
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

ElectionGuard: a Cryptographic Toolkit
to Enable Verifiable Elections

Josh Benaloh and Michael Naehrig, Microsoft Research; Olivier Pereira,
Microsoft Research and UCLouvain; Dan S. Wallach, Rice University
https://www.usenix.org/conference/usenixsecurity24/presentation/benaloh

ElectionGuard: a Cryptographic Toolkit to Enable Verifiable Elections

Josh Benaloh
Microsoft Research

Michael Naehrig
Microsoft Research

Olivier Pereira
Microsoft Research

and UCLouvain

Dan S. Wallach∗

Rice University

Abstract
ElectionGuard is a flexible set of open-source tools that—
when used with traditional election systems—can produce
end-to-end verifiable elections whose integrity can be verified
by observers, candidates, media, and even voters themselves.
ElectionGuard has been integrated into a variety of systems
and used in actual public U.S. elections in Wisconsin, Califor-
nia, Idaho, Utah, and Maryland as well as in caucus elections
in the U.S. Congress. It has also been used for civic voting
in the Paris suburb of Neuilly-sur-Seine and for an online
election by a Switzerland/Denmark-based organization.

The principal innovation of ElectionGuard is the separation
of the cryptographic tools from the core mechanics and user
interfaces of voting systems. This separation allows the cryp-
tography to be designed and built by security experts without
having to re-invent and replace the existing infrastructure.
Indeed, in its preferred deployment, ElectionGuard does not
replace the existing vote counting infrastructure but instead
runs alongside and produces its own independently-verifiable
tallies. Although much of the cryptography in ElectionGuard
is, by design, not novel, some significant innovations are in-
troduced which greatly simplify the process of verification.

This paper describes the design of ElectionGuard, its inno-
vations, and many of the learnings from its implementation
and growing number of real-world deployments.

1 Introduction

The ElectionGuard project was initiated by Microsoft in 2018
and announced publicly in 2019. The project intends to help
support democratic institutions by building and deploying
free, open-source tools that enable so-called, end-to-end (E2E)
verifiable elections [8]—that is, elections in which voters and
observers can confirm the accuracy of the results without
∗Dr. Dan Wallach’s contributions to this work were made while he was

at Rice University and partially funded by DARPA prior to his becoming a
DARPA program manager. The views, opinions, and/or findings expressed are
those of the authors and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

having to trust the election software, hardware, or personnel
outside of their control. ElectionGuard deters disinformation
about election results by providing publicly-verifiable evi-
dence that reported election outcomes are accurate.

One of the principal novelties of ElectionGuard is that it
is not yet another static verifiable election system. Instead, it
is a flexible set of tools that can be used by election equip-
ment vendors within their own systems and processes. Elec-
tionGuard encapsulates the cryptographic functionality and
provides simple interfaces that can be used without crypto-
graphic expertise. Broadly, the ElectionGuard tools support
three phases of an election.

Key Generation and Set Up. In this phase, designated
guardians engage, with the assistance of an administrator, in
a protocol to jointly establish a public encryption key which
will be used to encrypt all votes in one or possibly several
elections. Additionally, a detailed manifest is provided to de-
scribe specifics of an election such as the contests, candidates,
and voting rules. The resulting key and manifest will be in-
corporated into an ElectionGuard application that will run on
devices used by voters to cast their votes during the election.

Ballot Encryption. In the course of an election, each time
an enabled device used by a voter receives a voter’s selections,
it calls its embedded copy of the ElectionGuard application.
ElectionGuard encrypts the ballot contents and returns back
to the calling application a confirmation code in the form of
a cryptographic hash of the voter’s encrypted selections and
other data. In most scenarios, the intent is that this confirma-
tion code be given to the voter, and enables voters to confirm
that their votes have been recorded without any change for
inclusion in the tally. The systems that capture voter selec-
tions and call the ElectionGuard application can vary widely—
including fully electronic voting interfaces, scanners which
can read hand-marked and/or machine-marked ballots, ballots
transmitted by physical mail, and even ballots cast online. In-
deed, ElectionGuard is compatible with most existing modes
of casting votes.

USENIX Association 33rd USENIX Security Symposium 5485

Tally Decryption. In this final phase, the guardians reassem-
ble together with the administrator to decrypt the election
tallies and produce a verifiable record for publication. Voters
can inspect this published election record to ensure that their
encrypted votes are present, and the integrity of this election
record can be verified by independent applications that can
be written by any interested parties.

In addition to the encrypted votes, the election record pro-
duced by ElectionGuard includes numerous artifacts that to-
gether constitute a proof of the election’s integrity—including
the correctness of the announced election tallies. The integrity
of an election record can be verified by applications written
by voters, observers, or any other interested parties.

One of the guiding principles of ElectionGuard is to make
independent verification as easy as possible. The desire is to
promote the growth of an ecosystem of independent election
verifiers by making the writing of a verifier a reasonable
project for a first class in programming. Voters and observers
can run verifiers from a variety of sources on the record of
any election.

The first deployments of ElectionGuard were in 2020 in
public elections in Wisconsin and California and then in the
U.S. House Democratic caucus to elect its leadership. In
2021, civic votes using ElectionGuard began being conducted
in Neuilly-sur-Seine, France. Using the learnings from these
early deployments, work commenced on a version 2 of Elec-
tionGuard which offered many advantages and simplifications.
Some of these improvements were included in subsequent
deployments in Idaho, Utah, and Maryland (detailed in Sec-
tion 6).

While there have been a signficant number of implementa-
tions of various E2E-verifiable election designs in the past that
have been used to cast millions of votes, none have followed
this approach of building tools which can be incorporated
into existing election equipment, and none have achieved
anywhere close to this breadth of usage in different scenar-
ios, including in-person voting on ballot marking devices,
in-person voting with scanned hand-marked paper ballots,
risk limiting audits, and Internet voting – see discussion in
Section 6.

The remainder of this paper will describe the cryptographic
design of the ElectionGuard protocol and the introduced inno-
vations, some remarks and learnings about implementations of
ElectionGuard, and details about various deployments within
the U.S.

2 Cryptographic Design

The cryptographic design of ElectionGuard is largely inspired
by the 1985 work of Cohen (now Benaloh) and Fischer [17]
and the 1997 voting protocol by Cramer, Gennaro and Schoen-
makers [20] that have also been adopted in systems like Vote-
Box [40], Helios 2.0 [1], STAR-Vote [4], and Belenios [18].

The two protocols [17, 20] support elections that compute
the tally by adding the number of votes that each candidate
received, including elections in which voters either pick a
single candidate, a limited number, or as many candidates on
the ballot as desired. The winner is determined by the number
of votes each candidate received. This so-called homomor-
phic tallying approach is usually not suitable for voting meth-
ods like Instant-Runoff Voting (IRV) or Single Transferable
Vote (STV) in which candidates are ranked and eliminated
in multiple rounds: the simple addition of votes may not be
sufficient to tally such elections. Techniques based on verifi-
able mixnets [39] are often more appropriate for such voting
methods and have also been adopted in many systems, but
they are more cumbersome to deploy.

A future variant of ElectionGuard may support mixnet meth-
ods, but the philosophy of ElectionGuard has been to cover
the majority of scenarios with an approach that is as simple
as possible to understand and verify. We have also found that
the ability to assert to election administrators that cast bal-
lots encrypted by ElectionGuard will never be (individually)
decrypted has been a powerful tool to assuage concerns. For
these reasons, we have started with homomorphic tallying,
but a mixnet alternative (probably using elliptic curve groups)
is definitely on the ElectionGuard road map.

2.1 Roles
ElectionGuard describes the various steps that a set of actors
can take to obtain a verifiable election. These actors assume
the following roles:

• Guardians G1, . . . ,Gn are jointly responsible for main-
taining the privacy of the votes.

• Voters cast their ballots and may verify that they have
been properly recorded.

• An election administrator facilitates protocols and pro-
cedures and also populates and publishes the election
records.

• Verifiers verify the election records to confirm an elec-
tion’s integrity and, to some extent, ballot privacy.

It is important to note that the verifiers do not have a direct
role in elections, and no assumptions are placed upon them.
Instead, anyone—voter, candidate, observer, or other party—
can choose at any time after the completion of an election to
use their own means to verify the results of an election. There
is no need for a verifier to register in any way or to inform
anyone about performing this function.

2.2 Election Records
ElectionGuard makes the assumption that the election records
are publicly accessible and that everyone has an identical view

5486 33rd USENIX Security Symposium USENIX Association

of them. This is a standard assumption for any election as
there is always a central election authority that provides an
authoritative list of voters, fixes the ballot contents, sets the
voting times and locations, and announces the election tally.

As such, ElectionGuard assumes that the election adminis-
trator can set up a broadcast channel with similar properties
and uses it to disseminate the ElectionGuard election records
or, and this may be preferred, that the administrator uses an
existing channel for this purpose.

In many verifiable election systems, it is assumed that a
public bulletin board exists for publishing these records. In
practice, it has most often taken the form of a simple web
page,1 as it is also common to publish the records of risk lim-
iting audits [35] that may take place. Sometimes, this bulletin
board can be implemented in the form of a more sophisticated
distributed system [13, 30, 41]. A permissionless blockchain
may be more problematic than helpful in this context: we
only seek to authenticate a single authority that publishes a
small number of records, not to encourage unidentified actors
to replicate and compete on the views of these records.2

Digitally signing election records may or may not help
depending on the context: signatures may offer means to
authenticate records and confront a rogue administrator if
inconsistent records are signed. However, a signature may not
be beneficial if authenticating the legitimacy of a signature
verification key is just as complicated as authenticating the
legitimacy of the election records.3 External mechanisms may
be useful for that purpose.

As a complement, candidates may be invited to acknowl-
edge, and possibly replicate, the election records through their
own communication channels, just as it is customary that can-
didates publicly acknowledge the election outcome.

2.3 Election Parameters
This section describes the parameters that define an election
and the logical structure for the ElectionGuard software as
well as the cryptographic parameters used to implement the
protocol components.

2.3.1 Election Manifest

Each election that uses ElectionGuard must have an election
manifest that defines the election. It must at least contain
a unique election label and a list of contests and selectable
options for each contest, together with limits on the number
of options that a voter can select within a contest (referred
to as contest selection limits). It must also contain a list of
ballot styles that indicate all subsets of contests that may be

1See, for instance: https://app.enhancedvoting.com/results/public/cc/
CollegePark/nov23.

2For a discussion of the use of blockchains in voting systems, see pp. 103–
105 of the U.S. National Academies report at https://nap.nationalacademies.
org/catalog/25120

3In either case this could come down to checking a hash value.

displayed to voters.4 The election manifest may also contain
various optional data fields, including details about voting
devices, software versions, time information, etc.

The election manifest serves to guarantee that all actors
have a common view of an election and makes it possible for
the ElectionGuard software to record ballots properly.

