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Abstract
Software debloating tools seek to improve program security
and performance by removing unnecessary code, called bloat.
While many techniques have been proposed, several barriers
to their adoption have emerged. Namely, debloating tools are
highly specialized, making it difficult for adopters to find the
right type of tool for their needs. This is further hindered by a
lack of established metrics and comparative evaluations be-
tween tools. To close this information gap, we surveyed 10
years of debloating literature and several tools currently un-
der commercial development to taxonomize knowledge about
the debloating ecosystem. We then conducted a broad com-
parative evaluation of 10 debloating tools to determine their
relative strengths and weaknesses. Our evaluation, conducted
on a diverse set of 20 benchmark programs, measures tools
across 12 performance, security, and correctness metrics.

Our evaluation surfaces several concerning findings that
contradict the prevailing narrative in the debloating literature.
First, debloating tools lack the maturity required to be used
on real-world software, evidenced by a slim 22% overall suc-
cess rate for creating passable debloated versions of medium-
and high-complexity benchmarks. Second, debloating tools
struggle to produce sound and robust programs. Using our
novel differential fuzzing tool, DIFFER, we discovered that
only 13% of our debloating attempts produced a sound and
robust debloated program. Finally, our results indicate that
debloating tools typically do not improve the performance
or security posture of debloated programs by a significant
degree according to our evaluation metrics. We believe that
our contributions in this paper will help potential adopters
better understand the landscape of tools and will motivate
future research and development of more capable debloating
tools. To this end, we have made our benchmark set, data, and
custom tools publicly available.

1 Introduction

Software debloating is an emerging research area focused
on improving the security and performance of programs by

removing unnecessary code (i.e., bloat) in the form of unnec-
essary features or extraneous library code. Bloat is pervasive
in modern programs due to entrenched software engineering
practices (e.g., design emphasis on reusable code modules)
and tendencies (e.g., scope creep). To counter this, several
debloating techniques targeting various stages of the soft-
ware life cycle have been proposed. However, their practical
adoption has not kept pace with research for several reasons.

First, debloating tools are highly specialized. Each tool
targets a different kind of bloat, type of software (compiled,
interpreted, kernels, etc.), stage of the life cycle (source, IR,
binary, etc.) and has a unique analysis method. This makes it
challenging for adopters to select the right category of tools
for their specific problem. Second, the literature lacks estab-
lished metrics resulting in unclear, incomplete, and potentially
misleading claims regarding how different methods improve
performance and security. This occurs because authors bor-
row or create their own metrics, which has been shown to be
problematic [12, 51]. Ultimately, it is difficult for adopters to
understand what benefits to expect as it is not immediately
apparent which metrics are useful or relevant. This is exac-
erbated by superficial explorations of soundness risks in the
literature, making it similarly difficult for adopters to under-
stand debloating’s trade-offs and consequences. Finally, the
few comparative evaluations present in the literature are lim-
ited to a small number of tools, making it difficult for adopters
to determine which tools are best in class.

While broad studies on bloat prevalence [14, 53, 54], de-
bloating trade-offs [76], and security metrics [8, 12, 21] have
been published, the largest comparative evaluation of soft-
ware debloating tools to date [4] is limited to only four tools,
each of a separate type. This permits comparing individual
tools across categories and how well they compose, however
the quantity and diversity of tools is not sufficient to com-
pare tools within categories or draw conclusions about the
relative merits of different types of debloaters. Also, the eval-
uation uses only four metrics and may fail to detect important
negative impacts of debloating such as excessive runtime or
memory consumption in debloated programs.
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Motivation. To date, there has been no holistic review,
classification, analysis, and evaluation of the tools, metrics,
benchmarks, and use cases in the software debloating ecosys-
tem. We close this knowledge gap by conducting a survey
and comparative evaluation of software debloating tools that
seeks to answer the following motivating research questions:

1. How can debloating tools be classified?

2. Which security, soundness, and performance metrics are
useful? What new metrics are needed?

3. Which benchmarks and configurations provide a holistic
evaluation of debloating tools?

4. How do tools within the same class compare?

5. How do debloating tools compare across classes?

Summary of Contributions. In this paper, we first present
the findings from our survey of debloating literature in Section
2. We then describe our experimental methodology to evaluate
debloating tools and their products in Section 3. We present
the results of our evaluation in Section 4, and discuss the key
findings of our study in Section 5.

2 Survey of Debloating Techniques

To conduct our survey, we first searched Google Scholar for
articles on software debloating, customization, partitioning,
and specialization. Next, we triaged each search result and
it’s references to identify duplicates and ensure relevance. We
included refereed works from all venues in our study, pro-
vided they made a meaningful contributions to debloating
discourse. The most common reason we excluded a search
result for lack of relevance was for making only a passing and
generic reference to software debloating, for example by re-
ferring to it as a related research area. Ultimately, we selected
over 70 scholarly articles dating back to 2013 for our survey.
Additionally, we included various commercial and work-in-
progress techniques at various stages of development to fully
cover the field’s breadth. A number of these works have not
been made publicly available; the authors of these works pro-
vided us with the information, technical artifacts, and support
necessary for our survey (and subsequent evaluation).

As we used an intentionally broad definition of "soft-
ware debloating", we included many works detailing de-
bloating methods for technical artifacts not traditionally con-
sidered software such as containers [29, 56], operating sys-
tems and their APIs [23, 24, 27, 40], test cases [35, 58, 67],
firmware [16, 79], and build dependencies [48], among oth-
ers [30, 44, 46, 52, 80]. In the following sections, we establish
a debloating taxonomy that defines and classifies types of
bloat, debloating workflows, types of debloating techniques,
metrics, and benchmarks we observed in our survey.

2.1 Types of Bloat

In general, debloating tools try to remove or neutralize two
different types of unnecessary code, which we define as Type I
and Type II bloat. Type I bloat is universally unnecessary and
can be removed without impacting the program’s behavior
for all intended end uses. The most common manifestation of
Type I bloat is library code that is dynamically loaded into a
processes’ address space at runtime but will never be called.
Although less common, some debloating tools target Type I
bloat in the form of operating system (OS) code (e.g., system
calls) that a program does not call to prevent their malicious
re-use. Dead and unreachable code is also Type I bloat, but
is not heavily targeted by debloaters because compilers and
interpreters are highly effective at removing it.

By contrast, Type II bloat is end-use dependent: code may
or may not be Type II bloat depending on how its user(s)
uses the program. Type II bloat typically takes the form of
unnecessary program features, such as support for obscure or
obsolete file formats in image processing software. Platform-
dependent code that handles variations in OS and web browser
interactions is another form of Type II bloat, however this kind
of bloat is typically addressed by build-systems and scripting
engines rather than debloating tools.

2.2 Debloating Workflow and Use Cases

Despite myriad technical differences, virtually all debloating
tools share a common high-level, six-stage user workflow:

1. Specification: The user creates a tool-specific specifi-
cation that outlines what program behaviors should be
kept or eliminated.1

2. Input: The user provides the specification and program
to the debloating tool.

3. Analysis: The tool uses information in the specification
to analyze the program and label code (e.g., as unneces-
sary, as part of a feature).

4. Transformation: The tool modifies the program to sepa-
rate bloat from useful code (e.g., cutting, reconstruction,
attaching labels).

