
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Hyperpill: Fuzzing for Hypervisor-bugs by
Leveraging the Hardware Virtualization Interface
Alexander Bulekov, EPFL, Boston University, and Amazon; Qiang Liu, EPFL and

Zhejiang University; Manuel Egele, Boston University; Mathias Payer, EPFL
https://www.usenix.org/conference/usenixsecurity24/presentation/bulekov

HYPERPILL: Fuzzing for Hypervisor-bugs by Leveraging the Hardware
Virtualization Interface

Alexander Bulekov∗†§ Qiang Liu ∗‡ Manuel Egele† Mathias Payer∗

alxndr@bu.edu qiang.liu@epfl.ch megele@bu.edu mathias.payer@nebelwelt.net

∗EPFL †Boston University ‡Zhejiang University §Amazon

Abstract

The security guarantees of cloud computing depend on the iso-
lation guarantees of the underlying hypervisors. Prior works
have presented effective methods for automatically identify-
ing vulnerabilities in hypervisors. However, these approaches
are limited in scope. For instance, their implementation is
typically hypervisor-specific and limited by requirements
for detailed grammars, access to source-code, and assump-
tions about hypervisor behaviors. In practice, complex closed-
source and recent open-source hypervisors are often not suit-
able for off-the-shelf fuzzing techniques.

HYPERPILL introduces a generic approach for fuzzing ar-
bitrary hypervisors. HYPERPILL leverages the insight that
although hypervisor implementations are diverse, all hypervi-
sors rely on the identical underlying hardware-virtualization
interface to manage virtual-machines. To take advantage of
the hardware-virtualization interface, HYPERPILL makes a
snapshot of the hypervisor, inspects the snapshotted hardware
state to enumerate the hypervisor’s input-spaces, and lever-
ages feedback-guided snapshot-fuzzing within an emulated
environment to identify vulnerabilities in arbitrary hypervi-
sors. In our evaluation, we found that beyond being the first
hypervisor-fuzzer capable of identifying vulnerabilities in
arbitrary hypervisors across all major attack-surfaces (i.e.,
PIO/MMIO/Hypercalls/DMA), HYPERPILL also outperforms
state-of-the-art approaches that rely on access to source-code,
due to the granularity of feedback provided by HYPERPILL’s
emulation-based approach. In terms of coverage, HYPERPILL
outperformed past fuzzers for 10/12 QEMU devices, without
the API hooking or source-code instrumentation techniques
required by prior works. HYPERPILL identified 26 new bugs
in recent versions of QEMU, Hyper-V, and macOS Virtual-
ization Framework across four device-categories.

All work was completed prior to author joining Amazon.

1 Introduction

Hypervisors provide the security foundations necessary for
the cloud. They enable efficient use of hardware resources,
by colocating workloads from multiple tenants on the same
bare-metal machines, isolated in individual virtual-machines
(VMs). As such, hypervisors ensure that code running in VMs
cannot violate the virtualization boundary (e.g., by performing
a VM escape attack) and compromise the workloads of the
other tenants, or the hypervisor itself.

Unfortunately, VM escape attacks are a tangible reality.
Hundreds of bugs have been identified in the complex hyper-
visor code. Due to the severity of these bugs, hypervisor com-
promises are awarded large bug bounties, similar to other high-
value targets such as web browsers and mobile devices [53].
In parallel, fuzzing has emerged as one of the most powerful
techniques for automatically uncovering vulnerabilities in a
large range of software [4,10,14,18,20,21,27,28,39,45,49,52].
As such, a significant amount of academic research has fo-
cused on leveraging fuzzing to automatically identify bugs in
hypervisor code, so that they can be promptly fixed, prevent-
ing malicious exploitation [6, 13, 26, 29, 32, 37, 38].

