
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Snowflake, a censorship circumvention system
using temporary WebRTC proxies

Cecylia Bocovich, Tor Project; Arlo Breault, Wikimedia Foundation;
David Fifield and Serene, unaffiliated; Xiaokang Wang, Tor Project
https://www.usenix.org/conference/usenixsecurity24/presentation/bocovich

Snowflake, a censorship circumvention system

using temporary WebRTC proxies

Cecylia Bocovich Arlo Breault David Fifield Serene Xiaokang Wang

Authors are listed alphabetically.

Abstract

Snowflake is a system for circumventing Internet censorship.

Its blocking resistance comes from the use of numerous, ultra-

light, temporary proxies (“snowflakes”), which accept traffic

from censored clients using peer-to-peer WebRTC protocols

and forward it to a centralized bridge. The temporary proxies

are simple enough to be implemented in JavaScript, in a web

page or browser extension, making them much cheaper to run

than a traditional proxy or VPN server. The large and chang-

ing pool of proxy addresses resists enumeration and blocking

by a censor. The system is designed with the assumption

that proxies may appear or disappear at any time. Clients

discover proxies dynamically using a secure rendezvous pro-

tocol. When an in-use proxy goes offline, its client switches

to another on the fly, invisibly to upper network layers.

Snowflake has been deployed with success in Tor Browser

and Orbot for several years. It has been a significant circum-

vention tool during high-profile network disruptions, includ-

ing in Russia in 2021 and Iran in 2022. In this paper, we

explain the composition of Snowflake’s many parts, give a

history of deployment and blocking attempts, and reflect on

implications for circumvention generally.

1 Introduction

Snowflake is a censorship circumvention system, a system

to enable network communication despite interference by a

censor. Its blocking resistance comes from a large pool of

low-cost, temporary proxies that varies over time and offers a

censor no fixed target for blocking. The core research purpose

of this paper is to investigate experimentally to what extent

a circumvention system that makes the tradeoffs Snowflake

does can be effective against contemporary censors. We will

present the design of the system, listing the many challenges

of circumvention and showing how Snowflake addresses them.

We will explain how Snowflake solves the technical challenge

of providing a good user experience when proxies are individ-

ually unreliable. We will document the reactions of national

censors through case studies in Russia, Iran, China, and Turk-

menistan over more than three years of deployment. On the

way, we will provide quantitative evaluations of various facets

of the system, including the number of clients served, and the

size and composition of the proxy pool.

Censorship circumvention systems may be characterized

on multiple axes. Some systems imitate a common network

protocol; others try not to look like any protocol in particular.

Some distribute connections over numerous proxy servers;

others concentrate on a single proxy that is, for one reason or

another, difficult for a censor to block. What all circumvention

systems have in common is that they strive to increase the

cost to the censor of blocking them—whether that cost be in

research and development, human resources, and hardware;

or in the inevitable overblocking that results when a censor

tries to selectively block some connections but not others.

On the spectrum of imitation to randomization, Snowflake

falls on the side of imitation; on the scale of diffuse to con-

centrated, it is diffuse. Snowflake’s defining quality is that

it pushes the idea of distributed, disposable proxies to an

extreme.

WebRTC is a suite of protocols intended for real-time com-

munication applications on the web [1]. Video and voice

chat are typical applications. Snowflake exchanges WebRTC

data formats in the course of establishing a connection, and

uses WebRTC protocols to traverse of NAT (network address

translation) and to connect clients and proxies. Crucially for

Snowflake, WebRTC APIs are available to JavaScript code in

web browsers, meaning it is possible to implement a proxy

in a web page or browser extension. WebRTC is also usable

outside a browser, which is how we implement the Snowflake

client program and alternative, command line–based proxies.

As is usual in circumvention research, we assume a threat

model in which clients reside in a network controlled by a

censor. The censor has the power to inspect and interfere

with traffic that crosses the border of its network; typical real-

world censor behaviors include inspecting IP addresses and

hostnames, checking packet contents for keywords, blocking

IP addresses, and injecting false DNS responses and TCP

RST packets. The client wants to communicate with some

destination outside the censor’s network, possibly with the

aid of third-party proxies. The censor is motivated to block

USENIX Association 33rd USENIX Security Symposium 2635

the contents of the client’s communication, or the destination

itself. The censor knows of the possibility of circumvention,

and therefore seeks to block not only direct communication

with the destination, but also indirect communication by way

of a proxy or circumvention system. Circumvention is accom-

plished when the client can reliably reach any proxy, because a

proxy, being outside the censor’s control, can then forward the

client’s communication to any destination. (In Snowflake, we

separate the roles of temporary proxies and a stable long-term

bridge, but the idea is the same.) The censor derives benefit

from permitting some forms of network access: it cannot triv-

ially “win” by shutting down all communication, but must

be selective in its blocking decisions, in order to optimize

some objective of its own. The art of censorship circumven-

tion is forcing the censor into a dilemma of overblocking or

underblocking, by making circumvention traffic difficult to

distinguish from traffic that the censor prefers not to block.

Snowflake originates in two earlier projects: flash proxy

and uProxy. Flash proxy [10], like Snowflake, used untrusted

temporary JavaScript proxies in web browsers forwarding to

a central bridge, but the link between client and proxy was

WebSocket rather than WebRTC, which was then an emerging

technology. Flash proxy was deployed from 2013 to 2016,

but never saw much use, probably because WebSocket, which

lacks the built-in NAT traversal of WebRTC, required clients

to do complicated port forwarding. uProxy [38], in one of

its early incarnations, pioneered the use of WebRTC prox-

ies for circumvention. uProxy’s proxies were browser-based,

but its trust and deployment model was different from flash

proxy’s and Snowflake’s. Censored clients would arrange, out

of band, for an acquaintance outside the censor’s network to

run a proxy in their browser [39]. A personal trust relation-

ship was necessary to prevent misuse, since browser proxies

fetched destination content directly—meaning client activity

would be attributed to the proxy, and the proxy might inspect

the client’s traffic. Clients did not change proxies on the fly.

uProxy supported protocol obfuscation: its packets could be

transformed to resemble something other than WebRTC. This

was possible because of uProxy’s implementation as a privi-

leged browser extension with access to real sockets. Because

Snowflake uses ordinary unprivileged APIs, its WebRTC can

only look like WebRTC; on the other hand, for the same rea-

son, Snowflake proxies are easier to deploy. Like flash proxy,

uProxy was active in the years 2013–2016.

Among existing circumvention systems, the one that is

most similar to Snowflake is MassBrowser [24], which of-

fers proxying though volunteer proxies, called buddies. Mass-

Browser’s architecture is similar to Snowflake’s: there is a cen-

tral component that coordinates connections between clients

and buddies, which corresponds to a piece in Snowflake called

the broker; buddies are like our proxies. Its trust model is in-

termediate between Snowflake’s and uProxy’s. Buddies pref-

erentially operate as one-hop proxies, as in uProxy, but are not

limited to proxying only for trusted friends. To deter misuse,

buddies specify a policy of what categories of content they are

willing to proxy. The buddy software is not constrained by a

web browser environment, and can, like uProxy, use protocol

obfuscation on the client–buddy link.

Other circumvention systems have used WebRTC, though

without Snowflake’s focus on numerous proxies. Protozoa [2]

and Stegozoa [12] demonstrate point-to-point covert tunnels

over WebRTC, the former by directly replacing encoded me-

dia with its own ciphertexts, the latter using video steganog-

raphy. Significantly, where Snowflake now uses WebRTC

data channels, Protozoa and Stegozoa use WebRTC media

streams, which may have advantages for blocking resistance.

We will say more on this point in Section 3. TorKameleon [40]

is a WebRTC-based system with the dual goals of resisting

blocking and complicating traffic correlation attacks. It uses a

recent draft programming interface called WebRTC Encoded

Transforms to support Protozoa-like embedding of data within

media streams, without invasive browser modifications.

Our goal in this paper is to provide a realistic assessment

of Snowflake, and neither to exaggerate its advantages, nor

disproportionately emphasize the limitations of other systems.

Circumvention research is a cooperative enterprise, and we

recognize and support our colleagues who design and main-

tain systems of their own. With Snowflake, we have tried to

explore a different point in the design space, and by this explo-

ration widen the scope of effective circumvention techniques.

We acknowledge that Snowflake will be a better choice in

some censorship environments and worse in others; indeed,

one of the ideas we hope to convey is that blocking resistance

can be meaningfully understood only in relation to a censor

and its particular resources, costs, and motivations.

As of March 2024, Snowflake supports an estimated 35,000

average concurrent users at an average total transfer rate of

2.7 Gbit/s, which works out to around 29 TB of circumvention

traffic per day.

2 How it works

A Snowflake proxy connection proceeds in three phases. First,

there is rendezvous, in which a client indicates its need for

circumvention service and is matched with a temporary proxy.

Rendezvous is facilitated by a central server called the broker.

Then, there is connection establishment, where the client and

its proxy connect to each other with WebRTC, using infor-

mation exchanged during rendezvous. Finally, there is data

transfer, where the proxy transports data between the client

and the bridge. The bridge is responsible for directing the

client’s traffic to its eventual destination (in our case, by feed-

ing it into the Tor network). Figure 1 illustrates the process.

These phases repeat as needed, as temporary proxies come

and go. Proxy failure is not an abnormal condition—it hap-

pens, for example, when a browser running a proxy is closed.

A client builds a circumvention session over a sequence of

proxies, switching to a new proxy whenever the current one

2636 33rd USENIX Security Symposium USENIX Association

Figure 1: Architecture of Snowflake. The client contacts the broker through an indirect rendezvous channel with high blocking

resistance. The broker matches the client with one of the proxies that are currently polling. The client and proxy connect to one

another using WebRTC. The proxy connects to the bridge, then begins copying traffic in both directions. If the proxy disappears,

the client does another rendezvous and resumes its session with a new proxy.

stops working. State variables stored at the client and the

bridge let the session pick up where it left off. The change of

proxies is invisible to applications using Snowflake (except

for a brief delay for re-rendezvous). The Snowflake software

presents an abstraction of one uninterrupted connection.

It does not avail a censor to block the broker or bridge, be-

cause Snowflake clients never contact either directly. Clients

reach the broker over an indirect rendezvous channel. Access

to the bridge is always mediated by a temporary proxy.

2.1 Rendezvous

A session begins with the client sending a rendezvous message

to the broker. An ambient population of proxies constantly

polls the broker to check for clients in need of service. The

broker matches the client with an available proxy, taking into

account factors like NAT compatibility.

The client’s rendezvous message is a bundle of data that the

broker will need in order to match the client with a proxy, and

that the proxy will need in order to connect to the client. The

most important part of the rendezvous message is a Session

Description Protocol (SDP) offer [27], which contains the

information needed for a WebRTC connection, such as the

client’s external IP addresses and cryptographic data to secure

a later key exchange. The broker gives the client’s offer to

a currently polling proxy, which sends back an SDP answer

with its share of connection details. The broker forwards

the proxy’s answer to the client, and client and proxy then

connect to one other directly. In WebRTC terms, this offer/

answer exchange is called “signaling” [1 §2.2], and here the

broker acts as a signaling server. To gather the information for

an SDP offer or answer, clients and proxies communicate with

third-party servers, called STUN servers, before contacting

the broker. We will say more about how STUN is used in

Section 2.2. Connecting to STUN servers is a normal part of

WebRTC, though there are fingerprinting considerations that

we cover in Section 3.

Interaction with the broker uses a “long-polling” model,

shown abstractly in Figure 2. Proxies poll the broker peri-

odically, using ordinary HTTPS requests. The broker holds

proxy polling requests open for a few seconds, waiting for a

client rendezvous message. If none arrives, the broker sends

a response that says “no clients” and the proxy goes to sleep

until its next poll. When a client does arrive, the broker re-

sponds to the proxy’s poll request with the client’s SDP offer.