5. Output: The tool produces a modified program that
either does not contain bloat or contains the necessary
labels to remove bloat at runtime.

6. Validation: The user validates that the modified program
is sound and behaves as expected via manual testing
or automated tools (e.g., fuzzer) of their choice. If the
output is invalid, the user may restart the workflow.

Despite a common high-level workflow, many tools define
different use cases for potential end users. Tools targeting

1Tools targeting only Type I bloat may not require specifications.
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Type I bloat prescribe a fairly straightforward use case: elimi-
nate as much bloat as possible. Tools targeting Type II bloat
employ three common use cases. Aggressive use cases re-
move all functionality except for a single desired feature or
software configuration. For example, aggressively debloating
a file compression tool might be defined as removing all code
not necessary to compress a file and write the result to disk.
Moderate use cases retain several core and peripheral fea-
tures and debloat the rest. A moderate debloating use case
for a file compression tool would keep code for compressing,
decompressing, and testing a compressed file’s integrity. Fi-
anlly, Conservative debloating [11, 12] use cases are defined
as those in which only a few peripheral features are removed.

2.3 Classifying Techniques

We sort the software debloating tools we surveyed into five
distinct categories primarily differentiated by design choices
made at various stages in the debloating workflow.

2.3.1 Source-to-Source (S2S) Debloaters

S2S debloaters remove bloat directly from a program’s source
code. They primarily target Type II bloat, although they can
be readily adapted to remove Type I bloat in libraries. De-
bloating information-rich source code has several advantages
over other representations (i.e., IR or binary). First, develop-
ers have many options for the analysis stage; S2S debloaters
can use code coverage [31, 74–76], fuzzing [9], build sys-
tem analysis [28, 72], and manual annotation [11] techniques
to produce feature-to-code mappings. Second, source code
is easier to transform without compromising the program’s
soundness because the compiler has yet to strip away high-
level information and replace it with machine semantics. The
compiler is also useful in this case for detecting errors and
optimizing away inefficiencies after source transformation.
Third, debloated source code is still relatively straightforward
to maintain, as relevant bug fixes or security patches can be
applied before compilation. Despite these advantages, trans-
forming source code can be technically complex due to the
flexibility in its expression (e.g., syntactic sugar) and lack of
compiler support for direct transformation of source code.

S2S debloaters generally require the user to have working
technical knowledge about both the tool itself and the pro-
gram they want to debloat. Creating specifications for these
tools typically involves specifying test cases that exercise
program behaviors that the user wants to retain. In practice,
this requires a large number of test cases even for moderately
complex programs due to the need for test cases that exercise
edge cases, security checks, error handling code, etc. As a
result, creating specifications for S2S debloaters can take on
the order of several hours for non-trivial programs.

2.3.2 Compiler-Based Specializers (CBS)

CBS are similar to S2S debloaters in that they take source
code as input and primarily target Type II bloat. Rather than
debloat source directly, CBS [2, 3, 41, 42, 45, 61, 64] use a
compiler (e.g., LLVM) during the analysis and transformation
stages to lower the source to IR, convert key input parameters
or values to compile-time constants based on the user’s de-
bloating specification, and remove bloat via built-in compiler
optimizations such as constant propagation, loop unrolling,
and dead code elimination. This approach mitigates soundness
concerns by using highly-reliable compiler passes instead of
custom transformation routines. As a trade-off, CBS only
support aggressive debloating use cases. While this means
users generally do not need deep working knowledge of the
program they are debloating, it makes them unsuitable for
moderate or conservative use cases or scenarios where fea-
tures are triggered by runtime inputs, such as network protocol
commands.

Because CBS are limited to aggressive use cases, they gen-
erally only require the user to know how the program will
be executed on their system (i.e., a single command line in-
vocation). As a result, creating debloating specifications for
CBS typically takes less than an hour. However, there are
some notable exceptions that may increase the amount of ex-
perience or time needed to configure and use the tool. Since
the tools are tightly coupled with the compiler, in some cases
the user may need to have working knowledge of the tools
build configuration (i.e., compiler flags). Additionally, some
tools may require the user to perform manual steps, such as
identifying the boundary between input parsing and program
logic if it cannot be automatically identified [3].

2.3.3 Binary-to-Binary (B2B) Debloaters

B2B debloaters are conceptually similar to S2S debloaters,
but differ in that they target program binaries (e.g., ELF,
Java bytecode [13, 33, 34, 68]). Binary-only approaches are
error-prone and fraught with challenges, however they have
the key advantage of being able to debloat legacy or closed
source binaries. B2B debloaters have limited options for the
analysis stage; they must rely on inherently imprecise bi-
nary analysis techniques such as execution tracing of test
cases [5, 15, 22, 26, 43, 51, 60, 70, 77] and binary lifting
[5,22,26,43,60,73,77] as well as heuristics [43,51] for gener-
ating feature-to-code mappings. The transformation phase is
similarly difficult due to the unique nature of binary formats
(e.g., co-mingling of program instructions and data, indirect
branching, etc.). Because fully recovering a binary is unde-
cidable in the general case, B2B debloaters must carefully
manipulate the input binary without violating their original
layout by blanking out code with no-ops or invalid instruc-
tions [15, 77] or adding a debloated version of the program
as a new code section alongside the original code [5, 70]. Ul-
timately, the key disadvantages of B2B approaches are also
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consequences of the limitations of binary analysis: they strug-
gle to produce sound debloated binaries and require high qual-
ity binary recovery to be effective (e.g., Egalito [73] requires
position-independent code to ensure recovery).

B2B debloaters generally require working technical knowl-
edge of the target program only. Like test case-based S2S
debloaters, creating a specification requires a large number of
test cases in practice to minimize soundness issues. For more
complex programs, this may take users one or more hours to
enumerate. Once processed, debloated binaries are difficult
to maintain or further modify due to the limits of the transfor-
mation techniques mentioned previously. However, given that
B2B debloaters are primarily used for legacy programs, this
may not be a significant detriment to their use.

2.3.4 Static Library (SL) Debloaters

SL debloaters focus on removing Type I bloat permanently
from libraries consumed by a target program. They do not
require a specification due to a straightforward analysis phase
in which the tools statically compute the call graph for the
target program and identify a precise set of required library
functions. SL debloaters use a variety of transformation ap-
proaches including creating specialized libraries via rewriting
to remove [7, 32, 36, 57, 65, 69, 78, 81] or blank unused func-
tions with no-ops or invalid instructions [1, 62], fragmenting
libraries [54], rewriting executables to statically link library
functions [26], and replacing unnecessary library functions
with stubs [71]. By limiting their scope to Type I bloat, SL
debloaters avoid many of the challenges experienced by other
classes of tools. First, SL debloaters do not risk creating un-
sound programs, although programming methods such as re-
flection and indirection may not be handled by some tools.
Second, SL debloaters require little or no human effort to use
beyond specifying the target program. However, the conse-
quence of this design choice is that these tools are not suitable
for scenarios where Type II debloating is required. SL de-
bloaters may also nullify operating system-wide efficiencies
that rely on mapping a single copy of a shared library into
multiple processes’ address space.