State-of-the-art approaches [6, 26] are capable of automati-
cally finding complex bugs across most major attack-surfaces
(i.e., PIO/MMIO/DMA). However, these approaches rely on
access and manual modifications to hypervisor source-code
to effectively fuzz virtual-devices. Even with access to source-
code, porting current methods to new targets is a non-trivial
process that requires considerable manual effort by an expert.
Furthermore, most fuzzers do not handle the hypercall attack-
surface as hypercalls are often implemented in a separate
component from the core device-emulation (e.g., in the OS
kernel), for performance reasons. Thus, even though major
open-source targets such as QEMU and VirtualBox have been
extensively fuzzed, closed-source targets such as Hyper-V and
macOS Virtualization Framework have not been thoroughly
fuzzed with state-of-the-art methods.

Due to the diversity of designs and runtimes (see Tab. 1),
harnessing a new hypervisor requires a combination of knowl-

USENIX Association 33rd USENIX Security Symposium 919

edge of advanced fuzzing techniques and expert knowledge
about the operation of individual virtual-devices. While hy-
pervisors offer similar functionality, there is currently no fully
automatic hypervisor-fuzzer capable of exploring all major
interfaces exposed by any hypervisor.

Efficient automated hypervisor fuzzing entails: 1. Input
Space Enumeration 2. DMA Hooking .

Input Space Enumeration. Hypervisors expose vast mem-
ory spaces and port input ranges, that are sparsely populated
by Memory-Mapped IO (MMIO) and Port IO (PIO) addresses
actually associated with virtual-devices. To effectively fuzz
these input-spaces, current fuzzers enumerate the port and
memory input-spaces to identify the active PIO/MMIO ad-
dresses. V-Shuttle [32], ViDeZZo [26] and Morphuzz [6]
require access and modifications to the hypervisor source-
code to hook into APIs that create PIO/MMIO ranges. Hyper-
Cube [38] and Nyx [37] leverage heuristics to approximate
the active PIO/MMIO ranges and hard-code legacy device
addresses. Additionally, hypervisors provide access to hyper-
calls which feature hypervisor-specific function signatures.
There are currently no fuzzers that automatically identify the
parameters related to hypercalls.

DMA Hooking. Direct Memory Access (DMA) provides
devices with the capability to directly read from memory, by-
passing the CPU, enabling high-bandwidth applications. In
the context of virtualization, the hypervisor can read DMA
inputs from arbitrary locations in VM-memory at any time,
without direct involvement from the virtual CPU (vCPU).
The sizes, structures, and formats of these DMA inputs are di-
verse and device-specific. DMA is used ubiquitously by block-
storage, networking, display, and USB controllers. Nyx [37]
proposes device-specific grammars to effectively fuzz DMA-
capable devices. However, such grammars require expert
knowledge, are difficult to construct, and are prone to inac-

O
pen-Source

Type-1
Language

Execution
Environm

ent

PV
Platform

H
ypercall identifier

EPT
M

M
IO

M
echanism

QEMU-KVM # C K+U VIRTIO RAX V+M
FIRECRACKER # Rust K+Upaper.tex VIRTIO RAX V+M
VIRTUALBOX # C++ K+U VIRTIO/VMBus RAX/RCX M
VMWARE (PC) # # C,C++ K+U VMWare RDX
VMWARE ESX # C K VMWare RDX M
MACOS # # ? U VIRTIO RAX V
HYPER-V # C++,? VM+K+U VMBus RCX V

Table 1: The diversity of hypervisors. In the Execution En-
vironment column, the letters indicate that significant parts
of the trap-and-emulate cycle are implemented in the Kernel
(K), Userspace (U) and dedicated virtual-machines (VMs)
that host parts of the hypervisor. The MMIO Mechanism col-
umn indicates that MMIO accesses are trapped using EPT
Violations (V) and EPT Misconfigs (M).

