialog boxes,
and tests them under five different scenarios that explore how
apps’ data practices are affected by user consent.

Using our framework we conduct the first, to our knowl-
edge, automated analysis of Android’s Data Safety section.
Our in-depth, longitudinal analysis reveals a multitude of
discrepancies and widespread violation of data transparency.
We uncover severe inaccuracies in apps’ Data Safety sec-
tions, with 69.2% of apps not fully disclosing the data they
collect and 43.1% the data that they share. Overall, we find
that 81% of the tested apps contain at least one discrepancy
in their Data Safety section, and that issues persisted for an
entire year after the Data Safety section was made manda-
tory. Furthermore, we find that while in 59% of the cases the
discrepancies originate from embedded third-party libraries,
app developers are almost equally complicit in not accurately
disclosing their own data practices. The implications of our
findings are further exacerbated by the fact that applications
not only violate Google’s Data Safety policies, but also vi-

olate Google’s policy governing consent requirements. We
argue that Google’s vague and ambiguous policies can lead to
confusion, while also enabling misuse and the surreptitious
exfiltration of personal data, thus significantly undermining
the potential benefits of the Data Safety section.

The key contributions of our work are the following:
• We analyze the official Data Safety documentation and

identify instances of relaxed policies that can confuse
users and/or developers, which also enable misuse sce-
narios with severe ramifications. We then create a map-
ping of Data Safety labels to the corresponding function
calls, which is necessary for analyzing them within the
broader context of Android privacy research.

• We develop a dynamic analysis framework and a pipeline
that automatically identifies discrepancies between apps’
runtime behavior and their Data Safety section, under
different user consent scenarios.

• We conduct an extensive longitudinal investigation of
Data Safety discrepancies in popular Android apps. Our
study uncovers alarming practices and rampant viola-
tions of data transparency and user consent. We have
disclosed our findings to Google, and will facilitate addi-
tional research by publicly sharing our code and data.1

2 Background & Motivation

Google Play includes a dedicated section for each app that
informs users about the data that the app collects and shares.
The Data Safety section consists of three parts, specifically
the Data Collected, Data Shared and Security Practices parts.
The Data Collected part includes information about the data
that the respective app collects, while the Data Shared part
shows which of the collected data is being shared with third
parties [11]. Google Play displays the Data Safety section
information regarding the data that is collected and shared by
using a list of predefined labels (e.g., Location, Contacts,
Photos or videos). The Security Practices part informs
users whether the app uses encryption when transmitting data,
if data deletion is possible, and whether the app has been in-
dependently reviewed against a global security standard [36].
Moreover, the Data Safety section is mandatory for all apps,
and all relevant information needs to be provided by devel-
opers when submitting their apps to Google Play, even if no
data will be collected or shared.

The Play Console Help [1] provides guidelines for devel-
opers, and outlines the policies to be followed for completing
an app’s Data Safety section. However, our analysis of the
policies described in the “User Data” part of the documenta-
tion [37], which determine when data collection and sharing
should be disclosed, are vague in places and can enable prob-
lematic practices. For instance, in the case of Data Collected,
the documentation specifies that it concerns data transmitted

1https://github.com/GiannisArk/USENIX24_DataSafety

5646 33rd USENIX Security Symposium USENIX Association

https://github.com/GiannisArk/USENIX24_DataSafety

off a user’s device, with the exception of (i) data that is ac-
cessed and only processed locally on the user’s device, and
(ii) data that is sent off the user’s device but is end-to-end
encrypted (i.e., messaging apps). A crucial detail is that data
that is transmitted off device but only processed “ephemerally”
does not need to be disclosed in the Data Safety section.

Moreover, in the case of Data Shared policies that concern
data transmitted from an app to a third party, the documenta-
tion presents several types of data transfers that do not need
to be disclosed. These include data transfers to (i) “service
providers” that process data on behalf of the developer, (ii) “le-
gal purposes” such as legal obligation or government requests,
(iii) “user-initiated action or prominent disclosure and user
consent”, and (iv) “anonymous data” that can no longer be
associated with an individual user.

These policies are overly permissive and potentially un-
clear, as they rely on complicated terminology and definitions,
which may allow apps to exploit “loopholes”, as was also
noted recently by Mozilla [12]. Even more problematic is
the policy that allows data transfers based on “user-initiated
action or prominent disclosure and user consent” without the
need to disclose these transfers. In other words, developers
and third-parties can access and transmit user data without
declaring it in the Data Safety section if the user consents
through the in-app user dialog at runtime. However, prior work
has highlighted the use of dark patterns in runtime consent
dialogues [72], which can affect users’ decision making [52].

In summary, our analysis of Google’s policies reveal var-
ious opportunities for misinformation and incomplete dis-
closure of applications’ data practices. This motivates our
in-depth investigation of Android applications’ data practices
and their correlation to the corresponding Data Safety section
disclosures by app developers. We believe that all data regu-
lated by privacy laws (e.g., GDPR) needs to be declared in
the Data Safety section when collected or shared by apps, and
Google should not be introducing additional loopholes and
exemptions based on arbitrary heuristics. While exemptions
to such regulations exist, the well-defined exemption criteria
defined by GDPR do not typically cover the nature of the
Android apps that we have analyzed, or the specific behaviors
that we have uncovered. Throughout the paper we consider
as a discrepancy any case where data is accessed or shared
at runtime without having been disclosed in the app’s Data
Safety section. Consequently, we use the term data leak, when
referring to apps sharing information without disclosing it.

3 System Design and Implementation

Here we describe our methodology for identifying data that
is being collected and shared by Android apps, and provide
details regarding our framework’s implementation. Figure 1
provides an overview of its components and analysis pipeline.
Our system consists of several components that allow us to
(i) monitor API methods (e.g., framework functions like the

Run-Time Execution

Mitmproxy

Data Safety Crawler

Data Safety Section
to API Mapping

App Dataset No run-time consent

Run-time consent

No Action

Reject

Accept

Discrepancies

Data Collected Data Shared

VPN Reaper

Figure 1: Overview of our framework and analysis pipeline.

Telephony API) and map them to Data Safety labels (i.e.,
types of information) for identifying discrepancies in the Data
Collected segment, and (ii) monitor network traffic for identi-
fying discrepancies in the Data Shared segment of the Data
Safety section. Our framework builds upon existing tools [32],
which were modified and extended to match our needs.

Android API monitoring. We monitor API methods by
utilizing Reaper [32], a dynamic analysis system that traces
permissions requested by apps and non-permission-protected
functions that yield Personally Identifiable Information (PII).
Since permission mappings do not exist for Android 12
(which was the latest stable version during the time of our
experiments), we used the permission mappings provided by
DYNAMO [27] for Android 10 as a starting point for con-
structing our own list of permission-protected functions.

Furthermore, due to the constant evolution of permission-
protected APIs and their permission specification, we also
followed the methodology employed by APER [77] for iden-
tifying any missing or false entries for our target version.
Specifically, we traversed all the Java source files for An-
droid 12 and identified all the API methods that have the
@RequiresPermission annotation tag to specify their per-
mission requirements. Our final list of permission mappings
includes all the permission-protected functions of DYNAMO
and those that have been identified statically from the source
code and the documentation. When encountering differences
in the permission annotation of functions between DYNAMO
and the permission annotation identified through the Java
source files, we used the permission annotation of the latter.
Moreover, as apps and third-party libraries are prone to ac-
cessing PII from functions that are not permission-protected,
our framework also incorporates known PII functions (see
Appendix A) from prior work (e.g., [32, 63]).

Data Safety section to API Mapping. The Data
Safety section uses predefined labels (e.g., Location, Mes-
sages, Photos or videos, Contacts) as a high-level, user-

USENIX Association 33rd USENIX Security Symposium 5647

Table 1: Data Safety labels mapped to the functions called by
apps in our datasets (coarse- and fine-grained categories).

Category Sub-categories

App info and performance Diagnostics, Other app performance data
Location Approximate location, Precise location

Personal info Name, Phone number
Photos or videos Photos

Audio files Music files
Files and docs

Contacts
App activity

Device or other IDs

friendly way of describing the information that each Android
app can collect and share. Since our system monitors access to
function calls (regardless of them being permission-protected
or not), we followed a specific process for mapping each func-
tion call to the corresponding Data Safety labels that accu-
rately describe the information accessed, thus also indirectly
categorizing the collected and shared data. As a first step in
this process, we automatically exercised all the apps in our
datasets, and out of the 6,955 function calls that our system
monitors, we selected 295 functions that were actually ac-
cessed by the apps we exercised. This significantly narrowed
down the functions that require Data Safety labeling, to only
those that were actually accessed by the apps in our datasets.
Next, we manually assigned Data Safety labels to these 295
functions and removed any functions that do not require a
Data Safety label (e.g., SystemVibrator.vibrate()). We
took into consideration the relevant permissions and exam-
ined the official Data Safety developer guideline documenta-
tion [30] and the Java source code of the respective function
calls. For example, getLastKnownLocation() and getCur-
rentLocation() are mapped to the Location, Precise loca-
tion and Approximate location labels. Our Data Safety map-
pings consist of a list of 94 functions that are mapped to 17
different Data Safety labels, with 9 of the labels correspond-
ing to coarse-grained categories and 8 to fine-grained sub-
categories (e.g., category: App info and performance, with
sub-categories: Diagnostics, Other app performance data). All
the labels used in our mappings are shown in Table 1. We
note that Table 1 does not include labels that relate to personal
user identifiers such as name, surname and email, which we
detect through network traffic monitoring.

To ensure the accuracy of our manual labeling, this process
was performed independently by two of the authors, who sub-
sequently compared their function-label mappings. In cases
where the two researchers’ mappings did not perfectly align,
the two researchers conferred and re-examined the specific
cases along with a third co-author. Overall, only a few mis-
matches occurred between the two labellers and these were
cases of assigning labels of a different granularity (e.g., Loca-
tion and Precise Location). These were all rectified during
the re-examination process, based on a majority vote. More
specifically, out of the 295 functions examined, the two la-

bellers had a precise agreement (i.e., all assigned labels match)
for 242 functions (82.03%). These also include cases where
the labellers decided that no Data Safety label is required, and
marked it as NoLabel. In 8 cases (2.71%) the researchers had
assigned some matching labels, but not all labels perfectly
matched. For example, for the getLine1Number() one re-
searcher assigned the Personal info and Phone number labels,
and the other assigned only the Personal info label. After
conferring, both labels were assigned to this function. Fur-
thermore, in 44 cases (14.91%) only one of the two labellers
assigned a label, while the other one marked them as NoLa-
bel. These were cases of uncertainty, and were all discussed
and addressed in the presence of a third researcher. Finally,
we had a single case of a label category disagreement, for
getDefaultOutgoingPhoneAccount(), where one labeller
assigned the Contacts label and the other the Personal info
one. Since this function returns a PhoneAccount object we
decided that the appropriate label should be Contacts.

Runtime execution. We utilize Reaper’s UIHarvester [32]
to traverse apps and retrieve all the elements displayed on the
device’s screen. We have extended UIHarvester to retrieve
not only the native Android components but also any web
components, since applications may display content inside
a WebView element. As stated in the Data Safety’s privacy
and security practices [36], developers do not need to declare
any information in the Data Shared part of the Data Safety
section if the app requests a runtime user consent (not to be
confused with Android’s runtime permissions) according to
the requirements of Google Play’s User Data policy [37].