2.3.5 Runtime Debloaters

Runtime debloaters are similar to SL debloaters, the key dif-
ference being their transformation and output stages. To avoid
permanent changes to libraries, runtime debloaters record
required library functions as program metadata and inter-
pose on the dynamic linking process during execution to
debloat unnecessary library functions from the processes’
memory. Approaches vary significantly, for example Piece-
wise Compilation and Loading (PCL) [55] embeds call graph
information in binaries and uses a custom loader to rewrite
unnecessary functions with invalid instructions at runtime;
whereas BlankIt [50] and Decker [49] take the opposite ap-

proach of loading only necessary functions into the program’s
runtime memory based on the current execution point. Other
approaches use information from the build system such as
configuration options [37] and package dependencies [47] to
remove bloat. In addition to the advantages of SL debloaters,
runtime debloaters also have the advantage of not disturbing
code at rest, providing high confidence in the soundness of the
result. However, this comes at significant price: high runtime
overheads required to manage process memory.

2.4 Analysis of Debloating Metrics

Software debloating literature does not have an established
set of metrics for measuring success. Consequently there is
significant variability in the metrics used across the works we
surveyed. In most cases, metrics were adapted from similar
program transformation techniques (e.g., code optimization),
although in some notable cases new metrics have been intro-
duced [12, 20, 54, 76]. In total, we noted 30 different metrics
which we sorted into three categories and describe in the
remainder of this section.

Performance metrics measure the resource consumption
of both the debloating tools themselves and the debloated
programs they produce. In the latter case, performance is com-
pared to that of programs that were not debloated to determine
if debloating improves or worsens performance. Commonly
used performance measures include: CPU runtime, memory
overhead, static binary size, number of external resources
required, and manual effort required to use tools.

Correctness and Robustness metrics measure the stabil-
ity and resistance to abuse of debloated programs. Typically,
debloated programs are exercised by test suites or fuzzers
to identify faulty outputs, crashes, and/or other undesirable
outcomes. Interestingly, we observed that works using these
metrics collected them for debloated programs only. Since
correctness and robustness issues may be present in programs
prior to debloating, such measures should be taken for both
the original, non-debloated programs and their debloated vari-
ants to isolate issues introduced by a particular tool. Crystal
and Casinghino’s [20] comparative binary analysis tool uses
an SMT-based weakest precondition approach to demonstrate
equivalence of two program binaries or highlight differences
in their behavior, providing a high-assurance metric for cor-
rectness that can be applied to debloating scenarios.

Security metrics measure improvements to the program’s
security posture achieved through debloating. In our survey,
we noted two main categories of security metrics: vulnerabil-
ity elimination and code-reuse prevention. Ostensibly, these
metrics are used to claim desirable outcomes such as elim-
inating latent vulnerabilities, reducing the program’s attack
surface, and reducing the ease of code re-use attacks. However,
the real-world utility of these metrics is subject to debate.

Vulnerability elimination is typically evidenced in literature
by showing that known vulnerabilities (e.g., those reported in
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MITRE’s CVE database [17]) in benchmark programs are re-
moved during debloating. While this metric demonstrates the
possible benefits of debloating, it is ultimately flawed because
a debloating tool’s ability to eliminate vulnerabilities in eval-
uation is a poor indicator of whether or not it can measurably
eliminate vulnerabilities in practice.

First, suppose our goal is to eliminate known (i.e., n-day)
vulnerabilities in a program or a code library. Debloating is
not a realistic strategy because applying a patch is generally
less costly, complex, invasive and risky than debloating. In the
uncommon case that there is no patch or mitigation available,
debloating can only remove the vulnerability if it resides in
code that the user does not need because debloating tools by
design avoid altering required code. If the vulnerability is
indeed resident in unneeded code, then removing may not be
necessary unless it can be triggered by an attacker.

Now, consider the more realistic case where our goal is to
eliminate unknown (i.e., 0-day) vulnerabilities via debloating.
In this case, the benefits of debloating are highly circumstan-
tial. Unknown vulnerabilities will only be removed if they
happen to reside in code the debloater determines is unnec-
essary. Also, we have no way of knowing if we successfully
removed a vulnerability or not. Thus it is a best effort strat-
egy only. For both known and unknown vulnerabilities, a
debloater’s ability to remove vulnerabilities is primarily de-
pendent upon what code the user needs and the location of
the vulnerability, not the characteristics of the debloating tool
itself.

Finally, the use of this metric can be misleading, inaccurate,
or incomplete. For example, Qian et al. [51] showed that prior
work claiming vulnerability elimination in Type II bloat [31]
also reintroduced other historical vulnerabilities. Also, PCL
[55] reports eliminating known vulnerabilities in Type I bloat
as a benefit of their tool. However, these vulnerabilities are
in library functions that are statically unreachable from the
program. As such, they are exploitable only under extreme or
contrived scenarios.

Attack surface reduction and code-reuse prevention metrics
used in the literature largely focus on code-reuse gadgets as
a unit of measure. Code reuse gadgets are small snippets of
chain-able code present in the vulnerable program an attacker
can use to implement an exploit in situations where code injec-
tion defenses prevent them from executing shell code directly.
A common metric used to demonstrate security improvement
is a reduction in the total number of gadgets available to the
attacker. However, Brown and Pande [12] have shown this
to be unsuitable due to the propensity of many debloaters to
introduce new gadgets at a high rate despite reducing total
gadget count and the likely possibility that large reductions
in gadget counts fail to impose barriers on attackers creating
exploit chains. In turn, Brown and Pande propose qualitative
gadget set metrics for measuring costs imposed on attackers
exploit (e.g., gadget set expressivity, composability, special
capabilities, and locality) and a static analysis tool for com-

puting them, GSA (Gadget Set Analyzer).

2.5 Benchmark Programs

The works we surveyed used a variety of different bench-
marks to evaluate their tools. The majority of works em-
ployed benchmark sets that are commonly used in program
analysis literature such as GNU Coreutils [25], SPEC CPU
2006/2017 [18, 19] and DaCapo [10]. Additionally, several
works created and subsequently made available their own
benchmark sets such as CHISELBench [6] and OCCAM
benchmarks [66], however it is worth noting that these sets
contain many benchmark programs from Coreutils and SPEC.
Generally, the majority of benchmark programs used are of
low complexity: they have command line user interfaces,
make limited use of multi-threading, network interfaces, etc.,
and often run to termination with only a single set of inputs.
This is unsurprising, as these types of benchmark programs
are amenable to the complex tracing and transformation opera-
tions required for debloating. Many works also evaluated their
tools on moderate-complexity benchmarks such as bfptd,
curl, and httpd, although with less volume and frequency.
Such benchmarks are characterized by use of complex in-
puts, multi-threading, network sockets, etc. Although rare,
some works [51, 52] evaluated their tools on high-complexity
software such as web browsers and document readers.

3 Evaluation Methodology

In the following subsections, we detail our methodology for
selecting the tools, configurations, metrics, benchmarks that
we used in our subsequent evaluation.

