
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Scavy: Automated Discovery of Memory Corruption
Targets in Linux Kernel for Privilege Escalation

Erin Avllazagaj, Yonghwi Kwon, and Tudor Dumitraș, University of Maryland
https://www.usenix.org/conference/usenixsecurity24/presentation/avllazagaj

SCAVY: Automated Discovery of Memory Corruption Targets in Linux Kernel
for Privilege Escalation

Erin Avllazagaj, Yonghwi Kwon, Tudor Dumitras,
University of Maryland, College Park

Abstract
Kernel privilege-escalation exploits typically leverage
memory-corruption vulnerabilities to overwrite particular tar-
get locations. These memory corruption targets play a critical
role in the exploits, as they determine which privileged re-
sources (e.g. files, memory, and operations) the adversary may
access and what privileges (e.g. read, write, and unrestricted)
they may gain. While prior research has made important ad-
vances in discovering vulnerabilities and achieving privilege
escalation, in practice the exploits rely on the few memory
corruption targets that have been discovered manually so far.

We propose SCAVY, a framework that automatically dis-
covers memory corruption targets for privilege escalation in
the Linux kernel. SCAVY’s key insight lies in broadening the
search scope beyond the kernel data structures explored in
prior work, which focused on function pointers or pointers to
structures that include them, to encompass the remaining 90%
of Linux kernel structures. Additionally, the search is bug-type
agnostic, as it considers any memory corruption capability.
To this end, we develop novel and scalable techniques that
combine fuzzing and differential analysis to automatically
explore and detect privilege escalation by comparing the ac-
cessibility of resources between executions with and without
corruption. This allows SCAVY to determine that corrupting
a certain field puts the system in an exploitable state, inde-
pendently of the vulnerability exploited. SCAVY found 955
PoC, from which we identify 17 new fields in 12 structures
that can enable privilege escalation. We utilize these targets
to develop 6 exploits for 5 CVE vulnerabilities. Our findings
show that new memory corruption targets can change the se-
curity implications of vulnerabilities, urging researchers to
proactively discover memory corruption targets.

1 Introduction

Kernel exploitations typically start by triggering vulnerabili-
ties that enable memory corruption and end by overwriting
particular memory locations with specific values, to put the

Vulnerabilities
(e.g., CVE-2022-27666)

Memory Corruption Targets
(<Memory-Location, Value>)

Exploit
Author

Exploits (Vulnerability + Memory Corruption Target)

Victim
System

Defenses Privilege
Escalation

B C

X S

SCAVY discovered
Memory Corruption
Targets

…

A

A

A

P

Figure 1: Memory Targets in Exploit

system in an exploitable state where the attacker may change
the system’s behavior. These targeted memory locations for
corruption, which we call memory targets hereafter, are or-
thogonal to the exploited vulnerability: attackers may use
them again when exploiting other vulnerabilities, and defend-
ers often focus on the memory targets to prevent the exploita-
tion of unknown vulnerabilities. For example, Figure 1 shows
an exploit created by combining a vulnerability and a memory
target (A), resulting in multiple combinations (or exploits)
such as B and C . While prior research has focused on dis-
covering and exploring vulnerabilities, comparatively less
attention was given to the discovery of memory targets that
are needed in the last step of the exploitation process.

Assume that a privilege escalation exploit (B in Figure 1)
seeks to corrupt a function pointer in a kernel data struc-
ture to execute a malicious payload that escalates the priv-
ilege. Unfortunately, the attacker in this exploit utilizes an
unnecessarily strong capability, leading to a rather obvious
exploitation method (i.e., control flow hijacking) for privilege
escalation which is prevented by popular defenses such as
CFI (X). A new memory target can enable the attacker to
escalate the privilege (C) without being detected (S). For

USENIX Association 33rd USENIX Security Symposium 7141

example, corrupting other memory targets such as username,
inode numbers, or the task_struct::addr_limit field, can
accomplish privilege escalation. In particular, the addr_limit
field [1] was famously employed in 2019 by the NSO group
to install the Pegasus spyware on Android devices [2]. The
vulnerability had been found by Syzkaller in 2017, but it was
not patched in many released devices for many years, as its
security implications were unknown [2]. As a result, in 2020,
the addr_limit was used in over 40% of the Android kernel
exploits in the wild [3]. This results in the removal of the field
from the Linux kernel to prevent such attacks [4]. As such,
the discovery of new memory targets enables the exploitation
of many vulnerabilities including those that are previously
considered unexploitable or not critical [5]. Moreover, new
types of memory targets can enable exploits to evade exist-
ing defenses focusing on the popular memory targets [6–10].
Discovering memory targets is also beneficial in a defensive
context, as several techniques (e.g., freelist pointer obfusca-
tion [11]) can secure these kernel objects [12].

Despite its importance, finding memory targets has been
challenging and typically done manually, relying on exper-
tise in the Linux kernel code base. The prior research on
automating kernel exploit generation [13, 14] has focused on
exploring specific vulnerabilities with limited types of mem-
ory targets (e.g., function pointers or reference-count fields).
Consequently, the fields of Linux kernel data structures that
privilege-escalation exploits can target have not been system-
atically researched. For instance, among the 6,582 structures
in the Linux kernel version 5.15.80, only 746 (11.3%) of
them contain either function pointers (142; 2.1%) or pointers
to structures containing function pointers (604; 9.2%) that
are considered security-sensitive and have been actively ad-
dressed by previous work. The remaining 88.7% represent an
unexplored attack surface. Moreover, even for the previously
addressed 11.3%, an additional thorough search is desirable
as [13, 14] only examined reachable memory areas from ex-
isting proof-of-concept (PoC) code and [15] focuses on a few
kernel objects that induced crashes during the analysis.

We propose SCAVY1, a framework for systematically dis-
covering memory targets in the Linux kernel for privilege es-
calation (P in Figure 1). SCAVY searches for broader types of
memory targets, beyond the pointer-type memory targets that
existing techniques focus on [16–19]. In particular, SCAVY
aims to discover new diverse types of targets that can impact
(or enable) many existing and unknown vulnerabilities.

During the analysis of the kernel structures and memory ar-
eas for the memory targets, SCAVY encounters two challenges:
(1) examining a large number of potential memory targets and
(2) lack of oracles that can detect diverse forms of potential
privilege escalations. SCAVY handles the two challenges by
leveraging a differential analysis-based multi-execution rea-
soning, that are more efficient than existing techniques rely

1SCAVY is an abbreviation for ‘Scavenger.’

on symbolic and taint analysis. Specifically, it runs multiple
executions with and without memory corruption and checks
the program states of the executions in terms of the accessi-
bility of security-sensitive resources. The results are analyzed
to guide the search process and detect privilege escalations.

SCAVY generated 955 PoC exploits that can potentially
escalate privileges, by corrupting 275 unique fields in 86 ker-
nel structures. From the PoC exploits from CVE-2022-27666,
we create two fully functional privilege escalation exploits
with new SCAVY identified memory targets (Section 3.1 and
Section A.2). Our exploits do not require bypassing popu-
lar kernel defenses (e.g., KASLR, SMEP/SMAP, and CFI),
unlike the original exploits that had to handle them.

In summary, we make the following contributions:

• We revisit the definitions of memory targets and post
corruption program states to identify broader types of
memory targets in the Linux kernel.

• We design and implement SCAVY, a framework that
systematically discovers memory targets, along with the
values needed to achieve privilege escalation. We discuss
the design choices for each step of the search and the
differential analysis-based execution reasoning.

• We evaluate the effectiveness of SCAVY by finding 20
memory targets in 12 kernel structures, where, notably,
17 of the targets have not been used in publicly avail-
able privilege escalation exploits. We demonstrate that
the memory targets found by SCAVY are vulnerability
agnostic by developing 6 exploits for 5 different CVEs.

• We open-source our technique for future research [20].

2 Problem Statement

Despite important advances in discovering software vulnera-
bilities, incorrect assessments of their security implications
remain common and can have a pernicious impact. For exam-
ple, expert recommendations for prioritizing patches [21, 22]
initially omitted CVE-2017-0144, the vulnerability later ex-
ploited by WannaCry and NotPetya; CVE-2019-2215 was dis-
covered in 2017 but was not patched in many Android devices
because its security implications were unknown, before it was
exploited by the NSO group [2]. Exploitability assessments
are challenging because they require reasoning about state ma-
chines with an unknown state space and emergent instruction
semantics [23], known as “weird machines”. For privilege
escalation, in particular, exploitability assessments hinge on
the ability to overwrite specific memory targets.

2.1 Problem Definition
SCAVY aims to solve a problem of finding memory targets
that can lead to privilege escalation. In our context, a memory
target is a field of kernel data structure and privilege escalation
is defined as a change of a privilege that allows access to an

7142 33rd USENIX Security Symposium USENIX Association

unauthorized resource without using legitimate methods (e.g.,
permission changing APIs). To facilitate the discussion, we
divide a program’s execution state into three different states
based on how an exploit progresses to achieve its ultimate
goal (e.g., taking over the system’s control).

1. Before an exploit starts, a process’s execution is in an
unexploited state.

2. After an exploit triggers a vulnerability to corrupt system
states to escalate privilege, granting access to resources
the exploit wants to compromise, the state becomes an
exploitable state. This state has access to the exploit’s
target resources, meaning that the exploit has achieved
all accesses needed for its ultimate objective but has yet
to achieve it (i.e., has not compromised the system yet).

3. After the exploit achieves its objective, the execution
state becomes an exploited state.

Threat Model. We assume a local unprivileged adversary
seeking to use a vulnerability in the Linux kernel with a mem-
ory target by SCAVY to escalate privileges. This threat model
is relevant in various settings, such as cloud computing (e.g.,
Docker), Android [24], and malware exploiting kernel vulner-
abilities [25]. As SCAVY finds memory targets for any given
exploits, our threat model includes a wide range of diverse
memory corruption capabilities of exploits. Note that it also
means that SCAVY found memory targets may require vulner-
abilities with certain capabilities. As described in Section 4
and Section 3, creating an end-to-end functional exploit from
the SCAVY identified memory targets requires manual efforts.
Automating the exploit generation process is out of the scope.

2.1.1 Unexploited, Exploitable, and Exploited States

Figure 2 illustrates the two critical states for our problem
definition (i.e., unexploited and exploited states), including
privileges of various resources under the states. We first define
five different types of privileged resources in Figure 2:

• Read-only Resources: These are the files that are con-
figured to be read-only (e.g., Apache [26]’s configura-
tion file are read-only to prevent unauthorized modifica-
tions [27]). setuid files are also read-only.

• Inaccessible Resources: Sensitive files or root owned
files/directories (e.g., /etc/shadow or /root) are not
readable and writable by an unprivileged process.

• Privileged System calls: There are system calls specific
privileges (e.g., mount and chroot). If an unprivileged
process calls them, the request will be denied and failed.

• Kernel/Other Processes’ Memory: An unprivileged
user process is not allowed to read/write kernel memory.
Other processes’ memory is also not accessible (i.e.,
cannot read/write) due to the memory space isolation.

We define the three states with privileged resources.
Unexploited State. An execution under this state follows
the permission configured for each resource. For example,

Kernel

Read-only
Resources

Unprivileged
User Process

Other
Processes’
Memory

Inaccessible
Resources

write
read/
write

re
ad
/

w
ri
te

in
vo
ke

Kernel
Memory

Memory
Targets

Privileged System calls

(a) Unexploited State

Kernel

Read-only
Resources

Unprivileged
User Process

Other
Processes’
Memory

Inaccessible
Resources

write read/
write

re
ad
/

w
ri
te

in
vo
ke

Kernel
Memory

Memory
Targets
(Corrupted)

Privileged System calls

(b) Exploitable State

read/writeread/write

Figure 2: Unexploited and Exploited States

as shown in Figure 2-(a), it cannot read or write inacces-
sible files/folders (e.g., /etc/shadow and /root) and cannot
write read-only files such as /etc/passwd, without calling per-
mission/privilege changing APIs. Kernel memory, privileged
system calls, and memory of other processes are inaccessible.
Exploitable State. Suppose a prohibited operation (e.g., read-
/write) on any of the privileged resources in the unexploited
state becomes available after corrupting a memory target. In
that case, we consider that the execution’s state has changed
to an exploitable state. Note that there exist multiple instances
of different exploitable states depending on which resource’s
privilege is escalated. For example, an exploitable state can
have escalated privilege on /etc/passwd while another ex-
ploitable state provides access to a prohibited memory area.
Hence, depending on the exploit’s ultimate goal and its en-
vironment, a particular exploitable state would be needed.
To this end, describing the exact escalated privilege and pre-
requisite conditions of an exploitable state is important to
determine whether it can be used to achieve the exploit’s goal.
Exploited State. An exploitable state becomes the exploited
state, if the exploit achieves its ultimate goal with the esca-
lated privileges (e.g., adding a root user with the escalated
/etc/password and /etc/shadow). Note that the definition
of the exploited state is specific to each exploit’s goal. For
example, to change configurations of Apache, an exploitable
state execution with write access to httpd.conf is required.