Our runtime execution methodology takes this policy into
consideration and identifies runtime consent elements (e.g.,
GDPR cookie consent banner) while exercising the app, en-
abling our subsequent differential analysis. Specifically, our
framework identifies any runtime consent elements that exist,
and performs two different executions of the app: one for
accepting (i.e., providing consent) and one for declining. Ad-
ditionally, we check whether the accept or reject button has
been successfully selected by restarting the app and checking
if the runtime consent dialogue persists. In cases where the
app does not have a reject button or terminates after the reject
button is selected without allowing any further interaction, we
terminate the analysis for this app (Figure 1 - No Action). For
every execution, we log all the information that the app col-
lects and shares. Interestingly, we found a significant number
of apps that contain discrepancies in the Data Safety that also
violate the consent requirements of Google Play’s User Data
policy [37] by collecting and sharing sensitive info even if the
user rejects the runtime consent, as we detail in Section 4.

Identifying consent dialogues. Our study analyzes An-
droid apps for data violations and discrepancies in their Data
Safety section by taking into consideration the app’s request
for runtime consent, therefore creating different scenarios for
each app execution, based on the user’s selection. As such,
our system includes a component that identifies View and We-

5648 33rd USENIX Security Symposium USENIX Association

bView elements that display runtime consent dialogues, using
a string-matching-based approach with a predefined list of
keywords. We populated this list of keywords by manually
interacting with 100 apps that contain runtime consent di-
alogues. We verified that our list of keywords is sufficient
for identifying runtime consent dialogues by verifying them
against a different random set of 100 apps. In our manual
verification we found that we are able to identify all runtime
consent dialogues, even in cases where the app shows a pop-
up dialog that informs the user about the data they collect by
providing a link to their privacy policy, but without provid-
ing an agree or reject button. Moreover, as runtime consent
dialogues may require the user to click different checkboxes
before being able to press the accept button, we also incorpo-
rated this functionality into our module.

Data Safety crawler. We created a Python-based crawler
that parses the Google Play web page on a daily basis and
logs all the information provided by the Data Safety section
for each application in our dataset starting July 29, 2022. Our
crawler also logs additional information for each app, such as
the developer’s name, permissions, and number of downloads.

Discrepancies. Our framework dynamically analyzes apps
and logs the data that they collect and share using runtime
instrumentation. In our study, we process each app’s logs and
identify discrepancies between the runtime behavior and the
data declared in the Data Safety section. While we crawl
each app’s Data Safety section on a daily basis, we compare
the results of the runtime execution with the information
provided in the app’s Data Safety section on the day that we
downloaded the app’s apk file. Furthermore, as we detail in
our analysis in Section 4, we find that the same discrepancies
tend to persist across different app executions for long periods
of time. Overall, we identify Data Collected discrepancies by
monitoring function calls in the operating system, and Data
Shared discrepancies by monitoring network traffic.

Testbed configuration. Our experimental setup consists
of two Google Pixel devices (Pixel 4a and Pixel 6) running
Google’s AOSP version 12, and a proxy server using mitm-
proxy [26]. Magisk [78] was used to root the devices and
install additional modules. The devices were configured with
the LSPosed [51] framework that supports the latest Android
versions and is compatible with Reaper’s Xposed [2] modules.
We intercepted network traffic by configuring the devices
with the mitm proxy’s root certificate, by installing it into
the Android’s system store. Moreover, we use Objection [10]
to detect and disable SSL Pinning. At runtime, our frame-
work installs and analyzes each application individually (e.g.,
install, analyze, clear app data, uninstall), and approves all
the runtime permissions that the apps may request, using the
“adb install -g” option. We modified UIHarvester [32] to
be compatible with our devices’ API and interacted with each
app for five minutes using a breadth-first traversal strategy.
Finally, we implemented a module for automating the login
process by using Google’s Single Sign-On whenever possible.

4 Measurements and Investigation

Here we present the findings from our large-scale study of the
Data Safety section in the Android ecosystem.

App dataset. We created our application dataset based on
free apps downloaded from the official Google Play market.
We selected up to the top 250 apps (or as many as were
available) from 20 different categories. Since our goal is to
investigate how developers adhere to Google’s Data Safety
policies and how the data collected and shared may change
over time, we gathered and analyzed four different versions
for each app based on the time of download (i.e., September
2022, March/June/September 2023). Overall, we downloaded
4,986 unique apps from Google Play using the Raccoon [3]
framework and performed a total of 21,202 executions across
the different scenarios and VPN experiments.

The experiments performed in September 2022 were pre-
liminary, aiming for an initial exploration of Data Safety dis-
crepancies, and were performed using a prototype version of
our system. These experiments only explored Data Collected
discrepancies. We decided not to include new apps across
datasets for our experiments and findings to remain consis-
tent. Nonetheless, some apps that existed in the Sep22 dataset
were no longer available in the official Google Play Store in
March and June 2023, and are not included in the respective
datasets. Also, 225 apps have been removed from Google
Play in September 2023 (out of which 213 had discrepancies
during March’s analysis). Therefore, Sep22 dataset contains
4,986 apps, Mar23 and Jun23 datasets contain 4,157 apps and
Sep23 contains 3,953 from the original dataset. While we
observe similar behaviors across all four datasets, our analy-
sis here focuses mainly on Sep23, as that provides the most
up-to-date view of how the Data Safety section is being used.

VPN dataset. We downloaded a subset of 100 apps from
our initial dataset and analyzed them in several countries using
a VPN service. As differences may exist between versions
of an app distributed in different countries due to legislation,
for each of these apps we visited the appropriate Google Play
market for different countries and downloaded the apk file and
crawled the information in the respective Data Safety section.
Overall, our VPN-based analysis includes apps distributed
in Canada, United States, Brazil, Iceland, Germany, Ukraine,
Greece, Estonia, Kenya, Russia and India. Even though apps
may be able to detect when a VPN service is used (e.g., GPS
coordinates, nearby WiFi access points) and even prevent
us from analyzing them (i.e., by geoblocking [45]), we did
not detect such constraints for the majority of apps that we
analyzed using VPN. Specifically, we only faced geoblocking
restrictions in 18 apps (14 apps in Estonia, 2 apps in Iceland,
1 app in India and 1 app in Ukraine). Our VPN experiments
took place between April 15 and May 2, 2023.

Data Safety section discrepancies. Table 2 summarizes
our findings about apps that contain discrepancies between the
run-time execution and their Data Safety section for different

USENIX Association 33rd USENIX Security Symposium 5649

Table 2: Apps with discrepancies for September 2022 (preliminary experiment), March, June and September 2023. Any Discr
denotes apps with at least one type of discrepancy. Data Collected and Data Shared denote apps with discrepancies in the
respective Data Safety section. Percentages are based on the total number of apps in the corresponding scenario.

Scenario
Preliminary exp. March 2023 June 2023 September 2023
Data Collected

(September 2022) Any Discr Data Collected Data Shared Any Discr Data Collected Data Shared Any Discr Data Collected Data Shared

All 2,365 (47.43%) 3,363 (80.89%) 2,871 (69.06%) 1,797 (43.23%) 3,354 (80.68%) 2,878 (69.23%) 1,749 (42.07%) 3,204 (81.46%) 2,731 (69.44%) 1,735 (44.11%)

(i) No runtime consent 2,065 (48.46%) 2,545 (79.18%) 2,169 (67.48%) 1,384 (43.06%) 2,579 (79.11%) 2,209 (67.76%) 1,378 (42.27%) 2,543 (80.02%) 2,156 (67.84%) 1,418 (44.62%)

(ii) Accept 300 (41.37%) 815 (86.42%) 701 (74.33%) 402 (42.63%) 773 (86.17%) 669 (74.58%) 364 (40.58%) 657 (84.77%) 575 (74.19%) 300 (38.71%)
(iii) Reject 26 (3.58%) 89 (9.44%) 78 (8.27%) 41 (4.34%) 67 (7.47%) 62 (6.91%) 27 (3.01%) 62 (8%) 58 (7.48%) 20 (2.58%)
(iv) Reject not found 228 (24.07%) 570 (60.44%) 474 (50.26%) 275 (29.16%) 566 (63.1%) 477 (53.17%) 254 (28.31%) 468 (60.38%) 397 (51.22%) 210 (27.1%)

ru
nt

im
e

co
ns

en
t:

(v) Reject & app exited 50 (6.89%) 78 (8.27%) 69 (7.31%) 40 (4.24%) 79 (8.8%) 67 (7.47%) 44 (4.9%) 77 (9.93%) 63 (8.13%) 42 (5.42%)

run-time consent scenarios and across three time periods. All
lists all apps with discrepancies irrespectively of the run-time
consent scenario (i.e., we observed discrepancies in at least
one of the scenarios). Any Discr denotes apps with at least
one discrepancy without distinguishing between data being
collected or shared, while Data Collected and Data Shared
denote apps with discrepancies in the respective Data Safety
section. Overall, we find that 81% (σ = 0.33) of apps have
discrepancies, and that the percentages are high across all
datasets (Mar23: 80.89% - Jun23: 80.68% - Sep23: 81.46%).
These discrepancies persist for an entire year after Data Safety
was made mandatory, highlighting the dire need for an effec-
tive automated validation mechanism that will ensure the
accuracy and completeness of the Data Safety section.

Level of non-compliance. Figure 2 presents the extent of
non-compliance for apps analyzed in March, June and Septem-
ber 2023. For determining compliance we identify which la-
bels each app should have declared in the Data Safety section,
based on their run-time behavior, in order to not have any
discrepancies. Essentially, this number is calculated by con-
sidering both the labels that have been already declared and
those that lead to discrepancies. As can be seen, 794 (19.1%),
803 (19.32%) and 729 (18.54%) apps are fully compliant as
they do not have any discrepancies, indicating that they de-
clare all the information that they collect and share in the Data
Safety section. On the other hand, we found 579 (13.93%),
567 (13.64%) and 504 (12.81%) apps that appear to be en-
tirely non-compliant, across the three datasets, as they do not
declare any information, and hence all functions that access
or transmit user or device information result in discrepancies.
The remaining apps (i.e., 2,784 (66.67%), 2,787 (67.04%) and
2,700 (68.65%) respectively) have declared some information,
but are not yet fully compliant as they still have discrepancies.
Overall, apps with discrepancies have an average compliance
level of 63.9% (Mar23: 63.16% - Jun23: 63.68% - Sep23:
64.85% – σ = 0.71). Based on these findings we argue that
in the majority of cases Android’s Data Safety section can
not be trusted, as it contains inaccuracies or, one could argue,
misinformation that will actively mislead users about what
data will be collected and shared. As such, even cautious
users may be unable to make truly informed decisions when
granting permissions to apps.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

N
o
n
-c

o
m

p
lia

n
c
e
 (

%
)

Apps (%)

Mar23 Jun23 Sep23

Figure 2: Level of non-compliance for apps in the 3 datasets.
Apps in each dataset are sorted in ascending order based on
their level of non-compliance.

In-app consent. As apps embed third-party library code
and display content from the web, we have also analyzed
our datasets with regards to the run-time consent dialogues
that the apps present and the possible user options. Overall,
our analysis is based on five scenarios, as shown in Table 2.
The first scenario refers to (i) apps that do not present any
run-time consent dialogue at all, while the remaining four
scenarios provide a run-time consent dialogue and consider
the respective users’ options. Specifically, these scenarios
are: (ii) “Accept” in the case where the user provides con-
sent, (iii) “Reject” when the user declines to provide consent,
(iv) “Reject not found (No action)” where the reject button
was not found in the device’s screen and the analysis termi-
nated, and (v) “Reject & app exited (No action)” in the case
where the reject button was pressed and the application did not
allow further interaction. It is worth noting that all apps listed
under the scenarios scenario-iv and scenario-v contain
discrepancies and violate Google’s policies concerning the
user consent and the consent requirements.