2.3.2 Cryptographic Parameters

ElectionGuard uses ElGamal encryption in the multiplicative
group Z∗p of the ring of integers modulo a large prime p. In or-
der to tally contests by relying on an additive homomorphism
between the plaintexts and ciphertexts, choices are encoded
exponentially as follows. A vote v (usually v ∈ {0,1}, but in
some cases a larger v is possible) is mapped to the ElGamal
group as gv for some fixed group element g∈Z∗p. Multiplying
two such powers of g together adds the exponents, as desired,
and the discrete logarithm extraction needed to perform the
inverse mapping remains efficient in practice since the expo-
nent is bounded by the number of votes that a candidate can
receive. An encryption of the vote v then is an ElGamal en-
cryption of gv and the multiplicative homomorphism inherent
in the ElGamal encryption scheme through componentwise
multiplication translates to an additive homomorphism.

The use of exponential ElGamal prompts for performing El-
Gamal encryption in a “small” subgroup of Z∗p. ElectionGuard
uses a 4096-bit prime p and works in a cyclic subgroup of Z∗p
of order q, which is of size 256 bits.5 This choice leads to more
efficient group exponentiations compared to the standard
group construction using safe primes without substantially
reducing the security against best-known attacks.6 For the
latter, exponentiations are computed in the group of quadratic
residues modulo p and are much more costly.

While ElectionGuard could be instantiated with an elliptic
curve group, the decision to use integer groups instead was
guided by making verifying the integrity of an election as
easy as possible. Ideally, writing a verifier should be simple
enough to be repeated many times and should not require
intricate knowledge of elliptic curve implementations. Integer
groups are a conceptually simpler choice with a hopefully
lower barrier for implementing them.

On various occasions, ElectionGuard needs to hash values
to Zq. Hashing thus requires some caution because outputs
of hash functions are bit strings, so their interpretation as
integers modulo q may not be uniformly distributed values
in Zq. In some protocols, this discrepancy can create security
issues [15]. There are standard solutions to this problem: for

4For instance, some contests may be available to all voters in an election
while others may depend on the district in which a voter resides.

5The ElectionGuard specification [6] more generally describes how this
p is to be computed for any desired size. But in practice, having verifiers
check that a particular prime p is being used relieves them of the complex
computational burden of confirming that p has been correctly computed.

6This choice also appears in the FIPS PUB 186-4 standard for instance
https://csrc.nist.gov/pubs/fips/186-4/final.

USENIX Association 33rd USENIX Security Symposium 5487

https://app.enhancedvoting.com/results/public/cc/CollegePark/nov23
https://app.enhancedvoting.com/results/public/cc/CollegePark/nov23
https://nap.nationalacademies.org/catalog/25120
https://nap.nationalacademies.org/catalog/25120
https://csrc.nist.gov/pubs/fips/186-4/final

instance, one can hash to bit strings substantially longer than
q, so that their reductions modulo q are distributed statistically
close to uniform. ElectionGuard takes a different approach
by selecting q = 2256−189 which is the largest prime below
2256. Hashing to 256-bit strings, converting them to integers,
and reducing modulo q then provides values that are almost
uniform modulo q when the hash function is modeled as a
random oracle. In practice, no 256-bit hash value larger than
q will ever occur, and the hash results taken modulo q will be
indistinguishable from uniform.

As for the choice of p, ElectionGuard selects a 4096-bit
prime such that its binary representation starts and ends with
256 bits set to one, is such that q divides p−1 and that (p−
1)/2q is also prime. The 3584 middle bits of p are determined
as the bits corresponding to the smallest integer larger than
the integer given by the first 3584 bits of ln(2) (the natural
logarithm of 2) that make the resulting p compatible with the
above constraints. The bits set to one support faster modular
reduction, while the middle bits are chosen to prevent an
effective use of SNFS [29]. Following this process that is
determined by efficiency and security considerations leads to
a unique prime p. The standard group generator g is simply
chosen as g = 2(p−1)/q mod p, which is different from 1 and
therefore generates the group of order q.

Further cryptographic parameters are the number of
guardians n and the quorum value k. The small integer n de-
notes the number of guardians that collaborate to generate the
election public key used to encrypt all votes. To decrypt the
election tallies that have been computed by homomorphic ad-
dition of encrypted votes, at least k≤ n guardians are required
to participate. The quorum can be chosen to be smaller then
n to enable decryption even if some of the original guardians
become unavailable or uncooperative.

2.4 Keeping track of the context

All cryptographic data produced by ElectionGuard are kept
within a clear context. The fixed cryptographic public param-
eters are tied to all cryptographic operations, starting with key
generation. As soon as the election context is known through
the election manifest, it is additionally tied to all the election
related operations, in order to prevent data reuse across elec-
tions. And, within an election, every cryptographic element is
unambiguously labeled in order to prevent any internal reuse.

In order to offer public verifiability, ElectionGuard makes
an abundant use of zero-knowledge (ZK) proofs that are tra-
ditional sigma protocols made non-interactive through the
Fiat-Shamir heuristic [26]. The random oracle instance used
to implement the Fiat-Shamir heuristic is used to tie all cryp-
tographic data in the election records to their context.

In ElectionGuard, the random oracle is instantiated with
HMAC-SHA-256, which is believed to offer a good option
when used with keys of a fixed length smaller than the un-
derlying hash function input block size [23]. Notation for the

random oracle is H(· ; ·), where the first input is passed to
HMAC-SHA-256 as the key and the second as its input. In
ElectionGuard, all HMAC-SHA-256 keys have a fixed length
of 32 bytes. For hashing into Zq, the ouput of H is interpreted
as an integer and reduced modulo q. This hash function is
denoted Hq(· ; ·) = H(· ; ·) mod q.

As an illustration of this process, the first hash that is
computed, the parameter hash HP =H(ver;0x00, p,q,g,n,k)
sets the cryptographic public parameters, where ver is
the ElectionGuard specification version number that is
used, padded to 32 bytes. From HP and the election
manifest, an election base hash is computed as HB =
H(HP;0x01,manifest), where manifest is a file contain-
ing the election manifest. The parameter hash HP is used in
the key generation process, which ElectionGuard does not
link to a specific election.

After election public keys K and K̂ have been generated, an
extended base hash is computed as HE = H(HB;0x14,K, K̂).

When a new ballot is encrypted, a random 32-byte selection
encryption identifier idB is chosen and an identifier hash is
computed as HI = H(HE ;0x20, idB), which is then used in
all proofs of validity of that ballot. The extended base hash
HE is also used in every decryption proof produced during
the tallying operations.

All these hashes guarantee the soundness of the ZK
proofs [10], and prevent carrying election data from one elec-
tion to another, mixing data from different ballots, and, more
generally, reusing cryptographic data in an unintended con-
text.

2.5 Key Generation
ElectionGuard’s key generation process uses a variant of Ped-
ersen’s distributed key generation (DKG) protocol [38] sup-
porting a dishonest majority at the price of reduced robustness.
The key generation ceremony runs between publicly identified
parties, and there is little benefit for a malicious participant
in introducing errors in the protocol execution if these errors
are detected before the keys are actually used to encrypt sen-
sitive material. Therefore, we assume that guardians abort
key generation as soon as one of them detects an error, that
they investigate the error out-of-band, and restart the protocol
from scratch, possibly replacing guardians that are identified
as acting maliciously.

Although distributed key generation has become relatively
common, it can be quite challenging to get all of the de-
tails right, and many other efforts have missing or incorrect
proofs.7

The election administrator publishes a quorum k ≤ n in
the election record, which means that at least k guardians
are needed to compute the election tally. It also means that
ballot privacy will depend on the assumption that fewer than

7For example, the widely-used Belenios system references an incorrect
proof [7].

5488 33rd USENIX Security Symposium USENIX Association

k guardians are compromised—verifiability does not depend
on the number of honest guardians. Pedersen’s original proto-
col [38] was only designed to support k < n/2, which guar-
antees a majority of players are honest such that the protocol
terminates and ciphertexts can always be decrypted. Our con-
cern here is that corrupted guardians might want to decrypt
individual votes that they should not decrypt, rather than that
they refuse to decrypt ballots they are supposed to decrypt.
Allowing a quorum less than n accommodates emergency
situations on behalf of one or a few guardians, but it needs to
be kept high enough to protect from curious guardians.

The protocol starts with each guardian Gi selecting a ran-
dom polynomial Pi(x) = ∑

k−1
j=0 ai, jx j and publishing com-

mitments Ki, j = gai, j for 0 ≤ j < k in the election records,
following Feldman’s verifiable secret sharing (VSS) proto-
col [25]. Each guardian Gi also selects a random secret share
encryption key ζi and publishes the corresponding public
key κi = gζi . Additionally, each guardian publishes Schnorr
proofs [42] that it knows how to open the commitments it
posts. Afterwards, each guardian Gi sends the value Pi(j)
to guardian G j, encrypted with G j’s public share encryption
key κ j, for every 0 < j ≤ n. Then, each guardian G j checks
the validity of all posted Schnorr proofs, and verifies that
gPi(j) = ∏

k−1
ℓ=0(Ki,ℓ)

jℓ for 0 < i ≤ n. Finally, the public vote
encryption key is set to K = ∏

n
i=1 Ki,0 and each guardian Gi

sets its private key share to P(i) = ∑
n
j=1 Pj(i).

The above key generation protocol is run a second time,
either in parallel or sequentially, to generate a second public
key K̂ (together with commitments K̂i, j and corresponding
Schnorr proofs). This key is used for encrypting ballot data
other than numerical votes, which is done with a different
encryption mode.

At the end of this protocol execution, each guardian’s soft-
ware8 displays a hash of its view of the public key generation
protocol transcript records, including all the election parame-
ters, K, K̂ and all the Ki, j, K̂i, j, and κi. Each guardian compares
that view with the one that appears in the election record. If
this or any of the previous verification steps fail, the guardian
complains and an out-of-band investigation is started before
the protocol restarts from scratch, possibly with one or more
new guardians. If no guardian complains, the content of the
election record up to that point is validated and called the
guardian record. The goal of these verification steps is to pre-
vent a malicious election administrator from impersonating
guardians or even to simply throw away the key generation
transcript and to replace it by another fully simulated one—
there is no public-key infrastructure (PKI) in ElectionGuard,
so guardian messages are not signed.

As noted above, this protocol follows the general structure
of Pedersen’s [38] by producing a key computed as a sum of
individual keys generated by guardians that are shared using
a verifiable secret sharing (VSS) protocol. The differences

8Ideally, each guardian will use its own software obtained from a source
of its own choosing.

with Pedersen’s protocol are that (i) ElectionGuard does not
start with a round during which every guardian commits to
Ki,0 (K̂i,0) and then opens it, (ii) ElectionGuard adds Schnorr
proofs for the Ki, j (K̂i, j), and (iii) ElectionGuard relies on
guardians checking authentic election records instead of sign-
ing their key shares.