curacies which decrease fuzzing performance. To avoid the
need for difficult-to-obtain device-specific grammars, state-
of-the-art fuzzers converged on hooking DMA-related APIs
to facilitate fuzzing. To this end, V-Shuttle, ViDeZZo, and
Morphuzz all rely on modifications to the hypervisor’s DMA
APIs [6, 26, 32]. Similarly, MundoFuzz [29] leverages record-
ings of device interactions from a kernel with instrumented
PIO/MMIO/DMA APIs to automatically synthesize gram-
mars. Even with source-code access, it remains challenging to
identify all DMA-related APIs even in open-source software
(e.g., QEMU alone features dozens of DMA-access APIs).
Furthermore, developers commonly use pointer-based DMA
APIs (e.g., pci_dma_map() in QEMU) which return a pointer
to a large VM-memory region which can then be used to arbi-
trarily index into the guest-memory. Current fuzzers are not
equipped to deal with DMA activity from such generic APIs.

Our Approach. Our approach leverages the fundamen-
tal insight that while modern hypervisor internals feature
a plethora of different designs, all implementations must rely
on an architecture-specific hardware-virtualization interface
to configure VMs. As such all, hypervisors that run on the
same CPU architecture leverage standardized CPU features
to manage VMs. This interface encodes a wealth of informa-
tion about the input-spaces available to VMs. We introduce
HYPERPILL, a generic hypervisor-fuzzer that leverages this
well-specified hardware-virtualization interface to automati-
cally fuzz arbitrary hypervisors. Our design transplants a sin-
gle full-system snapshot of the hypervisor into an emulation-
environment for fuzzing. HYPERPILL can use the hardware-
virtualization interface to inject arbitrary IO activity into snap-
shotted hypervisors. Furthermore, it leverages feedback from
the standardized hardware-virtualization interface and the
granular introspection capabilities enabled by emulation to
automatically enumerate the PIO and MMIO input-spaces.
HYPERPILL identifies all the memory associated with the
virtualized guest and performs DMA hooking at the level of
atomic memory accesses. During fuzzing, it leverages run-
time feedback from the emulator to automatically identify
the parameters needed to invoke hypervisor-specific hyper-
calls. Thus, HYPERPILL elides manual hooking of hypervisor-
specific APIs, while providing finer-grained feedback than
state-of-the-art approaches that rely on source-code instru-
mentation. Due to our unique emulation-based approach, HY-
PERPILL is the first fuzzer capable of automatically fuzzing
all major input-spaces of arbitrarily-architected hypervisors
with state-of-the-art techniques. Furthermore, HYPERPILL
has the most fine-grained hypervisor introspection capabil-
ities, even allowing it to outperform fuzzers that leverage
source-code instrumentation.

Evaluation. We leveraged HYPERPILL to find bugs in re-
cent QEMU, Hyper-V, and macOS Virtualization Framework
hypervisors. For coverage, we compared HYPERPILL against

920 33rd USENIX Security Symposium USENIX Association

two state-of-the-art approaches (i.e., Morphuzz and ViDeZZo)
that require source code access. HYPERPILL outperforms the
two approaches for 10/12 QEMU devices. HYPERPILL suc-
cessfully identified 26 new bugs in all hypervisors across four
device-categories, of which 11 are bugs in QEMU, which has
been fuzzed extensively since 2020. Our throughput evalu-
ation shows that HYPERPILL is slower than ViDeZZo but
faster than Morphuzz. The performance penalty introduced
by emulation is offset by HYPERPILL’s ability to surpass
state-of-the-art approaches through high-quality inputs.

In summary, we make the following contributions:

• We present a novel method for fuzzing arbitrary hypervi-
sors that are essential to modern-day use by leveraging
the core hardware-virtualization interface. Due to the
rich feedback available from this interface, HYPERPILL
can automatically enumerate and fuzz all major hypervi-
sor attack-surfaces (i.e., PIO/MMIO/Hypercalls/DMA)
hypervisors without any target-specific harnesses work.