We observe that the vast majority of apps (Mar23: 79.18%
- Jun23: 79.11% - Sep23: 80.02% – µ = 79.43%, σ = 0.41)
contain at least one discrepancy in their Data Safety sections
and do not have a run-time consent dialogue (scenario-
i). While our original assessment of Google Play’s User
Data policies [37] was that they are more permissive than
they should be, due to allowing data transfers based on“user-
initiated action or prominent disclosure and user consent”,
our analysis reveals that the situation is more problematic
than we had expected it to be. Apart from omitting to disclose

5650 33rd USENIX Security Symposium USENIX Association

in their Data Safety section information regarding the data
that they collect and share, these apps do not inform the user
about run-time data accesses at all, and do not give them the
ability to consent (or deny consent). Specifically, we observe
that in all datasets the percentage of apps with discrepancies
in Data Collected (Mar23: 67.48% - Jun23: 67.76% - Sep23:
67.84% – µ = 67.69%, σ = 0.15) and Data Shared (Mar23:
43.06% - Jun23: 42.27% - Sep23: 44.62% – µ = 43.31%,
σ = 0.97) is still significantly high.

For apps that provide a run-time consent dialogue and the
user agrees to the consent (scenario-ii), we found that
85.79% of the apps (Mar23: 86.42% - Jun23: 86.17% - Sep23:
84.77% – σ = 0.72) access and share data not declared in
the Data Safety section. While these apps fall in line with
Google’s policies [11], we believe that such instances of re-
laxed policies can be abused and mislead users about the data
that the app collects and shares, and that this information
needs to be disclosed in the appropriate Data Safety section.

For apps that provide a consent dialogue but the user de-
clines the consent (scenario-iii), we found that 8.3% of the
apps (Mar23: 9.44% - Jun23: 7.47% - Sep23: 8% – σ = 0.83)
contain a discrepancy in their Data Safety section. We note
that apart from having discrepancies between the run-time ex-
ecution and the Data Safety section, these apps also violate the
“User-initiated action or prominent disclosure and user con-
sent” policy. We identified 61.31% of apps (Mar23: 60.44% -
Jun23: 63.1% - Sep23: 60.38% – σ = 1.26) in scenario-iv
that also violate Google’s policy governing consent require-
ments [37]; this policy states that consent “must be granted
by the user before your app can begin to collect or access
the personal and sensitive user data”. These apps present a
run-time consent dialogue but they do not display an agree
button and, to make matters worse, collect data even if the
user does not interact with and exits the app. Finally, we found
9% of apps (Mar23: 8.27% - Jun23: 8.8% - Sep23: 9.93% –
σ = 0.69) in scenario-v that collect data before terminat-
ing, after the user has pressed the reject button. These apps
contain Data Safety discrepancies and also violate both of the
aforementioned consent policies.

Overall, for the three “Reject” scenarios (scenario-iii,
scenario-iv, scenario-v), we found that 78.61% (σ =
0.54) of the apps that present a consent dialogue have discrep-
ancies in their data collection and sharing practices (Mar23:
78.15% - Jun23: 79.37% - Sep23: 78.31%). While apps
should always respect users’ run-time choice concerning ac-
cessing and sharing of their data, our experiments reveal that
this is not always the case, thus allowing apps to exploit loop-
holes in Google’s current policies that govern data disclosure.

Data Collected discrepancies. Table 6 in Appendix A
breaks down the discrepancies between apps’ run-time behav-
ior and their Data Safety labels for every run-time scenario
across all datasets, and provides aggregated results for the
functions that lead to the discrepancies along with the respec-
tive Android permissions. We observe that discrepancies may

originate from functions that require “dangerous” permis-
sions, such as ACCESS_(COARSE\FINE)_LOCATION, READ_-
SMS, READ_PHONE_NUMBERS, READ_EXTERNAL_STORAGE, and
READ_PHONE_STATE. Moreover, we observe a large number
of apps that access location information without declaring any
of the corresponding Data Safety labels: Location, Approxi-
mate location, or Precise location. This is also true for 45-69
apps (across datasets) accessing precise location, where the
user had no interaction with the app (scenario-iv), and 15-
20 apps (across datasets) in which the user declined to provide
run-time consent and the app did not allow further interaction
yet still collected the location information (scenario-v).

Personal & sensitive data. A large number of apps ac-
cess sensitive personal information that falls into the Data
Safety labels of “Device or other IDs” and “App info and
performance” without declaring them. Previous work has
shown that this type of data can be used to accurately track
users (e.g., [32, 47, 63]). Our experiments show that this be-
havior became more common between March - September
2023 in apps that do not provide a run-time consent dialogue
(scenario-i). Additionally, we found one app that collects
and shares the user’s contacts in every dataset. We also ob-
serve apps accessing functions that yield persistent device
identifiers (e.g., IMEI/MEID, IMSI, SIM, build serial), which
requires the READ_PRIVILEGED_PHONE_STATE permission in
the latest Android versions. Even though this permission can
be only granted to apps signed with the platform key and privi-
leged system apps [5] (starting from Android API 29), several
persistent identifiers (e.g., IMEI) can still be accessed without
this permission if, for example, the app is the default SMS role
holder [13]. We did not set apps as the default handler, and
in our devices’ version these calls are automatically declined
and no value is returned; however, this will not be the case
for older Android versions. Moreover, we found a small but
non-negligible number of apps (i.e., 15) that access extremely
sensitive user data such as photos, documents, audio files and
contacts without declaring the appropriate labels.

API Methods. We identified and analyzed which functions
apps are accessing without declaring the appropriate Data
Collected labels. Figure 3 shows the number of apps that ac-
cess functions that resulted in a Data Collected discrepancy
in the Sep23 dataset across all run-time consent scenarios. We
observe that the majority of functions are called by apps that
do not have a run-time consent dialog. Some of these func-
tions return device specific identifiers (e.g., getDeviceID(),
getIMEI(), getNetworkOperator()) while many apps use
functions that reveal the user’s location (e.g., getLastknown-
Location()). Figure 3(c) shows the aggregated results of
apps accessing API methods resulting in Data Safety discrep-
ancies for all run-time scenarios where the consent is rejected
(i.e., scenarios iii, iv and v). Surprisingly, we observe that the
user’s decision concerning the run-time consent (i.e., accept or
reject) makes almost no difference to whether the user’s data
is being collected and not disclosed in the Data Safety section,

USENIX Association 33rd USENIX Security Symposium 5651

10
0

10
1

10
2

10
3

ad
dA

cc
ou

nt

ge
tA

cc
ou

nt
s

ge
tA

cc
ou

nt
sB

yT
yp

e

ge
tA

cc
ou

nt
sB

yT
yp

eA
nd

Fea
tu

re
s

ge
tA

ut
hT

ok
en

ge
tP

as
sw

or
d

ge
tU

se
rD

at
a

se
tU

se
rD

at
a

ge
tR

un
ni
ng

App
Pro

ce
ss

es

ge
tR

un
ni
ng

Tas
ks

st
ar

tW
at

ch
in
gM

od
e

st
ar

tW
at

ch
in
gS

ta
rte

d

ge
tA

pp
Sta

nd
by

Buc
ke

t

ge
tD

ra
w
ab

le

ge
tC

on
ne

ct
ed

D
ev

ic
es

ge
tA

dd
re

ss

ge
tB

on
de

dD
ev

ic
es

cl
as

sA
.g

et
N
am

e

cl
as

sB
.g

et
N
am

e

ge
tT

yp
e

cl
as

sA
.g

et
C
on

ne
ct
ed

D
ev

ic
es

cl
as

sB
.g

et
C
on

ne
ct
ed

D
ev

ic
es

ge
tD

ev
ic
es

M
at

ch
in
gC

on
ne

ct
io
nS

ta
te

s

op
en

Ass
et

File

op
en

Typ
ed

Ass
et

File

qu
er

y

ad
dG

ps
Sta

tu
sL

is
te

ne
r

ad
dN

m
ea

Li
st
en

er

ge
tC

ur
re

nt
Lo

ca
tio

n

ge
tL

as
tK

no
w
nL

oc
at

io
n

re
gi
st
er

G
ns

sS
ta

tu
sC

al
lb
ac

k

re
qu

es
tL

oc
at

io
nU

pd
at

es

re
qu

es
tS

in
gl
eU

pd
at

e

ge
tR

in
gt

on
e

ge
tB

SSID

ge
tM

ac
Add

re
ss

ge
tS

SID

ge
tIn

tP
ro

pe
rty

ge
tL

on
gP

ro
pe

rty

ge
tS

er
ia
l

ge
tM

em
or

yI
nf

o

ge
tN

at
iv
eH

ea
pA

llo
ca

te
dS

iz
e

ge
tN

at
iv
eH

ea
pF

re
eS

iz
e

ge
tN

at
iv
eH

ea
pS

iz
e

ge
tC

ur
re

nt
The

rm
al
Sta

tu
s

ge
tT

hr
ea

dP
ol
ic
y

ge
tV

m
Pol

ic
y

ge
tC

al
lC

ap
ab

le
Pho

ne
Acc

ou
nt

s

ge
tD

ef
au

ltO
ut

go
in
gP

ho
ne

Acc
ou

nt

is
Voi

ce
M

ai
lN

um
be

r

ge
tIc

cI
d

ge
tA

ct
iv
eS

ub
sc

rip
tio

nI
nf

o

ge
tA

ct
iv
eS

ub
sc

rip
tio

nI
nf

oF
or

Sim
Slo

tIn
de

x

ge
tA

ct
iv
eS

ub
sc

rip
tio

nI
nf

oL
is
t

ge
tA

llC
el
lIn

fo

ge
tC

ar
dI

dF
or

D
ef

au
ltE

ui
cc

ge
tC

el
lL
oc

at
io
n

ge
tD

at
aN

et
w
or

kT
yp

e

ge
tD

ev
ic
eI

d

ge
tD

ev
ic
eS

of
tw

ar
eV

er
si
on

ge
tG

ro
up

Id
Le

ve
l1

ge
tIm

ei

ge
tL

in
e1

N
um

be
r

ge
tM

ei
d

ge
tN

ei
gh

bo
rin

gC
el
lIn

fo

ge
tN

et
w
or

kC
ou

nt
ry

Is
o

ge
tN

et
w
or

kO
pe

ra
to

r

ge
tN

et
w
or

kO
pe

ra
to

rN
am

e

ge
tP

ho
ne

C
ou

nt

ge
tS

er
vi
ce

Sta
te

ge
tS

im
Ser

ia
lN

um
be

r

ge
tS

ub
sc

rib
er

Id

ge
tV

is
ua

lV
oi
ce

m
ai
lP

ac
ka

ge
N
am

e

ge
tV

oi
ce

M
ai
lN

um
be

r

ge
tV

oi
ce

N
et

w
or

kT
yp

e

re
qu

es
tC

el
lIn

fo
U
pd

at
e

ge
tF

re
eS

pa
ce

ge
tT

ot
al
Spa

ce

ge
tU

sa
bl
eS

pa
ce

ge
tH

ar
dw

ar
eA

dd
re

ss

(f) Run-time consent: Reject & app exited (No action)(f) Run-time consent: Reject & app exited (No action)

A
p
p
s

10
0

10
1

10
2

10
3

(e) Run-time consent: Reject not found (No action)(e) Run-time consent: Reject not found (No action)

10
0

10
1

10
2

10
3

(d) Run-time consent: Reject(d) Run-time consent: Reject

10
0

10
1

10
2

10
3

(c) Run-time consent: Reject (overall)(c) Run-time consent: Reject (overall)

10
0

10
1

10
2

10
3

(b) Run-time consent: Accept(b) Run-time consent: Accept

10
0

10
1

10
2

10
3

(a) No run-time consent(a) No run-time consent

Figure 3: Apps accessing functions that resulted in Data Collected discrepancies for all run-time scenarios for Sep23.

as apps ignore the user’s reject option (Figure 3(c)). However,
for completeness, in Figure 3 we also present apps with dis-
crepancies for all the different reject scenarios (Figure 3(d),
Figure 3(e) and Figure 3(f)).