2.2 Goal and non-goals
Goal. SCAVY aims to find a memory target that can change
an unexploited state to an exploitable state when the target is
corrupted. To clearly define the memory target’s applicability,
it is important to identify (1) the prerequisite of corrupting
the memory targets and (2) the post-conditions (or escalated
privileges) of the corrupted memory targets. In particular, the
prerequisites and post-conditions are defined as follows.

• Prerequisites: (1) Required privilege and method for allo-
cating the memory target, (2) Privilege required for cor-
rupting the memory target (e.g., memory write permis-
sion if the target is read-only), and (3) Memory corrup-
tion capability (i.e., corruptible memory location, size,

USENIX Association 33rd USENIX Security Symposium 7143

and possible values) for the memory target.
• Post-conditions: (1) Escalated privilege/permission, (2)

Name or path of the escalated resource, and (3) Area
(i.e., offset and the range) of the escalated resource.

Non-goals. SCAVY does not focus on identifying new vul-
nerabilities. SCAVY’s new memory targets may allow us, in
some cases, to repair exploits that have been rendered inoper-
able by system-level defenses (e.g., SMAP), but they do not
improve the exploits’ capability or reliability (as defined in
Section 4). While we demonstrate the ability to transit from
an exploitable to an exploited state by developing a few func-
tional exploits (see Section 3), automating this step is out of
our scope. Finally, our goal is not to construct an automated
end-to-end exploitation tool.

3 Motivating Examples

We describe two exploits using memory targets identified by
SCAVY, to motivate its impact and practicality.

3.1 Corrupting vm_area_struct::vm_file

Target Kernel Structure. The mmap system call creates a
memory-mapped file with an opened file descriptor. It will
create a memory buffer containing the file content, and if it is
created with the write permission, changes to the buffer will
be written back to the original file, when the file is closed.

The Linux kernel uses the vm_area_struct structure,
shown in Listing 1, for the memory-mapped files. The struc-
ture contains the address range of the mapped memory
(vm_start and vm_end), its permission (vm_page_prot), and
a pointer to the file (vm_file).

1 struct vm_area_struct {
2 unsigned long vm_start; /* mmap() retval. */
3 unsigned long vm_end;
4 ...
5 pgprot_t vm_page_prot; /* pg. permissions */
6 ...
7 struct file* vm_file; /* victim field */
8 ...
9 };

Listing 1: Declaration of vm_area_struct.

Discovery. SCAVY automatically discovers that corrupting
vm_file can impact the content of the corresponding memory-
mapped file, potentially causing privilege escalation. Specifi-
cally, SCAVY first creates two executions access the same file
(so that they will access vm_area_struct::vm_file). Then,
it corrupts the vm_file with a random value in one of the
executions. SCAVY compares the two executions (i.e., with
and without the corruption) to discover the two executions
obtain different contents of the file.

Next, SCAVY creates the third execution to check whether
it can achieve privilege escalation. This time, instead of a

random value, SCAVY uses other instances of valid values of
vm_area_struct::vm_file . Specifically, SCAVY opens a set

of both privileged and unprivileged files to obtain the values
of vm_file instances. SCAVY copies the values to corrupt the
vm_file and checks whether the third execution can access
contents of any files that their vm_file values were copied.

This checks whether copying the content of vm_file from
a privileged file to adversary-owned file would allow the
adversary to access the privileged file’s content using the
adversary-owned file’s permission. For example, if an adver-
sary copies the vm_area_struct::vm_file of the password
file (i.e., /etc/passwd) to an unprivileged temporary file’s
vm_area_struct::vm_file (e.g., /tmp/file), the adversary

can read and write the password file. To this end, SCAVY
identifies vm_area_struct::vm_file as a memory target.
Completing the Exploit. We use CVE-2022-27666, which
provides an out-of-bounds write capability [28], to corrupt the
memory target. The exploit first opens two files: (1) a dummy
file with a read/write permission and (2) the password file
(/etc/passwd) with a read permission. Then, it creates a few
thousand memory maps of the files using mmap (e.g., 3,000
times in this example). Note that each mmap call results in al-
locating an instance of vm_area_struct in kernel. We then
leverage the vulnerability to leak neighboring pages of the
created structures to read the vm_file that maps /etc/passwd.
Next, we use the vulnerability again to copy the content of
vm_file of the /etc/passwd into the dummy file’s vm_file.

Finally, the exploit calls msync with the corrupted
vm_area_struct::vm_start . This makes the kernel syn-

chronize the mapped page with the content of /etc/passwd,
using the permissions of the dummy file which is the read
and write permissions. To this end, the attacker can add a new
root-level account by modifying the /etc/passwd.

Appendix A.2 presents more details of this exploit, along
with the option of using file::f_mapping , another memory
target discovered by SCAVY, to exploit CVE-2022-27666. In
Section 7.3.3, we discuss the exploitation of two additional
vulnerabilities corrupting vm_area_struct::vm_file .

3.2 Corrupting key::description

Target Kernel Structure. The keyctl_instantiate sys-
tem call allocates the key structure in the kernel, shown
in Listing 2. It contains fields to store permissions (perm), the
owner’s identifiers (uid and gid), and a text description of the
key (description). This time, we target description, which
is a string pointer where its text is used by the keyctl_search
system call which allows a user to search a keyring.

1 struct key {
2 refcount_t usage;
3 ...
4 kuid_t uid;
5 kgid_t gid;
6 key_perm_t perm;
7 ...

7144 33rd USENIX Security Symposium USENIX Association

8 unsigned long len_desc;
9 char* description;

10 ...
11 };

Listing 2: Declaration of key.

Discovery. SCAVY discovers that once the description field
is corrupted, an attacker can call keyctl_describe to read
a string value from the corrupted address, allowing an ar-
bitrary memory read. Specifically, SCAVY creates two pro-
cesses which call (1) add_key() with a crafted description
including payload to create a key and (2) keyctl_read() to
access the created key. In one process, SCAVY injects a cor-
ruption that overwrites key::description with a value from
another instance of key . The other process runs without any
memory corruption. At the end of both executions, SCAVY
compares the return buffers of keyctl_read() to detect the
deviation, discovering a privilege escalation on the kernel
memory, which is inaccessible to unprivileged user processes.
Completing the Exploit. We modified an existing exploit
for CVE-2016-0728, that overwrites key::key_type::revoke .
The field is a function pointer; thus it allows an adversary to
hijack the control flow. However, in practice, this made the
exploit unreliable in Android devices, either due to lack of
kernel symbols [29] or SMEP/SMAP [30].

Instead of corrupting the function pointer, we focus on
key::description . As with the original, our exploit first

triggers the vulnerability by overflowing key::usage to ‘0’,
which is a reference count. This frees the structure prema-
turely and gives us a use-after-free primitive. We use this
primitive by allocating a ‘msg_msg’ object, which includes a
buffer where we can insert arbitrary data (a message). The
buffer overlaps with the fields of the key object and allows us
to overwrite the length (len_desc) and the description pointer
(description), which is the target. If done properly, this al-
lows an adversary to read from arbitrary kernel addresses.
With this capability, the adversary can bypass KASLR, leak
kernel memory, and read secret keys from other Android apps’
keyrings, potentially leaking session cookies.

4 SCAVY in the Kernel Exploitation Develop-
ment Pipeline

In this section, we contextualize our work with respect to the
prior research on the Linux kernel exploitation development.
As shown in Figure 3, a functional kernel exploit is created
through four stages: 1 Identifying a vulnerability causing
a crash, 2 Discovering the vulnerability’s other capabilities
that can corrupt various memory targets, 3 Combining the
capabilities to escalate privilege, and 4 Creating a reliable
exploit escalating privilege while bypassing defenses.

– Stage 1 . Vulnerability Discovery.
Fuzz Testing Approaches. To find a vulnerability that can

change a system’s behavior, various testing techniques, such
as fuzzing, have been proposed. Syzkaller [31] is a popular
fuzzer that is specialized for finding Linux kernel vulnerabili-
ties. Recently, various advanced fuzzers have been proposed,
including those leveraging hybrid fuzzing [32], symbolic exe-
cution [33], and state-based exploration [34–36] to improve
the effectiveness of testing for vulnerability discovery.
Exploiting Violation Detectors. Violation detectors [37–41]
are runtime techniques that raise exceptions when they
detect operations violating desired properties (e.g., out-of-
bounds reads/writes [37], use-after-free [38], and race condi-
tions [39,40]). When they are applied to the target system, they
essentially turn the violations into crashes, helping fuzzers
identify the violations that can be a strong indicator of poten-
tial vulnerabilities. Recently, leveraging such detectors has
become a typical tactic in the Linux kernel fuzzing [41].
Relevance to SCAVY. An exploit requires a vulnerability that
can corrupt a specific memory, which can lead to privilege
escalation. A vulnerability in this stage typically causes a
crash, often because it corrupts a critical memory. However,
it is unclear whether it can corrupt a specific memory target
with a desired value. SCAVY focuses on discovering memory
targets, but not finding the vulnerabilities.

In Section 3.1, this step is equivalent to choosing a known
vulnerability (i.e., CVE-2022-27666).

– Stage 2 . Capability Discovery.
Capability of a Vulnerability. A vulnerability is often re-
leased with a single memory corruption target, which typically
causes a kernel crash when triggered. However, such an ini-
tial capability may not be sufficiently powerful and versatile
enough to achieve privilege escalations. As a result, investigat-
ing a vulnerability’s other capabilities has become a critical
step to see if the vulnerability can be exploitable. A line of
research exists that searches a vulnerability’s full capabili-
ties [13–15]. Specifically, [13] introduced capability-guided
fuzzing to investigate out-of-bounds write vulnerabilities. [14]
leverages fuzzing and symbolic execution to explore various
contexts of a use-after-free (UAF) vulnerability and determine
if the attacker can control the system to reach an exploitable
state. [15] explores multiple crashes of the same bug in an
effort to observe more exploitable crashes. AlphaExp [42]
discovers fields of kernel structures that can be exploited to
achieve arbitrary code execution (ACE) or arbitrary address
writing (AAW) capabilities but not privilege escalation. It fo-
cuses on a different set of structure fields, missing structures
such as vm_area_struct that SCAVY found.
Relevance to SCAVY. This stage explores whether the vulner-
ability can corrupt a more diverse memory range. As SCAVY
discovers memory targets which are essentially kernel data
structures’ fields, capabilities of are vulnerability is critical
to see whether it can be used to corrupt the SCAVY’s mem-
ory targets. To use a SCAVY’s memory target, a vulnerability
should have a capability that can corrupt the memory target.

USENIX Association 33rd USENIX Security Symposium 7145

Vulnerability Discovery Discovery of Capabilities of the PoC Construction of an Exploit Improving Exploit Reliability

Kernel
Fuzzers

Crash
PoC

Exploit

Capability
Discovery

(Manual Testing
with Tooling)

PoC #1
(Capability 1)

PoC #2
(Capability 2)

...

PoC #n
(Capability n)

Reliability
Analysis

Fully
Functional

Exploit

Legend
Automated Process Semi-automated Process Manual Process

1Stage 2Stage 3Stage 4Stage

PoC #1

PoC #2

...

Chaining PoCs coupled with Memory Targets

Payload

Draft
Exploits

Environment

Defenses

Artifacts (Memory Targets) automatically discovered by SCAVY

Known
Mem. Target 1

Known
Mem. Target 2...