The proxy re-connects to the broker to send back its SDP

answer. The broker sends the SDP answer to the client and an

acknowledgement to the proxy. At this point rendezvous is

finished: client and proxy have what they need to connect.

Proxies may contact the broker directly, because they are

assumed to be uncensored. But clients must use an indirect,

blocking-resistant channel, because any direct connection to

the broker would be easily blocked by a censor. What is

needed, essentially, is a miniature circumvention system to

bootstrap the full system. If clients have access to a bootstrap

rendezvous method that is good enough to reach the broker,

why is a more extensive circumvention system needed at all?

The answer is that the restricted scope of rendezvous admits

a wider range of solutions than general circumvention. Tech-

niques that would be too slow or expensive for high-volume

or interactive circumvention may yet be suited to rendezvous,

because rendezvous happens infrequently and transmits only

small amounts of data.

The nice thing about rendezvous that it is modular and sep-

arable. More than one method may be used, and the methods

need not have anything in common with the main system.

Anything that can be persuaded to convey a message of about

1,500 bytes indirectly to the broker, and return a response of

about the same size, may work as a Snowflake rendezvous

module. Snowflake now supports three rendezvous methods:

USENIX Association 33rd USENIX Security Symposium 2637

Rendezvous message

(client’s WebRTC offer)

Rendezvous response

(forward proxy’s answer)

Poll: any pending clients?

Here is a client

(forward client’s offer)

I will serve this client

(proxy’s WebRTC answer)

Acknowledged

Poll: any pending clients?

No pending clients

ProxyBrokerClient

Figure 2: Information exchange in Snowflake rendezvous.

When the broker makes a match, the proxy receives the

client’s SDP offer, then re-connects to send back its SDP

answer. It all happens during one round trip from the client’s

point of view. Not shown is the indirect channel the client

uses to access the broker.

Domain fronting In this method, the client does an HTTPS

exchange with the broker through an intermediary web

service such as a content delivery network (CDN), set-

ting the externally visible hostname (the TLS Server

Name Indication, or SNI [6 §3]) to a “front domain” dif-

ferent from the broker’s. The CDN routes the HTTPS

request to the broker according to the the HTTP Host

header, which, under TLS encryption, reflects the ac-

tual hostname of the broker [11]. A censor cannot easily

block domain-fronted rendezvous without also blocking

unrelated connections to the front domain, which should

be selected to have high value to the censor. The well-

known drawback of domain fronting is the high cost of

CDN bandwidth, but this is not a big problem when it is

used only for rendezvous.

AMP cache AMP is a framework for web pages written in a

restricted dialect of HTML. Part of the framework is a

free-to-use cache server [26]. The cache fetches AMP-

conformant pages on demand, making it effectively a

restricted sort of HTTP proxy. We have a module that

encodes rendezvous messages to conform to AMP re-

quirements, allowing them to be exchanged with the

broker via the AMP cache.1 This rendezvous method

is not easily blocked without blocking the cache server

as a whole. It still technically requires domain fronting,

because the AMP cache protocol normally exposes the

broker’s hostname in the TLS SNI, but it enlarges the set

of usable intermediaries and front domains.

SQS (Simple Queue Service) Amazon SQS is a message

queuing service designed for communication between

microservices. Snowflake has the ability (new at the time

1https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/
merge_requests/50

of this writing) to use a message queue as a one-way

communication channel.2 Clients write into a public

queue, which the broker reads from. Responses are sent

back through dynamically created, single-use queues.

All communication is indirect, via SQS servers.

Rendezvous is not unique to Snowflake. Other examples of

rendezvous are the DEFIANCE Rendezvous Protocol [20 §3],

the facilitator interaction in flash proxy [10 §3], and the

registration proxy in Conjure [13 §4.1]. A key property of

Snowflake and the mentioned systems is that their block-

ing resistance does not rely on preshared secret information.

Whatever information is needed to establish a circumvention

session is obtained dynamically at runtime. This is in contrast

to other systems in which, before making a connection, the

client must acquire some secret, such as an IP address or pass-

word, through an out-of-band channel—and blocking resis-

tance depends on keeping that information secret. A corollary

of the no-secret-information property is that an adversary is at

no special disadvantage in attacking the system. There is no

out-of-band channel which real clients have access to but the

censor does not. The censor may pose as a client, download

the software, study its network connections—and the system

must maintain its blocking resistance despite this. The disad-

vantage of a separate rendezvous step is that it is one more

thing to get right. Both the main circumvention channel and

the rendezvous must resist blocking: the combination is only

as strong as the weaker of the two.

2.2 Peer-to-peer connection establishment

After rendezvous, the client and its assigned proxy connect

to one another directly. Even in the absence of censorship,

making a connection between two Internet peers is not trivial,

because of possible interference by NAT (network address

translation) and firewalls. Snowflake clients and proxies run

in diverse networks with varying NATs and ingress policies.

Fortunately for us, WebRTC is designed with this use case in

mind. It has built-in support for NAT traversal in the form of

ICE (Interactive Connectivity Establishment) [19], a proce-

dure for testing combinations of peer addresses until finding

one that works. ICE uses third-party STUN (Session Traversal

Utilities for NAT) servers [28] that, among other services, let

a host discover its own external IP addresses. The first part of

ICE happened at the beginning of rendezvous, when the client

and proxy contacted STUN servers to gather external address

candidates and included them in their respective SDP offer

and answer. After rendezvous, the peers try pairs of candidate

addresses until they are able to establish a connection.

There is no guarantee that two hosts will be able to connect

using the facilities of STUN alone. Some combinations of ad-

dress mapping and filtering are simply incompatible. In such a

2https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/
merge_requests/214

2638 33rd USENIX Security Symposium USENIX Association

 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/50
 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/50
 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/214
 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/214

No NAT

(E
I, EI)

(E
I, AO)

(E
I, AP)

(E
D, ED)

No NAT 6 6 6 6 6

Unrestricted
proxy(EI, EI) 6 6 6 6 6

(EI, AO) 6 6 6 6 6

(EI, AP) 6 6 6 6 –

Restricted
proxy

(ED, ED) 6 6 6 – –
︸ ︷︷ ︸ ︸︷︷︸

Unrestricted
client

Restricted
client

Table 1: Compatibility of NAT variations, assuming the use of

STUN only (no fallback to TURN). Variations are represented

by (mapping, filtering) behavior pairs. The table uses codes to

indicate behaviors: EI (endpoint-independent), AO (address-

dependent), AP (address- and port-dependent), and ED (either

AO or AP). The incompatible cases are when one peer has

ED mapping and the other has ED mapping or AP filtering.

Note the asymmetry in what NAT variations are considered

“restricted” in client and proxy.

case, ICE would normally fall back to relaying traffic through

a TURN (Traversal Using Relays around NAT) server [30],

a kind of UDP proxy. A fallback to TURN would be prob-

lematic for Snowflake, because the TURN servers themselves

would become targets of blocking. But Snowflake has an ad-

vantage other WebRTC applications do not: most applications

want to connect a particular pair of peers, whereas we are

happy to connect a client to any proxy. Snowflake clients and

proxies self-assess their NAT type and report it to the broker,

which then avoids making matches that would require TURN.

Table 1 shows the compatibility of NAT variations. A NAT

variation is defined by a combination of address mapping

and filtering behaviors [21 §3]. Endpoint-dependent mapping

means that the address a local endpoint is translated to de-

pends on the remote endpoint’s IP address (and possibly port).

Endpoint-dependent filtering means that incoming packets

from a remote endpoint are allowed only if outgoing packets

have already been sent to that endpoint. As the incompatible

cases always involve endpoint-dependent address mapping

(sometimes called symmetric NAT), we further categorize the

variations into the two types unrestricted (works with most

other NATs) and restricted (works only with more permissive

NATs). Unrestricted proxies may be matched with any client;

restricted proxies may be matched only with unrestricted

clients. The broker prefers to match unrestricted clients with

restricted proxies, in order to conserve unrestricted proxies

for the clients that need them. Endpoint-dependent mapping

is always considered restricted, but the type of NATs with

address- and port-dependent filtering differs depending on

the peer: for proxies it is restricted, but for clients it is unre-

stricted. This is a heuristic to conserve unrestricted proxies

for clients with endpoint-dependent NAT mapping. Though

Restricted

Unknown

Unrestricted
Untested0

25,000

50,000

75,000

2022 2023 2024

U
n
iq

u
e

IP
 a

d
d
re

ss
es

Figure 3: Proxy NAT types, in unique IP addresses per day.

The places in 2021 and 2022 where “unknown” displaced

other types were caused by operational problems with the

NAT type testing peer.

it creates the potential for an incompatible match between a

client with an address- and port-dependent filter and a proxy

with endpoint-dependent mapping, this case is rare in practice,

and if it happens, a client can re-rendezvous and try again.

Clients use the NAT behavior discovery feature [21] of

STUN to self-assess their NAT type. Proxies cannot use the

same technique, because the necessary STUN features are not

exposed to JavaScript. For proxies, we adapt a technique from

MassBrowser [24 §V-A] and run a centralized, always-on

WebRTC testing peer behind a simulated NAT with endpoint-

dependent mapping.3 If a proxy can connect to the testing

peer, its type is unrestricted; otherwise it is restricted. If a

client or proxy is unable to determine its NAT type, it reports

the type “unknown,” which the broker conservatively treats

as restricted.

Unrestricted proxies are a relatively small fraction of the

proxy population, as Figure 3 shows. In absolute number,

though, there are enough for restricted clients at current lev-

els of use. The broker counts the number of unmatched (U)

and matched (M) client rendezvous requests per day. If we as-

sume that clients attempt rendezvous repeatedly until getting a

match, then the number of attempts per success is (U +M)/M.

Under this assumption, as of March 2024, the average client

needs 1.01 rendezvous attempts to find a compatible proxy.

As the proxy negotiates the WebRTC connection with its

client, it also connects to the bridge using WebSocket [23].

Unlike the client connection, the bridge connection presents

no challenges: it’s just HTTPS to an open port on a server.

The choice of WebSocket for this link is arbitrary, and another

protocol might be substituted in its place. It does not need

to be blocking-resistant (because we are already outside the

censor’s zone of control), it only needs to be available to

JavaScript code in web browsers.

2.3 Data transfer

No complicated processing occurs at the proxy. The main

value of a Snowflake proxy is its IP address: it gives the

3https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40013

USENIX Association 33rd USENIX Security Symposium 2639

 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40013

client a peer to connect to that is not on the censor’s address

blocklist. Having provided that, the proxy assumes a role of

data transfer, copying data upstream from client to bridge and

downstream from bridge to client.

Snowflake uses a stack of nested protocol layers. Figure 4

shows the stack for the link between the client and the proxy.

This is the link that uses WebRTC, the one that is exposed to

the censor. The stack for the proxy–bridge link is the same, but

with WebSocket replacing WebRTC in the outermost layer.

Layers at the top of the diagram are “outer,” closer to the

network; ones at the bottom are “inner,” closer to the user.

UDP

WebRTC
data channel

ephemeral, per proxyDTLS

SCTP

KCP
}

Turbo Tunnel

persistent, per sessionsmux

Tor protocol

application streams

Figure 4: The protocol stack for the client–proxy link.

Each layer serves a different purpose. The layers marked

“ephemeral” are replaced at every proxy switchover. These

outer layers form the “carrier” over which the more stateful in-

ner layers are transported. The layers marked “persistent” are

instantiated just once per circumvention session and outlive

any single proxy. They maintain end-to-end state and present

an abstraction of a single long-lived tunnel. This virtual tunnel

then transports user application traffic such as web browsing

and messaging.