• We implement our hypervisor-fuzzer, HYPERPILL,
which leverages the hardware-virtualization interface
to fuzz arbitrary hypervisors. HYPERPILL takes a full-
system snapshot of the hypervisor target and transplants
the snapshotted target into an emulation environment,
where it probes the input-spaces and fuzzes the target.

• We evaluate HYPERPILL’s capabilities. We report on
26 new bugs discovered by HYPERPILL, of which 9 are
in virtual-devices covered by state-of-the-art hypervisor-
fuzzers. In addition to demonstrating HYPERPILL’s abil-
ity to find bugs, we show that HYPERPILL surpasses
the coverage of previous target-specific harnesses which
require access to and modification of source-code.

• To enable further research into grammarless, generic
hypervisor harnessing and fuzzing, we will open-source
all of HYPERPILL’s components.

2 Virtualization Background

Hypervisors. Hypervisors, or virtual machine monitors
(VMMs) are software that create and execute virtual machines
(VMs). In the mid-2000s, x86 virtualization changed substan-
tially, as Intel and AMD introduced hardware-backed virtu-
alization support. The new virtualization interfaces allowed
for high-performance low-complexity offloading of CPU and
memory virtualization tasks that were traditionally handled in
software using complex high-overhead approaches such as bi-
nary translation and MMU-shadowing [36]. These advances
drastically changed the computing landscape and acceler-
ated the proliferation of virtualization-based cloud technol-
ogy. However, while hardware-accelerated CPU and memory
virtualization greatly increased performance and usability, Hy-
pervisor code is still largely responsible for providing VMs
with access to virtual-hardware resources, such as network-
ing, display, and storage. For example, when a VM attempts

to access the network, the hypervisor must trap the VM’s
access and emulate the network access by running virtual
network device code. Such virtual-devices are generally im-
plemented in hundreds of thousands of lines of C/C++ code.
The critical nature of this code has led recent hypervisors,
such as Firecracker, to leverage “safer” languages (e.g., Rust)
to implement virtual-devices. As such, even with hardware
acceleration, hypervisor code remains a prime target for VM-
escape attacks. Before exploring the attack-surface further,
we detail the hardware-accelerated virtualization interface.

Hardware-Accelerated Virtualization Extensions. Com-
modity CPU architectures have support for hardware-
accelerated virtualization (VT-x for Intel, AMD-V for AMD,
Virtualization Extensions for ARM, RISC-V H, Virtualization
Extensions for PowerPC). We focus on prevalent x86 hypervi-
sors leveraging the Intel VT-x extensions. However, note that
semantically, hardware-accelerated virtualization extensions
feature broadly similar functionality. The privileged hypervi-
sor uses an architecture-specified API to configure a virtual-
machine, and dedicated instructions (e.g., vmresume on Intel)
to “enter” into the guest, which is called “VM-Entry”. When
an external event occurs (e.g., a timer interrupt), or the guest
accesses a privileged resource (e.g., a network-card MMIO ad-
dress), control returns to the hypervisor, which is tasked with
handling this “VM-Exit”. The CPU informs the hypervisor of
the reason for the “VM-Exit” through an architecture-specific
mechanism (e.g., a data-structure in memory).

This advanced virtualization functionality requires the hy-
pervisor to perform comprehensive configuration of VM-
related control settings. On Intel CPUs, the vmptrld instructs
the CPU to use an area in memory to maintain the control
information for a new VM. This area is called a VM Control
Structure, or VMCS. The VMCS contains hundreds of fields
(called encodings) that specify the VM’s configuration state.
For example, the VMCS contains the VM’s instruction pointer,
page-table base register or segmentation configurations. For
a VM-Entry, the vmlaunch/vmresume instructions are used
to activate the VM specified by the VMCS and run the guest
code. When the guest triggers a VM-Exit, the CPU modifies
the VMCS to provide the hypervisor with the necessary infor-
mation to handle the VM-Exit. Namely, the CPU places an
exit identifier in the EXIT_REASON encoding, which specifies
the reason for the exit (e.g., PIO, MMIO or hypercall). Further
information is placed in the EXIT_QUALIFICATION encoding.
The type of information depends on the EXIT_REASON. For
example, for faulting IO accesses, the EXIT_QUALIFICATION
contains the address, size, and type (read/write) of the access.
The hypervisor inspects the VMCS to learn the exit reason and
exit qualification. Following the ubiquitous trap-and-emulate
virtualization model, the hypervisor is responsible for emu-
lating the behavior that triggered the VM-Exit. The way in
which VM-Exits are handled is hypervisor-specific. However,
the mechanisms used to configure VMs are not.