SCAVY
discovered

Mem. Targets

corrupt

corrupt

Artifact (e.g., PoC/Exploit, Memory Target, or Payload)

Process with Existing Tooling Support

Figure 3: SCAVY in the Linux kernel exploit development pipeline

In Section 3.1, the vulnerability’s exploit already has the
capability of corrupting the memory target.

– Stage 3 . Construction an Exploit.

Escalating Privilege. Privilege escalation is typically
achieved either (1) by gaining arbitrary code execution or
(2) by elevating privilege of the current user/resource to root.

First, existing approaches [13, 14, 43] automatically test
whether a vulnerability can corrupt a known field of data
structures that can hijack the control flow (e.g., function/data
pointers). Second, existing scripts [44] search for fields of ker-
nel structures related to known critical system configurations
(e.g., uid, gid, or credentials [5]) that can lead to privilege
escalation if corrupted. However, they focus on known fields
or limited types of fields (e.g., code or data pointers [13,14,43]
and reference counter [45–47]). While approaches searching
for other types of memory targets [45–49] exist, they are either
manually done or focusing on certain types. For example, [48]
focuses on structures handling variable-length data, which can
allow out-of-bound reads if corrupted and [49] looks for struc-
tures with data pointers, which allows adversaries to control
the referenced data if corrupted.

Some exploits require chaining multiple vulnerabilities (or
PoCs) to corrupt multiple memory targets (e.g., leaking a
value first and corrupting a field with the value), achieving
privilege escalation. Finally, a payload is followed to achieve
the exploit’s ultimate goal (e.g., taking over the system).

Relevance to SCAVY. Typically, only the vulnerabilities ca-
pable of corrupting a few known memory targets are used
to construct an exploit. Vulnerabilities that can corrupt other
memory targets but not those known ones were considered
usable. SCAVY discovers new memory targets, enabling more
vulnerabilities to be usable for an exploit. SCAVY found mem-
ory targets allow an exploit to achieve privilege escalation in
more diverse and subtle ways.

In Section 3.1, the vulnerability is used to corrupt a new
SCAVY found memory target, vm_area_struct::vm_file ,
achieving the privilege escalation of a single file, instead of
escalating an entire process’s privilege [50]. Note that we
chain two capabilities to first read the value of vm_file and
then write the leaked value to another vm_file field.

– Stage 4 . Improving Exploit Reliability.

Consistently Corrupting Memory Targets. While an exploit
is created in the previous stage, it might not reliably achieve
privilege escalation, due to the randomness of memory layout
and timing during the execution of the exploit. Hence, exploit
authors leverage various techniques [43, 51, 52] to achieve
an environment for reliable memory corruption. Specifically,
[52] shows a method called heap feng-shui that extends to
all slab caches and thus can be recycled for multiple kernel
exploits. [43] automatically finds system calls to allocate
objects of interest in a desired heap memory layout. [51]
tests commonly known heap layout manipulation and exploit
stabilization methods to aid the exploit development.

Bypassing Defenses. A reliable exploit should also evade
existing defenses [10, 53, 54]. To this end, researchers have
proposed various techniques to bypass the defenses. Specif-
ically, [55] chains kernel-side ROP gadgets to bypass mod-
ern control flow integrity-based protections (e.g., CFI [10]).
[56, 57] present methods to bypass the Kernel Address Space
Layout Randomization (KASLR) [53]. [54] and [58] have
proposed a method to bypass Supervisor Mode Execution
Prevention (SMEP) [59] and SMAP (Supervisor Mode Ac-
cess Prevention), respectively. [50] presents practical tricks
to improve the reliability of an exploit.

Relevance to SCAVY. While SCAVY is not directly relevant to
this stage, using some SCAVY found memory targets makes
it easier to achieve reliability. For example, an analysis of
the published PoC exploit for CVE-2016-0728 mentions that
existing defenses such as SMEP/SMAP [9, 59] can throttle
the success rate of the exploit [30], where some SCAVY found
memory targets can avoid the detection of those defenses.

7146 33rd USENIX Security Symposium USENIX Association

In Section 3.1, SCAVY found memory target can achieve
privilege escalation without violating the integrity of code
pointers, without requiring a defense bypass.

5 Design

Figure 4 shows an overall procedure of SCAVY, consisting of
three phases: (1) Instrumentation and Analysis (Section 5.1),
(2) Discovery of Potential Memory Corruption Targets (Sec-
tion 5.2), and (3) Detection of Memory Corruption Targets
for Privilege Escalation (Section 5.3).

5.1 Instrumentation and Analysis
Type Casting Instrumentation. To identify memory cor-
ruption targets, SCAVY needs to identify types of allocated
memory (e.g., types of structures) in the kernel and corrupt
them. While previous techniques such as GREBE [15] rely
on expensive taint analysis, they cannot be used for the sheer
number of potential memory corruption targets SCAVY deals
with. To this end, SCAVY instruments type casting operations.

Note that the Linux kernel coding-style guideline docu-
ment [60] indicates that a memory allocation should be type-
casted. In LLVM, it uses CastInst [61] for the type cast-
ing operation. Hence, we instrument CastInst by inserting
a call to a dummy function that takes two parameters: (1)
the memory address of the variable that is being type-casted,
and (2) its new data type, passed as a string at compile-time.
Note that we only instrument CastInst when its source and
destination types are different (e.g., ‘void*’ is assigned to a
structure). At runtime, we use Kprobe [62] to log the dummy
function’s parameters to user space along with the return value
of memory allocators (e.g., kmalloc()). Later, the fuzzer as-
sociates allocated memory addresses with their data type.
Analysis for Kernel Data Structures. During the instrumen-
tation and analysis process, SCAVY aims to extract memory
layouts of kernel structures of interest, so that it can guide the
subsequent analyses of SCAVY. While we can extract them
from the source code via an LLVM pass, they may not be
accurate if a compiler optimizes the memory layouts of the
structures. Specifically, structures that are not packed (i.e.,
structures without the ‘((packed))’ attribute) may have un-
used memory space between fields, making the offsets of
structures’ fields in a binary different from the structure’s
definition in the source code. For example, if a structure has a
6 bytes of character array followed by an integer (i.e., struct
{ char s[6]; int n; }), a compiler may insert two unused
bytes between the two fields (i.e., after s[6] and before n, re-
sulting in struct { char s[6]; char unused[2]; int n;
}). Hence, we use pahole [63] to find the sizes and offsets
of structures at the binary level. We use construct a lookup
dictionary mapping between a structure’s name and the struc-
ture’s fields’ offsets, sizes, and types. Note that structures
inside a structure are resolved recursively.

Memory Corruption Bridge. Most of SCAVY’s components
run in user mode, which do not have direct access to the kernel
memory. Hence, we implement a kernel module that allows
SCAVY’s user mode components to corrupt the kernel mem-
ory. Specifically, the kernel module exposes an interface via
ioctl(), providing read and write capabilities of the kernel
memory to the user mode programs. During the instrumenta-
tion process, we include the bridge module into the kernel.

5.2 Discovery of Potential Memory Targets
Three Stage Operations of Exploits. We observe that most
exploits in practice exhibit a pattern of three distinctive op-
erations: (1) allocating a resource associated with a memory
target, (2) corrupting the memory target to obtain sufficient
permissions for privilege escalations, and (3) conducting priv-
ileged actions or actions escalating privilege.

Figure 5-(a) shows the exploit described in Section 3. It
first creates two files. The memory targets are associated with
the files (1). Then, it corrupts the memory target, which is a
kernel structure storing information of the file via the vulnera-
bility (2). This allows an adversary to obtain the permission
of the root-owned file ‘/etc/passwd.’ It then adds a new user
by writing the ‘/etc/passwd’ file, escalating privilege (3).
Figure 5-(b) follows a similar procedure. It creates a process
that allocates the memory target task_struct (1), and then
corrupts the ‘task_struct::euid’ associated with the cre-
ated process, changing the process’s effective user to the root
user (2). Finally, it creates a privileged shell via execve().

Search Space for Each Stage. As each stage conducts a dif-
ferent operation, candidate operations for each stage may exist
in a different space, requiring a distinctive focus. Specifically,
to search operations for the first stage, one may look for sys-
tem calls that allocate memory buffers, regardless of whether
they will access the buffers or not. For the second stage, one
should focus on the contents of the memory buffers and the
impact of the corruption on the system. For the last stage, we
should focus on the system calls dependent on the corrupted
memory (i.e., system calls using the corrupted data).

Due to, in part, the different focus on each stage, in practice,
different tools are used. For example, Syzkaller [31] is effec-
tive for searching the first stage because it aims to achieve
higher code coverage. Intuitively, covering more code would
exercise more program paths that may allocate data structures.
For the second stage, KOOBE [13] and FUZE [14] are ef-
fective as they implement heuristics for detecting memory
corruptions, such as overflowing into other co-allocated ob-
jects. Unfortunately, there are no popular tools for the third
stage as it is manually done in practice.
SCAVY’s Approach. Unlike existing tools that are only ef-
fective for each stage, SCAVY proposes to apply different
criteria and metrics for each stage dynamically. Specifically,
for the first stage, we use code coverage of system calls as a
metric. Intuitively, by covering most of the code, it might also

USENIX Association 33rd USENIX Security Symposium 7147

Instrumentation and Analysis Discovery of Potential Memory Corruption Targets Detection of Privilege Escalation

Instrumented Kernel

Structure
Accessing

Code

Crash
PoC #1

Crash
PoC #2

...

Crash
PoC #n

Legend
Artifact Instrumented by SCAVY

Mem. Corruption Bridge

Type Casting

Kernel Source Code

Structure
Memory
Layout

MEMORY TARGET DISCOVERY

Allocator
Discovery

Target Field
Discovery

Memory Corruption
Target Discovery

PRIVILEGE ESCALATION DETECTOR

Instrumented
PoCs

Base
Exec. Trace

Random
Exec. Trace

Cloned
Exec. Trace

Memory
Targets for
Privilege

Escalation

SCAVY Component Data/Program Artifact

PR
IV

. A
N
A
L
Y
Z
E
RANALYSIS AND

INSTRUMENTATION

Figure 4: Overall SCAVY Design

for (int i = 0; i < 100000; i++)
open("/etc/passwd", O_RDONLY);

int wf = open("/tmp/writablefile.txt", O_RDWR);

CORRUPT_FILE_MAPPING(/* SPRAYED OBJ. MAPPING */);

write(wf, "root2:x:0:0:root2:/:/bin/bash\n", 32);
close(wf);

1
2
3
4
5
6
7
8

int pid = fork();
if (pid == 0) {

CORRUPT_euid(0);
exit(0);

} else {
waitpid(pid);
setuid(0);
execve("/bin/sh");

}

9
10
11
12
13
14
15
16
17

(a) Exploit that Corrupts File Mapping

(b) Exploit that Corrupts euid

1

2

3

1

2

3

Figure 5: Exploits Consisting of Three Steps

cover all the kernel structure allocation code of interest. For
the second stage, we use coverage of instructions that load
the corrupted memory to identify whether the corruption has
an impact on the system or not. In the third stage, we focus
on code coverage of the code dependent on the corrupted
memory, to explore diverse consequences of the corruption.

5.2.1 Allocator Discovery

Objectives. This stage aims to identify a list of system calls
that allocate kernel structures, which are the memory corrup-
tion targets. We aim to find system calls allocating as many
unique kernel structures as possible because all the subse-
quent analyses are limited to the result of this stage. SCAVY
runs every system call, tracks accesses to all allocated memory
buffers, and detects types of allocated kernel structures.
Tracking Allocated Structures. We track memory allo-
cations and memory accesses to identify allocated kernel
structures as follows. We use Kprobe to set breakpoints on
kmalloc()2 and kmem_cache_alloc() to capture their return
values (i.e., base addresses of allocated kernel structures).3

We also set a breakpoint on the dummy function in Section 5.1

2While it is __kmalloc(), we simply call it kmalloc() hereafter.
3We track kmalloc() and kmem_cache_alloc() in the process of interest.

to capture its arguments. SCAVY then processes the Kprobe’s
output to associate addresses from typecasting operations
with their allocation addresses. Note that analyzing type cast-
ing (and not using expensive taint/symbolic analysis [15]) is
a key design choice that makes SCAVY scalable, allowing us
to conduct the analysis on millions of generated sequences.
Coverage Guided Searching. SCAVY tries to cover more
code allocating kernel structures, aiming to discover allocators
for diverse memory targets. We use code coverage, without
changing the fuzzer and the coverage, as, intuitively, cover-
ing more invocations of kmalloc() and kmem_cache_alloc()
would likely find allocators for various memory targets.