The point-to-point link between a client and its proxy is a

WebRTC data channel [18]. Data channels let two WebRTC

peers exchange arbitrary binary messages. A data channel is

itself a composition of three protocol layers: UDP for network

transport, DTLS (Datagram TLS) for confidentiality and in-

tegrity, and SCTP (Stream Control Transmission Protocol)

for delimiting message boundaries and other features like

congestion control. The peers authenticate each other at the

DTLS layer using certificate fingerprints that were exchanged

during rendezvous [17 §5.1].

Data channels are well-suited to the circumvention use case.

But data channels are not the only option in WebRTC: there

are also media streams, meant for real-time audio and video.

Which of these options is used is an externally observable

feature, and may therefore become a fingerprinting vector.

We will consider this topic further in Section 3.

A proxy maintains two connections for each client it is

currently serving: a WebRTC connection to the client and

a WebSocket connection to the bridge. Data received from

the client over WebRTC is copied to the bridge over Web-

Socket, and vice versa. Although this pair of connections

effectively connects the client to the bridge, it alone is not

enough for usable circumvention, because Snowflake proxies

do not last forever. When a proxy goes away, its WebRTC

and WebSocket connections go with it. Without additional

consideration, the loss of a proxy would mean the end of a

client’s circumvention session. What is needed is a separate

notion of session state, independent of the current proxy and

its data channel.

We adopt the Turbo Tunnel design pattern [8] and in-

sert a userspace session and reliability protocol between the

ephemeral “carrier” protocols and the client’s application

streams.4 This inner protocol attaches sequence and acknowl-

edgement numbers to the pieces of data that pass through the

tunnel. After a temporary break in proxy connectivity, the

client and bridge first retransmit whatever data has not been

acknowledged by the other side, then carry on as normal with

new data, with no duplication or gaps. How this works, con-

cretely, is the client chooses a random session identifier string

at the beginning of its session, and sends it as a preamble

every time it connects through a new proxy. When the bridge

accepts a WebSocket connection, it inspects the preamble to

find the client’s session identifier string, which it uses to index

a table of session state information. If the session does not yet

exist, the bridge creates one; otherwise it resumes an existing

session (starting by retransmitting any unacknowledged data).

If a client’s proxy disappears in the middle of a long down-

load, for example, there may be a pause while Snowflake does

another rendezvous to acquire a fresh proxy, but after that, the

download continues uninterrupted.

For the inner session layer we use a combination of

KCP [33] and smux [43]. KCP provides reliability and retrans-

mission, and smux detects and terminates timed-out streams.

Other userspace protocols, for example QUIC or TCP, could

be used more or less equivalently for this purpose. We pro-

totyped successfully with both QUIC and KCP/smux before

settling on the latter. The main considerations that influenced

our decision were familiarity and ease of maintenance.

One more protocol layer is needed before sending user ap-

plication data through the tunnel: an end-to-end secure chan-

nel between the client and the bridge, using keys unknown

to the proxy. The inner session layer does not itself provide

security, and the DTLS of the data channel is only hop-by-

hop, not end-to-end. The purpose of this additional secure

channel is to prevent proxies from inspecting or tampering

with the traffic they carry. Nothing special is needed here;

for example, TLS, or any VPN protocol, would work fine.

Our deployment uses the Tor protocol as this secure channel.

After removing the WebSocket and Turbo Tunnel layers, the

bridge feeds the data it receives into a local Tor bridge, which

routes the stream into the Tor network and eventually to its

destination. Tor, of course, has privacy advantages that are

not, strictly speaking, necessary for circumvention, but are

nevertheless nice to have, such as that not even the Snowflake

bridge is trusted to know the contents or destinations of client

streams. But Tor also has drawbacks, which we will comment

on in Section 4.4 and Section 6.

4https://lists.torproject.org/pipermail/anti-censorship-team/2020-February/000059.html

2640 33rd USENIX Security Symposium USENIX Association

 https://lists.torproject.org/pipermail/anti-censorship-team/2020-February/000059.html

Snowflake may be seen as an instance of the “untrusted

messengers” model of Feamster et al. [7 §3]. Their messen-

gers correspond to our proxies; their portal is our bridge.

Proxies are trusted to deliver the client’s traffic to the bridge,

but do not themselves connect to the destination, or even

know what it is. An inner layer of cryptography protects the

client’s traffic from observation and manipulation by mali-

cious proxies. The protection goes in the other direction as

well: because proxies are programmed to connect only to a

Snowflake bridge, and they never process anything but cipher-

text, a malicious client cannot cause a proxy to misbehave or

have its actions attributed to the proxy. Without this mutual

guarantee of safety, it would be too risky to associate a client

and proxy who have no preexisting trust relationship.

3 Protocol fingerprinting

Snowflake’s main focus is the “address blocking” side of

circumvention, but the “content blocking” side matters too.

The goal, as always, is to make circumvention traffic hard

to distinguish from traffic the censor cares not to block. De-

sign decisions in Snowflake—the use of WebRTC, and the

requirement to run proxies in browsers—mean that Snowflake

can, at best, only blend in with other WebRTC traffic. But

even within that scope, there are variations in how WebRTC

is implemented and used, which, if not carefully considered,

might enable a censor to selectively block only Snowflake,

leaving other uses of WebRTC undisturbed. Unfortunately for

the circumvention developer, the richness of WebRTC proto-

cols creates a large attack surface for fingerprinting. And then,

there are fingerprinting considerations beyond WebRTC.

The most prevalent implementations of WebRTC are in

web browsers. Snowflake originally used a WebRTC library

extracted from Chromium5, but that proved to be difficult

to maintain and build for multiple platforms. Since 2019,

Snowflake uses the Pion [29] implementation of WebRTC.6

Pion is not tied to any browser, which is both good and bad.

The good is less development friction, better memory safety

(Pion is written in Go, Chromium WebRTC in C++), and a

working relationship with upstream developers to have finger-

printing changes made when needed. The bad is that Pion’s

protocol fingerprints do not automatically match those of the

mostly browser-originated WebRTC that Snowflake aims to

blend in with.

The following is a list of the main fingerprinting concerns

in Snowflake and what we have done to address them. A fin-

gerprinting vulnerability does not automatically disqualify

a circumvention system: it depends on whether the vulnera-

bility can be fixed without changing the basic nature of the

system. The important thing is to have solid fundamentals:

minor flaws may be patched up as needed.

5https://github.com/keroserene/go-webrtc
6https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28942

Selection of STUN servers The use of STUN with WebRTC

is common, but the choice of what STUN servers to

use is up to the application. Running dedicated STUN

servers for Snowflake would not work, because a censor

would experience no collateral harm in blocking them.

Our deployment uses a pool of public STUN servers

that are used for purposes other than circumvention. The

client chooses a random subset for each new session.

Format of STUN messages STUN is most often deployed

over plaintext UDP, which leaves the contents of mes-

sages open to inspection. STUN messages consist of a

fixed header followed by a list of attributes [28 §5]. What

attributes appear, and their order, depends on the STUN

implementation and how the application uses it.

We have not done anything particular to disguise STUN

messages. Though UDP is the most common, STUN

specifies other transports, including encrypted ones like

DTLS. The alternative transports may be options for

Snowflake in the future—of course, only if they are com-

monly used enough not to stick out in themselves.

Rendezvous Because the rendezvous methods of Section 2.1

are modular, each one needs a separate justification as

to why it should be difficult to block. Each method must

also be implemented in a way that does not expose acci-

dental distinguishers. For example, the domain fronting,

AMP cache, and SQS rendezvous methods use HTTPS,

which means TLS fingerprinting is a concern [11 §5.1].

Snowflake, like many circumvention systems, uses the

uTLS package [14 §VII] to get a client TLS fingerprint

that is randomized or that imitates common browsers.

Section 5.2 has an account of when domain fronting

rendezvous was briefly blocked in Iran, because we were

slow in activating uTLS.

DTLS The outermost layer of a WebRTC data connection,

directly exposed to a censor, is DTLS over UDP. DTLS is

an adaptation of TLS [32 §1] to the datagram setting, and

therefore shares the fingerprinting concerns of TLS [14].

Owing to practical considerations, Snowflake’s defenses

to DTLS fingerprinting are not very robust, and are reac-

tive rather than proactive. In the realm of TLS one may

use uTLS, but there is as yet no equivalent for DTLS. The

present way of altering DTLS fingerprints in Snowflake

is to submit a patch to Pion when a feature used for fin-

gerprinting is identified. Section 5.1 documents how this

has happened twice, in response to blocking in Russia.

Data channel or media stream Along with data channels,

WebRTC offers media streams, which transmit encoded

audio and video. Though both data channels and me-

dia streams are encrypted, they are externally distin-

guishable because they use different encryption contain-

ers. Data channels use DTLS, while media streams use

USENIX Association 33rd USENIX Security Symposium 2641

 https://github.com/keroserene/go-webrtc
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28942

DTLS-SRTP; that is, the Secure Real-Time Transport

Protocol with a DTLS key exchange [31 §4.3].

Data channels are a closer match to Snowflake’s commu-

nication model: media streams are meant for audio and

video, not arbitrary binary messages. But the use of data

channels could become a fingerprinting feature if other

WebRTC applications mainly use media streams. Should

it become necessary, it would likely be possible to adapt

Snowflake to use media streams rather than data chan-

nels, either by modulating data into an audio or video

signal in the manner of, say, Stegozoa [12 §3.3], or by

replacing the encoded data inside SRTP packets, as in

Protozoa [2 §4.4] or TorKameleon [40 §III-D].

Most research on detecting Snowflake to date has focused

on protocol fingerprinting. Fifield and Gil Epner [9] stud-

ied the network traffic of WebRTC applications, with the

goal of finding pitfalls that could affect Snowflake. Frolov

et al. [14 §V-C] observed that the undisguised TLS fingerprint

of Snowflake’s domain fronting rendezvous was distinctive,

and introduced the uTLS package now used to protect it.

MacMillan et al. [22] focused on the DTLS handshake,

comparing Snowflake to three other WebRTC applications.

They correctly anticipated features of the Pion DTLS hand-

shake that would later be used to block Snowflake in Russia;

see details in Section 5.1. Holland et al. [16 §5.3], using the

bits of UDP datagrams directly as features, demonstrated ap-

proximately equal performance on the same DTLS handshake

data set. Their automatically derived classifier assigned high

feature importance to packet length fields, in fact doing well

even without DTLS payload features.

Chen et al. [4] combined features of rendezvous and DTLS

in order to reduce false positives. Their classifier begins by

looking for DNS queries for STUN servers and front domains

commonly used by Snowflake clients. They then apply a ma-

chine learning classifier to features of a subsequent DTLS

handshake. The authors acknowledge that DTLS fingerprint-

ing is fragile, as the DTLS features are, in principle, control-

lable by the application. The DNS prefilter may perhaps be

mitigated by alternative rendezvous methods (Section 2.1),

or by smarter selection of STUN servers.

Xie et al. [42] trained a decision tree to distinguish domain

fronting rendezvous from certain other HTTPS exchanges,

using packet size, direction, latency, and bandwidth features.

Wails et al. [41] criticize past research on detecting circum-

vention systems, saying that accuracy claims do not hold up in

light of the low base rates of circumvention traffic in practice.

They developed classifiers for Snowflake and other circum-

vention protocols that improved on the state of the art, but

found them still to be prohibitively imprecise at realistic base

rates. They propose reducing false positives by combining

multiple observations per IP address—classifying hosts, not

flows—and suggest that Snowflake’s lack of fixed proxies

mitigates against this enhancement.