3.1 Tool Selection

Due to the size and diversity of the software debloating ecosys-
tem, we first scoped our evaluation to tools that support user-
land C/C++ programs and libraries for x86/x86-64 machines.
This benchmark profile is the most widely supported and had
the largest pool of candidate tools. In total, we identified 31
candidate tools after filtering predecessor tools (e.g., includ-
ing OCCAMv2 [45] versus OCCAMv1 [42]). We obtained
source code via a public repository or request to the authors
for 24 tools, and were able to successfully build and run 17 of
them. We expended significant effort to resolve issues for the
seven failing builds, however we were not successful due to
irreconcilable technical issues [9, 47, 55, 75] or unresponsive
authors [15, 64, 77]. Of the remaining 17 tools, we further
excluded one because it requires a commercial license for
IDA Pro [54] and six others because they were not readily
adaptable to new targets. The underlying causes for exclusion
included one tool that was hardcoded to its benchmarks [72],
several tools that required time consuming and manual pre-
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processing steps for new benchmarks [11,49,50,76], and one
tool with technical limitations [22].

Table 1 lists the ten tools that were suitable for our eval-
uation. For each tool, we prepared an isolated environment
(i.e., virtual machine or docker container) configured with the
tool’s latest supported OS and all necessary resources required
to use the tool and manipulate our benchmark programs. Of
note, three tools are specialized versions of academic tools
developed by commercial firms. To avoid confusion, we hy-
phenate the commercial firm’s abbreviation to the tool title:
CHISEL-GT (GrammaTech, Inc.), BinRec-ToB (Trail of Bits),
and LMCAS-SIFT (Smart Information Flow Technologies).
We disclose that development of these commercial tools and
the evaluation presented in this paper was directed and funded
by the Office of Naval Research (ONR). Further, the the au-
thors of this paper are also the creators of BinRec-ToB and
CHISEL-GT. The creators of LMCAS-SIFT also provided
their tool and support for this evaluation.

3.2 Benchmark Selection
We selected 20 C/C++ benchmark programs (Table 2) that
vary in size, complexity, and functionality. To represent low-
complexity benchmarks, we use CHISELBench [6] as it is
commonly used in debloating literature and provides a com-
mon point of comparison for prior work. We further add six
medium-complexity and four high-complexity benchmarks
sourced from other benchmark sets [59, 66]. To build ref-
erence 64-bit ELF binaries for these benchmarks, we used
Clang/LLVM v10 on Ubuntu Linux v20 with two build op-
tions specified: position-independent code (-fPIC) and op-
timization level 3 (-O3). However, due to various tool- and
benchmark-specific limitations, we used different methods to
build some reference binaries. We built reference binaries for
use with RAZOR and CHISEL on Debian Buster. Building
ImageMagick required using GCC v9.4 (Ubuntu) and GCC
v8.3 (Debian Buster) instead of Clang/LLVM. Finally, we
built the reference binaries for BinRec-ToB as 32-bit ELF
binaries as it does not support 64-bit programs.

3.3 Debloating Specifications
Due to varying support for debloating use cases across tools,
we used three strategies for creating debloating specifications.
First, specifications are not required for SL debloaters as they
target Type I bloat only. Second, we adopted a moderate (Sec-
tion 2.2) debloating use case for the S2S and B2B debloaters
as this use case is most prevalent in the literature. Third, we
adopted an aggressive use case for the CBS debloaters as this
is the only use case they support.

For each benchmark, we created a general, tool-agnostic
debloating specification consisting of several core and pe-
ripheral features to retain (i.e., the moderate use case). We
defined each feature with a descriptive name and one or more

sample commands (i.e., test cases) for the benchmark that
exercises the feature. We further winnowed these specifica-
tions to a single command to create an aggressive version of
the moderate use case. Using the general specifications as
a guide, we then created tool-specific configuration files for
each benchmark program. In total, we created 160 distinct
debloating specifications for use in our evaluation 2.

3.4 Metric Selection
We selected 12 metrics (Table 3) for evaluating both the de-
bloaters themselves and the debloated programs/libraries they
produce. These metrics were drawn from those frequently
used in the three categories outlined in Section 2.4. Gener-
ally, we selected metrics that are computed from analysis of
program binaries, as this is the only common program repre-
sentation to all debloating tools (e.g., debloated code output
by S2S or CBS debloaters can be compiled and measured
against B2B debloated binaries). Of note, we chose not to use
CVE removal as a security metric in our evaluation due to
its poor predictive power. We provide details for how each
metric is computed and our evaluation results in Section 4.

4 Evaluation Results

We present the results of our evaluation organized by metric
categories. First, we present performance results for the tools
themselves, followed by performance, correctness, and secu-
rity metrics calculated by analyzing the debloated artifacts
they produce. Note that we discuss important findings and
results for each metric in this section but leave a holistic and
cross-category analysis for Section 5.

4.1 Tool Performance
Our evaluation of debloating tool performance is limited to
its CPU runtime and peak memory usage during execution.
We exclude various other aspects of tool use (e.g., prepar-
ing the tool, harnessing the target program, deploying the
debloated program, etc.) from our performance evaluation as
they are highly dependent upon the user’s technical expertise
and familiarity with tool, target program, and deployment en-
vironment. To conduct our performance evaluation, we placed
each tool’s isolated execution environment, their relevant de-
bloating specifications, and our benchmark programs (source
code and reference binaries) on our dedicated testing virtual
machine (VM). We configured the VM as a server-class ma-
chine with access to 24 3.2 GHz processors and 128 GB of
memory.

Some manual effort was required for three tools before we
could execute our tool performance tests. First, we discovered

2General debloating specifications and tool-specific configurations are
available in our data repository (Section 7).
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Table 1: Debloaters Selected for Evaluation
Year Cite Name Category Bloat Type Granularity Spec. Type Open Source
2018 [31] CHISEL S2S Type II Line Test Cases •
2023 [31] CHISEL-GT S2S Type II Line Test Cases
2019 [51] RAZOR B2B Type II Basic Block Test Cases •
2022 [5, 70] BinRec-ToB B2B Type II Basic Block Test Cases •
2023 [26] GTIRB Binary Reduce (Dynamic) B2B Type II Basic Block Test Cases
2021 [2, 61] Trimmer (v2) CBS Type II Instruction Command •
2022 [42, 45] OCCAM (v2) CBS Type II Instruction Command •
2023 [3] LMCAS-SIFT CBS Type I/II Instruction Command
2023 [26] GTIRB Binary Reduce (Static) SL Type I Function None
2019 [62] Libfilter SL Type I Function None •

Table 2: Evaluation Benchmarks
Low Complexity (CHISELBench [6]) Medium Complexity High Complexity

Benchmark Size (KLOC) Benchmark Size Benchmark Size Benchmark Size
bzip2 v1.0.5 12.2 rm v8.4 7.4 bftpd v6.1 4.7 nmap v7.93 233.4
chown v8.2 7.3 sort v8.16 14.7 wget v1.20.3 14.2 nginx v1.23.3 170.6
date v8.21 9.9 tar v1.14 31.3 make v4.2 24.6 pdftohtml v0.60 16.1
grep v2.19 23.8 uniq v8.16 7.4 objdump v2.40 59.7 ImageMagick v7.0.1 361.9
gzip v1.2.4 8.9 memcached v1.6.18 30.5
mkdir v5.2.1 5.1 lighttpd v1.4 89.7

NOTE: Due to incompatibilities with LMCAS-SIFT, we were forced to use different minor versions of some benchmarks when
building this tool’s reference binaries: coreutilsv8.26 (chown, date, mkdir, rm, sort, uniq) and gzip v1.12.

that CHISEL and CHISEL-GT were unable to run within
a reasonable time frame of 48 hours for medium and high-
complexity benchmarks as designed. CHISEL/CHISEL-GT
requires many iterations to progressively identify unneces-
sary code in programs, each of which requires deleting some
source code, compiling the resulting code, and executing the
numerous test cases. As such, CHISEL and CHISEL-GT’s
debloating runtime is proportional to the runtime of the test
cases that make up its specification. To evaluate these tools
beyond the CHISELBench (i.e., low-complexity benchmarks),
we worked with the authors of these tools to implement a par-
allelized test framework to improve its performance enough
to meet our standard for reasonable run time (48 hours). In
all, this engineering effort required 26 engineer hours to im-
plement.