The vast majority of proposed DKG protocols, includ-
ing [12, 14, 28, 31, 33, 38] for instance, focus on the honest
majority case, which offers robustness. The dishonest majority
case has been considered in the context of threshold signa-
tures [24, 32, 34], and ElectionGuard’s DKG may be closest
to the one proposed by Komlo and Goldberg for FROST [32].
In the following theorem, we claim the IND-CPA security of
ElGamal encryption based on keys produced with the Elec-
tionGuard DKG—we refer to the combined scheme as Elec-
tionGuard ElGamal.

Theorem 1. ElectionGuard ElGamal encryption is IND-CPA
secure under static corruption of up to k−1 guardians (1≤
k ≤ n) if standard ElGamal encryption (performed with the
standard single-party key generation) is IND-CPA secure with
the same public parameters.

The proof of this theorem follows the strategy from Braun
et al. [12], adapted to the dishonest majority case.

Proof. Let k and n be fixed and define C = {1, . . . ,k−1} and
H = {k, . . . ,n}. Assume, w.l.o.g., that the guardians in the
set {Gi}i∈C are corrupted, while the others are honest. We
design an adversary B against standard ElGamal encryption
that wins the IND-CPA game with a probability equal, up to
a negligible difference, to the probability that an adversary
A controlling the corrupted guardians breaks the IND-CPA
security of the ElectionGuard ElGamal encryption.

Given A , we design B as follows: when B receives the
ElGamal public parameters (Z∗p,q,g) and the public key K∗

from the standard ElGamal challenger, it forwards the pub-
lic parameters to A . B honestly plays the role of all honest
guardians, except for Gn. For emulating Gn, it simulates a
share of the discrete logarithm of Kn,0 = K∗ by picking Pn(i)
as a random element of Zq for every i ∈ C. It then derives
{Kn,i}i∈C so that gPn(i) = ∏

k−1
j=0(Kn, j)

i j
for every i ∈ C, by

Lagrange interpolation “in the exponent”. B also submits
simulated Schnorr proofs for every Kn,i with i ∈ {0}∪C. The
view of A is distributed in a way that is identical to what it
would be in a normal execution of the ElectionGuard ElGamal
key generation.

B then verifies the guardian records: it checks that all the
expected Ki, j values appear in the records, that the share veri-
fication succeeds for all the values submitted by A , and that
the Schnorr proofs are valid. If any of this fails, B aborts
and A loses. If the verification succeeds, B extracts the dis-
crete logarithms of the Ki,0 keys for i ∈ C by rewinding A
appropriately—this can be performed efficiently since it is a
single round of extraction.

USENIX Association 33rd USENIX Security Symposium 5489

Eventually, when A asks for the encryption of a pair
of messages (m0,m1), B forwards it to the ElGamal chal-
lenger, who returns a ciphertext (c0,c1) = (gr,mb(K∗)r). B
then submits to A the ciphertext (c0,c1(c0)∑

n−1
i=1 si) = (gr,

mb(∏
n
i=1 Ki,0)

r) where each si is the discrete logarithm of
Ki,0, which has either been extracted from the Schnorr proofs
or has been selected by B . When A outputs a guess b′ on b, B
forwards that guess to the ElGamal challenger. The probabil-
ity that b = b′ is exactly the one that A makes a correct guess
in the ElectionGuard ElGamal IND-CPA security game. The
only possible discrepancy comes from the potential failure to
extract a Schnorr proof, which can be made negligible.

This protocol works for any quorum k. If a quorum k = n
is chosen, the VSS phase of the protocol could be avoided
and the DKG could be as simple as asking each guardian
to publish its public key together with a Schnorr proof that
it knows the corresponding private key, as is done in the
Helios voting system for instance [1]. In such a case, each
guardian only needs to check that the election public key is
indeed the product of a list of public keys that includes its
own. In particular, no communication between guardians is
needed, which may simplify the key generation ceremony by
removing guardian coordination requirements. ElectionGuard
chooses to offer a single key generation protocol to keep its
specification and election verification as simple and uniform
as possible.

2.6 Ballot Preparation

A typical ElectionGuard ballot consists of a sequence of ElGa-
mal encryptions—usually of either 0 or 1, encoded in expo-
nential form to support an additive homomorphism, together
with ZK proofs that these encryptions are indeed encryptions
of bits. There is one ciphertext per choice on the ballot, and,
for most election types, it encrypts 1 if and only if the voter
supports the corresponding choice.9 The encrypted tally is
computed by multiplying together all ciphertexts correspond-
ing to the same choice across all cast ballots.

ElectionGuard also supports more general option selection
limits and contest selection limits: the former allow a voter
to assign a value in a given range to a specific option on the
ballot (enabling systems like cumulative voting, range voting,
and score voting), and the latter allow the number of options
selected by a voter within a specific contest to lie in a specific
range (enabling voters to select more than one option in a
contest).

Again, ElectionGuard largely follows Cramer et al. [20],
but makes some important tweaks and additions.

9A blank vote in a contest would be represented by an encryption of 0 for
every option.

2.6.1 The ballot nonce

For each ballot B, a secret random nonce ξB is chosen in addi-
tion to the public random selection encryption identifier idB.
As discussed above, idB is used to derive the ballot identifier
hash HI , which also incorporates the information related to
the election public key and to the election manifest.

This identifier hash is used, together with the secret ballot
nonce ξB, to derive the randomness ξi, j used to encrypt the
voter’s choice for option j of contest i on the ballot:

ξi, j = Hq(HI ;0x21, i, j,ξB).

This approach is useful in several use cases.

• Some ElectionGuard-enabled systems can take advan-
tage of this nonce to efficiently challenge an encryption
operation performed by an untrusted device. In such
systems, the device is required to publish a ballot con-
firmation code, essentially a hash of all the ciphertexts
on that ballot (we will discuss this further below), be-
fore the voter decides to cast the ballot. The voter may
then choose to challenge the device, in which case the
device only needs to provide the 32-byte ballot nonce
ξB, which can then be used to re-derive, on a personal
device, all the ξi, j values, recompute all the ciphertexts
on the ballot, and verify that the ballot confirmation code
is actually consistent with the voter’s choices. If a ballot
is cast instead of being challenged, the ballot nonce is
permanently erased.

• Some systems may use an offline ballot marking device
(BMD) to print a human readable ballot with the voter’s
choices, and to compute and print the ballot confirma-
tion code that the voter takes home. As the BMD is
offline, there may be no way to transmit the full cipher-
texts to the server that publishes the encrypted ballots
for verification and in support of the tallying operations.
When the paper ballots are anonymous (because they are
dropped in a ballot box, for instance), a solution might
be to print an encrypted version of ξB on the ballot so
that, after scanning and decryption, an election server
can recompute all ciphertexts on the ballot with the same
randomness as the BMD, supporting the election verifi-
cation steps.

2.6.2 Encryption

The encryption of a selection σ made by a voter, using
randomness ξ derived as explained above, is computed as
(α,β) = (gξ,Kξ+σ). Each ElGamal ciphertext is accompa-
nied by a proof that it really encrypts a selection σ ∈ {0,1}
(or, when allowed, in a specified larger domain), which is
computed as a disjunctive version of the Chaum-Pedersen
protocol [16, 19], following a most common choice in voting

5490 33rd USENIX Security Symposium USENIX Association

systems [1, 4, 18, 20, 40]. The proof is generated by first com-
puting a commitment consisting of two ciphertexts (a0,b0) =
(gu0 ,Ku0+σc0) and (a1,b1) = (gu1 ,Ku1+(σ−1)c1) for random
choices of u0,u1,c0,c1 in Zq. Then, a global challenge is
computed10 as c = Hq(HI ;0x24,α,β,a0,b0,a1,b1) and the
selection challenge is updated to cσ = c− c1−σ. Observe that
cσ did not play any role in the computation of the commit-
ment. Eventually, responses are computed as v0 = u0− c0ξ

and v1 = u1− c1ξ. The proof consists of (c0,c1,v0,v1) and is
verified by checking that (α,β) are elements of the expected
subgroup of Zq, recomputing the commitment, recomputing
c using H, and verifying that c is the sum of c0 and c1.

The ElectionGuard encryption process differs from the tra-
ditional encryption method where ciphertexts are computed
as (gξ,gσKξ) [1, 4, 18, 20, 40]: this modification has no im-
pact on security but reduces the cost of computing the ZK
proof from 5 to 4 exponentiations, following an observation
by Devillez et al. [22]. The recent literature offers numerous
other options for computing these 0-1 encryption proofs, and
these often lead to more compact and faster ways to compute
proofs—several such methods are also described and com-
pared by Devillez et al. [22]. ElectionGuard aims at keeping
the programming of an election verifier as simple as possi-
ble, and therefore keeps these disjunctive Chaum-Pedersen
proofs. In terms of proof size, a proof only takes 1024 bits
compared to ciphertexts of 8192 bits, so the relative bene-
fits of smaller proofs appear to be marginal. Furthermore,
as will be described in the implementation section, the com-
putation process can also be made fast enough for practical
deployments by relying on other simple techniques, including
fixed-base exponentiation methods.

2.6.3 Encryption of more sophisticated ballots

The encryption process just described can be used for tradi-
tional election methods and approval voting, i.e., contests in
which voters can select as many options as they like. Elec-
tionGuard supports several other types of contests:

• ElectionGuard includes range proofs, which are immedi-
ate extensions of the disjunctive proof technique used to
demonstrate that a ciphertext encrypts a 0 or a 1. These
can be used to prove that a single selection ciphertext is
within an arbitrary range [a,b], hence offering support
to other types of voting methods, including cumulative
voting and Borda count. These can also be used to prove
that the product of the selection encryptions of a single
contest is within a range, hence proving that a voter se-
lected exactly or at most x options in that contest for
instance.

• ElectionGuard supports contest write-in data, where a
voter can enter text in a write-in field instead of select-

10ElectionGuard often hashes more context inputs like contest and selection
indices that are omitted here for simplicity.

ing a listed option. Here, an extra counter is encrypted
for the write-in, and the text itself is encrypted using
the secondary ElGamal public key K̂ in the threshold
version of Signed ElGamal mode [43], hence offering
NM-CPA security just as the security mode used to en-
crypt selections [10]. The counter is used to count the
number of voters who used the write-in option and, when
that number is low enough to guarantee that no write-in
candidate could win (which is expected in most cases),
the text of the write-ins is simply ignored and never de-
crypted. Otherwise, these write-in ciphertexts may be
decrypted, providing that they offer sufficient anonymity
guarantees.

2.6.4 Confirmation Codes

After all selections on a ballot have been encrypted, a con-
firmation code is prepared and, in most common use cases,
given to the voter. The code is a hash value computed from the
sequence of ciphertexts that constitute the encrypted ballot as
follows. First, for each contest on the ballot, a contest hash is
computed. Specifically, if (αi,βi) is the ciphertext encrypting
the i-th selection of the l-th contest (with m options) on the
ballot, the contest hash is

χl = H(HI ;0x28,indc(Λl),α1,β1,α2,β2, . . . ,αm,βm),

where indc(Λl) is the unique contest index for the index with
label Λl specified by the election manifest. Ciphertexts are
hashed in the order specified by the election manifest.