5.2.2 Memory Target (Structure Field) Discovery

Objectives. Corrupting certain parts of the kernel structures
change the system’s behavior, while other parts may not have
an observable impact on the system. Hence, SCAVY aims
to find which fields of the structures can be memory targets
causing an observable impact. Specifically, among all the
allocated structures in the first stage, we search, one field at a
time, which fields of structures can impact the system when
corrupted (e.g., a crash). Similar to Section 5.2.1, we search
conservatively, as the subsequent analyses depend on it.
Conservative Target Searching. We use a conservative def-
inition that if a corrupted field of a kernel structure is read
at least once, it may impact the system, meaning that it is a
potential memory corruption target. Specifically, we corrupt
each 4-8 byte field of the kernel structures with random bytes
and use the hardware watchpoint [64] to monitor instruc-
tions that load the corrupted field. If we identify any such load
instructions, the field is considered a potential memory target,
and SCAVY moves on to the search for the next field. The
watchpoint is lightweight and reports sufficient information
on the memory access (i.e., whether the field was accessed).

5.2.3 Memory Target Discovery

Objectives. With the potential memory target for structures,
SCAVY uses a fuzzer to execute various system calls that may
access corrupted memory and cause a crash. In this stage, we
prioritize code that accesses the corrupted memory (i.e., the

7148 33rd USENIX Security Symposium USENIX Association

corrupted field of structures). However, during fuzzing, there
can be crashes (i.e., kernel panic) on the first access of the
corrupted memory, which we call premature crashes. Those
crashes may prevent the fuzzer from exploring the full impact
of the corruption, missing later corrupted memory accesses.
Focused Fuzzing on Relevant Code. To facilitate the search
in this stage, we make two adjustments on our fuzzing process.
First, we make it focus on the code that is accessing the kernel
structures of interest. Specifically, we make our fuzzer only
accept coverage from functions accessing structures.

Second, we prioritize the instructions loading the corrupted
memory by detecting executions running the instructions and
seed them. Specifically, recall that SCAVY collects informa-
tion about the code related to the structures of interest in the
instrumentation and analysis phase, as shown in Figure 4
(Structure Access Code). SCAVY uses hardware breakpoints4

to detect those instructions and make them seed.
Avoiding Premature Crashes. We propose an approach that
executes a generated program call twice to avoid premature
crashes. In the first execution, we run it without corrupting
the memory target. The fuzzer collects the code coverage ac-
cordingly and re-executes it by corrupting the memory target
with a random value. If the execution crashes or we see a
deviation in the code coverage (indicating potential privilege
de-escalation), we log the execution to be analyzed later.

5.3 Detection of Privilege Escalation

The outcome of Section 5.2 is a list of programs causing
crashes, some of which may cause privilege escalations. In
this phase, we aim to detect which of them from the previous
phase are causing privilege escalation. Specifically, SCAVY
uses a differential-analysis-based approach to detect privilege
escalation as follows. First, we run a given program thrice:
one run without corruption, one with corruption using a ran-
dom value, and another with corruption copying the value of
the memory target from other valid structures created by a
privileged process. Second, all three runs will execute privi-
leged operations (e.g., operations requiring root permission)
such as setuid(0) and read/write on privileged resources.
If the first and the third runs have differences, we consider it
may have escalated or de-escalated privilege.

5.3.1 Inserting Privilege Dependent Operations

Read and Write System Calls. For each PoC, we insert read
and write system calls for all the resources (e.g., files and
sockets) created during the PoC, as their behaviors will be dif-
ferent if privilege escalation happened. For example, as shown
in Figure 5-(a), we add read and write system calls for all the
files (i.e., ‘/etc/passwd’ and ‘/tmp/writablefile.txt’).

4Since hardware breakpoints require addresses of the instructions, we use
addr2line [65] to obtain the corresponding instruction addresses.

Privileged Operations. As shown in Figure 5-(b), privileged
operations behave differently based on the current privilege.
We add privileged operations (i.e., root) such as seteuid(0)
and setegid(0). sync(), msync(), and fsync() are added
for all the resources created before the memory corruption.
We provide a list of all the added syscalls in Table 7.

5.3.2 Detecting Exploitable States

Three Executions for Privilege Escalation Testing. SCAVY
runs three executions to detect a potential privilege escalation.
First, we run the exploit on an unprivileged system without
memory corruption. We expect all the privileged operations
to fail and unprivileged operations to succeed. Second, we
run the exploit on the same system with memory corruption
using a random value. If privileged/unprivileged operations
behave differently from the first execution, we consider it to
have reached an exploitable state. Third, we run the exploit
on the unprivileged system with memory corruption using the
memory contents of another instance of the same type kernel
structure. Specifically, we borrow a value of a structure’s field
from a root process with the same structure. Again, any de-
viations from the first run suggest privilege (de-)escalation.
Note that the random and cloned values are complementary.
Cloning works well for complex kernel data structures with
certain formats as they are difficult to generate randomly.
However, cloned values limited to what the system created.
For example, cloning uid will never result in an invalid/un-
known uid, which a randomly generated value can.
Detecting Exploitable States. For each run, we collect 4
indicators: (1) the return value of system calls, (2) the system
call’s return buffer’s (or read buffer’s) data, (3) the addresses
of instructions loaded the corrupted memory, and (4) the code
coverage. We consider two executions to be the same if the
following 4 conditions are satisfied: (1) return values of the
system calls are identical, (2) return buffers’ contents of the
system calls are identical, (3) executed load instructions on
the memory target are identical, and (4) Jaccard similarity [66]
of the code coverage is greater than 0.9 (accounting for noise
in Kcov). Note that we have three runs to compare (2 pairs to
compare). We compare the run without corruption with the
two other runs with different corruption methods. If the run
with corruption is different with any of the comparisons are
not the same, we consider it to reach an exploitable state.

For example, in Figure 5-(a), SCAVY first runs it without
a memory corruption (line 5). The write() at line 7 will fail
due to the missing privilege. In the second run, it corrupts the
memory target (i.e., file mapping pointer) with a random value.
The execution will crash or fail due to the invalid file mapping
pointer. In the third run, it corrupts the memory target by
cloning a valid file mapping pointer. Now, write() at line 7
will succeed and SCAVY detects differences in code coverage
and write()’s returns. Similarly, in Figure 5-(b), executions
have different coverages and setuid() return values.

USENIX Association 33rd USENIX Security Symposium 7149

6 Implementation

SCAVY is written in Go (2068 LoC), C (331 LoC), C++ (827
LoC), and Python (2199 LoC). We customized the Syzkaller
in Go. In C, we wrote the in-tree kernel driver used by the
fuzzer to corrupt and set up hardware tracing. We also devel-
oped 3 LLVM passes, two of which produce the input to the
fuzzer and the third to instrument the kernel typecast. Our
privilege escalation detector module is written in Python.
Modifying Syzkaller. We modify syz-executor to execute
the same program twice, as mentioned in Section 5.2.3. For
each execution, we collect data from KCOV, Kprobe, and dmesg.
The original Syzkaller collects the code coverage from KCOV.
Our modification allows it to collect the memory allocation,
deallocation (i.e., kfree()), and typecasts from Kprobe and
memory hits of the corrupted memory from dmesg. To col-
lect data from Kprobe, our Syzkaller instructs Kprobe to set
up its probe points for kmalloc, kmem_cache_alloc, kfree,
instrument_typecast_instruction, and the instrumented
dummy functions added after each typecast instruction. The
fuzzer instructs Kprobe to print all parameters of the instru-
mented functions and kfree, including the return values of
the memory allocators. The fuzzer spawn two threads in
parallel to the fuzzing executions to (1) parse the output
logs of Kprobe and filter out logs that are not generated by
syz-executor and (2) parse the output of dmesg. To imple-
ment the focused fuzzing for memory corruption relevant
code (Section 5.2.3), our fuzzer generates a large number of
fake instruction pointers for each new corruption, making the
fuzzer think that hitting an instruction accessing the corrupted
memory leads to a significant coverage increase. This results
in the fuzzer prioritizing the code and using it as a seed. We
also disable the fork server, which makes it terminate after
executing the requested sequence of system calls.
Privilege Escalation Detector. Our privilege escalation de-
tector needs to reproduce the executions observed during the
fuzzing, including the memory corruptions. To achieve that,
we use syz-prog2c that generates a C program reproduc-
ing the fuzzing execution, provided by Syzkaller and add C
statements that corrupts the target memory to the C program.
Then, we implement a module that executes the C program
(i.e., instrumented PoCs) with different mutation methods.
Specifically, we wrote a C library (827 LoC C++) that spawns
2 threads along with the original running PoC code: (1) a
thread to set up Kprobe and a custom driver interacting code
we wrote into syz-fuzzer and (2) another root user thread
that synthetically opens the privileged resources. The first
thread tracks the structures created by all the three processes.

7 Evaluation

We evaluate SCAVY from three aspects. First, we measure
the coverage of the typecast instructions with respect to all
the Linux kernel structures to evaluate the effectiveness of

our typecast instrumentation5. Second, we evaluate the effec-
tiveness of the fuzzer in exploring crashes that can lead to
exploitable states. Third, we analyze the detection results of
the differential analysis module and evaluate their reachability
on real world exploits. We also compare our exploitable state
definition with FUZE’s to show that our broader definition
helps discover new memory targets. All experiments were
done on a system running Ubuntu 20.04 LTS with an 3.70
GHz Intel Xeon E3-1245 v6 and 32 GB of RAM.

7.1 Typecast Coverage

SCAVY statically instrumented 2,313 source code files (85%
of the 2,700). 23% (2,130 out of 9,169) of the kernel data
structures are instrumented6 to track their types after their allo-
cation at runtime. While analyzing the low coverage result, we
find many structures that are covered are irrelevant to us. First,
there are 2,587 structures for debugging purposes such as
kprobe_insn_cache and trace_event_raw_kfree are used
by Kprobe and Ftrace and are mostly unavailable on produc-
tion kernels. Second, there are 1,989 stack-allocated structures
that are destroyed on function return (e.g., msg_receiver and
msg_sender in do_msgrcv() and do_msgsnd()). Those short-
lived structures typically do not hold critical system states
and, hence, are not our target. Third, 1,931 structures are
members of our instrumented structures, which we can con-
sider instrumented. For example signal_struct is contained
within sigpending – there is no code that directly allocates
it. Fourth, many of the remaining structures are processor-
related global variables (e.g., intel_watermark_params) and
architecture-specific structures (i.e., defined in arch) that we
do not instrument or helper structures for accessing their other
structures (e.g., xfrm_skb_cb for accessing sk_buff->cb).

To this end, we prune out 4,576 from 9,169 and addition-
ally consider 1,931 structures to be covered, resulting in a
new coverage of 88.4% (4,061/4,593). Our coverage can be
interpreted as a lower bound of what our fuzzer can corrupt.

7.2 Fuzzer Effectiveness

We evaluate the effectiveness of our fuzzer, compared to the
stock version (commit: 61f86278) of Syzkaller. Specifically,
we measure the coverage of the code that is relevant to struc-
tures (e.g., allocating and accessing the structures of interest).

For a fair comparison, we improve the stock version of
Syzkaller by adding hardware tracking of memory reads, our
object allocation implementation, and corrupted memory ac-
cess tracking. We run both fuzzers for 3 days on the identical
QEMU VM (with 1 core and 1 GB RAM).

5If a typecast instruction is not instrumented, SCAVY may not analyze
the specific use of kernel structure, possibly missing a memory target.

6We noticed that instrumenting certain boot files caused the kernel to
crash. Hence, we restrict the instrumentation to directories other than ‘arch’,
‘boot’, ‘kernel/panic’, and ‘signal’.