Second, LMCAS-SIFT introduces the concept of a pro-
gram "neck", which is defined as the boundary between a pro-
gram’s configuration logic (i.e., command line and/or config
file parsing code) and main logic (i.e., the rest of the program).
LMCAS-SIFT requires that a suitable neck be identified prior
to debloating, and provides an automated placement tool for
this purpose called the neck miner. The neck miner does not
always identify the neck properly, leading to debloating fail-
ures. If the neck miner fails, the user must manually identify
it. In our evaluation, the neck miner failed to automatically
place the neck for gzip, mkdir, sort, tar, and uniq, and
required us to manually place them.

With our testing environment configured and manual har-

nessing complete, we then ran each tool ten times3 on each
compatible benchmark program recording the total CPU run-
time and peak memory usage per run. We summarize the av-
erage run time in CPU minutes and peak memory use across
all benchmarks at each level of complexity in Table 4. Note
that we include debloating operations that fail in these calcu-
lations. We exclude only benchmarks that are not compatible
with the tool for reasons such as the tool does not support C++
code, multi-threaded programs, etc. The first set of columns
in Table 4 indicate the number of compatible benchmarks
per tool at each level of complexity, out of the total 10 low, 6
medium, and 4 high complexity benchmarks.

Excluding a notable outlier (objdump), all debloaters ex-
cept CHISEL and CHISEL-GT took 25 minutes or less on
average to complete. CHISEL and CHISEL-GT took on the
order of CPU hours and CPU days to run, respectively. This is
due to their rather inefficient and indirect method of mapping
features to source code by iterative deletion and compila-
tion/testing. With respect to memory consumption, debloaters
generally required memory comparable to the size of the
target program. Across all tools, we observed a maximum
average peak demand of 6.4GB of memory. Finally, we ob-
served very little variability in tool CPU runtime and peak
memory usage across all benchmarks and trials. In all cases,
the standard deviation across each tool’s ten performance tri-

3Due to prohibitively long run times on the order of several CPU
hours/days (even with customization), we ran several tools on certain bench-
marks only once: 1) all CHISEL and CHISEL-GT performance tests, 2)
OCCAM and TRIMMER on objdump.
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Table 3: Metrics Selected for Evaluation
Name Category Name Category

Run time (tool) Performance Gadget Set Expressivity Security
Peak Memory Use (tool) Performance Gadget Set Quality Security

Run time Performance Gadget Set Locality Security
Peak Memory Use Performance Special Purpose Gadget Types Available Security
Static Binary Size Performance Executes Retained Functions Correctness / Robustness

Number of Libraries Linked Performance Errors / Crashes during Differential Testing Correctness / Robustness

Table 4: Average Run Time (CPU minutes) and Peak Memory (MB) per Debloater
# Benchmarks Run Time Peak Memory

Debloater Low Medium High Low Medium High Low Medium High
CHISEL 9 6 4 282 2241 324 306 91 181

CHISEL-GT 9 4 3 4078 4058 13350 2145 1675 3011
RAZOR 10 5 4 <1 <1 10 32 31 71

BinRec-ToB 9 3 3 5 7 8 1240 1251 1239
Binary Reduce (Dyn.) 10 6 4 <1 2 3 173 853 1085
Trimmer (v2) [Agg.] 10 6 4 2 90 2 18 3442 6518 5270
OCCAM (v2) [Agg.] 10 6 4 <1 150 2 <1 73 5565 147
LMCAS-SIFT [Agg.] 10 5 1 <1 <1 6 458 625 2001
Binary Reduce (Static) 10 6 4 1 7 25 415 1577 3323

Libfilter 10 6 4 <1 <1 <1 304 503 465
1 15 excluding outlier make with 21 CPU hour runtime.
2 <1 excluding outlier objdump with 8.9 (Trimmer) and 15 (OCCAM) CPU hour runtimes.

als on a given benchmark was 1-2 orders of magnitude below
the average value.

4.2 Program Performance

Software debloating tools seek to improve, or at the very least
avoid negatively impacting a program’s performance when
removing its unnecessary code. The primary expectation is
that the debloated program will occupy less space both on disk
and in run time memory, however it is not unrealistic to expect
that debloated programs may also execute faster if they are
structured in such a way where unnecessary code is frequently
executed. Conversely, it is also possible that the mechanics
of debloating operations may degrade run time. We present
in this section four performance metrics collected on the
debloated binaries and libraries that capture the performance
impacts of using these tools.

Static Binary Size. We recorded the size of each success-
fully debloated binary on disk and compare it to the size of
the original program’s binary. Our calculations are modified
for LMCAS-SIFT and the SL debloaters due to differences in
their implementation. Libfilter produces new, slimmed copies
of the benchmark’s linked libraries; thus we compare the ag-
gregate sizes of the debloated libraries against the originals.
The debloated programs created by LMCAS-SIFT and Binary
Reduce (Static) are statically linked binaries. For these we
compare the statically linked binary’s size to the aggregate
size of the original binary and its dynamically linked libraries.

We calculated size changes as a percentage, with values
under 100% indicating size reductions. We then averaged
the changes in binary size across the three complexity lev-
els, shown in Table 5. The first set of columns indicates the
number of successfully debloated benchmarks for each tool at
each complexity level. BinRec-ToB was not able to success-
fully debloat any of the benchmarks, and as such we exclude
it from this and all future tables in our evaluation.

Our evaluation reveals several interesting results. RAZOR
and Libfilter produced debloated binaries that are larger on
average across all complexity levels. This is not surprising, as
RAZOR stitches the debloated version of the program into a
new code section of the original binary and marks the original
code section as non-executable rather than actually removing
it. Similarly, Libfilter rewrites unreachable functions as HLT
(halt) instructions rather than removing them. We note that
reducing binary size is not a stated goal of either tool, and
this metric was not evaluated by their authors. Further, the
transformation methods used by these tools can be replaced
with other methods that reduce binary size rather than increase
it without fundamental changes to their approaches.

Generally, other tools achieved large size reductions for low
complexity benchmarks but were noticeably less effective on
high complexity benchmarks. This, combined with poor suc-
cess rates on high-complexity benchmarks (only 3 of 10 tools
successfully processed all four) suggests that these tools are
likely over-fit to low- and medium-complexity benchmarks.