All contest hashes are then hashed in the order specified by
the election manifest to obtain the confirmation code (assum-
ing there are mB contests on the ballot) as

HC = H(HI ;0x29,χ1,χ2, . . . ,χmB ,BC).

The last input BC is the chaining field byte array that deter-
mines the ballot chaining mode and the additional input for
ballot chaining.

ElectionGuard offers the option to chain ballots together via
dependencies of their confirmation codes. A simple chaining
mode would include the confirmation code of the previous
ballot that was encrypted on the same device into the compu-
tation of the current confirmation code. The chaining field BC
is a fixed-length byte array that consists of a chaining mode
identifier and the previous confirmation code. This means, the
j-th confirmation code computed on a device is

H j = H(HI ;0x29,χ1,χ2, . . . ,χmB ,BC, j),

where BC, j = iC ∥ H j−1 is the concatenation of the chaining
mode identifier iC and the confirmation code H j−1 of the
previous ballot computed on the same device. The first ballot
encludes an initial hash value that is derived from device
information.

USENIX Association 33rd USENIX Security Symposium 5491

The goal of this chaining process is similar to that of the
one proposed by Sandler and Wallach [41]: to make it eas-
ier to detect a modification to any ballot. When ballots are
chained, any change in a ciphertext that appears on a ballot
would require adapting all subsequent elements of the chain
in order to keep the chain consistent and valid. As a result,
any voter who verifies a confirmation code linked to a ballot
appearing in the original chain after the modified ciphertext
was included, would detect the modification. This makes de-
tection more likely than in the absence of chaining: without
chaining, only the voter holding the confirmation code of the
modified ballot is able to detect the modification.

The ElectionGuard hashing process to compute confirma-
tion codes does not include ZK proofs as inputs, which differs
from other systems [1, 18]. Including only the ciphertexts is
sufficient to commit to the content of the votes and, in some
applications, it is convenient to be able to delay the compu-
tation of ballot validity proofs to a subsequent step in the
election process.

Regardless of the chaining mode, the most a typical voter
would do is check an election record to ensure that the ex-
pected confirmation code is present. The computations to con-
firm that confirmation codes are correct are more commonly
delegated to election verifiers who, as part of the process of
verifying the integrity of an election record, will confirm that
each confirmation code in the record is correctly computed.
Of course, anyone – including voters – can verify any or all
of the contents of an election record.

A component of an election verifier can be a single ballot
verifier which takes as its input all data used to generate a
confirmation code (including, when appropriate, the chaining
variable) and confirms the correct computation of a confirma-
tion code. A single ballot verifier can be particularly useful
when instant verification of challenges is offered to voters
(for instance, at a poll site). In this scenario, a voter who chal-
lenges a ballot would receive information that would allow
an app (perhaps installed on a mobile device) to check that
the confirmation code is consistent with the selection made
by the voter.

It is important to emphasize that since confirmation codes
are derived entirely from encryptions of votes, their being
given to voters and even their publication in properly de-
ployed in-person applications does not in any way compro-
mise voter privacy or enable coercion or vote-selling.

2.7 Tally

2.7.1 Update of the Election Record

Once voting has concluded, all encrypted ballots consisting of
encrypted selections and corresponding ZK proofs of ballot
well-formedness are added to the election record, with a clear
mark indicating whether each ballot is intended to be included
in the tally or is challenged, in which case it is not included in

the tally and needs to be individually decrypted. The election
record is committed to by the election administrator, and made
available for everyone to check, in particular to the guardians
who can compare their views of these election records. Again,
requiring the administrator to sign the records may help to
identify a rogue administrator who would distribute different
views of the records to different parties.

2.7.2 Homomorphic tally computation

All ZK proofs of well-formedness are verified, the uniqueness
of the selection encryption identifiers is verified, and the en-
crypted ballots that are intended to be tallied are aggregated
to obtain the encrypted tallies. These are computed via the ad-
ditive homomorphism of the exponentially encoded ElGamal
encryption, that is, they are the componentwise products of
all selection encryptions that correspond to the same option
across all encrypted ballots containing that contest.

2.7.3 Decryption

When all encrypted tallies are available, at least k guardians
reconvene together with the election administrator and jointly
decrypt every tally for every selection in every contest of
the election. Each available guardian Gi uses its private key
share P(i) to compute a partial decryption Mi = AP(i) of each
given tally ciphertext (A,B). The available partial decryp-
tions are combined to obtain the value M = ∏i∈U (Mi)

wi ,
where U ⊆ {1,2, . . . ,n} is the set of indices of the available
guardians, and the wi for i ∈ U are the corresponding La-
grange coefficients used to reconstruct the shared secret. The
value M is therefore the value that would have been obtained
by decrypting with the secret key corresponding to the elec-
tion public key K. This secret key remains implicit in all
ElectionGuard computations and is never explicitly recon-
structed.

The value M allows decryption of the tally t via Kt =BM−1

through the computation of a small discrete logarithm that can
be computed efficiently (for example using a precomputed ta-
ble) because tally values are typically bounded by the number
of votes cast, a relatively small number.11

2.7.4 Proof of correct decryption

To enable verifiable decryption, the available guardians col-
laborate to produce a Chaum-Pedersen proof of correct de-
cryption with the secret key corresponding to K. This proof
can be computed in a way that is reminiscent of threshold
signatures.

We suppose that a set U ⊆ {1, . . . ,n} of guardians is avail-
able for performing the decryption of a ciphertext (A,B) and
that |U | ≥ k. Each guardian Gi, i ∈U starts by committing to

11In voting methods that allow a voter to place more than one vote on a
candidate, the discrete logarithms may be slightly larger, but they are still
easily computed.

5492 33rd USENIX Security Symposium USENIX Association

the commitment of an individual Chaum-Pedersen proof, by
selecting a random ui← Zq, computing (ai,bi) = (gui ,Aui),
and sending di = H(HE ;0x30, i,A,B,ai,bi,M,U).

When Gi has received a d j value from every other guardian
G j, j ∈U , it sends the pair (ai,bi). After receiving the (a j,b j)
from the other guardians, it then checks that d j was computed
correctly for all j ∈U and halts if any of these verification
steps fail. This round of commit-reveal guarantees that cor-
rupted guardians are unable to select their (ai,bi) pairs as
a function of the pairs of the honest guardians, and that the
product (a,b) = (∏i∈U ai,∏i∈U bi) is uniformly distributed
as long as one of the guardians Gi, i ∈U is honest.

After these verification steps, the proof challenge is com-
puted as c = Hq(HE ;0x31,A,B,a,b,M). Each guardian Gi
(i ∈U) can then use the i-th Lagrange coefficient wi to com-
pute an adjusted challenge ci = c ·wi mod q and an individ-
ual response vi = ui − ciP(i) mod q. The final response is
computed as v = ∑i∈U vi mod q, and the decryption proof
is the pair (c,v). Note that v = ∑i∈U ui − c∑i∈U wiP(i) =
∑i∈U ui− c · s mod q, but again, the secret election key s has
not been explicitly reconstructed to compute this proof.

If the proof is valid, that is, if v∈Zq and if c can be correctly
recomputed as above, using a = gvKc and b = AvMc, then it
is published in the election record.

It would have been more direct for each guardian to pub-
lish an independent Chaum-Pedersen proof that it computed
its partial decryption accurately. However, as ElectionGuard
aims at making election verification as simple as possible, the
present protocol, which is more complex for the guardians,
offers the central benefit of making the role and identity of
the participating guardians completely invisible to an election
verifier. From the verifier perspective, the decryption proof is
one single Chaum-Pedersen proof.

It can be observed that this protocol is very similar to the
Sparkle threshold signature protocol [21]. Its security analysis
partly follows similar arguments. First, we can observe that
the protocol is sound: since it produces valid Chaum-Pedersen
proofs, it follows that it has the same special soundness prop-
erty and that obtaining two executions with the same commit-
ments but two different challenges and valid responses makes
it possible to extract the unique value s such that K = gs and
M = As. We can also show that honest guardians do not reveal
any information by computing the Chaum-Pedersen proof as
described above.

We believe this approach of combining zero-knowledge
proofs of partial decryptions into a single zero-knowledge
proof of complete decryption to be novel. It is especially
valuable under threshold conditions where some partial de-
cryptions may not be available, and it completely removes one
of the greatest challenges for verifiers, which is the handling
of missing guardians and the associated Lagrange coefficients.
This approach may have application outside of the domain of
elections.

Theorem 2. Let U ⊆ {1,2, . . . ,n} be the set of indices of
the guardians participating when computing the decryption
proof as described above. Let V be a non-empty subset of U
containing the indices of the honest guardians. There exists
a simulator S that, on inputs (A,B), Mi (i ∈ V) and Ki, j for
1 ≤ i ≤ n and 0 ≤ j < k, produces an interaction with the
corrupted guardians with index in U \V that is statistically
indistinguishable from an interaction in a real execution of
the protocol. We let S control the function H, modeled as a
random oracle.

Proof. S selects a random c← Zq, computes ci = cwi mod
q accordingly, and selects a random response vi ← Zq
for each guardian with index in V . It then sets ai =

gvi
(

∏
n
j=1 ∏

k−1
m=0 Kim

j,m

)ci
and bi = AviMci

i for each guardian
with index i in V . Note that the double product between the
parentheses in the computation of ai equals gP(i).

S then starts playing the protocol with the corrupted
guardians, using the values above. The random choice of
the vi values and their independence from the (a j,b j) values
of the corrupted guardians ensures that, with overwhelming
probability≥ (1−t/q2), where t is the number of queries that
the corrupted parties make to the random oracle, the query
that is made in order to compute the proof challenge will be
fresh. S can then program the random oracle to offer c as the
answer to that query. The resulting conversation will then be
distributed exactly as a real conversation.

We observe that the commit-reveal round of the protocol is
essential to guarantee that the random oracle query made to
compute the proof challenge is a fresh query with overwhelm-
ing probability.

2.7.5 Decryption of challenged ballots

The election record may also contain a set of challenged bal-
lots, in order to support cast-as-intended verifiability, which
will be discussed in Section 2.8.1. Valid challenged ballots
are decrypted exactly in the same way as the aggregated bal-
lots that are included in the tally. The verifiable decryption
data provided for the challenged ballots is included within the
election record.

2.8 Election Verification

ElectionGuard’s main objective is to make elections verifiable.
The value of a verifiable election is only fully realized, when
the election is actually verified, for example by voters, election
observers, or news organizations. ElectionGuard supports two
central aspects of E2E-verifiability [8]:

1. Cast-as-intended verifiability makes it possible for a
voter to verify that the selections made by the voter have
been properly recorded.

USENIX Association 33rd USENIX Security Symposium 5493

2. Tallied-as-cast verifiability makes it possible for a voter
to verify that every recorded vote is correctly included
in the tally.