USENIX Association 33rd USENIX Security Symposium 921

All hypervisors that wish to configure hardware-
accelerated VMs, rely on an identical and well-specified
architectural interface to encode crucial information
about the VMs. We name this interface the hardware-
virtualization interface.

Modern MMU Virtualization. Traditionally, MMU vir-
tualization was a performance obstacle. An MMU converts
virtual-addresses to physical-addresses using a translation
layer (usually encoded in hierarchical page-tables). However,
virtualization requires a second layer of translation. First, the
VM’s Guest Virtual Address (GVA) must be converted to a
Guest Physical Address (GPA) using the guest’s page-table.
Then, the Guest Physical Address must be converted to a
Host Physical Address (HPA). Since the hypervisor runs in
the host’s virtual-address space, and it needs access to the
guest’s physical memory (e.g., to perform DMA), the guest’s
memory is mapped into the host’s virtual memory. With the
advent of hardware-accelerated virtualization, CPUs began
providing an accelerated method for guest-paging called Sec-
ond Level Address Translation (SLAT). On Intel CPUs, SLAT
is implemented as Extended Page Tables (EPT). The guest
continues to maintain its page-table (PT), which translates
GVAs to GPAs. However, the hypervisor maintains a second
page-table, which translates GPAs to HPAs. When executing
the VM, the hardware translates addresses through both the
PT and the EPT table to convert GVAs to HPAs. Notably,
the EPT mechanism is also responsible for trapping MMIO
accesses. Since MMIO ranges are ranges of GPA that require
emulation, they are configured within the EPT to trap into the
hypervisor, rather than map to HPAs.

In summary, the EPT contains information required to
identify physical memory frames that are allocated to the
guest and to determine which guest-address accesses trap
into the hypervisor.

Interacting with the Hypervisor. VMs interact with the
hypervisor through a combination of Port/Memory-Mapped
IO, Hypercalls, and Directed Memory Access.

Memory-Mapped IO dedicates certain parts of the guest’s
physical memory for device IO. Unlike regular read/write
access to physical memory, operations to memory-mapped
regions cause VM-Exits which the hypervisor emulates by
executing virtual-device code. Transferring data to and from
the device via MMIO is a blocking/synchronous operation for
the vCPU. Port IO follows the same trap-and-emulate virtual-
ization model as MMIO, however, it targets a separate 16-bit
address-space. PIO is x86-specific and accessed via in/out
instructions. PIO is usually reserved for low-bandwidth com-
munication with devices, such as timers and serial ports.

Hypercalls are a virtualization-specific mode of communi-
cation with hypervisors. Hypercalls rely on a special instruc-

tion that can be executed within the guest to trigger a direct
VM-Exit into the hypervisor. There is no unified hypercall
calling convention. Each hypervisor can implement a hyper-
call interface that relies on parameters passed through any
number of registers (which may refer to memory addresses).
While hypercalls follow the same trap-and-emulate virtual-
ization model, the flexibility of the interface often that they
can be decoded and handled more rapidly than PIO/MMIO.
For PIO/MMIO, the hypervisor has to locate and disassemble
the faulting instruction to identify the source and destina-
tion operands (discussed further in § 3.2.1). Conversely, the
semantics of hypercalls are hard-coded.