Related to protocol fingerprinting is traffic analysis: classi-

fying connections based on features like packet lengths and

transmission times, which may differ, in a circumvention sys-

tem, from other uses of the cover protocol. The best classifiers

of Xie et al. and Wails et al. were of this type. While traffic

analysis attacks are worth thinking about, we caution that

academic audiences have historically overestimated their im-

portance. Tschantz et al. [36 §VII] observed that censors are

sensitive to costs and—particularly—false positives. They

claim (and our experience bears it out) that censors prefer

traffic classification rules that are simple, precise, and de-

terministic, and avoid ones that require managing state, are

computationally expensive, or have non-negligible false posi-

tive rates, like those based on traffic analysis. Nevertheless,

we have tried to future-proof Snowflake in this respect: the

protocol inside the WebRTC data channel supports shaping of

transmission sizes and timing, which ought to be sufficient to

imitate the traffic fingerprint of other WebRTC applications.

But the feature is currently unused.

4 Experience

Snowflake has now been in operation for a few years. In lieu

of a forward-looking evaluation, here we take a look back at

the history of its deployment and reflect on the experience.

Fielding a new circumvention system offers an opportunity

to study experimentally its uptake and performance. In this

section we discuss the number of clients over time and the

bandwidth they use, the size and composition of the proxy

pool, the variability of proxy IP addresses, and engineering

considerations related to scaling. We take up the topic of

reactions by censors in Section 5.

4.1 Client counts and bandwidth

As a consequence of our use of a Tor bridge as the back-

end for the Snowflake bridge, we can estimate client counts

and bandwidth using the privacy-preserving techniques of Tor

Metrics [35]. Tor bridges publish daily summaries of statistics,

including client counts and bandwidth, as well as an aggregate

distribution of client countries inferred from a local geolo-

cation database. Figure 5 shows the number of clients and

amount of bandwidth consumed since 2021. The upper graph

depicts not a count of unique clients, but rather the average

number of concurrent clients per day. For example, when the

graph passes through 10,000 on 2022-02-04, it means there

were, on average, 10,000 clients using Snowflake at a given

time on that day. The number of users is estimated by count-

ing the “directory requests” that Tor clients make periodically.

The contribution of a client session depends on its duration,

not on how many temporary proxies it uses; a client connected

for two hours counts half as much as one connected for four

hours. Bandwidth is computed as the average of incoming

and outgoing bytes (which are approximately equal anyway),

2642 33rd USENIX Security Symposium USENIX Association

Tor Browser 10.5
includes Snowflake

Onset of Tor blocking
in Russia

Tor Browser 11.5a1 and 11.0.3
alter DTLS fingerprint

Russian invasion of Ukraine

Bridge hardware upgrade

Tor Browser 11.5
automatic configuration

Protests in Iran

TLS fingerprint blocking in Iran

Tor Browser 11.5.6 and Orbot 16.6.3
fix TLS fingerprint

Tor Browser 12.0 adds a second bridge

Domain fronting
rendezvous
temporarily
blocked in Iran

Tor Browser 12.0.3
alters DTLS fingerprint

Bridge performance fix

Malfunction in
domain fronting rendezvous

Release of Orbot 17

Second malfunction in
domain fronting rendezvous

0

20,000

40,000

60,000

80,000

100,000

Jul Aug Sep Oct Nov Dec Jan
2022

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2023

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2024

FebA
v
er

ag
e

co
n
cu

rr
en

t
cl

ie
n
ts

0
1
2

3
4

G
b
it

/s

Figure 5: Estimated average concurrent Snowflake clients and consumed bandwidth by day. The values at the far left end of the

graph, in early July 2021, are about 200 users and 2.7 Mbit/s.

after subtracting bytes spent processing directory requests

(which are less than 1% of total bandwidth).

Snowflake shipped in the alpha release series of Tor

Browser for years before entering the stable series. The

first releases were for GNU/Linux in Tor Browser 7.0a1

on 2017-01-24 7 and for macOS in Tor Browser 7.5a4 on

2017-08-08 8. Here we encountered difficulties with the

Chromium-derived WebRTC library we had used up to that

point that prevented us from making releases for other plat-

forms. We were able to resume making progress after switch-

ing to Pion WebRTC [29] in 2019. Snowflake for Windows

was released in Tor Browser 9.0a7 on 2019-10-01 9, and for

Android in Tor Browser 10.0a1 on 2020-06-02 10.

Snowflake was then available on every platform supported

by Tor Browser, but was not yet comfortably usable. Two

important parts were missing: a lack of NAT type matching

(Section 2.2) meant that a client could not always connect to

its assigned proxy; and no persistent session state (Section 2.3)

meant that even if a proxy connection were successful, the

client’s session would end once its first proxy disappeared.

For these reasons, by early 2020, the number of concurrent

users had not risen above 40. The Turbo Tunnel session persis-

tence feature became available to users in Tor Browser 9.5a13

on 2020-05-22.11 The client part of NAT behavior detec-

tion was released with Tor Browser 10.0a5 on 2020-08-19 12,

and proxy support was added on 2020-11-17 13. With these

changes, Snowflake became practical to use for daily brows-

ing, and the number of clients began to grow into 2021.

Snowflake’s growth began in earnest when it became part of

default installations. Orbot, a mobile app that provides a VPN-

7https://bugs.torproject.org/tpo/applications/tor-browser/20735
8https://bugs.torproject.org/tpo/applications/tor-browser/22831
9https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/25483

10https://bugs.torproject.org/tpo/applications/tor-browser/30318
11https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/33745
12https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/34129
13https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40013

like Tor proxy, added a Snowflake client in version 16.4.0 on

2021-01-12.14 Snowflake graduated to Tor Browser’s stable

series in Tor Browser 10.5 on 2021-07-06 15, becoming a

third built-in circumvention option alongside meek and obfs4.

This is the first event marked in Figure 5. Being in the stable

release series meant Snowflake was easily available to all

Tor users, not only a self-selected group of alpha testers. The

number of concurrent clients increased steadily over the next

five months, reaching almost 2,000 by December 2021.

Censorship events may have the apparently contrary effects

of either decreasing or increasing usage of a circumvention

system. Usage decreases when the system itself succumbs to

blocking; but increases when other, less robust systems are

blocked, and users become concentrated onto the reduced

number of systems that remain working. Two censorship

events, one in Russia and one in Iran, resulted in large in-

creases in the number of Snowflake users.

On 2021-12-01, some ISPs in Russia instituted measures to

block most ways of accessing Tor, including Snowflake [44].

The measures varied in effectiveness; in the case of Snowflake,

blocking was triggered by a feature of the DTLS handshake,

which we were able to mitigate in new releases within a few

weeks.16 Over the next two months, the number of clients

quadrupled; by May 2022, about 70% of Snowflake users

were in Russia. The client count in Russia got an additional

small boost starting on 2022-07-14, when Tor Browser 11.5

added a feature to automatically enable circumvention options

when needed.17 We will look at Russia in more detail in

Section 5.1.

In reaction to protests that began on 2022-09-16 after the

death of Mahsa Amini, the government of Iran imposed net-

14https://github.com/guardianproject/orbot/releases/tag/
16.4.0-RC-1-tor-0.4.4.62021-01-12

15https://blog.torproject.org/new-release-tor-browser-105
16https://bugs.torproject.org/tpo/applications/tor-browser-build/40393
17https://blog.torproject.org/new-release-tor-browser-115/

USENIX Association 33rd USENIX Security Symposium 2643

 https://bugs.torproject.org/tpo/applications/tor-browser/20735
 https://bugs.torproject.org/tpo/applications/tor-browser/22831
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/25483
 https://bugs.torproject.org/tpo/applications/tor-browser/30318
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/33745
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/34129
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40013
 https://github.com/guardianproject/orbot/releases/tag/16.4.0-RC-1-tor-0.4.4.6 2021-01-12
 https://github.com/guardianproject/orbot/releases/tag/16.4.0-RC-1-tor-0.4.4.6 2021-01-12
 https://blog.torproject.org/new-release-tor-browser-105
 https://bugs.torproject.org/tpo/applications/tor-browser-build/40393
 https://blog.torproject.org/new-release-tor-browser-115/

work shutdowns and additional blocking, severe even by the

standards of a country already notorious for censorship [3].

Users turned to the circumvention systems that continued

working despite the new restrictions, Snowflake among them.

Adoption was rapid: on 2022-09-20, Iran accounted for 1%

of Snowflake users; by 2022-09-24 it was 67%. The sudden

influx of users had us scrambling for a few days to implement

performance improvements. Two weeks later, on 2022-10-04,

usage dropped almost as quickly as it had risen—the cause

was the blocking, in Iran, of a TLS fingerprint used by the

Snowflake client.18 After we released fixes for the TLS fin-

gerprinting issue, the client count began to recover. But in

our haste to deploy performance optimizations in September,

we inadvertently introduced a bug that actually harmed per-

formance, becoming more severe at higher client counts.19

This dragged the count down again, until we fixed the bug in

mid-March 2023. (Umayya et al. happened to be doing per-

formance tests of Snowflake and other circumvention systems

at this time [37 §4.6]—their results independently confirm

the reduced reliability of Snowflake before the performance

bug was fixed.20) We will say more about Iran in Section 5.2.

For most of this history, the Snowflake bridge was a single

server, which we upgraded and optimized as needed. As the

bridge reached its hardware capacity, and performance im-

provements got harder to achieve, we deployed a second

bridge to share the load. The challenges and design considera-

tions of doing so are discussed in Section 4.4. The new bridge

was made available in Tor Browser 12.0 on 2022-12-07 and

Orbot 17 on 2024-02-09. In early 2024, the second bridge

handled about 15% of users and 25% of bandwidth.

The drop in users on 2023-09-20 was not caused by any

censor action; rather, it was an unexpected change in the

cloud infrastructure we used for domain fronting rendezvous.

The front domain we had been using changed its hosting to

a different CDN, which caused client rendezvous messages

to fail to reach the broker.21 We made releases with alter-

native front domains22, but it took time for users to adjust.

Something similar happened on 2024-03-01, when the CDN

we had been using in the default configuration of domain

fronting rendezvous stopped supporting domain fronting.23

It happened just before the deadline for this paper, so we can-

not yet comment on any long-term effects, but Figure 5 shows

an immediate decline in users and bandwidth of about 30%.

As of 2024-03-01, Snowflake had transferred a lifetime to-

tal of 15 PB of circumvention data. Here we mean goodput:

Tor TLS traffic inside the tunnel, ignoring WebRTC, Web-

Socket, and KCP/smux overhead. At that time, around 1.2%

of Tor users (25% of bridge users) were using Snowflake.

18https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207
19https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40260
20https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40262
21https://forum.torproject.org/t/9346
22https://bugs.torproject.org/tpo/applications/tor-browser/42120
23https://bugs.torproject.org/tpo/anti-censorship/team/135

Browser
extension

Orbot

Commandline
Web badge0

25,000

50,000

75,000

100,000

125,000

2022 2023 2024

U
n
iq

u
e

IP
 a

d
d
re

ss
es

Figure 6: Unique proxy IP addresses per day, by proxy type.

The two steps in the graph correspond to the invasion of

Ukraine by Russia in February 2022, and network restric-

tions in Iran beginning September 2022, at which times there

were campaigns to encourage running Snowflake proxies. Un-

known proxy types (fewer than 50 instances) are not shown.

4.2 Number and type of proxies

Snowflake’s effectiveness depends on its pool of proxies, of

which there are several types. The primary type is the web

browser extension, which runs in the background in volun-

teers’ browsers and quietly serves clients. There is a “web

badge” version of the proxy that does not require installation.