Moreover, we found many apps that use the getCurrent-
ThermalStatus() function without declaring the “App info
and performance” Data Safety label. This function returns a
value that represents the thermal status of the device. Even
though similar device characteristics have previously been
used for tracking devices (e.g., battery API [59]), verifying
whether this is the case here, falls outside the scope of our
work. We also observe apps that do not disclose access to the
getSSID() method which returns the service set identifier
of the current WiFi network. Previous work [56] has demon-
strated that the list of nearby access points (e.g., the getScan-
Results()) can accurately locate users and, as such, Android
protected these functions with the location permission. As
mobile devices frequently change access points, third-parties
can periodically access this function and gather the list of
linked access points in order to locate users. Additionally, we
observe apps accessing the BSSID identifier using the getB-
SSID() method, which allows linking devices that share the
same access point, thus enabling cross-device tracking [65].
Overall, we identified apps accessing 13,004, 12,860, and
11,645 functions without declaring the respective Data Safety
labels in the Mar23, Jun23 and Sep23 datasets, respectively.

Persistent discrepancies. We investigated whether apps
with discrepancies have been corrected between March’s and
June’s version. We found that only 81 apps corrected their
discrepancies and are compliant with Data Safety policies.
Unfortunately, discrepancies in 3,282 apps remain the same
across a period of almost three months. To make matters
worse, we identified 72 apps that did not have any discrep-
ancies in March, but had discrepancies in June’s analysis.
Accordingly, we identified 179 and 270 apps with discrepan-
cies not declaring information in the Data Collected and Data
Shared sections in September 2023 respectively, but having
the appropriate labels in March 2023. We believe that these
results could indicate confusion amongst developers and the
information they are required to disclose. Google should pro-
vide better guidelines for completing the Data Safety section
and enforce penalties for apps that fail to comply.

Data Shared discrepancies. Our system captures and
logs network traffic during the execution of each Android
app and identifies Data Shared discrepancies following a
string-matching based approach that attempts to match device-
specific information and keywords to the network traffic logs.
For this, we developed a mock application that executes all the
functions that we found in our preliminary experiments that
can result in Data Collected discrepancies, and ran this mock
application with both of our testbed devices. We construct a
list of device-specific information for our devices (e.g., Ad-

5652 33rd USENIX Security Symposium USENIX Association

vertising ID, GSF ID), and specifically crafted data values
(e.g., email, name, surname), so that our system can detect
when these identifiers are being exfiltrated over the network.

Since the values sent over the network can be in an encoded
form, our system checks for common transformations dur-
ing the matching process (e.g., base64, HEX, ROT13, SHA-1,
SHA256, MD5, RIPEMD-160, Whirlpool, and BLAKE2). Even
though this approach is common for identifying network
leaks [23, 31, 58], it is not able to handle all cases of leaked
data, as data may be encrypted or heavily obfuscated. As such,
our results for Data Shared discrepancies present a lower
bound, and we consider an exhaustive investigation using dif-
ferential analysis (e.g., following the approach of Continella
et al. [25]) as future work. Nevertheless, our experiments still
reveal that 42.07% - 44.11% of the apps in our three datasets
contain at least one discrepancy in the Data Shared section.

Violations. Table 2 shows that many apps share data without
declaring it in the Data Safety section. Similar to prior work
that found GDPR violations in Android apps [58], we also
identified cases of apps leaking data (which has not been
declared in the Data Safety section) without the user’s consent.
We observe that apps violate the Data Safety policies, and
also violate and ignore the user’s choice for data sharing,
resulting in major data leakage without the user’s knowledge
or consent. To this end, we argue that Google should revise
the current Data Safety policies and mandate that any data
being collected or shared must be declared without exception.

Data leaks. We identified that apps share without the appro-
priate disclosure various device characteristics, such as the Ad-
vertisingID, BSSID, BuildNumber, DeviceName, Google Ser-
vices Framework ID, MCC+MNC and SSID, as well as sensi-
tive user information including Address, Contact Numbers,
Email, Latitude, Longitude, Name and Surname, to 16,840
different domains. This information is extremely sensitive as
it can be used to accurately track and deanonymize users. On
average, apps with Data Shared discrepancies leak between
two and three PIIs to different domains.

We use McAfee’s real-time database [54] to classify all the
domains that the apps share data with. Figure 4 shows the
number of apps that share undisclosed information to different
domain categories. We observe that the majority of apps send
data to domains classified as “Internet Services”, “Software/
Hardware” and “Content Server”. While it is likely that these
apps use cloud providers to perform some kind of operation
on the data they collect, it is infeasible to actually verify what
happens with the data after it has left the user’s device. We
also found many domains classified as “Web Ads” that may
use such data for advertising and retargeted ads. This indicates
that embedded third-party ad libraries may be responsible for
undisclosed data sharing, as we further elaborate later on.
Interestingly, we found 12 apps sending PIIs to 12 domains
over HTTP even though their Data Safety section states that
data is sent over a secure connection.

Origin of discrepancies. Motivated by prior work [24, 32,

10
0

10
1

10
2

10
3

In
te

rn
et

 S
er

vi
ce

s

Sof
tw

ar
e/

H
ar

dw
ar

e

Bus
in
es

s

C
on

te
nt

 S
er

ve
r

W
eb

 A
ds

G
am

es

M
ar

ke
tin

g/
M

er
ch

an
di
si
ng

Soc
ia
l N

et
w
or

ki
ng

Sea
rc

h
Eng

in
es

Blo
gs

/F
or

um
s

M
ed

ia
 S

ha
rin

g

G
en

er
al
 N

ew
s

Ent
er

ta
in
m

en
t

W
eb

 M
ai
l

Spo
rts

Fin
an

ce
/B

an
ki
ng

M
es

sa
gi
ng

H
ea

lth

Edu
ca

tio
n

R
ea

l E
st
at

e

Fas
hi
on

/B
ea

ut
y

R
es

ta
ur

an
ts

M
ob

ile
 P

ho
ne

Jo
b

Sea
rc

h

Tra
ve

l

Pro
fe

ss
io
na

l N
et

w
or

ki
ng

Auc
tio

ns
/C

la
ss

ifi
ed

s

G
am

bl
in
g

Sto
ck

 T
ra

di
ng

N
on

-P
ro

fit
/N

G
O

M
aj
or

 G
lo
ba

l R
el
ig
io
ns

G
ov

er
nm

en
t/M

ilit
ar

y

Alc
oh

ol

A
p

p
s

Categories

Figure 4: Apps with Data Sharing discrepancies sending data
to different domain categories.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

D
is

c
re

p
a

n
c
ie

s
 (

%
)

Apps (ranked)

First Party Third Party

Figure 5: Percentage of discrepancies originating from first-
party functionality, for the Sep23 dataset.

69] that differentiated between the permissions requested by
the actual app and those requested by third-party libraries, we
employed a previously proposed stacktrace-analysis method-
ology [32,64] to infer which part of the application is responsi-
ble for the discrepancies we observe. As the stacktrace reveals
the path to the source file and the package name responsible
for the function call, we compiled a list of third-party libraries
from [20, 48, 68] and distinguished between function calls
originating from first-party and third-party functionality. Fig-
ure 5 shows the percentage of discrepancies for 2,731 apps
in the September 2023 dataset, between the first-party and
third-party functionality. We observe that while most of the
discrepancies originate from third-party functionality (59%),
the percentage of apps with discrepancies originating from
first-party functionality (41%) is almost as common. Addi-
tionally, we found that for 12.34% of the apps, discrepancies
originate only from the first-party functionality, while for
26.62% discrepancies originate only from third parties.

Our analysis shows that 91 libraries are responsible for
the discrepancies originating from third-party functionality.
The most popular among them is android.gms and is used
by 1,163 apps, while facebook, applovin and unity3d are
used by 828, 678 and 623 apps, respectively. Other popu-
lar libraries we found are ironsource, fyber, vungle, ad-
colony, appsflyer, amazon and adjust, all of which are
used by more than 100 apps. In total we identified 11,183
function calls that originate from the aforementioned 11 li-
braries. On the other hand, 58 of the 91 libraries (63.73%)
are used by five apps or less, further demonstrating the im-
portance of third-party libraries accurately documenting the

USENIX Association 33rd USENIX Security Symposium 5653

Table 3: Apps with discrepancies across countries.

Country Data Collected Data Shared Country Data Collected Data Shared

DEU 80 (80.00%) 81 (81.00%) CAN 79 (79.00%) 85 (85.00%)
EST 69 (80.23%) 71 (82.56%) IND 79 (79.80%) 85 (85.86%)
ISL 80 (81.63%) 77 (78.57%) KEN 79 (79.00%) 83 (83.00%)

UKR 80 (80.81%) 83 (83.84%) RUS 80 (80.00%) 83 (83.00%)
BRA 80 (80.00%) 82 (82.00%) USA 79 (79.00%) 82 (82.00%)

M
e

th
o

d
s

DEU
EST ISL

UKR
BRA

CAN
IN

D
KEN

RUS
USA

Countries

getAccounts
getAccountsByType

addGpsStatusListener
getCurrentLocation

getLastKnownLocation
registerGnssStatusCallback

requestLocationUpdates
getBSSID

getMacAddress
getSSID

getIntProperty
getMemoryInfo

getNativeHeapAllocatedSize
getNativeHeapFreeSize

getNativeHeapSize
getCurrentThermalStatus

getThreadPolicy
getVmPolicy

getIccId
getActiveSubscriptionInfo

getActiveSub/SimSlotIndex
getActiveSubscriptionInfoList

getAllCellInfo
getCardIdForDefaultEuicc

getCellLocation
getDataNetworkType

getDeviceId
getImei

getLine1Number

getNeighboringCellInfo
getNetworkCountryIso

getNetworkOperator
getNetworkOperatorName

getSimSerialNumber
getSubscriberId

getVoiceMailNumber
getVoiceNetworkType
getHardwareAddress

 0

 10

 20

 30

 40

 50

 60

A
p

p
s

Figure 6: Data Collected discrepancies per country.

information they collect and enabling developers to declare
this information appropriately in the Data Safety section.

There has been a long-standing debate regarding the pri-
vacy issues that arise form third-party libraries [41, 55, 75]
and who is responsible for solving these issues. In that regard,
we believe that Google’s decision regarding developers being
responsible for ensuring the accuracy of the Data Safety sec-
tion places them in a precarious situation. This has also been
argued previously [75] due to developers already struggling
with handling the legal requirements for embedded libraries,
as they have to invest a lot of time and effort to understand how
libraries and ad networks handle privacy issues. Therefore,
we believe that third-party libraries should explicitly mention
in their documentation the data they collect so they can easily
be listed by developers in the Data Safety section. Concern-
ing discrepancies originating from first parties, we observe
that developers fail to adhere to Google’s policies concerning
data transparency in almost half of the cases. As we can not
assign (nor disprove) malicious intent, we argue that while
developers need to be more vigilant when handling personal
data, it is imperative that Google adopts an effective, auto-
mated validation mechanism for ensuring the completeness
and accuracy of the data disclosed in Data Safety sections.