Number of Linked Libraries In addition to recording
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Table 5: Average Change in Static Binary Size
# Benchmarks Static Binary Size

Debloater Low Medium High Low Medium High
CHISEL 9 6 2 31.6% 98.4% 100%

CHISEL-GT 8 3 2 80.9% 79.7% 96.6%
RAZOR 10 3 3 117.2% 101.5% 107.3%

Binary Reduce (Dynamic) 10 5 4 54.4% 38.6% 76.4%
Trimmer (v2) [Agg.] 7 4 4 68.1% 60.6% 79.6%
OCCAM (v2) [Agg.] 10 6 4 80.5% 74.7% 93.9%

LMCAS-SIFT [Agg.]1 7 2 1 6.4% 8.3% 33.0%
Binary Reduce (Static)1 10 5 1 22.2% 46.5% 49.0%

Libfilter 10 4 1 101.3% 101.1% 101.5%
1 Size calculated over executable and libraries because output is a statically linked binary.

reduction in binary size, we also recorded the number of ex-
ternal libraries linked by our benchmarks before and after
debloating to determine if removing Type II bloat in the main
executable eliminated the need for one or more libraries. We
exclude LMCAS-SIFT and the SL debloaters from this evalu-
ation since they operate on libraries directly. Our results are
intended to be anecdotal only because eliminating libraries
via debloating is largely dependent upon the specification.

Binary Reduce (Dynamic), CHISEL and CHISEL-GT were
generally successful in eliminating one or more libraries for
medium- and high-complexity benchmarks. Such observa-
tions are expected based on their design, however we ob-
served something unexpected: TRIMMER and OCCAM in-
troduced new libraries into debloated programs. The intro-
duced libraries are typically libc++, libgcc, and libm, and
are likely the result of changes the tool makes to the program
with its custom LLVM compiler transformation passes. These
libraries are quite large and computationally complex. De-
pending on the user’s goals for debloating (e.g., minimizing
code size or re-usability), introducing new dependencies like
this may prove counterproductive.

Program Run Time and Peak Memory Use. To deter-
mine how debloating processes impact the performance of
debloated programs, we created test suites for each bench-
mark that exercise retained functionality according to our
specifications (moderate and aggressive). These test suites are
designed to be strenuous and long-running where possible.
We ran each benchmark’s reference binaries and each suc-
cessfully debloated binary against these test suites ten times,
averaging the total run time in CPU seconds and peak mem-
ory consumption in MB across the trials. In many cases, the
debloated programs could not successfully complete the per-
formance test due to crashes, infinite execution, or run-time
errors. We excluded these failures from our calculations.

We calculated changes in run time and peak memory as
a percentage, with values under 100% indicating reductions.
We then averaged the changes across the three complexity
levels, shown in Table 6. The first set of columns indicates the
number of debloated benchmarks that successfully completed

the performance tests for each tool at each complexity level.
Note that we exclude 3 medium and 2 high complexity bench-
marks for CHISEL from these counts and our calculations
because CHISEL "successfully" processed these benchmarks
by making no modifications to the source code.

Our performance evaluation surfaces an important find-
ing: we observed a high failure rate for medium and high-
complexity benchmarks across all debloaters. Collectively,
only 22% of our attempts to debloat these benchmarks were
successful, calling into question the utility of software de-
bloating tools for complex programs. Further, the success rate
on low-complexity benchmarks was also lower than expected.
Despite CHISELBench being used extensively in the litera-
ture, only two tools, OCCAM and RAZOR successfully de-
bloated all low-complexity benchmarks. Conversely, BinRec-
ToB and Binary Reduce (Dynamic) failed to debloat any low
complexity benchmarks.

With respect to our performance metrics, we observed only
a few instances where debloated programs performed notice-
ably worse than their unmodified counterparts. Excluding an
outlier for CHISEL, only TRIMMER and OCCAM demon-
strated consistent and significant (>4%) negative impacts to
run time or memory consumption across multiple complexity
levels. The most significant of which are large (28% to 76%)
increases in run time. This is somewhat unsurprising as these
debloaters significantly alter the build chain and overall phase
ordering of compiler optimizations to facilitate debloating.
Phase ordering has significant effects on binary performance
and is an open area of research [38, 39].

4.3 Program Security Posture

Aside from performance improvements, debloating literature
often cites improving a program’s security posture (i.e., re-
ducing its attack surface) as a chief motivating goal. However,
concrete definitions of attack surface reduction vary widely
and there is a lack of sensible and effective metrics for measur-
ing it. Given the shortcomings of other commonly used mea-
sures (i.e., elimination of known vulnerabilities), we adopt
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Table 6: Average Change in Benchmark Run Time and Peak Memory Performance
# Benchmarks Run Time Peak Memory

Debloater Low Medium High Low Medium High Low Medium High
CHISEL 7 2 2 0 2 207% 1 97.9% N/A 96.7% 99.6% N/A

CHISEL-GT 7 2 1 97.6% 100.7% 101.8% 99.6% 99.7% 100.4%
RAZOR 10 3 2 95.8% 106.3% 100.9% 99.8% % 99.4 100.6%

Binary Reduce (Dynamic) 0 0 1 N/A N/A 100.9% N/A N/A 99.9%
Trimmer (v2) [Agg.] 6 1 2 135.8% 175.9% 138.6% 105.1% 106.9% 102.5%
OCCAM (v2) [Agg.] 10 1 0 128.2% 175.7% N/A 110.3% 101.4% N/A
LMCAS-SIFT [Agg.] 7 0 0 103.4% N/A N/A 99.1% N/A N/A
Binary Reduce (Static) 9 4 0 95.2% 101.0% N/A 97.2% 98.2% N/A

Libfilter 8 2 0 102.4% 100.4% N/A 100.3% 100% N/A
1 95.4% excluding outlier: 844.4% performance on gzip
2 Excludes 3 medium and 2 high complexity benchmarks that were "successfully" processed, but left unmodified by CHISEL.

four metrics that focus on code re-usability for our evaluation.
We use GSA [12] to analyze our debloated binaries and their
unmodified counterparts and compute these metrics, which
capture how readily an attacker can re-use the code present
in the program and its linked libraries to manufacture an ex-
ploit in the presence of common security controls such as
W⊕X and ASLR. Without a priori knowledge of the actual
vulnerabilities present in a program, these metrics provide
a qualitative assessment of the hygienic security benefits of
debloating.

Gadget Set Expressivity and Quality. The first two code
re-usability metrics we evaluated are concerned with the ag-
gregate properties of the functional code reuse gadgets avail-
able in a program binary. Attackers chain together functional
code reuse gadgets like instructions in a programming lan-
guage to write and launch an exploit without injecting code.
Gadget set expressivity measures the collective expressive
power of functional gadgets in a binary to determine if they
are sufficient to launch practical exploits. GSA defines 11 dif-
ferent classes of functionality that must be met by gadgets in
the set to meet this bar and reports expressivity as the number
of satisfied classes. Gadget set quality measures the average
chain-ability of gadgets in the set to determine how easily they
can be composed. Gadgets useful to an attacker often contain
machine instructions that are irrelevant for their purposes but
may impose side constraints on creating a gadget chain (i.e.,
altering the stack pointer). GSA measures the quality of each
gadget by using a starting score of 0.0 and adding to this
score for each side constraint detected. Overall set quality is
computed as the average score across all gadgets.