Direct Memory Access (Unlike PIO/MMIO and hypercalls)
is performed without the direct involvement of the CPU (there
is no “DMA” instruction). Usually, when the VM wishes
to signal to the hypervisor that some data is available for
DMA transfer, it communicates the location of the data in
physical memory to the device using PIO/MMIO/Hypercalls.
The hypervisor can then, independently, access the data in the
guest’s memory. From the perspective of the vCPU, it simply
provides the virtual-device with a pointer to some data, by
writing to a PIO/MMIO register or via a hypercall.

Notably, DMA access patterns can be arbitrarily complex.
For example, DMA ring buffers are a common paradigm,
where the VM sets up a “ring” data-structure that stores meta-
data and pointers to individual buffers. Virtual-devices access
both the ring and the buffers using DMA. To address this
complexity, hypervisor-fuzzers have relied on grammars and,
more-recently, API-hooking to address the problem of the
complex DMA input-space. By hooking DMA APIs, fuzzers
gain information about DMA-access patterns which can be
used to automatically generate grammars (ViDeZZo [26] and
MundoFuzz [29]) or to directly fuzz the data returned through
DMA APIs (Morphuzz [6] and V-Shuttle [32]).

3 HYPERPILL Approach

1 Snapshot target HypervisorHypervisor
Instance

2 Probe Hypervisor Input SpacesSnapshot

3 Fuzz Hypervisor in Emulated
Environment

Snapshot
Fuzzing

Once per Hypervisor Config

Once per Snapshot

Figure 1: High-level overview of HYPERPILL’s approach.

Our HYPERPILL design enables effective fuzzing of arbi-
trary hypervisors without any target-specific configuration.
HYPERPILL’s approach centers around 1 collecting a snap-
shot of a hypervisor, 2 inspecting the snapshot to identify
the fuzzing input-spaces, and, finally, 3 fuzzing the hypervi-
sor. Our approach does not require any manual engineering
for individual hypervisors or composition of device-specific

922 33rd USENIX Security Symposium USENIX Association

grammars. Instead, HYPERPILL leverages the fundamental
hardware-virtualization interface, which must be used by all
hypervisors that take advantage of hardware-accelerated vir-
tualization. HYPERPILL can fuzz both type-1 (ones that run
on bare-metal) and type-2 (ones that run as applications man-
aged by a general-purpose OS) hypervisors. In summary, our
fuzzer is the first fully automatic gray-box hypervisor-fuzzer
that leverages architectural-state instead of grammars or con-
figurations to fully explore all major interfaces exposed to
guest VMs by any hypervisor. In this section, we describe
HYPERPILL’s approach. § 4 explains how we bring together
these innovations in our implementation of HYPERPILL.

Threat Model. In HYPERPILL’s threat-model, an attacker
has complete control over the code running in a guest man-
aged by a potentially vulnerable hypervisor. The attacker
seeks to compromise the isolation guarantees provided by
the hypervisor to gain control over other VMs on the system,
or the hypervisor itself. To this end, the attacker can initiate
arbitrary PIO/MMIO/Hypercalls that are handled by the hy-
pervisor. Furthermore, the attacker fully controls the data the
hypervisor reads from guest-memory e.g., via DMA. Addi-
tionally, the attacker can seek to perform Denial-of-Service
attacks, by disrupting the operation of the hypervisor and sub-
sequently the neighboring VMs. In this work, we exclude
side-channels from the attack-surface.