Eligibility verifiability, that is, the possibility to verify that bal-
lots have been submitted by eligible voters, is also a desirable
feature of an election. However, it typically relies on external
voter identification mechanisms that are election dependent.
As such, ElectionGuard enables verifying the number of bal-
lots that are included in the tally, but not their origin. When
paired with an external list of people who voted, this enables
full verifiability of the results by participants and observers.

2.8.1 Cast-as-intended verifiability

The confirmation code of a ballot is the key element support-
ing cast-as-intended verifiability.

First, it makes it possible for a voter to challenge a ballot.
This challenging operation enables a voter to verify that all
selections were correctly encrypted and can be implemented
in different ways.

• Most often, the encryption process happens after a voter
expresses selections. In this case, the encryption device
must commit to the ballot confirmation code and offer
the choice to either cast or challenge the prepared bal-
lot. The two choices are mutually exclusive, since the
challenging operation reveals the selections on the ballot.
A challenged ballot can never be cast and a cast ballot
cannot be challenged anymore. The challenging process
proceeds either by revealing the ballot nonces of the chal-
lenged ballots if they are available, or by decrypting the
challenged ballots using the normal verifiable decryption
process. It is again of crucial importance to verify, be-
fore decryption, that the decrypted ballots are valid and
have a unique encryption identifier within the election.
A ballot nonce can typically be revealed as soon as the
ballot is challenged, while a ballot decryption operation
will usually happen at tallying time. The voter can then
verify that the selections made were correctly reflected
in the decrypted ballot.

• ElectionGuard can also be used with pre-encrypted bal-
lots: voters are then provided with vectors of ciphertexts
encrypting every possible selection on a ballot, and select
the ciphertexts that are claimed to match their selection.
This can be useful in some vote-by-mail scenarios or for
pre-printed ballots for in-person voting. In such a set-
ting, it is possible to compute a confirmation code that
includes hashes of every available encrypted selection,
and the challenge process can then be used to verify that
these ciphertexts actually encrypt the expected selections.
This approach has two advantages: first, the challenging
process is independent of any actual selection made by
a voter, which is good for privacy and, second, the verifi-
cation can be performed by anyone and does not depend

on a voter accurately reporting selections, which offers
accountability.

Whether a ballot is challenged or cast, it is included in the
election record. Voters can then check that one or more ballots
(a cast ballot and any challenged ballots) with the expected
confirmation codes appear in the election records and for
challenged ballots, that it shows the correct selections.

2.8.2 Tallied-as-cast verifiability

At the end of the tallying operations, the election records con-
tain all the ballots and decryption proofs. Any voter can then
verify that the ballot the voter cast is accurately incorporated
in the homomorphic aggregation of the encrypted selections,
and that the decryption proof demonstrates the validity of
the announced tally with respect to the aggregated encrypted
selections. That second verification can also be carried out by
any observer, voter or not.

2.8.3 Privacy checks

All the verification steps that we described confirm the cor-
rectness of the election results and are independent of the
honesty of the guardians: even a coalition of all guardians
together with the administrator would not be able to fake the
evidence offered on an election tally.

ElectionGuard however relies on the guardians to guarantee
that the votes remain secret, and the guardians are expected to
perform several verification steps as part of their role. These
steps are not sufficient to guarantee that the votes remain
secret: a ballot marking device may be corrupted and leak en-
cryption nonces, or just use a broken pseudo-random number
generator (PRG), and there is nothing that the guardians can
do to prevent that.12 Nevertheless, guardians should perform
certain verifications to prevent ElectionGuard from being used
to compromise voter privacy.

We summarize these steps here: their technical description
has been provided above.

1. The guardian software must verify that the cryptographic
parameters that are used offer the expected security level.
This avoids accepting primes that would be too small for
instance.

2. Guardians must check the guardian record at the end of
the key generation phase: they must be certain that the
published view of the key generation process is consis-
tent with their own. This prevents a rogue administrator
from replacing a guardian’s key, or from subverting a
guardian’s key by sending malicious messages during
the key generation process.

12Cryptographic means cannot ensure that there are no cameras hidden
behind voters recording their actions.

5494 33rd USENIX Security Symposium USENIX Association

3. Guardians must check that the ciphertexts they decrypt
are those listed for decryption in the election record. This
prevents a rogue administrator from asking for the de-
cryption of individual cast ballots for instance. Guardians
should also verify that ballots have been aggregated cor-
rectly and that all ballots have a unique selection encryp-
tion identifier and correct validity proofs. Though the
latter task may be delegated to others, it must be verified
before guardians engage in any decryption.

2.8.4 Verification software

In order to perform all these verification steps, voters,
guardians and observers should use software that offers as
much independence as possible. For instance, if the goal is to
detect a malicious election administrator, it makes no sense to
blindly trust software provided by the election administrator
to perform these verification steps. Public code and avail-
ability of software from multiple sources are two important
features for a meaningful use of ElectionGuard, and the Elec-
tionGuard website13 offers links to six independent verifiers
(as well as one independent port of the full ElectionGuard
implementation).

2.9 Trust
With the design described herein, privacy of ballots is de-
pendent upon the cryptographic assumption that standard
ElGamal encryption is IND-CPA secure as shown in Theo-
rem 1 together with an assumption that the device on which
the ElectionGuard application performing ballot encryption
(such as an in-precinct ballot scanner) maintains ballot privacy.
These assumptions need to be paired with necessary physi-
cal assumptions about any particular use case. Cryptography
cannot prevent strategically-placed cameras or key-loggers
from learning the inputs of voters.14 A principal goal of Elec-
tionGuard—as a technology that is intended to augment but
not replace existing voting methods—is to add verifiability
without materially weakening privacy.

What ElectionGuard achieves is the ability for voters and
observers to verify the accuracy of election results with min-
imal trust—and critically with no trust at all in election ad-
ministrators or any other specific entities (such as device man-
ufacturers or software implementers). There is a very weak
assumption on the collision resistance of the SHA-256 hash
function (essentially that an adversarial agent should not be
able to produce two distinct votes or ballots with the same
hash). Beyond this, voters and observers may proxy their trust
as they wish to one or more verifiers of their choosing or they
may instead choose to write their own verifiers and confirm
the integrity of the results entirely on their own.

13https://www.electionguard.vote
14It may be possible to use code voting to add a layer of indirection so that

a voter’s inputs do not reveal the voter’s selections.

Confidence in an election result requires confidence that
the ballots being counted are genuine. A single, digitally-
signed election record allows all voters to confirm that their
votes are properly included. The discovery of two distinct
signed election records immediately implicates the election
administrator who published those records as maleficent.

An interesting challenge in some applications is so-called
eligibility verification—ensuring that all votes are cast by
voters who are eligible to vote and do not vote more of-
ten than allowed. In the U.S. and many other countries, the
list of voters who cast ballots in any jurisdiction is a mat-
ter of public record. Eligibility is thereby achieved entirely
through publicly-verifiable processes that are entirely outside
the scope of ElectionGuard, and the only intersection is for in-
terested parties to confirm that the number of ballots cast does
not exceed the number of voters listed. There is an expecta-
tion that interested parties will scrutinize this list for fictitious
voters and for voters who are listed as voting but who did
not do so. When voting is in-person, observers can simply
count the number of voters present. But these measures are
beyond the scope of ElectionGuard. When the list of voters
is not public, it is very difficult for observers to verify that
insiders did not add additional ballots to the count and inflate
counts of the number of voters.

3 Preferred Uses

The primary intended use of ElectionGuard is for in-person
poll-site voting. But there are many possible designs that are
compatible with a wide variety of equipment. Additionally,
many elections offer different modes of voting. For exam-
ple, hand-marked paper ballots for in-person voters together
with machine-marked ballots for voters with disabilities that
prevent them from marking physical ballots, together with
mailed ballots for voters who are not able to vote in person.
To be effective, ElectionGuard must enable all of these and
other modes of voting in a single election. There are even ap-
plications in which voters are not present and ballot contents
are encrypted administratively.

In all applications, an election using ElectionGuard begins
with a key-generation ceremony in which an election admin-
istrator works with guardians to form election keys. Later,
usually at the conclusion, the administrator will again work
with guardians to produce verifiable tallies. What happens in
between, however, can vary widely.

3.1 Precinct Ballot Scanners
An ideal use of ElectionGuard is on precinct-based ballot
scanners. An in-person voter can mark a ballot—either by
hand or by using a ballot-marking device—and then feed
the ballot into a scanner which may read the contents of the
ballot, display the contents as it interpreted them, and print a
confirmation code for the voter.

USENIX Association 33rd USENIX Security Symposium 5495

https://www.electionguard.vote

Once in possession of the paper confirmation code, the
voter can choose to either accept the scanner’s interpretation
of the ballot contents and cast the ballot or instead challenge
the ballot. A challenged ballot is marked as cancelled and the
confirmation code is opened15 by the scanner.16

A voter who challenges a ballot can then restart the voting
process by marking a fresh ballot. Both cast and challenged
ballots will be part of the election record.

3.2 Electronic Ballot Markers
ElectionGuard could instead be hosted by ballot marking de-
vices. In one flow, a voter could make selections directly on
an electronic (usually touch-screen) device which would then
print a confirmation code and allow a voter to either cast the
ballot or challenge the ballot and restart.

In another flow, a ballot marking device which can neither
store ballot encryptions nor transmit them within a LAN could
use the ballots themselves to convey encryptions by printing
an encoding of the encryption directly onto a paper ballot.17

3.3 Vote by Mail
Pre-encrypted ElectionGuard ballots could be mailed to voters
using the STROBE paradigm [3]. These paper ballots would
have short codes printed beside each possible selection and
voters could record short codes associated with their selections
and check later to ensure that they appear correctly in the
election record.

Unreturned ballots could serve as challenge ballots and
would be opened to show that their short codes and associated
confirmation codes are correct.

3.4 Internet Voting
Although not recommended for public elections18, Elec-
tionGuard could be used for Internet voting in a manner very
similar to Helios [1]. Voters would make their selections on-
line, receive confirmation codes, and then choose to either
cast or open their ballots. The Helios model allows voters to
prepare as many ballots as they wish—with only the last cast
ballot counting.

3.5 Risk-Limiting Audits
ElectionGuard can also be used to protect voter privacy in
risk-limiting audits (RLAs).

15This is accomplished by providing a verifiable decryption to demonstrate
that the confirmation code is consistent with the voter’s selections.

16It is also possible for challenged confirmation codes to be opened as part
of the subsequent tally decryption ceremony.

17To save space, a symmetric encryption of a nonce could be recorded
onto a paper ballot to allow a full encryption to be regenerated later.

18For a discussion of Internet voting, see the U.S. National Academies
report at https://nap.nationalacademies.org/catalog/25120

The most efficient post-election RLAs are ballot-
comparison audits which operate as follows. The contents
of each ballot are published together with ballot identifiers
that match identifiers on corresponding paper ballots. Ballots
are randomly selected from the published record and matched
against the stored paper ballots to show that the stored ballots
are consistent with announced tallies.