7150 33rd USENIX Security Symposium USENIX Association

26
Running time

1d-17:40 46 2d-07:33 2d-21:

2000

1000

0

0d-00:00 0d-13:53 1d-03:

3000

4000

5000

6000

7000

To
ta

l n
um

be
r o

f c
or

ru
pt

io
n

hi
ts

Number of corruption hits over 3 days
Syzkaller
SCAVY

Figure 6: # of Observed Loading of the
Corrupted Fields

26Running time

0

 0d-00:00 0d-13:53 1d-03:46 1d-17:40 2d-07:33 2d-21:

200

400

600

800

1000

1200

N
um

be
r o

f c
ra

sh
es

Number of crashes found over 3 days
Syzkaller
SCAVY

Figure 7: # of Crashes Observed

26
Running time

1d-17:40

0

0d-00:00 0d-13:53 1d-03: 46 2d-07:33 2d-21:

50

100

150

200

250

300

350

N
um

be
r o

f u
ni

qu
e

co
rr

up
tio

ns

Number of unique corruptions performed over 3 days
Syzkaller
SCAVY

Figure 8: Comparison of the Number of
Unique Fields Corrupted over Time

Code Coverage. Figure 6 shows the total number of read
operations on any corrupted memory during the 3 days of
fuzzing. This number indicates the number of instructions
loading the corrupted memory executed during fuzzing. The
graph shows that for the first 14 hours, the 2 fuzzers perform
similarly, but the stock fuzzer seems to hit the corruption at a
slower rate. When manually checking the corpus we find this
happens because, in part, the stock fuzzer prioritizes explor-
ing code paths, where some of them may not access the fields
of structures of our interest. For example, the stock fuzzer
may prefer to open a file and then immediately open a socket,
instead of writing to the opened file, since opening a socket
can lead to higher code coverage. In contrast, SCAVY priori-
tizes covering the code that is relevant to the data structures
of interest (e.g., accessing the file in the example).
of Crashed Observed. Figure 7 presents the number of
crashes observed from the two fuzzers. While both fuzzers in-
ject memory corruptions into the least represented structures,
the stock Syzkaller does not prioritize hitting the memory it
corrupts. This can be inferred by the lower number of crashes,
suggesting the de-prioritization of corrupted memory access-
ing code while prioritizing the overall coverage. In contrast,
our SCAVY fuzzer was able to generate more crashes as it
prioritizes the instructions accessing corrupted memory. This
is further evidence of the effectiveness of our approach, which
prioritizes the exploration of the search space for exploitable
states; focusing on the code coverage from source code that
operates on the target structure type and adding synthetic code
coverage based on code that loads corrupted memory.
of Corrupted Fields. We measure the number of corrupted
fields during the experiments to show that SCAVY covers
diverse kernel data structures than state-of-the-art techniques.
Specifically, we plot the number of unique fields of structures
that are corrupted. Figure 8 shows that both fuzzers exhibit a
similar rate of exploration in discovering new fields to corrupt.

While SCAVY focuses on a set of structures of interest, this
graph suggests that our fuzzer does not become stuck corrupt-
ing limited types of structures. As described in Section 5.2.1,
while SCAVY leverages redefined coverage that may focus on
specific structures, our fuzzer still operates with some guid-
ance from unfiltered code coverage, and as a result, it works
well for both exploration and exploitation. Note that we re-

peat the 24-hours experiment 10 times, following the best
evaluation practices for fuzzers [67]. We present the extended
results in Section A.4. After proving distinction between the
two distributions using the U-test [68], we conclude that the
fuzzer without corruption-hit-guidance tends to cover more
code, because, in part, they do not deal with crashes caused by
the corruptions. However, the crashes caused by corruptions
are potential privilege escalations detected by SCAVY, mean-
ing that the original fuzzers’ high code coverage is irrelevant
to finding memory targets. In Section A.4 we show the effects
of the modifications of the fuzzer on the code coverage.

7.3 Exploitable State Detection

To understand the impact of our new definition of exploitable
state in finding memory targets, we conduct two evaluations.
First, we compare the scope of our exploitable state defini-
tion to the commonly studied ones, such as write-what-where
and control flow hijacking. Second, we demonstrate the ef-
ficacy of SCAVY by presenting its ability to discover both
previously known and new memory targets. To conduct this
experiment, we ran the fuzzer for 7 days. We identified 2,811
unique fields from 139 distinct kernel structures that could be
exploited. The fuzzer generated a total of 3,863 PoCs whose
corresponding object corruptions crashed the kernel.

7.3.1 Evaluation of the Exploitable State Definition

We run FUZE’s symbolic executor and SCAVY to detect the
exploitable states for all the PoC. To avoid the FUZE being
stuck in an infinite loop, we disabled around 700K function
call sites corresponding to KCOV, Ftrace, our custom driver,
and part of KASAN. For a fair comparison, we used a 5-
minute timeout (FUZE uses the same timeout). We then ran
the same PoCs through our privilege escalation detector step.

FUZE found 354 PoCs that lead to at least one exploitable
state, meaning that during the unconstrained symbolic execu-
tion, more than one value satisfies the branches taken to reach
an exploitable state. The exploitable states FUZE found are
mostly attacker-controlled write with a symbolic destination
address. We show the number of PoCs that FUZE detected to
reach at least 1 exploitable state in Table 3 (in Appendix).

USENIX Association 33rd USENIX Security Symposium 7151

Structure::field Prerequisites Post. CVE Structure::field Prerequisites Post. CVE

file::f_mapping RW, CS, 216, 8, p RW, (F) ✸♠♣ pipe_inode_info::bufs W, CG, 152, 8, p R, (Mv) ♦

✪ task_struct::cred RW, CS, 1712, 8, p X, (S) ♦ kioctx::aio_ring_file RW, CS, 512, 8, p R, (Mv) ✸

task_struct::mm RW, CS, 1080, 8, p R, (Mp) ♦ kioctx::internal_pages RW, CS, 448, 8, p R, (Mv) ♣

task_struct::active_mm RW, CS, 1088, 8, p R, (Mp) ♦ aio_kiocb::ki_filp RW, CS, 0, 8, p RW, (Mv) —
task_struct::vma_cache RW, CS, 1104, 8, p R, (Mp) ♦ key::user RW, CS, 72, 8, p RW, (Mv) ✸

address_space::i_pages RW, CG, 8, 8, p W, (F) ✸ key::description W, CS, 32, 8, p R, (Mk) ✥✸

vm_area_struct::vm_file RW, CS, 160, 8, p RW, (Mv) ✸♠♥ key::perm W, CS, 112, 8, 3«25 R, (Mv) ✸

inode::i_uid W, CS, 4, 4, 0 W, (F) ♣♠ shmem_inode_info::i_mapping RW, CS, 168, 8, p R, (Mv) ✸

inode::i_mapping RW, CS, 4, 4, p RW, (F) ♣♠ ✪ cred::cap_bset W, CS, 64, 8, 221 R, (Mv) ♦

inode::i_pipe RW, CS, 568, 8, p R, (M) ♣♠ ✪ cred::euid W, CS, 20, 4, 0 X, (S) ♦

Table 1: Corruptions Found to Lead to Exploitable States. Prerequisites are of the form: <exploit capabilities, generic/special
slab cache,offset,size, value (kernel pointer or specific value)>. Post-conditions are of the form <observed capability, resource>.
Resources are: Files(F), Syscall (S) and Memories of Process(Mp), Kernel(Mk) and other Virtual(Mv). ✪ indicates known
field. We evaluate the exploitability of the corruptions using real-world CVEs marked in the table as: CVE-2010-2959 (♣),
CVE-2014-3153 (♦), CVE-2016-0728 (✥), CVE-2017-7184 (♥), CVE-2017-7308 (♠), CVE-2022-27666 (✸).

Meanwhile, the detection step of SCAVY flagged 955 PoCs
for having a deviation that can lead to an exploitable state.
While our definition of exploitable state does not include
control flow hijacking and write-what-where (i.e., it is not a
superset of the prior work), the additional PoCs SCAVY found
may imply the effectiveness of SCAVY’s broader definition.

Among the 955 PoCs, many are corrupting the same field.
Therefore, we decided to prioritize our manual analysis of
the fields with the most positive detections and the ones we
found within our expertise to analyze. In Table 1, we show 20
fields that were manually verified to lead to privileged opera-
tions and the exploitable state that was detected based on our
definition in Section 2. The rest of the fields are presented in
Table 6 in the Appendix. It is worth noting that the corruptions
we report in this paper are a subset of PoCs we detected (in
total, we detect 68). In Appendix A.1, we present details of
the manual analysis we performed on the deviations detected
by SCAVY. In the second column of Table 1, we summarize
the capabilities required for the attacker to correctly corrupt
the field, such as requiring both read and write or just write
capability. For example, to exploit using key::description,
the attacker needs to have the capability to Write 8 bytes into
the key cache at offset 32 the object with the value 0. In the
third column, we summarize the post-conditions, essentially
escalated privileges, such as reading a pipe or writing a file.
For example, after corrupting key::description with a valid
kernel pointer, the attacker can read arbitrary kernel memory.
Evaluating with Real world Vulnerabilities. In the last col-
umn, we evaluate the reachability of SCAVY found memory
targets using real-world exploits. Specifically, we first obtain
exploits from KHeaps [51], as the authors provide vulnerable
kernel environment that can reproduce their exploits. For each
exploit, we first identify the part of the exploit that creates
(or sprays) the victim kernel structure. Then, we check the
exploit’s memory corruption capability with the SCAVY’s
memory target’s requirements. If the exploit has sufficient
capability, we massage the memory layout [50] for our victim

kernel structure (i.e., SCAVY’s memory target) to be within
the corruption range. Next, we replace the victim kernel struc-
ture creation (or spraying) code with SCAVY’s PoC’s code to
allocate SCAVY’s memory target. Finally, we trigger the vul-
nerability to corrupt SCAVY’s memory target with an arbitrary
value. After that, we replace the part accessing the corrupted
memory in the original exploit with SCAVY’s PoC’s privilege
escalation checking code, which invokes privilege-assessing
system calls that eventually access corrupted memory and
raise crashes if corrupted. If we get a crash with the corrupted
value in its panic dump, we mark column 4 of this field with
the respective CVE ID. We publish the modified exploits that
can corrupt SCAVY targets in our repository.

7.3.2 Evaluation of the Privilege Escalation Detector

Among the 955 detected behavior deviations, we find that
code coverage is the most common deviation. Other signif-
icant deviations include accessing random addresses (when
modifying data pointer fields) and privilege de-escalations
(when modifying non-pointer fields). Table 4 (in Appendix)
summarizes our results. We also analyze the common system
calls where the deviations occur. Table 5 (in Section A.3)
shows the top 10 system calls exhibit deviations, helping de-
tect reaching exploitable states. Among them, we observe the
seteuid system call that we additionally instrument, helping
16 cases out of 955 (1.5%). Others are mostly I/O related sys-
tem calls (e.g., pread64, ioctl, socketpair, and sendmsg).

7.3.3 Exploiting Real Vulnerabilities

We evaluate SCAVY found memory targets in terms of writing
exploits with real-world vulnerabilities to illustrate its real-
world impact and practicality. Our result is summarized in Ta-
ble 2. Note that the vulnerabilities are from different software
weaknesses, as denoted by the CWE (Common Weakness
Enumeration), showing that SCAVY’s memory targets do not

7152 33rd USENIX Security Symposium USENIX Association

CVE CWE Exploited Struct/Field

1 2017-7308 Type Conversion vm_area_struct::vm_file
2 2017-7184 Input Validation vm_area_struct::vm_file
3 2010-2959 Int Overflow kioctx::internal_pages
4 2016-0728 Use-After-Free key::description
5 2022-27666∗ OOB Write vm_area_struct::vm_file
6 2022-27666∗ OOB Write file::f_mapping
7 2009-3547 nullptr deref. pipe_inode_info::bufs
8 2014-3153 Input Validation cred::euid
9 2017-11176 Use-After-Free task_struct::cred

10 2004-1235 Race condition file_struct::fops

Table 2: Modified Real World Exploits (∗ indicates con-
structed fully functional exploit).

have specific requirements on the type of vulnerabilities.
We obtain the exploits from various sources. The first three

exploits (1∼3) are from the original KHeaps [51] paper. The
fourth exploit is borrowed from a public PoC7. Other exploits
are from publicly available PoCs [50, 69]. For all the exploits
except for the 2016-0728’s exploit, we follow the procedure
described in Section 7.3.1 to modify the exploits to corrupt
SCAVY memory targets. The exploit for 2016-0728 is shown
in Section 3.2. The exploits 5 and 6 are end-to-end exploits
using 2022-27666 with SCAVY found memory targets. The
entire exploits are presented in Section A.2. The exploits 7∼9,
we found that the original exploits corrupt kernel structures
that contains SCAVY’s memory targets (in Table 1), while
they target a different field to corrupt.