VPN experiments. Apps served through Google Play
across countries contain different app versions based on the
regulations and legislation of each country. In this experiment
we downloaded and analyzed 100 apps from 10 different
countries using a VPN service. The apps were downloaded
from the respective Google Play store for each country. Ta-
ble 3 lists the number of apps with discrepancies analyzed

P
II
s

DEU
EST ISL

UKR
BRA

CAN
IN

D
KEN

RUS
USA

Countries

Address

AdvertisingID

BuildNumber

DeviceName

Email

GSF ID

Latitude

Longitude

MCC+MNC

Name

SSID

Surname

 0

 10

 20

 30

 40

 50

 60

 70

 80

A
p
p
s

Figure 7: Data Shared discrepancies per country.

in each country. We found that the majority of apps contain
discrepancies independent of the geolocation of the device.
Furthermore, as apps follow specific policies based on each
country’s data protection laws (e.g., CCPA, PIPEDA, GDPR)
and may have different regulations and enforcement concern-
ing run-time consent, we analyzed the Data Collected and
Data Shared discrepancies for the same set of 100 apps per
country. Figure 6 shows the number of apps and the functions
that resulted in Data Collected discrepancies, while Figure 7
shows the number of apps and the leaked data that resulted in
Data Shared discrepancies. We observe that apps across all
countries access functions that return device characteristics,
as well as sensitive personal information such as the user’s
name, email, contacts and location. Moreover apps in Iceland
tend to have more Data Collected discrepancies compared to
other countries, while apps in Estonia have the least. Finally,
we observe that India has the highest percentage of apps with
Data Shared discrepancies.

4.1 Case studies

Here we further detail notable examples of apps that do not
accurately disclose their data practices in the Data Safety.

Popular Apps. Table 4 shows Data Safety discrepancies
for popular apps that have more than 500 million downloads,
across all three datasets. Data Collected denotes the number
of Data Safety labels that were not disclosed, and the number
of functions that resulted in the discrepancies. Data Shared
denotes the number of undisclosed Data Safety labels and PIIs
that have been sent over the network. We find discrepancies in
popular apps from a wide range of categories, including social
media (Linkedin, Instagram, Bigo, Lago, TikTok, X, Pinter-
est), messaging apps (Skype, Telegram, Snapchat), Microsoft
Apps (Excel, Word, OneNote), mobile browsers (Chrome,
Opera Mini) and games (Free Fire, PUBG MOBILE).

Lago and Bigo are the apps with the most Data Collected
discrepancies that also leak PIIs without being disclosed in the
Data Shared section. They access 9 and 13 functions respec-
tively, that return device identifiers and characteristics (e.g.,

5654 33rd USENIX Security Symposium USENIX Association

Table 4: Discrepancies in popular apps.

⇓ DLs Application
Data Collected

(Labels - Methods)
Data Shared

(Labels - PIIs)
Mar23 Jun23 Sep23 Mar23 Jun23 Sep23

10B+ Chrome 0 0 0 1 - 1 0 2 - 6
1B+ Truecaller ID 1 - 1 0 0 0 0 0
1B+ X (Twitter) 0 0 0 0 0 1 - 2
1B+ Instagram 0 0 0 0 0 1 - 1
1B+ Subway Surfers 0 0 0 0 0 1 - 1
1B+ TikTok 0 0 0 1 - 2 1 - 2 1 - 2
1B+ Free Fire 0 0 0 1 - 2 1 - 2 1 - 2
1B+ Snapchat 0 0 0 1 - 2 1 - 1 1 - 3
1B+ Link to Windows 0 0 0 1 - 2 1 - 2 1 - 2
1B+ Dropbox 0 0 0 1 - 3 1 - 3 1 - 2
1B+ LinkedIn 0 0 0 1 - 3 1 - 3 2 - 6
1B+ Microsoft Excel 0 0 0 1 - 2 1 - 3 2 - 6
1B+ Skype 0 0 0 2 - 6 1 - 2 1 - 2
1B+ SHAREit 2 - 1 2 - 1 2 - 1 1 - 3 1 - 3 1 - 2
1B+ Microsoft Word 0 0 0 1 - 2 1 - 2 2 - 6
1B+ Telegram 1 - 2 2 - 3 2 - 3 0 1 - 2 0
500M+ Lago 5 - 10 5 - 10 4 - 9 1 - 3 1 - 3 1 - 3
500M+ Bigo Live 4 - 11 4 - 11 4 - 13 1 - 3 1 - 2 1 - 2
500M+ Pinterest 0 0 0 2 - 4 2 - 5 2 - 4
500M+ Microsoft OneNote 1 - 6 1 - 6 1 - 6 2 - 5 1 - 2 2 - 6
500M+ HP Print Serv. 1 - 1 1 - 1 1 - 1 0 0 0
500M+ Opera Mini 2 - 5 2 - 5 2 - 5 0 0 0
500M+ Hill Climb Racing 2 - 4 2 - 4 2 - 4 1 - 3 1 - 3 1 - 2
500M+ PUBG MOBILE 0 0 0 1 - 4 1 - 4 1 - 4
500M+ Uber 1 - 2 1 - 2 1 - 2 1 - 1 0 0

getMacAddress, getDeviceId, getSubscriberId) while
also sharing data like the BuildNumber and DeviceName. Mi-
crosoft apps (e.g., Word, Excel) leak up to six PIIs including
sensitive information such as the Email, Name and Surname.
Opera Mini and SHAREit access the getLastKnownLoca-
tion method without declaring the appropriate Location Data
Safety label. Uber fails to disclose the Files and Docs Data
Collected label. Furthermore, we found that even though sev-
eral apps do not have Data Collected discrepancies, they still
share information (e.g., DeviceName, GSF ID, Email, Name
and Surname) without disclosing it in the Data Shared sec-
tion. For instance, Skype accesses sensitive information and
discloses it in the Data Collected section, but fails to declare
that the data is also sent over the network. The same applies
for all apps that do not have Data Collected discrepancies
but have Data Shared discrepancies. While certain apps may
adhere to the relaxed Data Safety policies [11] concerning
the requirements for declaring data in the Data Safety section,
we strongly believe that such cases not only mislead users but
also undermine the Data Safety section’s purpose, which is
to improve transparency and enable informed consent where
users can easily understand how their data is being used.

Google Apps. During our March analysis, we identified
three Google apps that had discrepancies in their Data Safety
section. To further investigate how common this is across
apps offered by Google, we manually analyzed all available
Google apps [6] during July 2023. Out of 151 Google apps,
44 were not compatible with our device’s API, while eight
apps could not run on our devices. Out of the remaining 99
Google apps, we found that 47 of them had discrepancies in
their Data Collected and Data Shared sections. Specifically,
we found data belonging to 12 Data safety labels (Phone num-

ber, Contacts, Device or other IDs, Location, Approximate
location, Precise location, Personal info, Files and docs, App
info and performance, Other app performance data, Diagnos-
tics, App activity) that were not declared. Such an example
is com.google.android.dialer, which accesses the user’s
location using requestLocationUpdates() yet fails to de-
clare the appropriate labels. Regarding undeclared data being
shared, we found 24 apps sharing data that fall in the cate-
gory of “Device or other IDs” and include the BuildNumber,
Google Services Framework ID, DeviceName, MCC+MNC
and AdvertisingID. Interestingly, some of these apps leak
data even if the user rejects the run-time consent. Finally, we
checked the origin of discrepancies and did not find any that
originate from third-party functionality. The list of Google
apps with discrepancies can be found here [7]. This further
highlights the need for more stringent Data Safety disclosure
policies being enforced, and the removal of potential loop-
holes that enable opaque data collection and sharing practices.

Independent Security Reviewed Apps. Developers can
declare in the Data Safety section that their app has been
independently validated against a global security standard
(i.e., OWASP’s MASVS). This is an optional review that
is paid by developers and performed by third-party organi-
zations. Google states that the independent security review
may not necessarily verify the accuracy and completeness
of the Data Safety declarations and that the developer is
solely responsible for making complete and accurate dec-
larations [8]. Nonetheless, we checked OWASP’s MASVS
and found that the MSTG-STORAGE-12 mobile security
testing guide describes how to statically or dynamically iden-
tify privacy-related information that is being disclosed (or
not) [60]. In our analysis we identified only a small num-
ber of apps that have gone through an independent security
review and some of them still contain discrepancies in their
Data Safety section (Mar23: 16/34, Jun23: 8/26, Sep23: 9/27).
Interestingly, certain apps showed the independent security
review in their Data Safety section in March but no longer
listed it in June and/or September.

5 Discussion, Limitations and Future Work

In this section we further discuss our findings and how these
issues could be mitigated, and also present the limitations of
our dynamic analysis study, some of which are inherited by
different components that our framework incorporates.

Mitigation. The Data Safety section has significant poten-
tial for enabling more transparent data practices, and Google
plans to further incorporate Data Safety’s information into cer-
tain run-time permission dialogues in their upcoming release
of Android [4]. Our experimental findings revealed that 81%
of the analyzed apps contain Data Safety discrepancies and
many also violate policies governing run-time consent. More-
over, we believe that certain relaxed and vague policies can
confuse users and developers alike, while allowing invasive

USENIX Association 33rd USENIX Security Symposium 5655

entities to surreptitiously exfiltrate personal data without the
user’s knowledge or consent. Our study reveals the extent of
Data Safety’s misrepresentation of data collection and sharing
practices, and highlights the need for reformations that will
ensure that all data collected or shared is disclosed without
exception. We consider the following directions crucial for
improving data transparency in the mobile ecosystem:

Universal standard app disclosure. Android and iOS mar-
kets should adopt a universal data privacy disclosure system
that accurately, completely, and clearly describes how apps
and developers collect and share users’ data.

Coherent and comprehensive data policies. All data col-
lected and shared should be disclosed to enhance transparency
and protect users from misleading information. Third-party
libraries and developers must collaborate to ensure the effec-
tiveness of these policies.

Validation mechanism. Official app markets must not rely
solely on the developer’s honesty, and must frequently review
app’s run-time behavior to ensure that it is consistent with
the information disclosed in the Data Safety section through
automated means. Reports should be publicly available and
violations should be penalized by the market. We will open
source our framework to facilitate such initiatives and addi-
tional research in this space.

Broader implications. The findings of our study are alarm-
ing, as they demonstrate to what extent Android applications
are collecting and sharing user information without prop-
erly disclosing their practices. Surprisingly, this often occurs
without the users’ knowledge or consent, and in violation of
relevant policies and regulations. Our research serves as a
cautionary tale to users, aiming to raise awareness about the
data Android applications collect and share, as well as the dis-
crepancies that exist in apps’ Data Safety disclosures. Overall,
we envision that the increased awareness by end users and
policy makers will lead to higher demand for transparency
in the ecosystem, and hope that it will prompt additional reg-
ulations mandating more privacy-preserving practices. This
includes Google refining their Data Safety policies, and invest-
ing in the deployment of appropriate compliance, review and
validation mechanisms. Moreover, we anticipate additional
pressure towards developers for properly following the Data
Safety disclosure guidelines and accurately reporting the data
collected and shared, in compliance with all relevant regula-
tions and policies regarding data collection, disclosure and
consent. Our study also sheds light on third-party libraries’
questionable practices of incomplete data disclosure, thereby
educating app developers about problematic third parties;
more widespread awareness about regulatory violations from
third-party libraries may facilitate initiatives for better ensur-
ing compliance across the app ecosystem.

Permission mappings. Prior work (e.g., [14, 19, 21, 27]
has invested significant effort in providing accurate mappings
of permissions to functions. While we used state-of-the-art
permission mappings as the starting point for creating the

mappings used in our study (since mappings did not exist for
version 12 of Android), and further verified them using the
methodology employed in [77], it is possible that permission
inaccuracies exist due to the limitations employed in their
methodology for analyzing the Android framework.