A major problem with ballot-comparison audits is that
publication of ballot contents can compromise voter privacy.
Voters can be coerced or sell their votes by completing a
less important part of their ballots according to unusual pre-
determined patterns that are likely to be unique within a voting
precinct. This allows each ballot—including the remaining
selections—to be associated with specific voters.

Following the VAULT paradigm of [9], ElectionGuard can
be used to post encrypted versions of all ballots cast and
to prove that these encrypted ballots are consistent with an-
nounced tallies. Randomly-selected ballots are decrypted and
matched with corresponding paper ballots. These decryptions
do not compromise voter privacy since coerced voters can
simply claim that their assigned patterns did not appear be-
cause they were not among those that happened to be selected
for audit.

In this application, ballots are encrypted administratively,
and confirmation codes are not needed.

3.6 Other Uses

The above examples are just a sample of the wide variety of
ways in which ElectionGuard can be used. The flexibility of
ElectionGuard is novel and is one of its primary benefits.

It is important to note, however, that merely using the Elec-
tionGuard tools does not ensure that an election’s results will
be publicly verifiable. There have, for example, been instances
where users have sought to require voters to announce in ad-
vance when they intended to challenge a ballot or to even
eliminate the challenge process entirely.

For at least the near future, it is important to include experts
in the process of deciding how ElectionGuard will be used in
any new deployments.

4 Implementations

Since its original specification in 2019 [6], there have been
several implementations of ElectionGuard that have been used
in various applications and pilot elections. Early implemen-
tations by various contributors included a Python reference
implementation of the full ElectionGuard 1.0 specification,
an encryption engine in C++ with C# bindings, implemen-
tations in Haskell, Java, and TypeScript. More recently, we
have implemented ElectionGuard 2.0 in Kotlin and Rust.

This section discusses some of the lessons learned from
building these implementations.

5496 33rd USENIX Security Symposium USENIX Association

https://nap.nationalacademies.org/catalog/25120

4.1 Performance

Unsurprisingly, the modular exponentiation at the heart of
most ElectionGuard operations imposes the highest computa-
tional cost among all computations and is the limiting factor
in any performance analysis. Using fast libraries for modular
arithmetic is crucial to achieve good performance so that la-
tency due to ballot encryption and ZK proof generation does
not impact usability in the voting place.

For code running on the Java virtual machine (including
Kotlin), or on Android, Java’s BigInteger class is the obvi-
ous choice. For Python, it is straightforward to use GnuMP,
which has hand-tuned assembly routines. Inside a browser,
modern JavaScript engines have a native bigint type which
is also very performant. The Kotlin code when targeting “na-
tive” code rather than the JVM, uses Microsoft’s HACL*
[11]—a performant C implementation of a wide variety of
cryptographic primitives which have been formally verified
for correctness.

Fixed-base modular exponentiation. Most exponentia-
tions in ElectionGuard have a fixed base, either the generator
g or the election public key K. It is well-known [36, §14.6.3]
that using pre-computed tables of certain powers of these
bases makes encryption and proving operations substantially
faster, as shown in the election context by Devillez et al. [22].
To compute gx, one parses x in groups of k bits, e.g., for 8-bit
groups, gx = gx0−7g(x8−15)≪8g(x16−23)≪16 · · · . If x has ℓ bits, a
precomputed table with all values g2ki· j for 0 ≤ i < ⌈ℓ/k⌉,
0≤ j < 2k, turns the computation of gx into a series of table
lookups and multiplications. Using larger k leads to larger
tables (O(2k) memory usage), but reduces the number of mul-
tiplications.

In the original Python implementation, 8-bit tables yielded
a 5.1x performance improvement for encryption. 13-bit tables
yielded a 7.4x improvement. 16-bit tables yielded an 8.6x
improvement. (Measurements taken on a 2013 MacPro with
a 3.5GHz Intel Xeon.) Verification operations do make some
use of the generator g, but otherwise have variable bases, so
we only see improvements of 1.6x-1.7x.

It is standard practice to use Montgomery multiplica-
tion [37] for implementing modular multiplication of large
integers. In particular, entries in pre-computed tables should
be directly provided in Montgomery form to avoid the costly
conversion. HACL* provides the necessary primitives, giving
a 2.5x performance improvement.

Using base-K encoded ElGamal encryption. As men-
tioned above in §2.6.2, using the public election key K as
the base to encode voter selections for ElGamal encryption
saves one exponentiation when encrypting the selection and
generating the ZK proof of well-formedness. In our imple-
mentations, we observed a 13% speedup as expected.

Compact Chaum-Pedersen proofs. To keep memory re-
quirements for the ZK proofs low, it is important to use the
compact representation for proofs consisting of challenge and
response values instead of including the commitments as well.
Commitments have a large size of 512 bytes (4096-bit values),
but they do not need to be stored as they can be recomputed
from the challenge and response values, which only are 32
bytes in size each.

Side-channel attacks. Side-channel attacks on crypto-
graphic operations are generally less of a threat for voting
devices than with other applications. A poll site presents many
more direct opportunities for an attacker to obtain a voter’s
selections. Nevertheless, implementations should be made
side-channel resistant whenever practical.

4.2 Latency
Voter-perceived latency certainly needs to be considered, par-
ticularly if the voting device has a slow CPU. Luckily, beyond
the optimizations discussed above, there are a variety of other
options to hide this latency. For example, we also enable a
precomputation approach since most of the computation for
encrypting selections and generating the ZK proofs is inde-
pendent of the voter’s selections.

4.3 Compatibility
Every implementation of the ElectionGuard specification
should be compatible with other implementations. The design
specification only specifies the cryptographic operations in
detail. In particular early on, the lack of a concrete implemen-
tation specification meant that implementation specifics were
developed dynamically while several implementation efforts
were underway. This naturally lead to challenges for agreeing
on the specifics of data serialization into the JSON format. For
example, the Python implementation initially used a base-64
encoding of cryptographic values into JSON strings, which
was problematic for the C++ implementation. This lead to
a less efficient hexadecimal encoding. Later on, the Kotlin
implementation supported Google’s Protocol Buffers, for an
efficient binary representation, while the Rust code supported
MongoDB’s BSON (a binary variant of JSON).

The initial under-specification of how inputs to the cryp-
tographic hash function should be serialized in the original
version 1.0 specification has created unnecessary complica-
tions for achieving compatible implementations.

4.4 Scalability
The original definition of ElectionGuard specified a singular
JSON election record. This was a problem for the Voting-
Works implementation of VAULT [5], which was meant to
read the tabular output of a plain paper ballot scanner and

USENIX Association 33rd USENIX Security Symposium 5497

produce a public bulletin board with as many as a million
encrypted ballots. Getting the necessary throughput required
running on about 1000 CPU cores.

Fundamentally, ElectionGuard encryption is a CPU-bound
operation. It is easy to express the encryption of a million bal-
lots in any sort of data-parallel (e.g., MapReduce) paradigm,
and as such, it is straightforward to scale the encryption
throughput across multiple cores or multiple machines. The
challenges come afterward. Before we had all the optimiza-
tions described above, each encrypted ballot was roughly
1MB of JSON data, so a million ballots required a terabyte
of storage. On a cloud storage system like AWS S3, scalable
read or write performance can only be achieved if your data
is spread across multiple separate subdirectories, due to the
way these systems do sharding. We ultimately settled on a
design using one file per ballot, and building a Merkle tree
into the directory structure, so any individual ballot can be
verified without needing to read the full terabyte of data. This
is what was used in the Inyo County pilot (see Section 6.2).

It will be necessary to allow for bulk storage and for effi-
cient verification operations (e.g., voters, given receipts with
the hashes of their ciphertext and knowledge of the root hash
of the entire election, should be able to verify their ballots’
correct representation in the election record without needing
to read and process a terabyte of data).

5 In-Person Voting

While ElectionGuard has proven to be very flexible and usable
in a wide variety of voting scenarios (e.g., in-person, mail-
in, and Internet), the primary intent is for it to be used for
in-person poll-site voting.

Even within the in-person setting, ElectionGuard can
be used in many different ways: with hand-marked and/or
machine-marked ballots, on ballot scanners, on ballot printers,
or on ballot-marking devices. We describe in detail here a
preferred scenario which matches the use of ElectionGuard in
some of the deployments listed in section 6.

In an ideal setting, the ElectionGuard ballot encryption soft-
ware can be housed on a ballot scanner located in a voting
precinct. The use of precinct-based scanners has become com-
mon in the U.S. because of their reliability and flexibility (they
can generally read either hand-marked or machine-marked
ballots or a combination). Both the Idaho and Maryland de-
ployments described in section 6 used the Hart Intercivic
Verity ballot scanner which included both a display and a
thermal printer.

Upon completing a paper ballot—either by hand or using
a ballot-marking device—a voter feeds the paper ballot into
the ballot scanner. After reading the contents of the ballot,
the scanner displays its interpretation of the ballot contents
and also calls the embedded ElectionGuard application with
these same ballot contents. The ElectionGuard application
encrypts these contents and returns a confirmation code which

is printed for the voter. (N.b., the confirmation code is derived
from the encryption of the voter selections and in no way
reveals the selections themselves.) The voter collects the paper
confirmation code and reviews the selections displayed on the
screen. The voter may either indicate approval of the ballot—
in which case the paper ballot is mechanically dropped into a
bin beneath the scanner—or cancel the ballot—which causes
the paper ballot to be returned to the voter. If the ballot is
cancelled, the voter may make changes directly on the paper
ballot or visit a poll-worker to obtain a fresh blank ballot or
authorization to start again on a ballot-marking device.

Confirmation codes from cancelled ballots will be opened
and serve to ensure correctness of the system as in [2]. The
contents of cancelled ballots will be published in the election
record together with additional data to enable verifiers to
confirm that they match the given confirmation codes. It is
also possible for voters to use personal apps from sources of
their choosing together with supplemental data provided when
a ballot is cancelled to instantly confirm that the confirmation
code matches the voter’s selections.19

6 Deployments and Other Use Cases

One of the principal benefits of the ElectionGuard toolkit
model is its flexibility. This is shown by the variety of use
cases seen in the deployments described in this section.

6.1 Wisconsin
The first use of ElectionGuard in a public election occurred
in February of 2020 in the town of Fulton, Wisconsin. In
Fulton, Microsoft partnered with VotingWorks20 to deploy
a system with five ballot-marking devices, a single ballot
printer that was controlled by a laptop which also hosted the
ElectionGuard vote encryption tools, and a ballot scanner.

Voters made their selections using one of the touchscreen
ballot-marking devices and each voter’s selections were writ-
ten onto a smart card. Upon completing the selection process,
a voter would take the smartcard to the printing station which
would process the selections, call the ElectionGuard software,
and print an ordinary ballot with the voter’s selections and, on
a separate yellow sheet, an ElectionGuard confirmation code.
The voter would then have the option of either scanning the
printed ballot or taking it to a poll worker to challenge the
ballot and restart the voting process. In either case, the yellow
sheets containing confirmation codes could be retained by the
voters.