For both metrics, GSA compares set expressivity and qual-
ity in the debloated binary versus the original and reports the
change in value. For LMCAS-SIFT and the SL debloaters,
we include libraries in the comparisons as we did in Section
4.2 to make meaningful comparisons. Negative values for
expressivity indicate negative outcomes: the gadget set in the
debloated binary satisfies more expressivity classes than the
original. The reverse is true for gadget set quality: positive

values indicate that the average number of side constraints
per gadget went down after debloating. However, it is worth
noting that values less than 0.5 in either direction are not
significant as GSA’s quality scoring system values minor side
constraints at 0.5 and major ones at 3.0. We averaged GSA’s
reported metrics across the three complexity levels, shown
in Table 7. The first set of columns indicates the number
of successfully debloated benchmarks for each tool at each
complexity level.

Overall, the debloaters we evaluated did not have a sig-
nificant impact on security posture according to these two
metrics. In many cases, our data indicates expressivity and
ease of chaining increased for some tools and complexity
levels. However, we consider only one average increase to
be significant, which we define as a change of 2 or more ex-
pressivity classes or a change of 0.5 or more for the quality
score. This case is TRIMMER’s performance on the four high
complexity benchmarks, where is increased expressivity by
3.5 classes on average.

Special Purpose Gadget Availability. The third code re-
usability metric we evaluated is concerned with the availabil-
ity of special purpose code reuse gadgets in a program binary.
Attackers use special purpose gadgets as scaffolding to orga-
nize functional gadgets or to accomplish specific tasks such as
execute system calls (i.e., syscall gadget). The special purpose
gadget availability metric captures how many different types
of special purpose gadget types are available to an attacker,
defined as the presence of at least one gadget per type. GSA
defines 10 different types of special purpose gadgets, the most
important of these types being syscall gadgets. Syscall gad-
gets are used to invoke operating system functions such as
exec or mprotect on the attacker’s behalf. These gadgets are
rare outside of libc, as they only appear unintentionally in
typical userland programs.

GSA compares the special purpose gadget types available
in the debloated binary versus the original and reports the
change in value. Negative values indicate negative outcomes:
the gadget set in the debloated binary contains more types of
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Table 7: Average Changes in Gadget Set Expressivity and Quality
# Benchmarks Gadget Set Expressivity Gadget Set Quality

Debloater Low Medium High Low Medium High Low Medium High
CHISEL 9 6 2 1.3 0 0 -0.1 0 0

CHISEL-GT 8 3 2 0.3 0.7 0.5 0.1 0.2 0.1
RAZOR 10 3 2 -0.3 -0.3 -0.5 0.2 0 0.1

Binary Reduce (Dynamic) 10 4 4 1.3 1 1.25 0.2 0.2 0.2
Trimmer (v2) [Agg.] 7 4 4 0 -0.3 -3.5 0.4 0.2 -0.3
OCCAM (v2) [Agg.] 10 6 4 1.3 0.5 0.5 0.2 0 0.1
LMCAS-SIFT [Agg.] 7 2 1 0.1 0 -1 0.2 0.2 0
Binary Reduce (Static) 10 6 1 0.3 -0.5 -1 0.3 0.1 0

Libfilter 10 5 1 1 1 1 0 0 0

special purpose gadgets than the original. Due to the relative
importance of syscall gadgets, GSA also records the number
of syscall gadgets present in the binary. We averaged GSA’s
reported metrics across the three complexity levels, shown
in Table 8. The first set of columns indicates the number of
successfully debloated benchmarks for each tool at each com-
plexity level. Additionally, the last set of columns displays the
number of benchmarks where debloating introduced syscall
gadgets where there were previously none (undesirable) or
eliminated all available syscall gadgets (desirable).

Overall, debloating did not have a significant impact on the
types of special purpose gadgets available. On average, the
total number of types was increased or decreased by less than
one type for almost all tools and complexity levels. CHISEL-
GT and TRIMMER both introduced more than one type of
special purpose gadget on average for medium+high and high
complexity benchmarks, respectively. LMCAS-SIFT and Bi-
nary Reduce (Static) both reduce the availability of special
purpose gadget types significantly at several levels of bench-
mark complexity, although it is important to note that this is
due to the elimination of large amounts of code in libraries
via static linking. Focusing specifically on syscall gadgets,
the results were similarly mixed. Most tools either eliminated
syscall gadgets for some benchmarks, introduced them in
others, or more commonly, both.

Gadget Locality. The final code re-usability metric we
evaluated is concerned with the portability of exploits written
against the original program to debloated programs. Code
re-use exploit payloads for methods such as return-oriented
programming (ROP) and its variants reference gadgets se-
lected by the attacker using their address in the binary. This
exploit payload is fragile: it will only work on different ver-
sions of the same vulnerable program the attacker’s gadgets
can all be located at the prescribed addresses. While some
highly complex exploitation techniques such as JIT-ROP [63]
can overcome the need for static gadget addresses, in prac-
tice intentionally randomizing the code layout in binaries
provides for moving target defense and breaks portability of
exploits. This forces the attacker to create an exploit payload
for each different version of the vulnerable program they wish

to exploit. GSA scans the original and debloated binaries to
identify which gadgets retain their locality after debloating,
meaning the gadget remains at the same address in the binary
and its instructions are not changed. GSA calculates locality
as a percentage, where 0% indicates there are no local gadgets
in the debloated binary and 100% indicates they are all local.

Of the 136 successfully produced debloated variants, the
majority of them (109) exhibited 0% locality indicating they
are immune to ported exploit payloads. These includes all of
the debloated variants produced by LMCAS-SIFT, RAZOR,
TRIMMER, and both SL debloaters. A further 18 debloated
variants measured locality at less than 0.5%, indicating strong
protection from ported attacks. All debloated variants pro-
duced by OCCAM and CHISEL-GT are included in these
two levels. The remaining 9 variants were produced by Binary
Reduce (Dynamic) and CHISEL with gadget locality values
in the range of 4% to 82%, indicating weak protection from
ported exploits.

4.4 Program Correctness / Robustness

Debloating transformations are complex and ensuring they
do not compromise the soundness of the program is chal-
lenging whether they are implemented pre- (i.e., S2S), during
(i.e., CBS), or post-production (i.e., B2B, SL). Flawed or in-
complete transformations have the potential to negatively
impact programs in many ways that can manifest as logic
bugs, run-time errors, crashes, and in some cases, introducing
new vulnerabilities. We discovered ample evidence of this
during our benchmark performance tests (Section 4.2), where
36.6% of the debloated binaries produced in our evaluation
failed to execute their retained functionality.

This highlights the importance of post-debloating valida-
tion, a stage of the debloating workflow that is often neglected
or left entirely to the user for tools targeting Type II bloat.
This is partly due to a lack of effective testing tools; existing
approaches like regression and fuzz testing do not naturally
support testing debloated programs against their original ver-
sions. To address this shortcoming in our evaluation, we have
created a differential testing tool for transformed programs
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Table 8: Average Changes in Special Purpose Gadget Availability and Overall Syscall Gadget Impacts
# Benchmarks S.P. Gadget Types Available Syscall Gadget Impact

Debloater Low Medium High Low Medium High Eliminate Introduce
CHISEL 9 6 2 0.6 -0.3 0 3 1

CHISEL-GT 8 3 2 -0.6 -2.3 -1.5 1 3
RAZOR 10 3 2 -0.9 0 0.5 1 2

Binary Reduce (Dynamic) 10 4 4 -0.8 -0.5 0.3 0 0
Trimmer (v2) [Agg.] 7 4 4 0.7 0.8 -2.8 0 2
OCCAM (v2) [Agg.] 10 6 4 0.4 -0.5 -0.3 1 0
LMCAS-SIFT [Agg.] 7 2 1 4 3.5 2 0 0
Binary Reduce (Static) 10 6 1 2.9 2 1 0 0

Libfilter 10 5 1 0 0 0 0 0

called DIFFER that combines elements from differential, re-
gression, and fuzz testing approaches.