It uses the same JavaScript code as the extension, but runs

in an ordinary web page. Some people leave a browser tab

idling on the web badge, rather than installing a browser ex-

tension. There is also a command-line implementation of the

proxy that does not require a browser. This version is con-

venient to install on a rented VPS, for example. Long-term

proxies running at fixed IP addresses are somewhat at odds

with Snowflake’s goal of proxy address diversity, but these

standalone, command-line proxies are valuable because they

tend to have less restrictive NATs, which makes them compat-

ible with more clients. Finally, Orbot, as well as being able to

use Snowflake for circumvention, can also provide Snowflake

proxy service to others, a feature called “kindness mode.”

We worked with the Tor Project’s network health team to

collect privacy-preserving metrics of client and proxy ren-

dezvous interactions at the broker, and publish them in the

same way as the bridge metrics of Section 4.1.24 The metrics

represent counts of proxy types, unique proxy IP addresses

and geolocated country codes, NAT types (Section 2.2), and

success rates of matching clients with proxies. Aggregate

metrics are published at 24-hour intervals.25 The broker does

not record nor publish the IP addresses of clients or proxies.

Metrics concerning client polls are rounded to multiples of 8,

in accordance with established Tor Metrics practice.

Figure 6 shows the number of proxies by type. Web browser

extension proxies predominate, representing about 80% of

140,000 daily IP addresses. For comparison, there were about

1,900 of the more traditional style of Tor bridge at this time.

The difference in number is attributable to the relative ease of

24https://bugs.torproject.org/tpo/network-health/metrics/collector/29461
25https://metrics.torproject.org/collector.html#snowflake-stats

2644 33rd USENIX Security Symposium USENIX Association

 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40260
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40262
 https://forum.torproject.org/t/9346
 https://bugs.torproject.org/tpo/applications/tor-browser/42120
 https://bugs.torproject.org/tpo/anti-censorship/team/135
 https://bugs.torproject.org/tpo/network-health/metrics/collector/29461
 https://metrics.torproject.org/collector.html#snowflake-stats

running a Snowflake proxy versus a Tor bridge—though the

comparison is not quite direct, because Tor bridges have better

defenses against enumeration than do Snowflake proxies.

It was not clear, at the outset, that it would even be pos-

sible to attract enough proxies to support a reasonable num-

ber of users with meaningful blocking resistance. Lowering

the technical barriers to running a proxy was only part of it;

it also took intentional advocacy and outreach. In the early

days, circa 2017, the only consistent proxy support was a

few command-line proxies, run by us for the benefit of al-

pha testers. The browser extension became available in mid-

2019.26, 27 Later in 2019, additional proxy capacity came

when Cupcake, a browser extension for flash proxy with an

existing user base, was repurposed for Snowflake.28 Orbot’s

proxy feature was added in version 16.4.1 in February 2021.29

(In Figure 6, Orbot is counted with command-line proxies un-

til January 2022, when it got its own proxy type designation.)

It is worth reflecting on the popularity of the browser ex-

tension as compared to the web badge. A web badge had

been envisioned as the main source of proxies in flash proxy,

the idea being that people’s browsers would automatically

become proxies while on sites that had the flash proxy badge

installed, unless they checked an option to prevent it. We de-

cided, early on, that flash proxy’s opt-out permission had

been a mistake, and that Snowflake would be opt-in. To run a

proxy, a person must take a positive action, such as installing

a browser extension or activating a toggle on a web page. Our

initial worry that this policy would limit the number of prox-

ies turned out to be unfounded. People find an informative,

interactive proxy control panel more appealing than a non-

descript badge graphic, and install the browser extension in

greater numbers than ever used the web badge in flash proxy.

4.3 Proxy churn

The size of the proxy pool is not the only measure of its

quality. Also important is its “churn,” the rate at which it is

replenished with fresh proxy IP addresses. Churn determines

how hard a censor would have to work to keep a blocklist of

proxy IP addresses up to date; or alternatively, how quickly a

momentarily complete blocklist would lose effectiveness.

We ran an experiment to measure churn.30 Our technique

was to record the set of proxy IP addresses seen by the broker

over an interval of time, then compute the size of the inter-

section with other sets in nearby intervals, up to 40 hours

later. Every hour, the broker recorded a snapshot of proxy IP

addresses it had seen in the past hour. To avoid the risk of

storing real proxy IP addresses, each snapshot was not a trans-

parent list, but a HyperLogLog++ sketch [15], a probabilistic

26https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
30931#note_2593598

27https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
30999#note_2593718

28https://github.com/glamrock/cupcake/issues/24
29https://github.com/guardianproject/orbot/releases/tag/16.4.1-BETA-2-tor.0.4.4.6
30https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/34075

Unique proxy IP addresses per 24hour window

Shared IP addresses 1, 2, ..., 40 hours later
0

50,000

100,000

150,000

Jan 02
2023

Jan 09 Jan 16 Jan 23 Jan 30

Figure 7: Proxy churn in January 2023. The dark upper line

shows the number of unique proxy IP addresses in overlap-

ping 24-hour windows. The lighter, descending lines indicate

how many of the same IP addresses were in later 24-hour

windows, at 1-hour increments up to 40 hours later. It takes

about 20 hours for 50% of the proxy pool to turn over.

data structure for estimating the number of distinct elements

in a multiset. Proxy IP addresses were hashed with a secret

string (discarded at the end of the experiment) before being

added to a sketch, to prevent their being recovered from our

published data. A sketch supports two basic operations: count

and merge. Given a sketch X , we may compute an approxi-

mate count |X | of its unique elements, and given two sketches

X and Y , we may merge them into a new sketch representing

the union X ∪Y . The quantity we are interested in, namely the

size of the intersection of two sketches, is computed using the

formula |X |+ |Y |− |X ∪Y |. This computation estimates how

many proxy IP addresses are shared between two samples.

The broker recorded churn logs between 2022-07-22 and

2023-10-16. Figure 7 shows results from January 2023, which

are representative. Proxy activity has a daily cycle, so we

merged consecutive sketches into 24-hour windows. Starting

from a reference window, we computed the size of its intersec-

tion with other 24-hour windows, offset by +1,+2, . . . ,+40

hours relative to the reference. After 1 hour, the shifted win-

dow had, on average, 97.3% of addresses in common with

the reference; after 12 hours, the fraction had fallen to 68.8%;

after 24 hours, 38.2%; and after 40 hours, 27.6%.

4.4 Multiple bridges

In the conceptual model of Figure 1, the bridge is a single,

centralized entity. It can be centralized because it is never

accessed directly, but only via temporary proxies. Unlike more

traditional static proxy systems, Snowflake does not benefit,

in terms of blocking resistance, from having multiple bridges.

For reasons of scaling and performance, though, it can be

useful for “the” bridge to be realized as multiple servers.

Even with hardware upgrades and software optimizations, our

single bridge began to hit performance limits in late 2022

(particularly after the events in Iran of Section 4.1), and we

had to find ways of distributing bridge capacity to permit

continued scaling. Our deployment now uses two bridges.

USENIX Association 33rd USENIX Security Symposium 2645

 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30931#note_2593598
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30931#note_2593598
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30999#note_2593718
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30999#note_2593718
 https://github.com/glamrock/cupcake/issues/24
 https://github.com/guardianproject/orbot/releases/tag/16.4.1-BETA-2-tor.0.4.4.6
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/34075

A multi-bridge system might be designed in many ways.

In ours, the client tells the broker what bridge it wants to use

in its rendezvous message. The broker conveys the choice

to the proxy, and the proxy connects to the client’s chosen

bridge.31 This may be compared to alternative designs in

which the decision of what bridge to use is made by the broker

or the proxy. Our design was largely dictated by technical

constraints related to interfacing with Tor. Different designs

may make sense with other deployments.

One minor consideration is the Turbo Tunnel layer. Recall

from Section 2.3 that Snowflake maintains a virtual end-to-

end session between the client and the bridge, independent of

the temporary proxies. This is made possible by state stored

at the bridge: a table of clients, reassembly buffers, transmis-

sion queues, timers, and so on. The state variables are not

synchronized between bridges, which means a client session

begun on one bridge must remain with that bridge, because

no other has the context to make the packets of the session

meaningful. When it is the client that chooses the bridge, this

is easy to deal with: the client keeps its choice consistent in all

rendezvous messages throughout a session. If the choice were

instead made by the broker or proxy, it might be dealt with

by hashing the client’s session identifier string to an index,

as long as the set of bridges does not change too frequently.

Another difficulty, harder to work around, has to do with

Tor bridge authentication. A Tor bridge is identified by a

long-term identity public key. If, on connecting to a bridge,

the client finds that the bridge’s identity is not the expected

one, the client terminates the connection [5]. The Tor client

can configure at most one identity per bridge; there is noth-

ing like a certificate, for example, to indicate that multiple

identities should be considered equivalent. This constraint

leaves two options: either all Snowflake bridges must share

the same cryptographic identity; or else it must be the client

that chooses the bridge (and therefore knows what bridge

identity to expect). While it would be possible to synchronize

Tor identity keys across bridges, we preferred to keep keys

independent, so that the effect of a security compromise at a

bridge would be limited to that bridge only.

A client-chooses design risks misuse, if not handled care-

fully. Clients must not be able to cause proxies to connect

to arbitrary destinations—otherwise proxies might be used

in denial-of-service attacks, for example. To enforce this re-

striction, the client indicates its choice of bridge not by an IP

address or hostname, but by an identity public key. The broker

maps the identity to a WebSocket URL using its own database

of known bridges, and rejects rendezvous messages that ask

for an unknown bridge. After the broker tells the proxy what

WebSocket URL to connect to, the proxy does its own check,

verifying that the hostname in the URL has a known suffix

reserved for Snowflake bridges. So there are two independent

safeguards against misuse.

31https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
28651#note_2786323

5 Notable blocking attempts

In Section 4.1 we saw how Snowflake’s user counts have at

times been affected by the blocking actions of censors. Now

we take a closer look at selected censorship events. The ef-

fect of censorship has usually been to increase, rather than

decrease, the number of Snowflake users. This is no para-

dox: as censorship intensifies, users are displaced from less

resilient to more resilient systems. Snowflake’s blocking resis-

tance has not always been a success, though, and here we also

reflect on missteps and persistent challenges. The examples

are taken from Russia, Iran, China, and Turkmenistan, and

are selected for being significant and instructive. Common

lessons are that communication with affected users is invalu-

able in quickly understanding and reacting to blocking; and

that blocking resistance needs to be understood relative to a

censor, because every censor’s cost calculus is different.

Client count estimates come from the Tor Metrics descrip-

tors described in Section 4.1. Country code assignments are

drawn from the same IP geolocation database used by ordi-

nary Tor relays and bridges—and the caveats of IP geolocation

apply to the per-country estimates in this section. In particular,

we have noticed that a fraction of clients that geolocate to

the United States are likely actually to be in Iran, based on

correlations of their dynamics with those of other clients that

geolocate to Iran, and the timing of known political events.32

The graphs of this section use raw geolocation results, with

no attempt to adjust for errors.

Snowflake is blockable by any censor that is willing to

block WebRTC. We would not try to argue otherwise. Indeed,

we believe that the way to present a circumvention system is

not to argue for its absolute unblockability, but to lay out what

actions by a censor would be necessary to block it—or more

to the point, what sacrifices a censor would have to make in

order to block it. Advancing the state of the art of censorship

circumvention consists in pushing blocking out of reach of

more and more censors.

5.1 Blocking in Russia

Snowflake, along with other common ways of accessing Tor,

was blocked in a subset of ISPs in Russia on 2021-12-01 [44].

The event was evidently coordinated and targeted, as it hap-

pened suddenly and affected many Tor-related protocols at

once. Besides Snowflake, a portion of Tor relays and bridges,

as well as some servers of the circumvention transports meek

and obfs4, were blocked, at least temporarily. The blocking

campaign was less than totally successful—one of its effects

was to substantially increase the number of users accessing

Tor via circumvention transports, Snowflake among them.