In Fulton, 398 voters cast ballots, and 4 ballots were chal-
lenged. After the ElectionGuard tallies were computed and
released, a hand count of the paper ballots was initiated to
confirm the results. The hand counted tally differed by 1 vote

19This instant verification feature was not available in recent deployments
in Idaho and Maryland.

20https://www.voting.works/

5498 33rd USENIX Security Symposium USENIX Association

https://www.voting.works/

from the ElectionGuard tally. But after a hand recount, it was
discovered that one of the paper ballots had been put in the
wrong pile, and once this was corrected, the results matched
perfectly.

6.2 California
The next use of ElectionGuard in a public election was in
November of 2020 in Inyo County, California [5]. But, unlike
in Wisconsin, it was not part of the voting but instead part of
the auditing process. California requires post-election audits
of paper ballots to confirm that they are consistent with any
machine counts that may have been done. The best modern
audits, ballot-comparison Risk-Limiting Audits (RLAs) [35],
typically begin by publishing the contents of every ballot and
then perform random sampling to show that the published
contents match the paper ballots.

The concern about ballot-comparison audits is that publi-
cation of ballot contents—even without any indication of the
voters who cast each ballot—can compromise voter privacy.21

The work in [9] shows how the tools used to achieve E2E-
verifiability can also be used to conduct a ballot-comparison
RLA without revealing raw ballot contents.

In Inyo County, California, ballot contents were encrypted
by VotingWorks using ElectionGuard, and these encryptions
were published instead of raw ballot contents. An election
record was published to show that these encrypted ballots
matched the announced tallies, and any ballot selected for au-
diting was decrypted and matched against the corresponding
paper ballot.22

6.3 U.S. Congress
Shortly after the November 2020 U.S. general election, the
respective political parties in the U.S. Senate and House of
Representatives met to elect their leadership. At that time,
the COVID-19 pandemic was a great concern, and discus-
sions began between the U.S. House Democratic caucus and
Microsoft about enabling leadership elections to be held re-
motely. While Congressional votes are public, the internal
caucus elections are held by secret ballot, and ElectionGuard
therefore provided a possible solution.

Internet voting poses many challenges, and although E2E-
verifiability can mitigate many of these challenges, it does
not offer a solution that is suitable for public elections [27] –

21On a ballot with many contests and questions (as is typical in California),
a voter can be instructed to make a very specific set of selections which is
likely to be unique amongst all ballots cast within a precinct or jurisdiction.
If the contents of each ballot are published, a coercer or vote-buyer can
inspect the list of published ballot contents to ensure that a ballot matching
the specific instructions is present.

22It is important to note that the small number of ballots that were de-
crypted and revealed do not enable coercion since a coerced voter can simply
assert that the instructed ballot contents did not appear amongst the set of pub-
lished raw votes because that ballot was, evidently, not amongst the audited
ballots.

it does nothing to protect the voting servers from large scale
attacks for instance. Microsoft did a careful analysis of this
scenario and concluded that for various reasons—including
the small number of voters, the opportunity for direct voter
education, the secondary channel available to each voter to
confirm vote receipt, and, most importantly, the centrally man-
aged mobile phones held by each voter—that this was an ap-
propriate use of the ElectionGuard technology and partnered
with Markup23 to build a customized solution for the U.S.
House Democratic caucus.24

House members downloaded a custom application onto
their managed mobile devices which they used to make their
selections of candidates for offices such as Speaker, Majority
Leader, and Whip. Upon making their selections, each House
member received a confirmation code and could choose to
either cast the ballot or challenge it to verify that it reflected
the selections that were made. After each round of voting,
the lists of candidates were shortened and a new vote was
conducted until a single winner was determined for each lead-
ership position. The record of each round of voting was made
available internally to House members and their staffs to en-
able verification.

6.4 Idaho

Starting in 2021, Microsoft partnered with election vendor
Hart InterCivic25 to integrate ElectionGuard into their vot-
ing equipment. The first public use of the Hart equipment
with ElectionGuard took place in Preston, Idaho in the gen-
eral election of November of 2022. Although the design was
unchanged, numerous efficiency improvements were made
to accommodate the Hart requirements, and new capabilities
were added to meet their particular needs. MITRE Corpora-
tion26 built its own independent verifier of the election record
and took it to Preston to perform an immediate verification of
the election record.

Voters had the choice to use ballot marking devices (which
print paper ballots marked according to voter selections) or
to fill out paper ballots by hand. Voters then had the option to
insert their paper ballots into a traditional ballot scanner or a
ballot scanner enhanced with ElectionGuard which provided
a confirmation code for each vote on thermal paper. In either
case, voters had an opportunity to review the scanners’ inter-
pretations of the selections on their ballots and could choose
at that time to challenge their ballots and have the paper ballot
returned. Voters could take challenged ballots to a poll worker
and restart the voting process. In all, 111 voters in Preston
chose to cast their votes on the ballot scanner enhanced with
ElectionGuard.

23https://www.markuplabs.com/
24This tool was also offered to the House Republican caucus and both

Senate caucuses.
25https://www.hartintercivic.com/
26https://www.mitre.org/

USENIX Association 33rd USENIX Security Symposium 5499

https://www.markuplabs.com/
https://www.hartintercivic.com/
https://www.mitre.org/

6.5 Utah

Utah statute has allowed some voters to return ballots elec-
tronically since 2006. In the November 2023 general election,
Enhanced Voting27 used ElectionGuard to add integrity to this
process in a Congressional special election and several local
elections. Ballots that were electronically transmitted were
also encrypted and tallied with ElectionGuard to verify that
the tally had not been altered. 514 ballots across the state
were processed with ElectionGuard.

6.6 Maryland

In November of 2023, ElectionGuard was used for munici-
pal elections in College Park Maryland. Hart conducted this
election with similar equipment to that used in Preston, Idaho.
Although by this time, most, but not all, of the ElectionGuard
version 2 features had been implemented. MITRE corporation
revised their independent verifier to match the new features
of this version and again ran their verifier immediately after
the election. All 1468 voters in this election had their votes
encrypted with ElectionGuard.

6.7 Neuilly-sur-Seine

Since late 2021, ElectionGuard has been used by Electis28 for
civic voting in the Paris suburb of Neuilly-sur-Seine.29 This is
a blockchain-based voting system of a kind explicitly recom-
mended against by sources like the U.S. National Academies
report.30 However, ElectionGuard is open-source and may be
used by anyone without payment or permission, and its use
here demonstrates its broad applicability.

6.8 Concordium

Concordium31 is a blockchain company based in Switzerland
and Denmark. Its June 2024 internal elections32 used its own
Rust implementation of ElectionGuard. Here, the fact that an
independent company did its own implementation demon-
strates both the applicability and appeal of the ElectionGuard
design.

27https://www.enhancedvoting.com/
28https://electis.com
29https://xtz.news/adoption/the-neuilly-sur-seine-municipal-youth-

council-elections-have-been-completed-using-the-tezos-based-voting-
application-electis/

30https://nap.nationalacademies.org/catalog/25120/securing-the-vote-
protecting-american-democracy

31https://www.concordium.com/
32https://medium.com/@concordium/concordiums-on-chain-voting-

protocol-40d4aaafa880

6.9 Lessons

User surveys were conduced at the end of several Elec-
tionGuard deployments.33 These deployments happened in
very different contexts, and were often accompanied by other
important changes in the elections, like the introduction of
electronic voting. As a result, it is hard to draw strong lessons,
and more surveys in similar settings are needed.

At this stage, surveys showed that voters and poll workers
expressed a strong increase in confidence in the accuracy of
the election results when using ElectionGuard. In the eyes of
technical experts observing the deployments, the key man-
agement by the guardians appears to be a central aspect that
should motivate further research: the current deployments
had guardians essentially blindly follow instructions provided
by the election organizers, using software and hardware pro-
vided by these same organizers. Better ways of achieving
independence in practice are needed.

7 Conclusions

As can be seen from the wide variety of scenarios described
above, ElectionGuard has proven to be a very versatile design.
When used in its primary application, ElectionGuard gives
voters the ability to confirm on their own that their votes have
been accurately counted—whether cast in-person, by mail,
or online—without having to trust anyone or anything out of
their control. ElectionGuard can also be used to protect voter
privacy in post-election risk-limiting audits.

ElectionGuard also introduces new cryptographic ap-
proaches of independent interest that make ElectionGuard
a flexible, efficient, and easy to use toolkit with numerous
applications.

Acknowledgements

A great many people and organizations have contributed to
the design, development, and deployment of ElectionGuard
since its inception by Microsoft six years ago. There is not
space here to properly thank everyone, but many are noted
on the ElectionGuard website at https://www.electionguard.
vote and in the ElectionGuard specification at https://www.
electionguard.vote/spec/.

The authors do want to call out a few individuals whose
help has been invaluable to this paper including John Caron,
Henri Devillez, Moses Liskov, Arash Mirzaei, Thomas Peters,
John Ramsdell, Marsh Ray, and Vanessa Teague.

The authors would also like to express deep thanks to the
anonymous reviewers who made many valuable suggestions
which greatly improved the quality of this work.

33See, e.g., https://www.electionguard.vote/images/EAC%20Report%
20Final.pdf

5500 33rd USENIX Security Symposium USENIX Association

https://www.enhancedvoting.com/
https://electis.com
https://xtz.news/adoption/the-neuilly-sur-seine-municipal-youth-council-elections-have-been-completed-using-the-tezos-based-voting-application-electis/
https://xtz.news/adoption/the-neuilly-sur-seine-municipal-youth-council-elections-have-been-completed-using-the-tezos-based-voting-application-electis/
https://xtz.news/adoption/the-neuilly-sur-seine-municipal-youth-council-elections-have-been-completed-using-the-tezos-based-voting-application-electis/
https://nap.nationalacademies.org/catalog/25120/securing-the-vote-protecting-american-democracy
https://nap.nationalacademies.org/catalog/25120/securing-the-vote-protecting-american-democracy
https://www.concordium.com/
https://medium.com/@concordium/concordiums-on-chain-voting-protocol-40d4aaafa880
https://medium.com/@concordium/concordiums-on-chain-voting-protocol-40d4aaafa880
https://www.electionguard.vote
https://www.electionguard.vote
https://www.electionguard.vote/spec/
https://www.electionguard.vote/spec/
https://www.electionguard.vote/images/EAC%20Report%20Final.pdf
https://www.electionguard.vote/images/EAC%20Report%20Final.pdf

References

[1] Ben Adida, Olivier de Marneffe, Olivier Pereira, and
Jean-Jacques Quisquater. Electing a university president
using open-audit voting: Analysis of real-world use of
Helios. In 2009 Electronic Voting Technology Workshop
/ Workshop on Trustworthy Elections, EVT/WOTE ’09.
USENIX Association, 2009.

[2] Josh Benaloh. Simple verifiable elections. In 2006 Elec-
tronic Voting Technology Workshop, EVT ’06. USENIX
Association, 2006.

[3] Josh Benaloh. STROBE-Voting: Send Two, Receive
One Ballot Encoding. In Electronic Voting - 6th Interna-
tional Joint Conference, E-Vote-ID 2021, volume 12900
of LNCS, pages 33–46. Springer, 2021.