DIFFER allows users to specify seed inputs that correspond
to both retained and debloated features. It runs the original
program and one or more of its debloated variants with these
inputs and compares their outputs. DIFFER expects that in-
puts for retained features will result in outputs that are the
same for the original and debloated programs. Conversely, it
expects inputs for debloated features to cause the original and
debloated programs to produce differing outputs. If DIFFER
detects unexpected matches, differences or crashes it reports
them to the user to inspect. DIFFER’s reports can help the
user identify mistakes in the debloater’s configuration or in-
stances where the debloated program is unsound. As is the
case with all dynamic analysis tools, it is possible that DIF-
FER reports may be false positives. To reduce false positive
rates to a minimum, DIFFER allows users to define custom
output comparators that can account for expected differences
in outputs (e.g., a program timestamps its console output).
Additionally, DIFFER supports template-based mutational
fuzzing of seed inputs to ensure maximum coverage of the
input space (i.e., avoid false negatives) for both debloated and
retained features.

It is important to note that DIFFER does not and cannot
provide formal guarantees of soundness in debloaters or the
debloated programs they produce. Like other dynamic analy-
sis testing approaches, DIFFER cannot exhaustively test the
input space for complex programs in the general case. Still,
DIFFER is quite useful for post-debloating validation as it
is user-friendly and only requires a moderate about of user
expertise to configure.

Using the general debloating specifications we created in
Section 3.3 as a starting point, we configured DIFFER to test
both retained and debloated functions for each benchmark
program. We ran DIFFER on each of the debloated bench-
mark programs that successfully completed their performance
test (a total of 90 variants) for a maximum of 12 hours to
identify crashes, inconsistencies, or errors introduced during
debloating as well as failures to remove functionality marked
for debloating. Our results are concerning: after filtering for

false positives, DIFFER discovered errors or crashes in 27.8%
(25 of 90) of debloated benchmarks. Additionally, debloating
tools failed to remove features marked for debloating in 60%
(39 of 65) of the remaining debloated benchmarks. Of the
final 26 debloated benchmarks that passed testing by DIFFER,
thirteen were produced by Binary Reduce (static), seven were
produced by libfilter, four were produced by LMCAS-SIFT,
and OCCAM and CHISEL each produced one. Across our
evaluation, 50% (20 of 40) of attempts to remove Type I bloat
were ultimately successful, and only 3.3% of attempts to re-
move Type II bloat were successful (6 of 180)4. Our results in-
dicate that the general lack of attention paid to post-debloating
validation has resulted in over-reporting of successful debloat-
ing in the literature. This demonstrates the need for closer
attention to post-debloating validation in future research to
ensure accurate reporting of debloating success.

5 Discussion and Key Findings

In this section we discuss our key findings and provide action-
able recommendations for future debloating research.

5.1 Low Tool Maturity

Our most important finding is that debloating tools currently
lack the maturity required to be used on real-world software.
This is evidenced by a slim success rate of 42.5% across all
tools and complexity levels at producing debloated programs
or libraries that can pass a performance test. The success
rate across medium- and high-complexity benchmarks is only
22%, indicating that the current generation of debloaters are
suitable for use on lower complexity programs only. To ad-
vance the state of the art in debloating, new approaches should
focus on supporting more complex software packages and
programming language features / paradigms.

4Five successes were on low-complexity benchmarks, one was on a
medium complexity benchmark.
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5.2 Soundness Issues

When tested for correctness and robustness with DIFFER,
only two of the ten tools we evaluated, Binary Reduce static
and dynamic, did not produce unsound debloated binaries (i.e.,
DIFFER did not detect any crashes, failures, or errors in kept
functionality). In the case of Binary Reduce (dynamic), this
tool produced only one debloated benchmark, and DIFFER
did detect that it still contained features marked for debloat-
ing. As such, it is possible this binary is only sound because
the tool did not successfully debloat any features, which is
supported by the fact that this binary increased in size after
debloating.

Each of the remaining tools produced far more faulty pro-
grams than successful ones (except for BinRec-ToB, which
did not produce any debloated binaries). While the majority
of soundness issues detected by our performance tests and
DIFFER were problems with retained features, our results
also reveal serious program soundness issues with respect
to debloated functionality. New approaches must evolve to
cauterize the void left by excised code. In our survey, we ob-
served only one tool with the capability to do so: CARVE [11].
CARVE introduces the concept of debloating with replace-
ment in which atomic (i.e., contiguous group of source code
lines) debloating operations can be accompanied by replace-
ment code that maintains the soundness and robustness of the
program after debloating by inserting code to perform error
handling, control-flow redirection, data-flow sanitization, etc.
While promising, this feature requires manual inputs from
developers and maintenance over time. A future research op-
portunity exists to explore automated and scalable methods
for implementing debloating with replacement, potentially by
re-purposing automated program repair techniques.

5.3 Marginal Performance/Security Benefits

Finally, the tools we evaluated demonstrated consistent and
significant improvements in two metrics only: binary size
and gadget locality. We observed marginal benefits at best for
all other performance and security metrics. It is important to
note that our security evaluation is limited to code re-usability
metrics due to the difficulty of quantifying security improve-
ments. These tools may have had positive impacts such as
removing previously-unknown reachable vulnerabilities that
are generally not possible to evaluate because they are unde-
cidable.

Considering these marginal benefits in concert with the
aforementioned maturity and soundness issues, users are
likely to find the benefits of software debloating are currently
outweighed by the costs and potential risks in real-world sce-
narios. Further research is needed to improve the benefits of
debloating tools relative to the risks we identified above.

6 Conclusion

In this work, we presented our survey of the software debloat-
ing ecosystem. From this survey, we created a taxonomy of
debloating tools, a collection of 12 metrics to measure their
effectiveness, and a set of 20 benchmark programs of vary-
ing complexity useful for comparing tools against each other.
Next, we evaluated and compared ten software debloating
tools across the four most prominent types of debloating tools.
Our evaluation measured the performance of the tools them-
selves, as well as the performance, soundness, and security
improvements of the debloated programs they produce. Our
evaluation indicates that the current generation of software
debloating tools have several shortcomings that will prevent
adoption of these techniques in real-world scenarios. Specifi-
cally, the software debloating tools we evaluated have limited
support for medium- and high-complexity programs, strug-
gle to maintain soundness and robustness during debloating,
and have limited success in improving the performance or
security posture of debloated programs. To drive adoption of
software debloating tools, future debloating research should
focus on improving support for complex programs, sound-
ness, and metrics for quantifying positive security impacts.
We have made our benchmark set, data, and custom tools pub-
licly available to help drive debloater adoption and inform
their future development.

7 Availability

We have made the full set of artifacts generated in this work in-
cluding our benchmark set, metric tools, DIFFER, evaluation
scripts, and the evaluated tools publicly available at:

https://github.com/trailofbits/debloater-eval

https://github.com/trailofbits/differ
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