1 Making a Snapshot of the Hypervisor

As HYPERPILL is designed to target arbitrary hypervisors,
and hypervisors are known to be particularly stateful targets,
HYPERPILL requires a robust and generic mechanism for
resetting state between inputs. While prior approaches such
as Morphuzz and ViDeZZo relied on implementation-specific
solutions to add instrumentation and state-resetting to hy-
pervisor source-code, HYPERPILL does not have access to
such source-code-dependent features [6, 26]. Furthermore,
HYPERPILL targets complex hypervisor implementations,
such as Hyper-V where the hypervisor consists of compo-
nents spread over the host kernel, a guest kernel, and a process
running within the guest. To this end, HYPERPILL relies on
full-system memory and register snapshots to reliably capture
the state of the entire environment hosting the hypervisor.
This approach is independent of any hypervisor implementa-
tion details such as type-1/type-2, host OS, source availability,
etc. By collecting the snapshot in a separate offline stage, we
ensure that input-space enumeration (Stage 2) only needs to
be performed once, and that fuzzer instances are not delayed
by costly hypervisor-initialization (which is even more costly
in an emulated environment).

3.1.1 Timing the Snapshot

As described in § 2, hypervisors initialize the necessary data-
structures to configure a guest, before invoking vmenter to
launch the guest. Eventually, a guest or hardware-triggered
event causes execution control to be returned to the hypervi-
sor. If the event was guest-triggered (e.g., a virtual MMIO
read or hypercall), the hypervisor must emulate the corre-
sponding functionality (e.g., by running virtual-device code).
Software vulnerabilities in the hypervisor are most likely to
manifest themselves during this emulation. As such, HYPER-
PILL makes a snapshot of the hypervisor just as the guest
traps into the host and passes execution control to the hy-
pervisor for emulation of the VM-Exit. Specifically, HYPER-
PILL invokes a custom hypercall from the guest to make a
snapshot. As such the next instruction executed when HY-
PERPILL loads/resumes the snapshot is the first instruction
of the hypervisor’s trap-and-emulate code. In § 4.1 we detail
HYPERPILL’s implementation of this snapshotting technique.

2 Probing the Hypervisor’s Input-Space

In this section, we explain how HYPERPILL uses static and dy-
namic techniques to precisely enumerate the PIO/MMIO and
DMA input-spaces. Note that due to lack of a unified hyper-
call API, HYPERPILL does not perform any offline hypercall
enumeration. Instead, we tailored the fuzzing-process, itself,
to effectively explore the hypercall input-space (described
further in § 3.2.4).

3.2.1 Injecting IO into the Hypervisor

To perform active probing of PIO/MMIO regions, HYPER-
PILL needs the ability to inject PIO/MMIO operations into the
snapshotted hypervisor. Leveraging the hypervisor snapshot,
HYPERPILL can inject arbitrary VM-Exits into the hypervisor,
by performing slight modifications to the guest-memory. To
this end, HYPERPILL modifies the fields within the VMCS
that the CPU uses to communicate information about the
VM-Exit to the hypervisor. The address of the currently con-
figured VMCS structure (set using the vmxset instruction), is
included in the CPU state. As the format of the VMCS is well-
documented in architecture manuals, HYPERPILL can deref-
erence the address to probe details about the active VM. Thus,
even though the snapshotted VMCS represents a VM-Exit
for HYPERPILL’s custom hypercall, HYPERPILL can adjust
the snapshot to reflect any other VM-Exit, such as one related
to PIO or MMIO, or a different hypercall. Specifically, since
hypervisors often disassemble the faulting instruction, when
HYPERPILL injects an MMIO or PIO instruction, HYPER-
PILL overwrites the customized hypercall instruction, with
one corresponding to the VM-Exit (a mov for MMIO or an
in/out for PIO).

USENIX Association 33rd USENIX Security Symposium 923

With the capability to inject arbitrary VM-Exits, HYPER-
PILL can generically explore the PIO/MMIO/Hypercall
interfaces exposed by any hypervisor.