We benefited from established relationships with develop-

ers and users in Russia, one of whom, through manual testing,

32https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
40207#note_2844116

2646 33rd USENIX Security Symposium USENIX Association

 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/28651#note_2786323
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207#note_2844116
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207#note_2844116

0

5,000

10,000

15,000

N D J

2022

F M A M J J A S O N D J

2023

F M A M J J

Figure 8: Snowflake users in Russia (average concurrent).

Events discussed in the text are marked. The attempted

blocking of Tor-related transports in December 2021 led to

Snowflake’s first surge in usage. The decrease in September–

October 2022 coincided with an even larger influx from Iran.

0

20,000

40,000

60,000

N D J

2022

F M A M J J A S O N D J

2023

F M A M J J

Figure 9: Snowflake users in Iran. Heightened censorship

beginning in September 2022 caused Iran to become the single

biggest source of Snowflake users. The drop in October 2022

was the result of TLS fingerprint blocking, which interfered

with rendezvous and took some time to mitigate.

0

1,000

2,000

3,000

N D J

2022

F M A M J J A S O N D J

2023

F M A M J J

Figure 10: Snowflake users in China. Though no sustained

blocking is evident, disruption of domain fronting rendezvous

for three days in May 2023 briefly depressed user numbers.

0

10

20

30

J

2021

F M A M J J A S O N D J

2022

F M A M J J A S O

Figure 11: Snowflake users in Turkmenistan. This graph

shows an earlier range of dates than the other three. Though

there have never been many Snowflake users in Turkmenistan,

blocking events are evident on 2021-10-24 and 2022-08-03.

found the traffic feature that was being used to distinguish

Snowflake. It was DTLS fingerprinting33, of the kind cau-

tioned about in Section 3. Specifically, it was the presence of

a supported_groups extension in the DTLS Server Hello mes-

sage produced by Pion. The extension’s presence in Server

Hello was in fact a bug34—but in any case, it afforded the

censor a feature to distinguish DTLS connections with a Pion

implementation in the server role from other forms of DTLS.

The process of finding the flaw, fixing it, and shipping new

releases of Tor Browser took a few weeks35, after which the

user count rose rapidly. From the beginning to the end of De-

cember 2021, the number of users in Russia grew from about

400 to over 4,000 (Figure 8). Snowflake was to become a

significant tool amid the general intensification of censorship

in Russia following the invasion of Ukraine in February 2022.

The Server Hello supported_groups distinguisher had been

discovered and documented by MacMillan et al. [22 §3] al-

ready in 2020. We might have avoided this blocking event

by proactively fixing the known distinguisher—but it was not

necessarily the wrong call not to have done so. In a project

like Snowflake, there is always more to do than time to do it,

and one must consider the opportunity cost of preempting

specific blocking that may not come to pass. In this case,

a reactive approach by us was enough: the loss was minor,

and we were able to patch the problem quickly. Even in ISPs

where the blocking rule was present, it did not block 100% of

Snowflake connections, because of the way it targeted a quirk

in Pion, and only in Server Hello. When the DTLS server role

in the WebRTC data channel was played by a non-Pion peer,

such as a web browser proxy, the feature was not present.

In May 2022 we got a report of a new detection rule, this

time keying on not just the presence, but the contents of the

supported_groups extension, at a byte offset suggesting that

it now targeted the Client Hello message, not Server Hello.36

The presence of a supported_groups extension in Client Hello

is not unusual, but the specific groups offered by Pion’s imple-

mentation differed from those of common browsers. Though

we confirmed the existence of the blocking rule, testers re-

ported that Snowflake continued to work—which may have

something to do with the fact that the Snowflake client does

not always play the client role in DTLS. If the Snowflake

client is the DTLS server, and the DTLS client is a browser

proxy, then the byte pattern looked for by the blocking rule

does not appear. We developed a mitigation, but by the time

we prepared a testing release in July 2022, the new rule had

apparently been removed and replaced by another. We can

only speculate as to why, but it may be that the old rule had

too many false positives, or simply was not effective enough.

The detection rule that replaced supported_groups in Client

Hello looked for the server sending a Hello Verify Request

33https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
40014#note_2765074

34https://github.com/pion/dtls/issues/409
35https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/375
36https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40030

USENIX Association 33rd USENIX Security Symposium 2647

 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40014#note_2765074
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40014#note_2765074
 https://github.com/pion/dtls/issues/409
 https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/375
 https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40030

message.37 Hello Verify Request is an anti-denial-of-service

feature in DTLS, in which the server sends a random cookie to

the client, and the client sends a second Client Hello message,

this time containing a copy of the cookie [32 §5.1]. It is not an

error to send Hello Verify Request (it is a “MAY” in the RFC),

but because the Pion implementation in Snowflake sent it,

and major browsers did not, it was a reliable indicator of

Snowflake connections. (At least, those in which a Snowflake

client or command-line proxy took the DTLS server role.)

This distinguisher, too, had been anticipated by MacMillan

et al. in 2020 [22 §3]. The first reports of this blocking rule

arrived in July 2022; but as you can see in Figure 8, it had

no apparent immediate effect. It is hard to say whether the

drastic decline in October 2022 was a consequence of this rule,

or some other, unidentified one. That decline coincided with

an enormous increase of users from Iran, which temporarily

affected the usability of the whole system. We deployed a

mitigation to remove the Hello Verify Request message from

Snowflake, regrettably, only in February 2023 38, after which

the number of users in Russia began to recover.

The case of Snowflake in Russia illustrates some of the

complexity of censorship measurement. The answer to a ques-

tion like “Does Snowflake work in Russia?” is not always a

simple yes or no. It may depend on the date, the ISP, and even

details such as which endpoint plays the DTLS server role.

5.2 Blocking in Iran

In late September 2022, users from Iran became the major-

ity of Snowflake users almost overnight, only to fall just as

quickly two weeks later. See Figure 9. The cause of the

rise was extraordinary new network restrictions amid mass

protests [3]; the cause of the decline was TLS fingerprint

blocking, which stopped Snowflake rendezvous from work-

ing. The crypto/tls package of the Go programming language

(in which the Snowflake client is written) may produce several

slightly different TLS fingerprints, depending on hardware

capabilities and how it is compiled.39 It was one of these

fingerprints that was blocked. Because the blocking rule was

specific to one fingerprint, only some users were affected.

Why would a censor block only one (even if the most com-

mon) of several TLS fingerprints? It may have been a simple

oversight. On the other hand, it is not certain that this in-

stance of TLS fingerprinting in Iran was meant for Snowflake

specifically. Go is a popular language for implementing cir-

cumvention systems; Snowflake may have been caught up in

blocking that was intended for another system.

The fact that simple TLS fingerprinting worked to block

Snowflake rendezvous was carelessness on our part. Having

been aware of the possibility, we previously implemented TLS

camouflage in the Snowflake client using uTLS—but failed

37https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40030#note_2823140
38https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/637
39https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

40207#note_2844163

to turn it on by default. Activating the feature required only

a small configuration change40, but we had to wait for new

releases of Tor Browser and Orbot to get it into the hands of

users: see the September–November 2022 interval in Figure 9.

After we repaired the TLS fingerprinting flaw, the number

of users from Iran gradually recovered to near its former peak.

We are aware of only minor disruptions after this time. The de-

fault rendezvous front domain was blocked (by TLS SNI) in

some ISPs between 2023-01-16 and 2023-01-24 41, which we

confirmed using data from the censorship measurement plat-

form OONI. A reduction in users is visible at this time. AMP

cache rendezvous continued to work. OONI measurements in

the weeks after the block was lifted showed additional spo-

radic failures to connect to the front domain. If these were

further attempts at blocking, they did not have much of an

effect.

5.3 Blocking in China

The graph of users from China, Figure 10, does not show any

drastic changes like those we have seen so far. There is a

modest but respectable number of Snowflake users in China.

Though there has been no sustained interference, we have seen

some evidence of short-term or tentative blocking attempts.

In May 2019, when Snowflake was still in alpha release,

a user in China reported a failure to connect. Investigation

revealed that the cause was blocking of the IP address of the

few proxies that existed at the time.42 The STUN exchange

worked, and rendezvous completed successfully, but the client

and proxy could not establish a connection. We experimented

with running a proxy at a previously unused IP address: clients

in China could connect when they were assigned that proxy by

the broker. This was before the web browser extension proxy

existed, when the only consistent proxy support was a few

standalone proxies running at a static IP address. It stopped

being a problem as the proxy pool grew in size.

That same month, we noticed blocking of the default STUN

server, of which there was only one at the time.43 The solution

was to add more STUN servers44, and select a subset of them

on each rendezvous attempt45. Curiously, it seems that when

the STUN server was blocked, the standalone proxies that

had been blocked earlier in the month became unblocked.46

The next incidents we are aware of did not occur until 2023.

On May 12, 13, and 14, a few users reported problems with

domain fronting rendezvous.47 We could not get systematic

40https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/540
41https://bugs.torproject.org/tpo/anti-censorship/team/115#note_2873040
42https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

30350#note_2593274
43https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

30368#note_2593357
44https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30579
45https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/

merge_requests/7
46https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

30368#note_2593360
47https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40038

2648 33rd USENIX Security Symposium USENIX Association

 https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40030#note_2823140
 https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/637
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207#note_2844163
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40207#note_2844163
 https://gitlab.torproject.org/tpo/applications/tor-browser-build/-/merge_requests/540
 https://bugs.torproject.org/tpo/anti-censorship/team/115#note_2873040
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30350#note_2593274
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30350#note_2593274
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30368#note_2593357
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30368#note_2593357
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30579
 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/7
 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/7
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30368#note_2593360
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/30368#note_2593360
 https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40038

measurements, but it appeared that censorship was triggered

by observing multiple (two or three) HTTPS connections with

the same TLS SNI to certain IP addresses within a short time.

It is possible that Snowflake was not the target of this blocking

behavior, and was affected only as a side effect. If it indeed

had to do with Snowflake, our best guess is that it was aimed

at rendezvous with multiple bridges (Section 4.4), though

such a policy would certainly also affect a large number of

non-Snowflake connections. The user count from China was

about halved during those three days, an effect that is visible

in Figure 10. On 2023-05-15, the blocking went away and the

user count returned to what it had been.

Also in May 2023, one user reported apparent throttling

(artificial reduction in speed by packet dropping) of TLS-

in-DTLS connections, based on packet size and timing fea-

tures.48 Such a policy would affect Snowflake, because of the

fact that it transports Tor TLS inside DTLS data channels.

Reportedly, padding the first few packets would prevent throt-

tling (a possible counterexample to our claims about traffic

analysis in Section 3). Our own speed tests run at the time

did not show evidence of throttling, with or without added

padding.49 There was no obvious reduction in the number of

users. It may have been a localized, ISP-specific phenomenon.

5.4 Blocking in Turkmenistan

There have never been more than a few tens of Snowflake

users in Turkmenistan. Even so, it has happened at least twice

that the number of users dropped suddenly to zero, as shown

in Figure 11. We found a variety of causes: domain name

blocking by DNS and TCP RST injection, and blocking of

certain UDP port numbers commonly used for STUN.

Turkmenistan is a particularly challenging environment for

circumvention. Though relatively unsophisticated, the censor-

ship there is more severe and indiscriminate than in the other

places we have discussed. Only a small fraction of the pop-

ulation has access to the Internet at all, which makes it hard

to communicate with volunteer testers and lengthens testing

cycles. We have been able to mitigate Snowflake blocking in

Turkmenistan, but only partially, and after protracted effort.

The drop on 2021-10-24 was caused by blocking of the

default broker front domain.50 We determined this by taking

advantage of the bidirectionality of the Turkmenistan firewall.