[4] Josh Benaloh, Michael D. Byrne, Bryce Eakin, Philip T.
Kortum, Neal McBurnett, Olivier Pereira, Philip B.
Stark, Dan S. Wallach, Gail Fisher, Julian Montoya,
Michelle Parker, and Michael Winn. STAR-Vote: A
secure, transparent, auditable, and reliable voting sys-
tem. In 2013 Electronic Voting Technology Workshop
/ Workshop on Trustworthy Elections, EVT/WOTE ’13.
USENIX Association, 2013.

[5] Josh Benaloh, Kammi Foote, Philip B. Stark, Vanessa
Teague, and Dan S. Wallach. VAULT-style risk-limiting
audits and the Inyo County pilot. IEEE Security &
Privacy, 19(04):8–18, July 2021.

[6] Josh Benaloh, Michael Naehrig, and Olivier Pereira.
ElectionGuard design specification version 2.1.0. https:
//www.electionguard.vote/spec/, June 2024.

[7] Josh Benaloh, Michael Naehrig, and Olivier Pereira. RE-
ACTIVE: Rethinking Effective Approaches Concerning
Trustees in Verifiable Elections. https://eprint.iacr.org/
2024/915, June 2024.

[8] Josh Benaloh, Ronald Rivest, Peter Y.A. Ryan, Philip
Stark, Vanessa Teague, and Poorvi Vora. End-to-end ver-
ifiability. https://arxiv.org/abs/1504.03778, April 2015.

[9] Josh Benaloh, Philip Stark, and Vanessa Teague.
VAULT: Verifiable Audits Using Limited Transparency.
In Electronic Voting - 4th International Joint Conference,
E-Vote-ID 2019, 2019.

[10] David Bernhard, Olivier Pereira, and Bogdan Warinschi.
How not to prove yourself: Pitfalls of the fiat-shamir
heuristic and applications to helios. In Advances in
Cryptology - ASIACRYPT 2012, volume 7658 of LNCS,
pages 626–643. Springer, 2012.

[11] Karthikeyan Bhargavan, Benjamin Beurdouche, Jean-
Karim Zinzindohoué, and Jonathan Protzenko. HACL*:
A verified modern cryptographic library. ACM CCS,
September 2017.

[12] Lennart Braun, Ivan Damgård, and Claudio Orlandi. Se-
cure multiparty computation from threshold encryption
based on class groups. In Advances in Cryptology -
CRYPTO 2023, volume 14081 of LNCS, pages 613–645.
Springer, 2023.

[13] Craig Burton, Chris Culnane, and Steve A. Schneider.
vVote: Verifiable electronic voting in practice. IEEE
Secur. Priv., 14(4):64–73, 2016.

[14] Ignacio Cascudo and Bernardo David. SCRAPE: scal-
able randomness attested by public entities. In Applied
Cryptography and Network Security - 15th International
Conference, ACNS 2017, volume 10355 of LNCS, pages
537–556. Springer, 2017.

[15] Nicholas Chang-Fong and Aleksander Essex. The
cloudier side of cryptographic end-to-end verifiable vot-
ing: a security analysis of Helios. In Proceedings of the
32nd Annual Conference on Computer Security Appli-
cations, ACSAC 2016, pages 324–335. ACM, 2016.

[16] David Chaum and Torben P. Pedersen. Wallet databases
with observers. In Advances in Cryptology - CRYPTO
1992, volume 740 of LNCS, pages 89–105. Springer,
1992.

[17] Josh D. (Benaloh) Cohen and Michael J. Fischer. A
robust and verifiable cryptographically secure election
scheme. In 26th Annual Symposium on Foundations of
Computer Science. IEEE, 1985.

[18] Véronique Cortier, Pierrick Gaudry, and Stéphane
Glondu. Belenios: A simple private and verifiable elec-
tronic voting system. In Foundations of Security, Proto-
cols, and Equational Reasoning - Essays Dedicated to
Catherine A. Meadows, volume 11565 of LNCS, pages
214–238. Springer, 2019.

[19] Ronald Cramer, Ivan Damgård, and Berry Schoenmak-
ers. Proofs of partial knowledge and simplified design
of witness hiding protocols. In Advances in Cryptology
- CRYPTO 1994, volume 839 of LNCS, pages 174–187.
Springer, 1994.

[20] Ronald Cramer, Rosario Gennaro, and Berry Schoen-
makers. A secure and optimally efficient multi-authority
election scheme. In Advances in Cryptology - EURO-
CRYPT 1997, volume 1233 of LNCS, pages 103–118.
Springer, 1997.

USENIX Association 33rd USENIX Security Symposium 5501

https://www.electionguard.vote/spec/
https://www.electionguard.vote/spec/
https://eprint.iacr.org/2024/915
https://eprint.iacr.org/2024/915
https://arxiv.org/abs/1504.03778

[21] Elizabeth C. Crites, Chelsea Komlo, and Mary Maller.
Fully adaptive Schnorr threshold signatures. In Helena
Handschuh and Anna Lysyanskaya, editors, Advances
in Cryptology - CRYPTO 2023, volume 14081 of LNCS,
pages 678–709. Springer, 2023.

[22] Henri Devillez, Olivier Pereira, and Thomas Peters. How
to verifiably encrypt many bits for an election? In Com-
puter Security - ESORICS 2022 - 27th European Sympo-
sium on Research in Computer Security, volume 13555
of LNCS, pages 653–671. Springer, 2022.

[23] Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger,
and Stefano Tessaro. To hash or not to hash again?
(In)differentiability results for H2 and HMAC. In Ad-
vances in Cryptology - CRYPTO 2012, volume 7417 of
LNCS, pages 348–366. Springer, 2012.

[24] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi
Shelat. Threshold ECDSA from ECDSA assumptions:
The multiparty case. In 2019 IEEE Symposium on Se-
curity and Privacy, SP 2019, pages 1051–1066. IEEE,
2019.

[25] Paul Feldman. A practical scheme for non-interactive
verifiable secret sharing. In 28th Annual Symposium
on Foundations of Computer Science, pages 427–437.
IEEE Computer Society, 1987.

[26] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In Advances in Cryptology - CRYPTO ’86, volume 263
of LNCS, pages 186–194. Springer, 1986.

[27] U.S. Vote Foundation. The future of voting: End-to-end
verifiable internet voting - specification and feasibility
study. https://www.usvotefoundation.org/E2E-VIV, July
2015.

[28] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk,
and Tal Rabin. Secure distributed key generation for
discrete-log based cryptosystems. J. Cryptol., 20(1):51–
83, 2007.

[29] Daniel M. Gordon. Discrete logarithms in GF(P) using
the number field sieve. SIAM J. Discret. Math., 6(1):124–
138, 1993.

[30] Lucca Hirschi, Lara Schmid, and David A. Basin. Fixing
the achilles heel of e-voting: The bulletin board. In 34th
IEEE Computer Security Foundations Symposium, CSF
2021, pages 1–17. IEEE, 2021.

[31] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively
secure threshold cryptography: Introducing concurrency,
removing erasures. In Advances in Cryptology - EURO-
CRYPT 2000, volume 1807 of LNCS, pages 221–242.
Springer, 2000.

[32] Chelsea Komlo and Ian Goldberg. FROST: flexible
round-optimized Schnorr threshold signatures. In Se-
lected Areas in Cryptography - SAC 2020, volume 12804
of LNCS, pages 34–65. Springer, 2020.

[33] Benoît Libert, Marc Joye, and Moti Yung. Born and
raised distributively: Fully distributed non-interactive
adaptively-secure threshold signatures with short shares.
Theor. Comput. Sci., 645:1–24, 2016.

[34] Yehuda Lindell. Simple three-round multiparty Schnorr
signing with full simulatability. IACR Cryptol. ePrint
Arch., page 374, 2022.

[35] Mark Lindeman and Philip B. Stark. A gentle introduc-
tion to risk-limiting audits. IEEE Security and Privacy,
10(5):42–49, 2012.

[36] Alfred J. Menezes, Paul C. van Oorschot, and Scott A.
Vanstone. Handbook of Applied Cryptography. CRC
Press, 2001.

[37] Peter L. Montgomery. Modular multiplication without
trial division. Mathematics of Computation, (170):519–
521, 1985.

[38] Torben P. Pedersen. A threshold cryptosystem with-
out a trusted party (extended abstract). In Advances in
Cryptology - EUROCRYPT 1991, volume 547 of LNCS,
pages 522–526. Springer, 1991.

[39] Kazue Sako and Joe Kilian. Receipt-free mix-type vot-
ing scheme - A practical solution to the implementation
of a voting booth. In Advances in Cryptology - EU-
ROCRYPT ’95, volume 921 of LNCS, pages 393–403.
Springer, 1995.

[40] Daniel Sandler, Kyle Derr, and Dan S. Wallach. Vote-
Box: A tamper-evident, verifiable electronic voting sys-
tem. In Paul C. van Oorschot, editor, Proceedings of
the 17th USENIX Security Symposium, pages 349–364.
USENIX Association, 2008.

[41] Daniel Sandler and Dan S. Wallach. Casting votes in
the auditorium. In Ray Martinez and David A. Wagner,
editors, 2007 USENIX/ACCURATE Electronic Voting
Technology Workshop, EVT’07, Boston, MA, USA, Au-
gust 6, 2007. USENIX Association, 2007.

[42] Claus-Peter Schnorr. Efficient identification and sig-
natures for smart cards. In Advances in Cryptology
- CRYPTO ’89, volume 435 of LNCS, pages 239–252.
Springer, 1989.

[43] Victor Shoup and Rosario Gennaro. Securing thresh-
old cryptosystems against chosen ciphertext attack. J.
Cryptol., 15(2):75–96, 2002.

5502 33rd USENIX Security Symposium USENIX Association

https://www.usvotefoundation.org/E2E-VIV

	Introduction
	Cryptographic Design
	Roles
	Election Records
	Election Parameters
	Election Manifest
	Cryptographic Parameters

	Keeping track of the context
	Key Generation
	Ballot Preparation
	The ballot nonce
	Encryption
	Encryption of more sophisticated ballots
	Confirmation Codes

	Tally
	Update of the Election Record
	Homomorphic tally computation
	Decryption
	Proof of correct decryption
	Decryption of challenged ballots

	Election Verification
	Cast-as-intended verifiability
	Tallied-as-cast verifiability
	Privacy checks
	Verification software

	Trust

	Preferred Uses
	Precinct Ballot Scanners
	Electronic Ballot Markers
	Vote by Mail
	Internet Voting
	Risk-Limiting Audits
	Other Uses

	Implementations
	Performance
	Latency
	Compatibility
	Scalability

	In-Person Voting
	Deployments and Other Use Cases
	Wisconsin
	California
	U.S. Congress
	Idaho
	Utah
	Maryland
	Neuilly-sur-Seine
	Concordium
	Lessons

	Conclusions