Note that we were unable to reproduce the 2004-1235 ex-
ploit as we could not reproduce the vulnerable environment
(e.g., the kernel and OS); however, based on the developer
email chain [70], we deduced that the exploit could control
the content of a vm_area_struct and it had the vm_file field
in the target kernel version (2.6), implying that the exploit
can corrupt a SCAVY memory target. We release the exploits
and vulnerable systems’ VMs on [20].

8 Discussion

SCAVY Facilitating Defenses. There exist defenses for kernel
data structure fields, such as XOR’ing their values, redzoning
the fields [71], and applying write-once memory [72], while
they cause significant overhead if applied to every kernel struc-
ture [6], Applying them only on SCAVY found memory targets
would result in lower overhead, making them deployable.
Limitations. There exist a few sources of false positive in
SCAVY’s analysis. First, since SCAVY considers any differ-
ences between the executions with and without memory cor-
ruption as a potential privilege escalation if a divergent is
caused by other reasons, such as a corrupted semaphore or
lock fields causing an execution to hang and timeout, it would
lead to a false positive. Second, if the device-specific point-
ers are corrupted, an execution may divert and be detected

7https://gist.github.com/PerceptionPointTeam/18b1e86d1c0f8531ff8f

by SCAVY without escalating privilege, meaning it is a false
positive case. For example, bio::bi_private is dedicated
to device-specific structs and is usually null. When releas-
ing, the kernel frees the pointer if it is not null, causing a
deviation in code coverage. While SCAVY detects it, as per
our definition, it does not lead to an exploitable state. Hence,
it is considered a false positive. However, it is still a valid
exploitation (while not a privilege escalation) as an attacker
can corrupt this field to get an arbitrary-free capability. The
refcount fields are also considered false positives as they do
not escalate privilege but they can lead to valid use-after-free
capabilities. Third, if it corrupts a file head, which maintains
the file’s current position for read and write, the file read
API will return a different file portion, leading to different
buffer contents. However, it does not escalate privilege. At
last, we rely on a differential analysis method to detect priv-
ilege changes, meaning that SCAVY can only detect when
system calls have visible changes from userland via the sys-
tem calls in Table 7. For example, corrupting addr_limit to
a larger value would not have immediately observable execu-
tion divergence, which will be missed by SCAVY.
Responsible Disclosure. We have responsibly informed and
shared all the findings and artifacts (e.g., exploits) with the
Linux maintainers and discussed its potential security conse-
quences. We have their approval to disclose.
Future Work. Our work focuses on the impact of single-
field corruption, while, in reality, an attacker may corrupt
multiple fields. Also, SCAVY relies on manual analysis of the
capabilities of prior exploits to provide a suitable target. We
leave automating such tasks as a future work.

9 Conclusions

We designed and implemented SCAVY, which efficiently
searches for memory targets that can lead to privilege escala-
tion in the Linux kernel. Our design includes a new definition
of the exploitable state for the Linux kernel in the context
of local unprivileged attacks and differential analysis-based
multi-execution reasoning to effectively detect potential privi-
lege escalation. SCAVY discovered 17 memory targets in 12
kernel structures that can lead the system into an exploitable
state when corrupted. We show the impact of SCAVY-found
memory targets by demonstrating real-world PoCs of 9 CVEs
corrupting the 17 memory targets.

Acknowledgments
We thank the anonymous referees for their constructive
feedback. The authors gratefully acknowledge the support
of DARPA (Young Faculty Award), NSF (2427783 and
2426653), and an Amazon Research Award. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the sponsors.

USENIX Association 33rd USENIX Security Symposium 7153

https://gist.github.com/PerceptionPointTeam/18b1e86d1c0f8531ff8f

References

[1] D. Rosenberg. (2010) Interesting kernel exploit posted.
[Online]. Available: https://lwn.net/Articles/419141/

[2] M. Stone. (2020) Cve-2019-2215: Android
use-after-free in binder. [Online]. Avail-
able: https://googleprojectzero.blogspot.com/2019/11/
bad-binder-android-in-wild-exploit.html

[3] M. Brand. (2021) In-the-wild series: Android exploits.
[Online]. Available: https://googleprojectzero.blogspot.
com/2021/01/in-wild-series-android-exploits.html

[4] M. Rutland and C. Marinas. (2020) arm64: uaccess:
remove set_fs(). [Online]. Available: https://github.com/
torvalds/linux/commit/3d2403fd10a1db

[5] Z. Lin, Y. Wu, and X. Xing, “Dirtycred: Escalating priv-
ilege in linux kernel,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications
Security, 2022, pp. 1963–1976.

[6] T. Yamauchi, Y. Akao, R. Yoshitani, Y. Nakamura, and
M. Hashimoto, “Additional kernel observer: Privilege
escalation attack prevention mechanism focusing on
system call privilege changes,” Int. J. Inf. Secur., vol. 20,
no. 4, 2021.

[7] K. Cook. (2017, Nov) security things in linux v4.14.
[Online]. Available: https://outflux.net/blog/archives/
2017/11/14/security-things-in-linux-v4-14/

[8] T. Garnier. (2016, Apr) mm: Slab freelist randomization.
[Online]. Available: https://lwn.net/Articles/685047/

[9] J. Corbet. (2012, Sep) Supervisor mode access
prevention. [Online]. Available: https://lwn.net/Articles/
517475/

[10] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained
control-flow integrity for kernel software,” in 2016 IEEE
European Symposium on Security and Privacy (Eu-
roS&P). IEEE, 2016, pp. 179–194.

[11] K. Cook. (2017) Add slub free list pointer obfus-
cation. [Online]. Available: https://lists.openwall.net/
linux-kernel/2017/07/07/546

[12] R. GONG. (2023) Randomized slab caches for kmalloc.
[Online]. Available: https://lwn.net/Articles/938246/

[13] W. Chen, X. Zou, G. Li, and Z. Qian, “Koobe: Towards
facilitating exploit generation of kernel out-of-bounds
write vulnerabilities,” in USENIX Security, 2020, pp.
1093–1110.

[14] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou,
“Fuze: Towards facilitating exploit generation for ker-
nel use-after-free vulnerabilities,” in USENIX Security,
2018, pp. 781–797.

[15] Z. Lin, Y. Chen, Y. Wu, D. Mu, C. Yu, X. Xing, and
K. Li, “Grebe: Unveiling exploitation potential for linux
kernel bugs,” in 2022 IEEE Symposium on Security and
Privacy (SP), 2022, pp. 2078–2095.

[16] (2023) Corjail: From null byte overflow to docker
escape exploiting poll_list objects in the linux kernel.
[Online]. Available: https://syst3mfailure.io/corjail/

[17] V. Nikolenko. (2023) Cve-2016-6187: Ex-
ploiting linux kernel heap off-by-one.
[Online]. Available: https://duasynt.com/blog/
cve-2016-6187-heap-off-by-one-exploit

[18] A. Nguyen. (2023) Cve-2021-22555: Turn-
ing \x00\x00 into 10000$. [Online]. Avail-
able: https://google.github.io/security-research/pocs/
linux/cve-2021-22555/writeup.html

[19] A. Konovalov. (2023) Cve-2017-1000112: Exploiting
an out-of-bounds bug in the linux kernel ufo
packets. [Online]. Available: https://xairy.io/articles/
cve-2017-1000112

[20] Scavy github repo. [Online]. Available: https://github.
com/BadDataLab/SCAVY

[21] “Microsoft resumes security updates with ’largest’
patch tuesday release,” Redmont Mag, 30 March
2017, https://redmondmag.com/articles/2017/03/14/
march-2017-security-updates.aspx.

[22] “Massive microsoft patch tuesday security up-
date for march,” Qualys, 30 March 2017, https:
//blog.qualys.com/laws-of-vulnerabilities/2017/03/14/
massive-security-update-from-microsoft-for-march.

[23] T. F. Dullien, “Weird machines, exploitability, and prov-
able unexploitability,” IEEE Transactions on Emerging
Topics in Computing, 2017.

[24] Linux. (2023) Android application sandbox. [Online].
Available: https://source.android.com/docs/security/
app-sandbox

[25] E. Avllazagaj, Z. Zhu, L. Bilge, D. Balzarotti, and
T. Dumitras, , “When malware changed its mind: An em-
pirical study of variable program behaviors in the real
world,” in USENIX Security, 2021.

[26] (2023) Apache web server. [Online]. Available:
https://httpd.apache.org/

7154 33rd USENIX Security Symposium USENIX Association

https://lwn.net/Articles/419141/
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-exploits.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-exploits.html
https://github.com/torvalds/linux/commit/3d2403fd10a1db
https://github.com/torvalds/linux/commit/3d2403fd10a1db
https://outflux.net/blog/archives/2017/11/14/security-things-in-linux-v4-14/
https://outflux.net/blog/archives/2017/11/14/security-things-in-linux-v4-14/
https://lwn.net/Articles/685047/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://lists.openwall.net/linux-kernel/2017/07/07/546
https://lists.openwall.net/linux-kernel/2017/07/07/546
https://lwn.net/Articles/938246/
https://syst3mfailure.io/corjail/
https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit
https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://xairy.io/articles/cve-2017-1000112
https://xairy.io/articles/cve-2017-1000112
https://github.com/BadDataLab/SCAVY
https://github.com/BadDataLab/SCAVY
https://redmondmag.com/articles/2017/03/14/march-2017-security-updates.aspx
https://redmondmag.com/articles/2017/03/14/march-2017-security-updates.aspx
https://blog.qualys.com/laws-of-vulnerabilities/2017/03/14/massive-security-update-from-microsoft-for-march
https://blog.qualys.com/laws-of-vulnerabilities/2017/03/14/massive-security-update-from-microsoft-for-march
https://blog.qualys.com/laws-of-vulnerabilities/2017/03/14/massive-security-update-from-microsoft-for-march
https://source.android.com/docs/security/app-sandbox
https://source.android.com/docs/security/app-sandbox
https://httpd.apache.org/

[27] mitre. (2023) Cwe-548: Exposure of information
through directory listing. [Online]. Available: https:
//cwe.mitre.org/data/definitions/548.html

[28] NVD. (2023) Cve-2022-27666 detail. [Online]. Avail-
able: https://nvd.nist.gov/vuln/detail/CVE-2022-27666

[29] C. Mulliner. (2023) Cve-2016-0728 vs android. [On-
line]. Available: http://www.mulliner.org/blog/blosxom.
cgi/security/CVE-2016-0728_vs_android.html

[30] M. Mimoso. (2023) Serious linux kernel vulnerability
patched. [Online]. Available: https://threatpost.com/
serious-linux-kernel-vulnerability-patched/115923/

[31] D. Vyukov. (2023) Syzkaller. [Online]. Available:
https://github.com/google/syzkaller

[32] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and
B. Lee, “Hfl: Hybrid fuzzing on the linux kernel.” in
NDSS, 2020.

[33] D. Jones. (2023) Trinity: Linux system call fuzzer.
[Online]. Available: https://github.com/kernelslacker/
trinity

[34] H. Han and S. K. Cha, “Imf: Inferred model-based
fuzzer,” in Proceedings of the 2017 ACM SIGSAC CCS,
ser. CCS ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 2345–2358.

[35] FSecureLABS. (2023) Kernelfuzzer: Cross platform
kernel fuzzer framework. [Online]. Available: https:
//github.com/FSecureLABS/KernelFuzzer

[36] B. Zhao, Z. Li, S. Qin, Z. Ma, M. Yuan, W. Zhu, Z. Tian,
and C. Zhang, “Statefuzz: System call-based state-aware
linux driver fuzzing,” in USENIX Security, 2022.