Nourin et al. [25 §2] provide more details; here we will state

just the essentials. Among the censorship techniques used in

Turkmenistan are DNS response injection and TCP RST injec-

tion. DNS queries for filtered hostnames receive an injected

response containing a false IP address; TLS handshakes with

a filtered SNI receive an injected TCP RST packet that tears

down the connection. Conveniently for analysis, it works in

both directions: packets that enter the country are subject to

48https://github.com/net4people/bbs/issues/255
49https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/

40251#note_2906723
50https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40024

injection just as those that exit it are. By sending probes into

the country from outside, we found that the default broker

front domain was blocked at both the DNS and TLS layers.

It was some time—not until August 2022—before we got

confirmation from testers that an alternative front domain

worked to get around the block of the broker.

The increase in the number of users from May to August

2022 was caused by a partial unblocking of the broker front

domain on 2023-05-03. We realized this only in retrospect,

after examining data from Censored Planet [34], a censor-

ship measurement platform that, at that time, had continuous

measurements of the domain from one autonomous system

in Turkmenistan. On that date, there was a shift from RST

responses to successful TLS connections. DNS measurements

were not available at the moment of the shift, but they, too,

showed no signs of blocking after that date. Evidently, some

users were able to reach the broker, in those days. But the

unblocking must not have been everywhere, because as late

as 2022-08-18, users reported that RST injection was still in

place for them (though DNS injection had stopped).

There was yet another layer to the blocking. Even if they

could contact the broker (at the default or an alternative front

domain), clients could not then establish a connection with

a proxy. Testing revealed blocking of the default STUN port,

UDP 3478. A client that cannot communicate with a STUN

server cannot find its ICE candidate addresses (Section 2.2),

without which most WebRTC proxy connections will fail.

(The exceptions are proxies without NAT or ingress filter-

ing. While there are some such proxies, censorship in Turk-

menistan also blocks large parts of IP address space, including

the data center address ranges where those kinds of proxies

tend to run.) As chance would have it, the NAT behavior dis-

covery feature we rely on for testing client NATs requires

STUN servers to open a second, functionally equivalent lis-

tening socket on a different port [21 §6], commonly 3479.

Changing to those alternative port numbers enabled some

users to connect to Snowflake again. Specifically, STUN

servers on port 3479 worked in AGTS, one of two major

affected ISPs. The workaround did not work in Turkmentele-

com, the other ISP, where port 3479 was blocked. Though we

do not have continuous measurements to be sure, we suspect

that the STUN port blocking began on 2022-08-03 and is

what precipitated the drop seen on that date in Figure 11.

The blocking techniques described in this section are crude,

surely resulting in significant overblocking—but they never-

theless offer greater challenges to circumvention than the

more considered blocking of, say, Russia and Iran. We remark

on this to make the point that blocking resistance cannot be

defined in absolute terms, but only relative to a particular

censor. Censors differ not only in resources (time, money,

equipment, personnel), but also in their tolerance for the so-

cial and economic harms of overblocking. Circumvention

can only respond to and act within these constraints. The

government of Turkmenistan has evidently chosen to priori-

USENIX Association 33rd USENIX Security Symposium 2649

 https://github.com/net4people/bbs/issues/255
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40251#note_2906723
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/40251#note_2906723
 https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40024

tize political control over a functional network, to an extreme

degree. To paraphrase one of our collaborators: “What they

have in Turkmenistan can hardly be called an Internet.”51 In a

network already damaged by oppressive policy, the additional

harm caused by the clumsy blocking of this or that circum-

vention system is comparatively small. This shows the sense

in which a resource-poor censor can “afford” certain blocking

actions that a richer, more capable censor cannot.

6 Future work

We designed Snowflake to be useful today, as well as resilient

to anticipated future censorship attacks. Here we list some

research questions that affect Snowflake and circumvention

more broadly. The uniqueness and scale of Snowflake’s de-

ployment provide a platform to help explore these questions.

What could alternative Snowflake deployments look like?

A natural extension of Snowflake would be to base it on a sys-

tem other than Tor, such as an ordinary VPN. Tor has attractive

privacy benefits and a convenient framework for developing

circumvention modules, but it also has relatively low speed

and lacks support for non-TCP applications. The prospect of

multiple Snowflake deployments raises the question of how

the proxy pool should be managed. Building Snowflake’s pop-

ulation of proxies has been an undertaking in itself—it would

be a regrettable duplication of effort if every project had to

repeat the process from scratch. Rather than retrofit our ex-

isting Tor-based proxies, a next-generation proxy pool might

be designed from the ground up with multiple cooperating

projects in mind. There is also the question of incentives:

while some proxy operators may be happy to donate band-

width to a free-to-use project like Tor, they may need more

motivation to help a commercial VPN, for example.

How might proxy enumeration attacks be inhibited? The

size (Section 4.2) and churn (Section 4.3) of the Snowflake

proxy pool are obstacles to comprehensive blocking. However,

it is worth considering the maximum impact of enumeration

attacks, and ways to mitigate them while preserving usability.

What is a good (family of) traffic shapes? Snowflake does

not yet attempt to shape its traffic analysis features (Section 3);

but if it were to, what shape should it use? This consideration

goes beyond just Snowflake. Frameworks for proposing and

evaluating traffic shaping techniques are under-explored.

Can traffic splitting benefit performance or resistance to

blocking? The Turbo Tunnel reliability layer of Section 2.3

lets us join a sequence of proxies into a session. In principle,

it also makes it possible to split traffic over many proxies, not

51https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40024#note_2889792

just sequentially, but simultaneously—something like multi-

path TCP. Sequence numbers, retransmissions, and reassem-

bly would ensure a reliable stream, even when proxies have

different lifetimes and performance characteristics. Traffic

splitting could reduce the performance impact of a slow proxy,

and eliminate the brief pause for re-rendezvous that now oc-

curs between consecutive proxies. Our initial experiments did

not show enough benefit to justify the change, though it may

be a matter of tuning.52 And of course, even if there are per-

formance and usability benefits, analysis would be required to

determine whether simultaneous WebRTC connections form

a distinctive network fingerprint.

Availability

The project web site, https://snowflake.torproject.org/, has

links to source code and instructions for installing the proxy

browser extensions. Code and data to reproduce this paper and

its figures are at https://archive.org/details/snowflake-paper.

Acknowledgements

The Snowflake project has been made possible by the cooper-

ation and support of many people and organizations. We want

to thank particularly: Chris Ball, Diogo Barradas, Griffin

Boyce, Anthony Chang, Roger Dingledine, Sean DuBois,

Arthur Edelstein, Mia Gil Epner, gustavo gus, J. Alex Halder-

man, Haz Æ 41, Jordan Holland, Armin Huremagic, Ximin

Luo, Kyle MacMillan, Ivan Markin, meskio, Prateek Mittal,

Erik Nordberg, Linus Nordberg, Vern Paxson, Michael Pu,

Kieran Quan, Sukhbir Singh, Aaron Swartz, ValdikSS, Vort,

Andrew Wang, Philipp Winter, WofWca, Yi Wei Zhou, Cen-

sored Planet, the Counter-Power Lab at UC Berkeley, Green-

host, Guardian Project, Mullvad VPN, the Net4People BBS

and NTC forums, OONI, the Open Technology Fund, Pion,

the Tor Project, financial donors, and the volunteers who

run Snowflake proxies. This work was supported in part by

DARPA under Contract No. FA8750-19-C-0500.

References

[1] Harald T. Alvestrand. Overview: Real-time protocols

for browser-based applications. RFC 8825, January

2021. https://www.rfc-editor.org/info/rfc8825.

[2] Diogo Barradas, Nuno Santos, Luís Rodrigues, and

Vítor Nunes. Poking a hole in the wall: Efficient

censorship-resistant Internet communications by

parasitizing on WebRTC. In Computer and

Communications Security. ACM, 2020.

https://www.gsd.inesc-id.pt/~nsantos/papers/

barradas_ccs20.pdf.

52https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/
25723#note_2718643

2650 33rd USENIX Security Symposium USENIX Association

 https://bugs.torproject.org/tpo/anti-censorship/censorship-analysis/40024#note_2889792
https://snowflake.torproject.org/
https://archive.org/details/snowflake-paper
https://www.rfc-editor.org/info/rfc8825
https://www.gsd.inesc-id.pt/~nsantos/papers/barradas_ccs20.pdf
https://www.gsd.inesc-id.pt/~nsantos/papers/barradas_ccs20.pdf
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/25723#note_2718643
 https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/25723#note_2718643

[3] Simone Basso, Maria Xynou, Arturo Filastò, and

Amanda Meng. Iran blocks social media, app stores

and encrypted DNS amid Mahsa Amini protests,

September 2022. https://ooni.org/post/2022-iran-

blocks-social-media-mahsa-amini-protests/.

[4] Junqiang Chen, Guang Cheng, and Hantao Mei.

F-ACCUMUL: A protocol fingerprint and

accumulative payload length sample-based

Tor-Snowflake traffic-identifying framework. Applied

Sciences, 13(1), 2023.

https://www.mdpi.com/2076-3417/13/1/622.

[5] Roger Dingledine and Nick Mathewson. Negotiating

and initializing channels. In Tor Protocol Specification.

February 2024.

https://gitlab.torproject.org/tpo/core/torspec/-/blob/

29e445bd6e9efe82367b8a2b09a6c6aa0bc92b7b/spec/

tor-spec/negotiating-channels.md.

[6] Donald E. Eastlake 3rd. Transport Layer Security

(TLS) extensions: Extension definitions. RFC 6066,

January 2011. https://www.rfc-editor.org/info/rfc6066.

[7] Nick Feamster, Magdalena Balazinska, Winston Wang,

Hari Balakrishnan, and David Karger. Thwarting web

censorship with untrusted messenger discovery. In

Privacy Enhancing Technologies. Springer, 2003.

http://nms.csail.mit.edu/papers/disc-pet2003.pdf.

[8] David Fifield. Turbo Tunnel, a good way to design

censorship circumvention protocols. In Free and Open

Communications on the Internet. USENIX, 2020.

https://www.bamsoftware.com/papers/turbotunnel/.

[9] David Fifield and Mia Gil Epner. Fingerprintability of

WebRTC. CoRR, abs/1605.08805, 2016.

https://arxiv.org/abs/1605.08805.

[10] David Fifield, Nate Hardison, Jonathan Ellithorpe,

Emily Stark, Roger Dingledine, Phil Porras, and Dan

Boneh. Evading censorship with browser-based proxies.

In Privacy Enhancing Technologies. Springer, 2012.

https://crypto.stanford.edu/flashproxy/flashproxy.pdf.

[11] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,

and Vern Paxson. Blocking-resistant communication

through domain fronting. Privacy Enhancing

Technologies, 2015(2), 2015.

https://www.bamsoftware.com/papers/fronting/.

[12] Gabriel Figueira, Diogo Barradas, and Nuno Santos.

Stegozoa: Enhancing WebRTC covert channels with

video steganography for Internet censorship

circumvention. In Asia CCS. ACM, 2022.

https://dl.acm.org/doi/10.1145/3488932.3517419.

[13] Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex

Halderman, Nikita Borisov, and Eric Wustrow. Conjure:

Summoning proxies from unused address space. In

Computer and Communications Security. ACM, 2019.

https://jhalderm.com/pub/papers/conjure-ccs19.pdf.

[14] Sergey Frolov and Eric Wustrow. The use of TLS in

censorship circumvention. In Network and Distributed

System Security. The Internet Society, 2019.

https://tlsfingerprint.io/static/frolov2019.pdf.

[15] Stefan Heule, Marc Nunkesser, and Alex Hall.

HyperLogLog in practice: Algorithmic engineering of a

state of the art cardinality estimation algorithm. In

Extending Database Technology. ACM, 2013.

https://research.google/pubs/pub40671/.