Data Safety label mappings. Our mapping between Data
Safety labels and API methods may not be complete, as no
official documentation exists that maps the labels to func-
tion calls, and our labeling methodology may not be exhaus-
tive. Specifically, we rely on the completeness of the An-
droid Permission Mappings provided by state-of-the-art sys-
tems [27, 77]. For non-permission-protected calls to Data
Safety labels, we manually identified and labeled such cases
using the development guidelines, known PIIs, and by looking
at the respective Android classes. Due to the vast amount of
API methods that our framework monitors, we only assigned
labels to functions that have been accessed during runtime
analysis. Finally, our analysis does not include Data Safety
labels that do not correspond to an API method, as we cannot
monitor such cases (e.g., religious beliefs). Nonetheless, we
believe that our mappings are useful to the Android commu-
nity and are publicly available to facilitate additional research
in this space. An alternative approach would be to use NLP
techniques for processing API documentation and mapping
them to potential labels. While this can be challenging as the
documentation may not provide sufficient information, we
consider this an interesting future direction.

Encrypted network traffic. We identified data being
shared over the network by analyzing HTTPS traffic and using
string matching. We searched for values of interest in plaintext
format and common encodings. However, we cannot identify
shared values that have been encrypted or heavily obfuscated.
Differential analysis can be used for identifying leaks even in
such cases, by observing deviations in the resulting network
traffic [25]. We consider an exhaustive investigation using
such techniques as part of our future work.

Consent dialogues. We identify and interact with in-app
consent dialogues using a keyword-based approach. While
our verification process highlighted the effectiveness of our
approach, there may exist cases that cannot be handled by our
system (e.g., the decline button being marked with an X).

Stacktraces, libs & obfuscation. Stacktrace-analysis is a
common technique, which we use to differentiate Data Safety
discrepancies between first and third-party functionality. In
our analysis we compiled a comprehensive list of third-party
library package names from prior work [20, 48, 68]. How-
ever, package names that are not included in our list will be
classified as first parties. Furthermore, an obfuscated library
package name will be assigned by default to the first party,
which may lead to an over-reporting of discrepancies by the
first party. While we cannot automatically classify obfuscated
package names, such cases are rare [32].

Ethics & disclosure. Our experiments were conducted on
our own devices using test accounts; we did not affect actual

5656 33rd USENIX Security Symposium USENIX Association

users or collect user data. Given the scale of our analysis,
we shared our findings with Google as they already have
mechanisms in place for auditing and notifying apps. We
submitted a report to DDPRP, and they suggested submitting
our report directly to the Android security team. Subsequently,
we submitted a detailed report of our research, findings and
video demonstrations to the security team; they informed us
that they will conduct an investigation and share their findings
with us. In summary, our work does not inflict any form of
harm on users – instead, it has the opportunity to result in
major benefits for users as our findings can incentivize and
guide changes to the Data Safety section that will further
enhance data transparency and user consent.

6 Related Work

The Data Safety section is a relatively recent Android mecha-
nism that has not received sufficient scrutiny from the research
community. To the best of our knowledge, this paper presents
the first in-depth investigation of the Data Safety section and
its use in the Android application ecosystem. We conduct a
novel dynamic, large-scale, longitudinal study that uncovers
privacy violations by correlating the run-time behavior of
apps with the data declared in their Data Safety section. Here,
we discuss prior work on the accuracy of privacy labels in
the mobile ecosystem, the efficiency of in-app user consent
dialogues and the liability for apps’ privacy issues.

Data Safety section. In a recent report, Mozilla manually
compared the privacy policies and terms-of-service of 40
popular Android apps (20 free, 20 paid) to their Data Safety
section. Their comparison showed that the Data Safety sec-
tion does not match the data practices outlined in the privacy
policies and terms-of-service. While their focus is orthogo-
nal to ours, their findings also highlight shortcomings of the
Data Safety section. We provide a detailed comparison in Ap-
pendix A. In another study, Khandelwal et al. [40] explored
how developers’ practices evolve over time, using app meta-
data, by taking Data Safety section snapshots from 1.1M apps.
They found that as of May 31, 2023, only 46.8% of the apps
had privacy labels. Additionally, they found that developers
have difficulties with the new Data Safety mechanism and
some of the challenges they face include Google’s guidelines
being unclear, confusing policies due to frequent changes, and
Data Safety form options being too complicated. In regards
to the methodology employed, [40] uses static analysis to
identify apps that include third-party libraries and, thus, de-
duces that many apps under-report their data sharing practices.
While this approach reaches similar conclusions to ours, it
suffers from the inherent limitations of static analysis (e.g.,
inability to handle encryption, dynamic code loading). They
provide statistics based on app metadata and, as such, provide
a coarse-grained analysis. On the contrary, our study employs
dynamic analysis for detecting data collection and sharing
practices on a per function-basis, by utilizing fine-grained

and manually-curated mappings between Data Safety labels
and function calls. We believe that these prior studies provide
an important and complementary view of the Data Safety
ecosystem using different methodologies, and contribute to
the ongoing body of research pushing for better validation
mechanisms being deployed by Google.

iOS privacy labels. Xiao et al. [79] proposed Lalaine, an
automated system for iOS that combines dynamic and static
analysis, natural language processing and network monitor-
ing to identify inconsistencies between apps’ run-time execu-
tion and their privacy labels. Their evaluation in 5,102 apps
showed that the majority of apps neglect to disclose data, and
the incomplete or incorrect guidelines from third-party SDKs
may lead to non-compliant labels. While their work presents
similarities to our work, significant differences exist between
the two studies that stem from the differences between An-
droid and iOS, and the differences between Apple’s Privacy
Labels and Google’s Data Safety section. For instance, their
system hooks iOS system APIs and matches the return values
to network traffic to identify cases of data collection, since
“data collection” refers to transmitting data off the user’s de-
vice according to Apple [17]. This is in contrast to Google’s
Data Safety section that distinguishes between Data Collected
and Data Shared. Another major difference between Apple’s
and Google’s policies is that run-time consent does not inter-
fere with Apple’s Privacy Labels’ disclosure requirements. In
contrast, Google’s Data Safety decision to incorporate run-
time consent complicates the process of validating apps’ data
practices while also introducing additional obstacles to users
being able to make informed decisions.

Koch et al. [43] explored how iOS privacy labels are used
and whether developers adhere to the declared labels. They
monitored network traffic for 1,687 apps without perform-
ing any app interaction and found that several apps contact
known trackers, transmit data and violate their labels. They
concluded that simply declaring privacy labels is not sufficient
for data transparency. ATLAS [38] uses an ensemble-based
classifier for predicting privacy labels from the privacy poli-
cies. Their study suggests that 88.0% of apps had at least
one discrepancy between the privacy policy and labels. Li et
al. [50] studied how quickly app developers create and update
privacy labels and found that 51.6% of apps do not have a
label. In [49] the authors examined the usability and under-
standability of Apple’s privacy nutrition labels and identified
confusion amongst developers regarding Apple’s documenta-
tion. Rodriguez et al. [67] compared Android and iOS privacy
labels for 822 apps that exist in both operating systems. They
found inconsistencies between privacy labels disclosed across
platforms with only 3.2% of the apps being consistent.

Consent violations. A plethora of prior work [22, 44, 53,
58, 62, 71, 80]) has explored run-time consent violation in
mobile apps. In [57] the authors showed that apps deceive
users into accepting all data sharing and transmit data even
when users have opted out, therefore violating GDPR’s con-

USENIX Association 33rd USENIX Security Symposium 5657

sent requirements. Reyes et al. [66] found that the majority of
the apps and the embedded third-party SDKs contain poten-
tial COPPA violations. POLICHECK [15] identifies policy
inconsistencies in mobile apps and identifies the entity (first-
or third-party) that receives the privacy sensitive data. Koch et
al. [42] analyzed privacy consent dialogues in both Android
and iOS, and found that apps transmit traffic before the con-
sent and even after rejecting the consent. Additionally, they
found that only a small percentage of apps give the user some
form of a choice when they are presented with a consent dia-
log. MOWCHECKER [33] statically identifies data violations
from third-party libraries when user’s run-time choice is to
opt-out from data collection. Subsequently, their study urges
that third-party libraries and mobile apps need to collaborate
for respecting the users’ withdrawal choices.

Privacy responsibilities. While several studies [28, 29, 32,
35, 63, 73] have investigated the excessive permission usage
and leakage of private information from third-party libraries,
who is responsible for privacy issues has been debated. A
recent study [41] showed that libraries are responsible for
several privacy issues including ad fraud. On the contrary,
Tahaei et al. [75] found that the information presented by ad
networks to developers complies with legal regulations and
they are responsible for handling privacy regulations.

7 Conclusion

Google’s new Data Safety process is an important step to-
wards increased platform support for data transparency that
will allow users to easily understand how apps process their
data. Unfortunately, in its current implementation, bad prac-
tices and relaxed policies can confuse both end-users and
developers, while also creating opportunity for abuse and the
surreptitious exfiltration of data. In this paper we developed
a system that automatically identifies discrepancies between
apps’ run-time behavior and what data developers disclose in
Data Safety. Our system analyzes and identifies discrepancies
in applications based on different run-time consent scenarios.
Our subsequent in-depth analysis spanning across an entire
year demonstrated severe inaccuracies in apps’ Data Safety
sections. To make matters worse, we uncovered that applica-
tions not only violate Google’s Data Safety policies, but also
violate Google’s policy governing consent requirements lead-
ing to several alarming findings. Consequently we proposed
a set of guidelines that should be adopted towards achieving
better data transparency. We hope that our study will facilitate
additional research pushing for better validation mechanisms
that protect users from misleading information.

Acknowledgements

We thank the reviewers and shepherd for their helpful feed-
back. This project was supported by Horizon 2020 (GA No

101092950, 101093051, 101021659) and the National Sci-
ence Foundation (CNS-2211574, CNS-2143363). The views
in this paper are only those of the authors and may not reflect
those of the funding bodies, the US Government or the NSF.

References

[1] Play Console Help. https://support.google.com/
googleplay/android-developer#topic=3450769.

[2] Xposed framework. https://repo.xposed.info.

[3] Raccoon - APK downloader, 2018. http://www.
onyxbits.de/raccoon.

[4] Data safety information is more visible. https://
tinyurl.com/y2wex7c3, 2023.

[5] Device identifiers, 2023. https://source.android.
com/docs/core/connect/device-identifiers.

[6] Google Android Play Store Apps, 2023. https://
github.com/petarov/google-android-app-ids.

[7] Google apps with discrepancies, 2023. https://
pastebin.com/vcqn50ii.

[8] Independent security review. https://tinyurl.com/
26p25s9x, 2023.

[9] Number of available applications in the google play
store from December 2009 to June 2023, 2023. https:
//tinyurl.com/bdzbp32r.

[10] Objection - Runtime Mobile Exploration, 2023. https:
//github.com/sensepost/objection.

[11] Provide information for Google Play’s data safety sec-
tion - play console help, 2023. http://tinyurl.com/
yckxutbk.

[12] See No Evil: Loopholes in Google’s Data Safety Labels
Keep Companies in the Clear and Consumers in the
Dark, 2023. https://tinyurl.com/2hhmcfbe.

[13] Telephonymanager: getimei(), 2023. https://
tinyurl.com/mr3tcuw6.

[14] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu
Zhang, and Ninghui Li. Precise Android API protection
mapping derivation and reasoning. In CCS ’18.

[15] Benjamin Andow, Samin Yaseer Mahmud, Justin
Whitaker, William Enck, Bradley Reaves, Kapil Singh,
and Serge Egelman. Actions speak louder than words:
Entity-sensitive privacy policy and data flow analysis
with policheck. In USENIX Security ’20.