[37] (2023) The kernel address sanitizer (kasan). [On-
line]. Available: https://www.kernel.org/doc/html/latest/
dev-tools/kasan.html

[38] (2023) The kernel memory sanitizer (kmsan). [Online].
Available: https://docs.kernel.org/next/dev-tools/kmsan.
html

[39] (2023) Kernel thread sanitizer (ktsan). [Online]. Avail-
able: https://google.github.io/kernel-sanitizers/KTSAN.
html

[40] (2023) The kernel concurrency sanitizer (kcsan). [On-
line]. Available: https://docs.kernel.org/5.19/dev-tools/
kcsan.html

[41] Google. (2023) Linux kernel sanitizers. [Online].
Available: https://github.com/google/kernel-sanitizers

[42] R. Wang, K. Chen, C. Zhang, Z. Pan, Q. Li, S. Qin,
S. Xu, M. Zhang, and Y. Li, “Alphaexp: An expert sys-
tem for identifying security-sensitive kernel objects,” in
USENIX Security, Aug. 2023.

[43] Y. Chen and X. Xing, “Slake: Facilitating slab manipu-
lation for exploiting vulnerabilities in the linux kernel,”
in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp.
1707–1722.

[44] C. Polop. (2023) Peass - privilege escalation awesome
scripts suite. [Online]. Available: https://github.com/
carlospolop/PEASS-ng

[45] X. Tan, Y. Zhang, X. Yang, K. Lu, and M. Yang, “De-
tecting kernel refcount bugs with two-dimensional con-
sistency checking,” in USENIX Security, Aug. 2021.

[46] J. Mao, Y. Chen, Q. Xiao, and Y. Shi, “Rid: Finding ref-
erence count bugs with inconsistent path pair checking,”
SIGPLAN Not., vol. 51, no. 4, p. 531–544, mar 2016.

[47] J. Liu, L. Yi, W. Chen, C. Song, Z. Qian, and Q. Yi,
“Linkrid: Vetting imbalance reference counting in linux
kernel with symbolic execution,” in USENIX Security,
Boston, MA, aug 2022.

[48] Y. Chen, Z. Lin, and X. Xing, “A systematic study of
elastic objects in kernel exploitation,” ser. CCS ’20.
New York, NY, USA: ACM, 2020.

[49] D. Liu, P. Wang, X. Zhou, W. Xie, G. Zhang, Z. Luo,
T. Yue, and B. Wang, “From release to rebirth: Exploit-
ing thanos objects in linux kernel,” IEEE Transactions
on Information Forensics and Security, vol. 18, pp. 533–
548, 2023.

[50] X. Zou and Z. Qian. (2022) Cve-2022-27666: Exploit
esp6 modules in linux kernel. [Online]. Available:
https://etenal.me/archives/1825

[51] K. Zeng, Y. Chen, H. Cho, X. Xing, A. Doupé, Y. Shoshi-
taishvili, and T. Bao, “Playing for k(h)eaps: Understand-
ing and improving linux kernel exploit reliability,” in
USENIX Security, 2022.

[52] V. Nikolenko. (2018) Linux kernel universal heap
spray. [Online]. Available: https://duasynt.com/blog/
linux-kernel-heap-spray

[53] J. Edge. (2013, Oct) Kernel address space layout
randomization. [Online]. Available: https://lwn.net/
Articles/569635/

[54] V. Nikolenko. (2023) Practical smep bypass techniques
on linux. [Online]. Available: http://bit.ly/3GVjvEn

USENIX Association 33rd USENIX Security Symposium 7155

https://cwe.mitre.org/data/definitions/548.html
https://cwe.mitre.org/data/definitions/548.html
https://nvd.nist.gov/vuln/detail/CVE-2022-27666
http://www.mulliner.org/blog/blosxom.cgi/security/CVE-2016-0728_vs_android.html
http://www.mulliner.org/blog/blosxom.cgi/security/CVE-2016-0728_vs_android.html
https://threatpost.com/serious-linux-kernel-vulnerability-patched/115923/
https://threatpost.com/serious-linux-kernel-vulnerability-patched/115923/
https://github.com/google/syzkaller
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://github.com/FSecureLABS/KernelFuzzer
https://github.com/FSecureLABS/KernelFuzzer
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://docs.kernel.org/next/dev-tools/kmsan.html
https://docs.kernel.org/next/dev-tools/kmsan.html
https://google.github.io/kernel-sanitizers/KTSAN.html
https://google.github.io/kernel-sanitizers/KTSAN.html
https://docs.kernel.org/5.19/dev-tools/kcsan.html
https://docs.kernel.org/5.19/dev-tools/kcsan.html
https://github.com/google/kernel-sanitizers
https://github.com/carlospolop/PEASS-ng
https://github.com/carlospolop/PEASS-ng
https://etenal.me/archives/1825
https://duasynt.com/blog/linux-kernel-heap-spray
https://duasynt.com/blog/linux-kernel-heap-spray
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
http://bit.ly/3GVjvEn

[55] W. Wu, Y. Chen, X. Xing, and W. Zou, “Kepler: Facil-
itating control-flow hijacking primitive evaluation for
linux kernel vulnerabilities,” in USENIX Security 19,
2019.

[56] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address
space layout randomization with intel tsx,” in Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, 2016, pp. 380–392.

[57] B. F. S. GmbH. (2020, Jun) Meltdown
reloaded: Breaking windows kaslr by leak-
ing kva shadow mappings. [Online]. Avail-
able: https://labs.bluefrostsecurity.de/blog/2020/06/30/
meltdown-reloaded-breaking-windows-kaslr/

[58] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis,
“ret2dir: Rethinking kernel isolation,” in USENIX Secu-
rity, 2014.

[59] linxz. (2023) Supervisor mode execution prevention.
[Online]. Available: https://linxz.tech/post/architecture/
2021-10-19-smep/

[60] Linux. (2022) Linux kernel coding style. [On-
line]. Available: https://www.kernel.org/doc/html/v6.1/
process/coding-style.html#allocating-memory

[61] llvm. (2023) llvm::castinst class reference. [On-
line]. Available: https://llvm.org/doxygen/classllvm_1_
1CastInst.html

[62] J. Keniston, P. S. Panchamukhi, and M. Hiramatsu.
(2023) Kernel probes. [Online]. Available: https:
//www.kernel.org/doc/html/latest/trace/kprobes.html

[63] G. Rodrigues. (2009) Poke-a-hole and friends. [Online].
Available: https://lwn.net/Articles/335942/

[64] P. Krishnan, “Hardware breakpoint (or watchpoint) us-
age in linux kernel,” in Proceedings of the Linux Sympo-
sium. Citeseer, 2009, pp. 149–158.

[65] (2023) addr2line(1) — linux manual page.
[Online]. Available: https://www.man7.org/linux/
man-pages/man1/addr2line.1.html

[66] scikit learn. (2023) Jaccard similarity. [Online]. Avail-
able: https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.jaccard_score.html

[67] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating fuzz testing,” ser. CCS, New York, NY, USA,
2018.

[68] H. B. Mann and D. R. Whitney, “On a test of whether
one of two random variables is stochastically larger than
the other,” The annals of mathematical statistics, pp.
50–60, 1947.

[69] SecWiki. (2023) linux-kernel-exploits. [Online]. Avail-
able: https://github.com/SecWiki/linux-kernel-exploits

[70] P. Starzetz. (2005) Linux kernel uselib() privi-
lege elevation. [Online]. Available: https://isec.pl/en/
vulnerabilities/isec-0021-uselib.txt

[71] L. H. (2009) Linux kernel heap tampering detection.
[Online]. Available: http://phrack.org/issues/66/15.html

[72] J. Corbet. (2018) The slab and protected-memory
allocators. [Online]. Available: https://lwn.net/Articles/
753154/

[73] R. Landley. (2007). [Online]. Available: https://www.
kernel.org/doc/html/latest/core-api/rbtree.html

[74] Will. (2021). [Online]. Available: https://www.willsroot.
io/2021/08/corctf-2021-fire-of-salvation-writeup.html

[75] E. Avllazagaj. (2023) Cve-2022-27666: My file your
memory. [Online]. Available: https://albocoder.github.
io/exploit/2023/03/13/KernelFileExploit.html

A Appendix

A.1 Analysis of Detected Exploitable States
We present our manual analysis for the proof-of-concept code
detected by SCAVY, focusing on exploring concrete privilege
escalation exploits from the detected exploitable states.

A.1.1 Case 1: file::f_mapping

The file::f_mapping memory target can be leveraged to
create exploits for two different scenarios.
Scenario 1: Attacking Inaccessible File. An exploit cre-
ates a root-owned process opening a privileged file, which
is completely inaccessible in an unprivileged process. For
example, it can spawn many ‘passwd’ processes, spraying
the slab memory with the ‘/etc/shadow’ file’s file ker-
nel structures. Then, the exploit also creates an unprivi-
leged file such as a temp file (e.g., /tmp/file). Next, the
exploit leverages a vulnerability with a read capability to read
the file::f_mapping of the ‘/etc/shadow,’ which will be
copied to the file::f_mapping of the temp file through a
vulnerability with a write capability. In other words, the val-
ues of file::f_mapping of /etc/shadow and the temp file
are swapped. After this, reading and writing the temp file is
accessing the /etc/shadow’s content.
Scenario 2: Attacking Unwritable (but readable) File. Sce-
nario 1 creates many root-owned processes (e.g., passwd pro-
cesses), which might raise suspicion. If one wants to write
an unwritable file (instead of read and write an inaccessible
file, as we see in scenario 1), one can achieve it more subtly.
Specifically, an exploit can open many ‘/etc/passwd’ files

7156 33rd USENIX Security Symposium USENIX Association

https://labs.bluefrostsecurity.de/blog/2020/06/30/meltdown-reloaded-breaking-windows-kaslr/
https://labs.bluefrostsecurity.de/blog/2020/06/30/meltdown-reloaded-breaking-windows-kaslr/
https://linxz.tech/post/architecture/2021-10-19-smep/
https://linxz.tech/post/architecture/2021-10-19-smep/
https://www.kernel.org/doc/html/v6.1/process/coding-style.html#allocating-memory
https://www.kernel.org/doc/html/v6.1/process/coding-style.html#allocating-memory
https://llvm.org/doxygen/classllvm_1_1CastInst.html
https://llvm.org/doxygen/classllvm_1_1CastInst.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://lwn.net/Articles/335942/
https://www.man7.org/linux/man-pages/man1/addr2line.1.html
https://www.man7.org/linux/man-pages/man1/addr2line.1.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://github.com/SecWiki/linux-kernel-exploits
https://isec.pl/en/vulnerabilities/isec-0021-uselib.txt
https://isec.pl/en/vulnerabilities/isec-0021-uselib.txt
http://phrack.org/issues/66/15.html
https://lwn.net/Articles/753154/
https://lwn.net/Articles/753154/
https://www.kernel.org/doc/html/latest/core-api/rbtree.html
https://www.kernel.org/doc/html/latest/core-api/rbtree.html
https://www.willsroot.io/2021/08/corctf-2021-fire-of-salvation-writeup.html
https://www.willsroot.io/2021/08/corctf-2021-fire-of-salvation-writeup.html
https://albocoder.github.io/exploit/2023/03/13/KernelFileExploit.html
https://albocoder.github.io/exploit/2023/03/13/KernelFileExploit.html

in read mode and a temp file in read/write mode. Swapping
the file::f_mapping of the ‘/etc/passwd’ and the temp file
allows the exploit to write the ‘/etc/passwd’, escalating the
privilege. With the privilege, it can create a root-level account
by editing the ‘/etc/passwd’ file.

A.1.2 Case 2: vm_area_struct::vm_file

This memory target can, in practice, be used to access privi-
leged files’ contents if they exist in shared memory-mapped
files (i.e., mapped with mmap() with the MAP_SHARED flag).
Specifically, an exploit first creates a shared memory of a
temp file with read and write permissions, which will create
a vm_area_struct::vm_file kernel structure. Then, it over-
writes the vm_area_struct::vm_file of the temp file with
the values of the vm_area_struct::vm_file of a root-owned
file, using vulnerabilities with read and write capabilities. Af-
ter the corruption, an exploit invokes msync to synchronize the
mapping with the corrupted new vm_area_struct::vm_file .