[16] Jordan Holland, Paul Schmitt, Nick Feamster, and

Prateek Mittal. New directions in automated traffic

analysis. In Computer and Communications Security.

ACM, 2021.

https://dl.acm.org/doi/10.1145/3460120.3484758.

[17] Christer Holmberg and Roman Shpount. Session

Description Protocol (SDP) offer/answer considerations

for Datagram Transport Layer Security (DTLS) and

Transport Layer Security (TLS). RFC 8842, January

2021. https://www.rfc-editor.org/info/rfc8842.

[18] Randell Jesup, Salvatore Loreto, and Michael Tüxen.

WebRTC data channels. RFC 8831, January 2021.

https://www.rfc-editor.org/info/rfc8831.

[19] Ari Keränen, Christer Holmberg, and Jonathan

Rosenberg. Interactive Connectivity Establishment

(ICE): A protocol for network address translator (NAT)

traversal. RFC 8445, July 2018.

https://www.rfc-editor.org/info/rfc8445.

[20] Patrick Lincoln, Ian Mason, Phillip Porras, Vinod

Yegneswaran, Zachary Weinberg, Jeroen Massar,

William Simpson, Paul Vixie, and Dan Boneh.

Bootstrapping communications into an anti-censorship

system. In Free and Open Communications on the

Internet. USENIX, 2012.

https://www.usenix.org/conference/foci12/

workshop-program/presentation/lincoln.

[21] Derek MacDonald and Bruce Lowekamp. NAT

behavior discovery using session traversal utilities for

NAT (STUN). RFC 5780, May 2010.

https://www.rfc-editor.org/info/rfc5780.

[22] Kyle MacMillan, Jordan Holland, and Prateek Mittal.

Evaluating Snowflake as an indistinguishable

censorship circumvention tool. CoRR, abs/2008.03254,

2020. https://arxiv.org/abs/2008.03254.

USENIX Association 33rd USENIX Security Symposium 2651

https://ooni.org/post/2022-iran-blocks-social-media-mahsa-amini-protests/
https://ooni.org/post/2022-iran-blocks-social-media-mahsa-amini-protests/
https://www.mdpi.com/2076-3417/13/1/622
https://gitlab.torproject.org/tpo/core/torspec/-/blob/29e445bd6e9efe82367b8a2b09a6c6aa0bc92b7b/spec/tor-spec/negotiating-channels.md
https://gitlab.torproject.org/tpo/core/torspec/-/blob/29e445bd6e9efe82367b8a2b09a6c6aa0bc92b7b/spec/tor-spec/negotiating-channels.md
https://gitlab.torproject.org/tpo/core/torspec/-/blob/29e445bd6e9efe82367b8a2b09a6c6aa0bc92b7b/spec/tor-spec/negotiating-channels.md
https://www.rfc-editor.org/info/rfc6066
http://nms.csail.mit.edu/papers/disc-pet2003.pdf
https://www.bamsoftware.com/papers/turbotunnel/
https://arxiv.org/abs/1605.08805
https://crypto.stanford.edu/flashproxy/flashproxy.pdf
https://www.bamsoftware.com/papers/fronting/
https://dl.acm.org/doi/10.1145/3488932.3517419
https://jhalderm.com/pub/papers/conjure-ccs19.pdf
https://tlsfingerprint.io/static/frolov2019.pdf
https://research.google/pubs/pub40671/
https://dl.acm.org/doi/10.1145/3460120.3484758
https://www.rfc-editor.org/info/rfc8842
https://www.rfc-editor.org/info/rfc8831
https://www.rfc-editor.org/info/rfc8445
https://www.usenix.org/conference/foci12/workshop-program/presentation/lincoln
https://www.usenix.org/conference/foci12/workshop-program/presentation/lincoln
https://www.rfc-editor.org/info/rfc5780
https://arxiv.org/abs/2008.03254

[23] Alexey Melnikov and Ian Fette. The WebSocket

protocol. RFC 6455, December 2011.

https://www.rfc-editor.org/info/rfc6455.

[24] Milad Nasr, Hadi Zolfaghari, Amir Houmansadr, and

Amirhossein Ghafari. MassBrowser: Unblocking the

censored web for the masses, by the masses. In

Network and Distributed System Security. The Internet

Society, 2020. https://www.ndss-symposium.org/

ndss-paper/massbrowser-unblocking-the-censored-

web-for-the-masses-by-the-masses/.

[25] Sadia Nourin, Van Tran, Xi Jiang, Kevin Bock, Nick

Feamster, Nguyen Phong Hoang, and Dave Levin.

Measuring and evading Turkmenistan’s Internet

censorship. In Web Conference. ACM, 2023.

https://dl.acm.org/doi/abs/10.1145/3543507.3583189.

[26] OpenJS Foundation. How AMP pages are cached.

https://amp.dev/documentation/guides-and-tutorials/

learn/amp-caches-and-cors/

how_amp_pages_are_cached [cited 2024-03-05].

[27] Marc Petit-Huguenin, Suhas Nandakumar, Christer

Holmberg, Ari Keränen, and Roman Shpount. Session

Description Protocol (SDP) offer/answer procedures for

Interactive Connectivity Establishment (ICE). RFC

8839, January 2021.

https://www.rfc-editor.org/info/rfc8839.

[28] Marc Petit-Huguenin, Gonzalo Salgueiro, Jonathan

Rosenberg, Dan Wing, Rohan Mahy, and Philip

Matthews. Session Traversal Utilities for NAT (STUN).

RFC 8489, February 2020.

https://www.rfc-editor.org/info/rfc8489.

[29] Pion WebRTC. https://github.com/pion/webrtc.

[30] Tirumaleswar Reddy, Alan Johnston, Philip Matthews,

and Jonathan Rosenberg. Traversal Using Relays

around NAT (TURN): Relay extensions to Session

Traversal Utilities for NAT (STUN). RFC 8656,

February 2020.

https://www.rfc-editor.org/info/rfc8656.

[31] Eric Rescorla. WebRTC security architecture. RFC

8827, January 2021.

https://www.rfc-editor.org/info/rfc8827.

[32] Eric Rescorla, Hannes Tschofenig, and Nagendra

Modadugu. The Datagram Transport Layer Security

(DTLS) protocol version 1.3. RFC 9147, April 2022.

https://www.rfc-editor.org/info/rfc9147.

[33] skywind3000. KCP - A fast and reliable ARQ protocol,

January 2020. https://github.com/skywind3000/kcp/

blob/1.7/README.en.md.

[34] Ram Sundara Raman, Prerana Shenoy, Katharina Kohls,

and Roya Ensafi. Censored Planet: An Internet-wide,

longitudinal censorship observatory. In Computer and

Communications Security. ACM, 2020.

https://censoredplanet.org/censoredplanet.

[35] Tor Metrics. Reproducible metrics. https://

metrics.torproject.org/reproducible-metrics.html

[cited 2024-03-05].

[36] Michael Carl Tschantz, Sadia Afroz, Anonymous, and

Vern Paxson. SoK: Towards grounding censorship

circumvention in empiricism. In Symposium on

Security & Privacy. IEEE, 2016. https://

internet-freedom-science.org/circumvention-survey/.

[37] Zeya Umayya, Dhruv Malik, Devashish Gosain, and

Piyush Kumar Sharma. PTPerf: On the performance

evaluation of Tor pluggable transports. In Internet

Measurement Conference. ACM, 2023.

https://ptperf.github.io/.

[38] uProxy. https://www.uproxy.org/.

[39] uProxy v1.2.5 - design doc. https://docs.google.com/

document/d/1t_30vX7RcrEGuWwcg0Jub-

HiNI0Ko3kBOyqXgrQN3Kw [cited 2024-03-05].

Archived at

https://archive.org/details/uProxy-Design-Doc-v1.2.5.

[40] Afonso Vilalonga, João S. Resende, and Henrique

Domingos. TorKameleon: Improving Tor’s censorship

resistance with K-anonymization and media-based

covert channels. In Trust, Security and Privacy in

Computing and Communications. IEEE, 2023.

https://arxiv.org/abs/2303.17544.

[41] Ryan Wails, George Arnold Sullivan, Micah Sherr, and

Rob Jansen. On precisely detecting censorship

circumvention in real-world networks. In Network and

Distributed System Security Symposium. The Internet

Society, 2024. https://www.robgjansen.com/

publications/precisedetect-ndss2024.html.

[42] Yibo Xie, Gaopeng Gou, Gang Xiong, Zhen Li, and

Mingxin Cui. Covertness analysis of Snowflake proxy

request. In Computer Supported Cooperative Work in

Design. IEEE, 2023.

https://ieeexplore.ieee.org/document/10152736.

[43] xtaci. smux, February 2023.

https://github.com/xtaci/smux.

[44] Maria Xynou and Arturo Filastò. Russia started

blocking Tor, December 2021.

https://ooni.org/post/2021-russia-blocks-tor/.

2652 33rd USENIX Security Symposium USENIX Association

https://www.rfc-editor.org/info/rfc6455
https://www.ndss-symposium.org/ndss-paper/massbrowser-unblocking-the-censored-web-for-the-masses-by-the-masses/
https://www.ndss-symposium.org/ndss-paper/massbrowser-unblocking-the-censored-web-for-the-masses-by-the-masses/
https://www.ndss-symposium.org/ndss-paper/massbrowser-unblocking-the-censored-web-for-the-masses-by-the-masses/
https://dl.acm.org/doi/abs/10.1145/3543507.3583189
https://amp.dev/documentation/guides-and-tutorials/learn/amp-caches-and-cors/how_amp_pages_are_cached
https://amp.dev/documentation/guides-and-tutorials/learn/amp-caches-and-cors/how_amp_pages_are_cached
https://amp.dev/documentation/guides-and-tutorials/learn/amp-caches-and-cors/how_amp_pages_are_cached
https://www.rfc-editor.org/info/rfc8839
https://www.rfc-editor.org/info/rfc8489
https://github.com/pion/webrtc
https://www.rfc-editor.org/info/rfc8656
https://www.rfc-editor.org/info/rfc8827
https://www.rfc-editor.org/info/rfc9147
https://github.com/skywind3000/kcp/blob/1.7/README.en.md
https://github.com/skywind3000/kcp/blob/1.7/README.en.md
https://censoredplanet.org/censoredplanet
https://metrics.torproject.org/reproducible-metrics.html
https://metrics.torproject.org/reproducible-metrics.html
https://internet-freedom-science.org/circumvention-survey/
https://internet-freedom-science.org/circumvention-survey/
https://ptperf.github.io/
https://www.uproxy.org/
https://docs.google.com/document/d/1t_30vX7RcrEGuWwcg0Jub-HiNI0Ko3kBOyqXgrQN3Kw
https://docs.google.com/document/d/1t_30vX7RcrEGuWwcg0Jub-HiNI0Ko3kBOyqXgrQN3Kw
https://docs.google.com/document/d/1t_30vX7RcrEGuWwcg0Jub-HiNI0Ko3kBOyqXgrQN3Kw
https://archive.org/details/uProxy-Design-Doc-v1.2.5
https://arxiv.org/abs/2303.17544
https://www.robgjansen.com/publications/precisedetect-ndss2024.html
https://www.robgjansen.com/publications/precisedetect-ndss2024.html
https://ieeexplore.ieee.org/document/10152736
https://github.com/xtaci/smux
https://ooni.org/post/2021-russia-blocks-tor/

	Introduction
	How it works
	Rendezvous
	Peer-to-peer connection establishment
	Data transfer

	Protocol fingerprinting
	Experience
	Client counts and bandwidth
	Number and type of proxies
	Proxy churn
	Multiple bridges

	Notable blocking attempts
	Blocking in Russia
	Blocking in Iran
	Blocking in China
	Blocking in Turkmenistan

	Future work