5658 33rd USENIX Security Symposium USENIX Association

https://support.google.com/googleplay/android-developer#topic=3450769
https://support.google.com/googleplay/android-developer#topic=3450769
https://repo.xposed.info
http://www.onyxbits.de/raccoon
http://www.onyxbits.de/raccoon
https://tinyurl.com/y2wex7c3
https://tinyurl.com/y2wex7c3
https://source.android.com/docs/core/connect/device-identifiers
https://source.android.com/docs/core/connect/device-identifiers
https://github.com/petarov/google-android-app-ids
https://github.com/petarov/google-android-app-ids
https://pastebin.com/vcqn50ii
https://pastebin.com/vcqn50ii
https://tinyurl.com/26p25s9x
https://tinyurl.com/26p25s9x
https://tinyurl.com/bdzbp32r
https://tinyurl.com/bdzbp32r
https://github.com/sensepost/objection
https://github.com/sensepost/objection
http://tinyurl.com/yckxutbk
http://tinyurl.com/yckxutbk
https://tinyurl.com/2hhmcfbe
https://tinyurl.com/mr3tcuw6
https://tinyurl.com/mr3tcuw6

[16] AndroidDevelopers. Android Developers announcing
reinstating app permission in Google Play. http://
tinyurl.com/426vewvh, 2022.

[17] Apple. App privacy details on the App Store. https:
//tinyurl.com/3rtzm6ex, 2023.

[18] arsTECHNICA. After public outcry, Google will rein-
state Play Store app permissions list. http://tinyurl.
com/2h3pndks, 2022.

[19] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and
David Lie. Pscout: Analyzing the Android permission
specification. In CCS ’12.

[20] Michael Backes, Sven Bugiel, and Erik Derr. Reliable
third-party library detection in Android and its security
applications. In CCS ’16.

[21] Michael Backes, Sven Bugiel, Erik Derr, Patrick Mc-
Daniel, Damien Octeau, and Sebastian Weisgerber. On
demystifying the Android application framework:Re-
Visiting Android permission specification analysis. In
USENIX Security ’16.

[22] Duc Bui, Yuan Yao, Kang G. Shin, Jong-Min Choi, and
Junbum Shin. Consistency analysis of data-usage pur-
poses in mobile apps. In CCS ’21.

[23] Quan Chen, Panagiotis Ilia, Michalis Polychronakis, and
Alexandros Kapravelos. Cookie swap party: Abusing
first-party cookies for web tracking. In WWW ’21.

[24] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Ja-
son I. Hong, and Yuvraj Agarwal. Does this app really
need my location?: Context-aware privacy management
for smartphones. IMWUT ’17.

[25] Andrea Continella, Yanick Fratantonio, Martina Lindor-
fer, Alessandro Puccetti, Ali Zand, Christopher Kruegel,
and Giovanni Vigna. Obfuscation-resilient privacy leak
detection for mobile apps through differential analysis.
In NDSS ’17.

[26] Cortesi, Aldo and Hils, Mayimilian and Kriechbaumer,
Thomas. mitmproxy. https://mitmproxy.org.

[27] Abd Elhamed M. Dawoud and Sven Bugiel. Bringing
balance to the force: Dynamic analysis of the Android
application framework. In NDSS ’21.

[28] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston
Zhang, and Carl A Gunter. Free for all! assessing user
data exposure to advertising libraries on android. In
NDSS ’16.

[29] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and
Michael Backes. Keep me updated: An empirical study
of third-party library updatability on Android. In CCS

’17.

[30] Android Developers. Review how your app collects and
shares user data. https://tinyurl.com/482yeb6b.

[31] Michalis Diamantaris, Serafeim Moustakas, Lichao Sun,
Sotiris Ioannidis, and Jason Polakis. This sneaky piggy
went to the Android ad market: Misusing mobile sensors
for stealthy data exfiltration. In CCS ’21.

[32] Michalis Diamantaris, Elias P. Papadopoulos, Evange-
los P. Markatos, Sotiris Ioannidis, and Jason Polakis.
Reaper: Real-time App Analysis for Augmenting the
Android Permission System. In CODASPY ’19.

[33] Xiaolin Du, Zhemin Yang, Jiapeng Lin, Yinzhi Cao,
and Min Yang. Withdrawing is believing? detecting
inconsistencies between withdrawal choices and third-
party data collections in mobile apps. In SP ’24.

[34] Nicole Eling, Siegfried Rasthofer, Max Kolhagen, Eric
Bodden, and Peter Buxmann. Investigating users’ reac-
tion to fine-grained data requests: A market experiment.
In HICSS ’16.

[35] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-
Reza Sadeghi. Unsafe exposure analysis of mobile
in-app advertisements. In WISEC ’12.

[36] Google Play Help. Understand app privacy & secu-
rity practices with Google Play’s Data safety section.
https://tinyurl.com/3v9728f5, 2022.

[37] Play Console Help. Google Play’s User Data policy -
Prominent Disclosure & Consent Requirement. https:
//tinyurl.com/yfcn4pr3, 2022.

[38] Akshath Jain, David Rodriguez, Jose M. del Alamo, and
Norman Sadeh. Atlas: Automatically detecting discrep-
ancies between privacy policies and privacy labels. In
EuroS&PW ’23.

[39] Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith Cra-
nor, Jaeyeon Jung, Norman Sadeh, and David Wetherall.
A conundrum of permissions: Installing applications on
an Android smartphone. In USEC ’12.

[40] Rishabh Khandelwal, Asmit Nayak, Paul Chung, and
Kassem Fawaz. Unpacking privacy labels: A measure-
ment and developer perspective on Google’s Data Safety
section. In USENIX Security ’24.

[41] Joongyum Kim, Jung-hwan Park, and Sooel Son. The
abuser inside apps: Finding the culprit committing mo-
bile ad fraud. In NDSS ’21.

[42] Simon Koch, Benjamin Altpeter, and Martin Johns. The
ok is not enough: A large scale study of consent dialogs
in smartphone applications. In USENIX Security ’23.

USENIX Association 33rd USENIX Security Symposium 5659

http://tinyurl.com/426vewvh
http://tinyurl.com/426vewvh
https://tinyurl.com/3rtzm6ex
https://tinyurl.com/3rtzm6ex
http://tinyurl.com/2h3pndks
http://tinyurl.com/2h3pndks
https://mitmproxy.org
https://tinyurl.com/482yeb6b
https://tinyurl.com/3v9728f5
https://tinyurl.com/yfcn4pr3
https://tinyurl.com/yfcn4pr3

[43] Simon Koch, Malte Wessels, Benjamin Altpeter, Madita
Olvermann, and Martin Johns. Keeping privacy labels
honest. In PoPETS ’22.

[44] Konrad Kollnig, Pierre Dewitte, Max Van Kleek,
Ge Wang, Daniel Omeiza, Helena Webb, and Nigel
Shadbolt. A fait accompli? an empirical study into the
absence of consent to third-party tracking in Android
apps. In SOUPS ’21.

[45] Renuka Kumar, Apurva Virkud, Ram Sundara Raman,
Atul Prakash, and Roya Ensafi. A large-scale investi-
gation into geodifferences in mobile apps. In USENIX
Security ’22.

[46] Ilias Leontiadis, Christos Efstratiou, Marco Picone, and
Cecilia Mascolo. Don’t kill my ads!: Balancing pri-
vacy in an ad-supported mobile application market. In
HotMobile ’12.

[47] Christophe Leung, Jingjing Ren, David Choffnes, and
Christo Wilson. Should you use the app for that? com-
paring the privacy implications of app-and web-based
online services. In IMC ’16.

[48] Li Li, Tegawendé F. Bissyandé, Jacques Klein, and
Yves Le Traon. An investigation into the use of common
libraries in Android apps. In SANER ’16.

[49] Tianshi Li, Kayla Reiman, Yuvraj Agarwal, Lorrie Faith
Cranor, and Jason I Hong. Understanding challenges
for developers to create accurate privacy nutrition labels.
In CHI ’22’.

[50] Yucheng Li, Deyuan Chen, Tianshi Li, Yuvraj Agarwal,
Lorrie Faith Cranor, and Jason I Hong. Understanding
ios privacy nutrition labels: An exploratory large-scale
analysis of app store data. In CHI EA ’22.

[51] LSPosed. LSPosed Framework. https://github.
com/LSPosed/LSPosed, 2022.

[52] Dominique Machuletz and Rainer Böhme. Multiple
purposes, multiple problems: A user study of consent
dialogs after GDPR. Proceedings on Privacy Enhancing
Technologies, 2020, apr 2020.

[53] Célestin Matte, Nataliia Bielova, and Cristiana Santos.
Do cookie banners respect my choice?: Measuring legal
compliance of banners from iab europe’s transparency
and consent framework. In SP ’20.

[54] McAfee. Customer URL Ticketing System, Check Sin-
gle URL. https://sitelookup.mcafee.com/, 2023.

[55] Abraham H. Mhaidli, Yixin Zou, and Florian Schaub.
We can’t Live Without Them! App developers’ adoption
of ad networks and their considerations of consumer
risks. In SOUPS ’19.

[56] Le Nguyen, Yuan Tian, Sungho Cho, Wookjong Kwak,
Sanjay Parab, Yuseung Kim, Patrick Tague, and Joy
Zhang. Unlocin: Unauthorized location inference on
smartphones without being caught. In PRISMS ’13.

[57] Trung Nguyen, Michael Backes, and Ben Stock. Freely
given consent? Studying consent notice of third-party
tracking and its violations of GDPR in Android apps. In
CCS ’22.

[58] Trung Tin Nguyen, Michael Backes, Ninja Marnau, and
Ben Stock. Share first, ask later (or never?) Studying
violations of GDPR’s Explicit Consent in Android Apps.
In USENIX Security ’21.

[59] Lukasz Olejnik, Steven Englehardt, and Arvind
Narayanan. Battery status not included: Assessing
privacy in web standards. In IWPE ’17.

[60] OWASP. Mobile App User Privacy Protection. https:
//tinyurl.com/hw8wrbnu, 2023.

[61] OWASP. Privacy Nutrition Labels - Transparency is
the best policy. https://www.apple.com/privacy/
labels/, 2023.

[62] Federica Paci, Jacopo Pizzoli, and Nicola Zannone. A
comprehensive study on third-party user tracking in mo-
bile applications. In ARES ’23, 2023.

[63] Elias P Papadopoulos, Michalis Diamantaris, Panagi-
otis Papadopoulos, Thanasis Petsas, Sotiris Ioannidis,
and Evangelos P Markatos. The long-standing privacy
debate: Mobile websites vs mobile apps. In WWW ’17.

[64] Andrea Possemato and Yanick Fratantonio. Towards
HTTPS everywhere on Android: We are not there yet.
In USENIX Security ’20.

[65] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit
Elazari Bar On, Narseo Vallina-Rodriguez, and Serge
Egelman. 50 ways to leak your data: An exploration of
apps’ circumvention of the Android permissions system.
In USENIX Security ’19.

[66] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit
Elazari Bar On, Abbas Razaghpanah, Narseo Vallina-
Rodriguez, Serge Egelman, et al. "Won’t somebody
think of the children?" Examining COPPA compliance
at scale. In PoPETS ’18.

[67] David Rodriguez, Akshath Jain, Jose M del Alamo, and
Norman Sadeh. Comparing Privacy Label Disclosures
of Apps Published in Both the App Store and Google
Play Stores. In EuroS&PW ’23.

[68] Jordan Samhi, Marco Alecci, Tegawendé F Bissyandé,
and Jacques Klein. A dataset of android libraries. arXiv
preprint arXiv:2307.12609, 2023.

5660 33rd USENIX Security Symposium USENIX Association

https://github.com/LSPosed/LSPosed
https://github.com/LSPosed/LSPosed
https://sitelookup.mcafee.com/
https://tinyurl.com/hw8wrbnu
https://tinyurl.com/hw8wrbnu
https://www.apple.com/privacy/labels/
https://www.apple.com/privacy/labels/

[69] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin,
and Taesoo Kim. FLEXDROID: enforcing in-app privi-
lege separation in android. In NDSS ’16.