Note that, in Section 3.1, we show that one can modify our
exploit of CVE-2022-27666 to write into any of the dummy
file’s vm_area_struct so that it would access the content of
/etc/passwd.

1 #23:08:35 executing program 0 (corruption ‘%struct.
anon_vma_chain*+40 (8)‘ at call 4):

2 r0 = semget(0x3, 0x3, 0x481)
3 getgroups(0x2, &(0x7f0000000180)=[<r1=>0xee01,<r2=>0xee01])
4 ioctl$NS_GET_OWNER_UID(0xffffffffffffffff, 0xb704,&(0

x7f0000000200)=<r3=>0x0)
5 semctl$IPC_SET(r0, 0x0, 0x1, &(0x7f0000000240)={{0x2,0xee01,

r2, r3, 0xee01, 0xa0,
6 0x5f3}, 0xffffffff,0x0, 0x0, 0x0, 0x0, 0x0, 0x7})
7 r4 = semget(0x3, 0x4, 0x40)
8 semctl$GETVAL(r4, 0x2, 0xc, &(0x7f0000000000)=""/248)
9 semget(0x0, 0x2, 0x4)

10 getgroups(0x1, &(0x7f0000000100)=[<r5=>r1])
11 r6 = getegid()
12 getgroups(0x5, &(0x7f0000000140)=[r5, r2, r2, r6, r5])

Listing 3: Syzkaller representation of the PoC.

A.1.3 Case 3: anon_vma_chain::rb

SCAVY found this kernel data structure field as a potential
memory target. However, we did not include it as a memory
target as corrupting it does not escalate privilege.

SCAVY discovered this memory target by observing a
crash during the execution of semctl() after corrupting the
anon_vma_chain::rb field with a random value. Specifically,

it crashes at semctl$GETVAL shown in line 8 in Listing 3. We
further analyze the structure to understand the crash. In partic-
ular, the anon_vma_chain structure is used for anonymous vir-
tual memory, which is essentially shared memory not backed
by a file system. The rb field links the anon_vma_chain struc-
ture into a red-black tree [73] for search optimization. As a
result, corrupting it with a random value, which is not a valid
pointer, caused a memory dereference error. While we could

Step 3
Vulnerable
Structure

Pages with vm_area_structuser_key_payload

Overflow Corrupt ‘datalen’ Read out of bounds (OOB)

Step 4
Vulnerable
Structure

file of
/etc/passwd

msg_msg

Overflow Corrupt ‘next’ Read

Step 5
Vulnerable
Structure

file of the
dummy file

msg_msg

Overflow Corrupt ‘next’ Write

Figure 9: Visualizing Exploit of CVE-2022-27666.

not enhance the case to replace the rb’s value with another
valid rb’s value, replacing a valid value may impact the search
operations using the red-black tree.

A.2 Exploiting CVE-2022-27666

The exploit requires memory massaging of Linux page al-
locator. Hence, we borrow the same noise-mitigation and
massaging technique from an existing exploit [50]. The rest
of the exploit is summarized in six steps as follows:

1. Allocate user_key_payload next to the vul-
nerable structure. Then, overflow and corrupt
user_key_payload::datalen to obtain the read

out of the bounds (OOB) capability.
2. Open two files: one dummy file with read/write per-

missions and another root-owned unwritable file that
can only be opened read-only by non-root users (e.g.,
/etc/passwd).

3. Repeatedly call open()8 to assure the file::f_mapping
structures allocate next to user key payload. Leak the two
vm_area_struct::file pointers of the opened files.

4. Rearrange the memory to now put the msg_msg struc-
ture next to the vulnerable structure and overflow into it
such that the msg_msg::next points to the leaked file

structure. With the corruption, reading msg_msg leaks
the content of the file structure of the /etc/passwd.

5. Rearrange the kernel memory to use the msg_msg to
achieve arbitrary write capability [74], and use it to over-
write the file::f_mapping of the dummy file with the
leaked f_mapping value of the /etc/passwd.

6. Call write() with the dummy file’s descriptor to append
a new root-level account on /etc/passwd. As shown in
the blog post [75], the root privilege can be obtained by
simply running su with the appended account.

In Figure 9, we illustrate the memory layout for the steps
3 to 5. After step 5, as SCAVY detected, the /etc/passwd
becomes writable through the dummy file’s descriptor.

8There is a limit of 1,000 invocations of open(). However, most of the
allocations would fall in the memory holes created in step 1, without exhaust-
ing the limit. If necessary, one can use the following method to overcome
the 1,000 limit: open both files once and mmap the opened files until the
vm_area_struct are allocated next to the corrupted user_key_payload .

USENIX Association 33rd USENIX Security Symposium 7157

0 1 2 3 4 5 6 7 8 9
Running time (hours)

0

5000

10000

15000

20000

25000

30000

35000

40000

To
ta

l c
ov

er
ag

e

Code coverage over 24 hours

SCAVY
Base Syzkaller

10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 10: Code coverage of SCAVY VS
the unmodified fuzzer.

Running time (hours)

0

2000

4000

6000

8000

10000

12000

To
ta

l c
ov

er
ag

e

Code coverage over 24 hours

SCAVY
Syzkaller

20 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 11: Code Coverage Over Time
Running time (hours)

0

50

100

150

200

250

300

350

400

N
um

be
r o

f c
ra

sh
es

Number of crashes over 24 hours

SCAVY
Syzkaller

20 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 12: # of Crashes Observed

Structure Field # PoCs

proc_inode pid 52
anon_vma root 36
anon_vma parent 41
socket_alloc vfs_inode.i_flags 2
socket_alloc vfs_inode.xa_head 6
pde_opener c 20
io_uring_probe ops 6
file f_ra 5
io_wq worker_done.pprev 1
sk_security_struct peer_sid 7
others - 178

Table 3: Memory Targets Found by FUZE’s Symbolic Ex-
ecution. Multiple PoCs for each memory target are detected.

A.3 Evaluation of SCAVY’s Detector Step

Deviation Count

Coverage 658
Corruption hits 452
Return values 200
Buffers 176

Table 4: Count of deviation conditions.

Deviating Syscall Count

pread64 283
io_submit 35
ioctl$sock_SIOCGIFINDEX_802154 27
ioctl$ifreq_SIOCGIFINDEX_team 26
ioctl$sock_SIOCGIFINDEX_80211 23
seteuid 16
ioctl$BTRFS_IOC_GET_SUBVOL_ROOTREF 12
ioctl$BTRFS_IOC_INO_LOOKUP_USER 11
socketpair$nbd 10
sendmsg$ETHTOOL_MSG_LINKINFO_GET 9

Table 5: Count of syscalls demonstrating deviation

A.4 Comparing with the unmodified Syzkaller
We compare SCAVY’s fuzzer against an unmodified Syzkaller
baseline using the same methodology described in Section 7.2.
We disabled the reproducer and ran it on 1 VM with the debug
flag. Figure 10 shows that SCAVY’s fuzzer achieved a lower
code coverage than the original Syzkaller. This does not mean

Structure::Field (offset) Structure::Field (offset)

anon_vma::parent::rb_root (+0) mount::mnt_mounts::prev (+0)
anon_vma::refcount (+0) pde_opener::file (+0)
anon_vma::root::count (+0) pid_namespace::ucounts (+0)
anon_vma::rwsem (+0) pipe_buffer::ops (+0)
anon_vma::rwsem (+24) proc_inode::pid (+0)
avc_node::ae::pprev (+16) proc_inode::pid (+4)
bio::bi_private (+0) proc_inode::sibling_inodes (+8)
ctl_table_header::(anon) (+16) proc_inode::sysctl (+0)
dentry::d_lockref (+0) proc_inode::vfs_inode::i_acl (+0)
dentry::d_op (+0) proc_inode::vfs_inode::i_data (+0)
dnotify_mark::fsn_mark (+56) proc_inode::vfs_inode::i_data (+8)
ext4_inode_info::vfs_inode (+280) proc_maps_private::mm (+0)
file_lock::fl_link::prev (+0) shmem_inode_info::swaplist (+0)
file_lock::fl_list::pprev (+0) vfs_inode::i_data (+0)
file_lock::fl_wait (+8) vfs_inode::i_lock (+0)
files_struct::fdtab (+64) vfs_inode::i_mapping (+0)
fs_struct::pwd::dentry (+0) sock::sk_callback_lock (+0)
fs_struct::seq (+0) sock::sk_peer_cred (+0)
fs_struct::users (+0) socket::i_acl (+0)
hugetlbfs_inode_info::vfs_inode (+272) socket::i_default_acl (+0)
hugetlbfs_inode_info::vfs_inode (+60) socket::i_op (+0)
inode::i_data::prev (+0) vfs_inode::i_data::prev (+0)
inode::i_lock (+0) vfs_inode::i_lru::next (+0)
journal_head::b_triggers (+0) vfs_inode::i_sb_list::next (+0)
kioctx::users (+0) user_struct::epoll_watches (+32)

Table 6: Potential Privilege Escalations Detected by SCAVY
but Unverified.

our fuzzer is ineffective, but highlights that SCAVY’s fuzzer
is more focused on the memory target accessing code rather
than exploring irrelevant kernel code.

open("/etc/passwd",O_APPEND)
open("/etc/shadow",O_APPEND)
open("/etc/shadow",O_RDONLY)
setuid(0)
setgid(0)
open("/proc/self/mem",O_RDONLY)
open("/proc/1/mem",O_RDONLY)
opendir("/root")
socket(AF_INET, SOCK_RAW, IPPROTO_RAW)
mount("dev/sda1", "/mnt", "ext4", MS_RDONLY, NULL);
chmod("/etc/shadow", S_IRUSR | S_IWUSR)
kill(1, SIGKILL)
mknod("/dev/mydevice", S_IFCHR | 0600, makedev(10, 100)
unlink("/etc/shadow")
symlink("/etc/passwd", "/tmp/passwd")

Table 7: List of system calls that conduct operations depen-
dent on privilege.

7158 33rd USENIX Security Symposium USENIX Association

	Introduction
	Problem Statement
	Problem Definition
	Unexploited, Exploitable, and Exploited States

	Goal and non-goals

	Motivating Examples
	Corrupting push0 g 0 Gpop0*ADJBOXdotteddddottedoodottedttdottedttdottedeedotteddddotteddddottedoodottedttdottedttdottedeedottedddpush0 g 0 Gpopadjbox,Gin,adjcalcgray!15vm_area_struct::vm_file
	Corrupting gray!15key::description

	Scavy in the Kernel Exploitation Development Pipeline
	Design
	Instrumentation and Analysis
	Discovery of Potential Memory Targets
	Allocator Discovery
	Memory Target (Structure Field) Discovery
	Memory Target Discovery

	Detection of Privilege Escalation
	Inserting Privilege Dependent Operations
	Detecting Exploitable States

	Implementation
	Evaluation
	Typecast Coverage
	Fuzzer Effectiveness
	Exploitable State Detection
	Evaluation of the Exploitable State Definition
	Evaluation of the Privilege Escalation Detector
	Exploiting Real Vulnerabilities

	Discussion
	Conclusions
	Appendix
	Analysis of Detected Exploitable States
	Case 1: push0 g 0 Gpop0*ADJBOXdotteddddottedoodottedttdottedttdottedeedotteddddotteddddottedoodottedttdottedttdottedeedottedddpush0 g 0 Gpopadjbox,Gin,adjcalcgray!15file::f_mapping
	Case 2: push0 g 0 Gpop0*ADJBOXdotteddddottedoodottedttdottedttdottedeedotteddddotteddddottedoodottedttdottedttdottedeedottedddpush0 g 0 Gpopadjbox,Gin,adjcalcgray!15vm_area_struct::vm_file
	Case 3: push0 g 0 Gpop0*ADJBOXdotteddddottedoodottedttdottedttdottedeedotteddddotteddddottedoodottedttdottedttdottedeedottedddpush0 g 0 Gpopadjbox,Gin,adjcalcgray!15anon_vma_chain::rb

	Exploiting CVE-2022-27666
	Evaluation of Scavy's Detector Step
	Comparing with the unmodified Syzkaller