[70] Bingyu Shen, Lili Wei, Chengcheng Xiang, Yudong
Wu, Mingyao Shen, Yuanyuan Zhou, and Xinxin Jin.
Can systems explain permissions better? understand-
ing users’ misperceptions under smartphone runtime
permission model. In USENIX Security ’21.

[71] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini,
James Hester, Ram Krishnan, Jaspreet Bhatia, Travis D
Breaux, and Jianwei Niu. Toward a framework for de-
tecting privacy policy violations in Android application
code. In ICSE ’16.

[72] Than Htut Soe, Cristiana Teixeira Santos, and Marija
Slavkovik. Automated detection of dark patterns in
cookie banners: how to do it poorly and why it is hard to
do it any other way. arXiv preprint arXiv:2204.11836.

[73] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What
mobile ads know about mobile users. In NDSS ’16.

[74] Mengtao Sun and Gang Tan. Nativeguard: Protecting
Android Applications from Third-party Native Libraries.
In WiSec ’14.

[75] Mohammad Tahaei and Kami Vaniea. "Developers
Are Responsible": What Ad Networks Tell Develop-
ers About Privacy. In CHI EA ’21.

[76] Fabo Wang, Yuqing Zhang, Kai Wang, Peng Liu, and
Wenjie Wang. Stay in your cage! A sound sandbox for
third-party libraries on Android. In ESORICS ’16.

[77] Sinan Wang, Yibo Wang, Xian Zhan, Ying Wang,
Yepang Liu, Xiapu Luo, and Shing-Chi Cheung. Aper:
evolution-aware runtime permission misuse detection
for Android apps. In ICSE ’22.

[78] John Wu. A Magic Mask to alter System Systemless-ly.
https://github.com/topjohnwu/Magisk.

[79] Yue Xiao, Zhengyi Li, Yue Qin, Xiaolong Bai, Jiale
Guan, Xiaojing Liao, and Luyi Xing. Lalaine: Measur-
ing and characterizing non-compliance of apple privacy
labels. In USENIX Security ’23.

[80] Sebastian Zimmeck, Peter Story, Daniel Smullen, Ab-
hilasha Ravichander, Ziqi Wang, Joel R Reidenberg,
N Cameron Russell, and Norman Sadeh. Maps: Scaling
privacy compliance analysis to a million apps. PoPETS

’19.

A Appendix

Additional Technical Details. Table 5 details the APIs that
return Personally Identifiable Information, which are mon-
itored by our framework. Functions may be permission-
protected or not depending on the Android version.

Table 5: APIs returning Personally Identifiable Information.

Class Function

AdvertisingIdClient getAdvertisingIdInfo
TelephonyManager getNetworkCountryIso, getNetworkOperator, getNetworkOperatorName

ContentProvider query

SubscriptionInfo getCardId, getCarrierId, getCarrierName, getCountryIso, getMcc
getDisplayName, getMccString, getMnc, getMncString, getSimOperator

BatteryManager getIntProperty, getLongProperty

Breakdown of discrepancies. Table 6 shows the discrep-
ancies between apps’ run-time behavior and Data Safety la-
bels for every run-time scenario across all datasets, and pro-
vides aggregated results for the functions that lead to the
discrepancies along with the respective Android permissions.

Comparison to Mozilla’s findings. While we cannot di-
rectly compare our results to Mozilla’s study [12], due to
differences in the methodology and the time of their analysis
(i.e., we do not have the exact apk version they analyzed or
the date of the Data Safety section), we identified their 20 free
apps and included them in our analysis. As our main analy-
sis is based on March 2023 and their report was published
in February 2023, we found that for three apps we have not
found any discrepancies and Mozilla graded these apps as
“OK”. Furthermore, UC Browser has the most discrepancies
and Mozilla could not grade it, due to the app not filling out
the form. We found that during March’s analysis UC Browser
did not declare anything in the Data Safety section. During
June’s analysis, the app disclosed the labels Device or other
IDs and App info and performance in the Data Collected
section. We found that the app collects sensitive information
from 14 functions and fails to declare the labels Location,
Precise location and Phone number in the Data Collected.
Moreover, we found that in June’s analysis the app does not
disclose Data Shared info, but leaks the BuildNumber and the
DeviceName that require the label Device or other IDs. We
further analyzed the app and found that apart from sharing the
BuildNumber and the DeviceName it also shares (without dis-
closing) the GSF ID and the MCC+MNC. Additionally, for 10
apps that Mozilla graded as "Poor" or "Needs Improvement",
in our analysis a month later we did not find any discrepancies.
Even though we did not analyze the privacy policies and the
terms of use of these apps (as it falls outside the scope of
our work), we believe that both studies provide an important
and complementary view of the complicated and contentious
design of Google’s Data Safety mechanism.

USENIX Association 33rd USENIX Security Symposium 5661

https://github.com/topjohnwu/Magisk

Table 6: Breakdown of discrepancies between run-time behavior and the Data Safety section for different run-time scenarios.
API Methods show the number of methods that yielded the discrepancies. Apps show the number of apps with discrepancies.

Scenario Data Safety Label API Methods Permissions Apps
Mar23 Jun23 Sep23 Mar23 Jun23 Sep23

Location 11 11 10 ACCESS_(COARSE\FINE)_LOCATION, READ_PHONE_STATE 130 121 107
Approximate location 6 6 5 ACCESS_(COARSE\FINE)_LOCATION, READ_PHONE_STATE 145 133 120

Precise location 9 9 9 ACCESS_(COARSE\FINE)_LOCATION 252 252 237

Personal info 13 14 13
READ_(PHONE\PRIVILEGED_PHONE)_STATE,

READ_SMS, READ_PHONE_NUMBERS, GET_ACCOUNTS 1,319 1,323 1,235

Phone number 1 1 1 READ_PHONE_NUMBERS, READ_PHONE_STATE, READ_SMS 10 11 9
Photos or videos 1 1 1 READ_EXTERNAL_STORAGE 2 3 2

Photos 1 1 1 READ_EXTERNAL_STORAGE 2 3 2
Audio files 1 1 1 - 4 5 3

Files and docs 3 3 3 READ_EXTERNAL_STORAGE 9 10 9
Music files 1 1 1 - 4 5 3
Contacts 1 1 1 READ_PHONE_STATE 1 1 1

App activity 2 2 2 - 793 802 758
Other app perf/nce data 3 3 3 - 781 804 746

Device or other IDs 24 25 24
BLUETOOTH_CONNECT, READ_(PHONE\PRIVILEGED_PHONE)_STATE,

LOCAL_MAC_ADDRESS, ACCESS_FINE_LOCATION 771 792 718

Diagnostics 7 7 8 WATCH_APPOPS 963 893 913

N
o

ru
n-

tim
e

co
ns

en
t

App info and perf/nce 12 12 13 WATCH_APPOPS, PACKAGE_USAGE_STATS 1,136 1,155 1,087

Location 8 9 6 ACCESS_(COARSE\FINE)_LOCATION, (READ\MODIFY)_PHONE_STATE 46 49 33
Approximate location 4 5 3 ACCESS_(COARSE\FINE)_LOCATION, READ_PHONE_STATE 54 58 41

Precise location 8 8 8 ACCESS_(COARSE\FINE)_LOCATION, MODIFY_PHONE_STATE 116 117 84
Personal info 10 10 9 READ_PHONE_NUMBERS, READ_PHONE_STATE, GET_ACCOUNTS, READ_SMS 448 428 369

Phone number 3 3 1 READ_PHONE_NUMBERS, READ_PHONE_STATE, READ_SMS 6 6 3
Photos or videos 1 1 1 READ_EXTERNAL_STORAGE 4 3 1

Photos 1 1 1 READ_EXTERNAL_STORAGE 3 2 1
Files and docs 3 3 3 READ_EXTERNAL_STORAGE 6 6 4
App activity 2 2 2 - 256 240 185

App info and perf/nce 10 10 9 WATCH_APPOPS, PACKAGE_USAGE_STATS 275 254 211
Other app perf/nce data 3 3 3 - 272 262 237

Device or other IDs 18 17 17
BLUETOOTH_CONNECT, READ_(PHONE\PRIVILEGED_PHONE)_STATE,

LOCAL_MAC_ADDRESS, ACCESS_FINE_LOCATION 228 200 155

A
cc

ep
t

Diagnostics 4 4 3 WATCH_APPOPS 280 256 202

Location 3 1 1 ACCESS_(COARSE\FINE)_LOCATION 5 4 2
Approximate location 3 1 2 ACCESS_(COARSE\FINE)_LOCATION 5 5 4

Precise location 4 3 3 ACCESS_(COARSE\FINE)_LOCATION 12 13 13
Personal info 4 4 4 READ_PHONE_STATE, GET_ACCOUNTS 49 39 37
Files and docs 2 2 0 - 1 1 0
App activity 2 2 2 - 19 21 17

App info and perf/nce 7 8 8 PACKAGE_USAGE_STATS 28 23 22
Other app perf/nce data 3 3 3 - 29 26 23

Device or other IDs 4 4 3 READ_PHONE_STATE, BLUETOOTH_CONNECT, LOCAL_MAC_ADDRESS 28 23 15

R
ej

ec
t

Diagnostics 3 2 3 - 28 22 25

Location 5 5 4 ACCESS_(COARSE\FINE)_LOCATION 29 29 20
Approximate location 3 3 3 ACCESS_(COARSE\FINE)_LOCATION 33 33 22

Precise location 6 6 4 ACCESS_(COARSE\FINE)_LOCATION 69 66 45
Personal info 8 8 7 READ_PHONE_STATE, GET_ACCOUNTS 306 306 262

Phone number 3 3 0 READ_PHONE_NUMBERS, READ_PHONE_STATE, READ_SMS 2 2 0
Photos or videos 1 1 1 READ_EXTERNAL_STORAGE 2 2 1

Photos 1 1 1 READ_EXTERNAL_STORAGE 2 2 1
Files and docs 3 1 3 READ_EXTERNAL_STORAGE 3 2 2
App activity 2 2 2 - 182 164 130

App info and perf/nce 9 9 9 PACKAGE_USAGE_STATS 215 199 158
Other app perf/nce data 3 3 3 - 161 162 139

Device or other IDs 17 16 15
BLUETOOTH_CONNECT, READ_(PHONE\PRIVILEGED_PHONE)_STATE,

LOCAL_MAC_ADDRESS, ACCESS_FINE_LOCATION 143 128 102

R
ej

ec
tn

ot
fo

un
d

(N
o

ac
tio

n)

Diagnostics 4 4 3 WATCH_APPOPS 183 169 125

Location 3 3 3 ACCESS_(COARSE\FINE)_LOCATION 6 9 8
Approximate location 3 3 2 ACCESS_(COARSE\FINE)_LOCATION 9 13 12

Precise location 4 4 5 ACCESS_(COARSE\FINE)_LOCATION 15 20 18
Personal info 5 4 2 READ_PHONE_STATE, GET_ACCOUNTS 25 26 27
Files and docs 0 2 0 - 0 1 0
App activity 2 2 2 - 22 21 18

App info and perf/nce 9 9 9 PACKAGE_USAGE_STATS 33 32 31

Device or other IDs 10 9 7
READ_(PHONE\PRIVILEGED_PHONE)_STATE,

BLUETOOTH_CONNECT, LOCAL_MAC_ADDRESS 27 20 15

Other app perf/nce data 3 3 3 - 14 12 20

R
ej

ec
t&

ap
p

ex
ite

d
(N

o
ac

tio
n)

Diagnostics 3 3 3 - 25 29 30

5662 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background & Motivation
	System Design and Implementation
	Measurements and Investigation
	Case studies

	Discussion, Limitations and Future Work
	Related Work
	Conclusion
	Appendix