3.2.2 Enumerating MMIO and PIO

Leveraging the ability to inject arbitrary VM-Exits, HYPER-
PILL relies on probing to identify MMIO/PIO regions. Seman-
tically, PIO accesses are similar to MMIO accesses, however,
they leverage a relatively small 16-bit address-space (inde-
pendent of guest-memory) and PIO-specific x86 instructions,
i.e., in/out. However, MMIO ranges are adjacent to stan-
dard RAM addresses in the guest’s vast (e.g., 48-bit) physical
address-space. Fortunately, HYPERPILL can quickly elimi-
nate the vast-majority of physical-addresses from its list of
MMIO candidates, by inspecting the guest’s EPT. As de-
scribed in § 2, the EPT maps guest-physical-addresses (GPAs)
to host-physical-addresses (HPAs). There are two mecha-
nisms (EPT Violations and Misconfigurations) available to hy-
pervisors for trapping MMIO accesses. Both mechanisms rely
on specially configured pages in the guest’s EPT. HYPERPILL
reads the EPT pointer field from the VMCS and walks the
EPT. HYPERPILL records all guest-physical-address ranges
that trigger EPT Violation and Misconfiguration VM-Exits
upon access and treats these ranges as potential MMIO ranges.
These ranges do not necessarily all trigger behavior associated
with MMIO emulation. For example, some EPT Violation
ranges may simply be gaps in the guest’s physical address
space that are not associated with any RAM or MMIO de-
vices (e.g., the PCI hole). To handle access to such ranges,
the hypervisor generally ignores the access (or injects a page-
fault into the guest). Thus, after identifying a list of candidate
regions, HYPERPILL enters an active probing stage.

To enumerate PIO addresses and identify actual MMIO
ranges from the list of candidate MMIO ranges, HYPERPILL
relies on a multifaceted introspection approach. We identi-
fied that the majority of candidate regions are not associated
with any virtual-device code. Accessing such ranges results in
virtually identical hypervisor behavior (e.g., a rapid re-entry
into the guest, after setting up a physical-page mapping or
injecting a page-fault exception). As such, we identify key ex-
ecution characteristics that identify active PIO/MMIO ranges.
HYPERPILL iterates over potential PIO and MMIO addresses,
injects the corresponding VM-Exits and tracks these charac-
teristics to determine whether each address is associated with
a virtual-device. Specifically, HYPERPILL tracks:

• Instruction Count. The number of instructions executed
by the hypervisor to handle the access is a reliable indica-
tor of PIO/MMIO ranges. Non-interesting accesses typi-
cally have similar and small instruction counts. However,
MMIO/PIO accesses require executing device-specific
code and have large instruction counts due to executing
device emulation code.

• Unique Program Counter Values. PIO/MMIO virtual-
devices feature device-specific code to emulate accesses.
As such, accesses to different device-ranges result in
new code executed (previously-unseen program-counter
values). HYPERPILL marks ranges that execute unique
program counters (not executed by accesses to any other
range) to identify whether a range is associated with a
virtual-device.

• Entry to User-Space. Hypervisors such as KVM and
Hyper-V execute their PIO/MMIO virtual-device code
in user-space processes. As such, while all VM-Exits
are initially handled in privileged ring 0, accesses to
actual PIO/MMIO regions cause the hypervisor to exit
into the virtual-device worker process (unprivileged ring
3). For each PIO/MMIO candidate, HYPERPILL tracks
the execution of the hypervisor to determine whether it
executes the sysret instruction to exit into user-space.

Combining the lists of regions sensitive to these feedbacks,
HYPERPILL constructs a final list of active PIO and MMIO
regions which can be used to fuzz these interfaces.

3.2.3 Enumerating Guest-Memory (DMA)

HYPERPILL’s memory snapshot contains all the hypervisor’s
physical memory, including the physical frames that the hyper-
visor allocates for itself, for the VM, and unallocated memory.
While handling MMIO/PIO/Hypercall VM-Exits, the hyper-
visor can access data in guest-memory (e.g., DMA). As such,
the guest’s memory is an essential component of the virtualiza-
tion attack-surface. HYPERPILL statically classifies potential
hypervisor guest-memory-accesses into two categories.

• Direct Memory Access (DMA). Accesses that are used
for bulk transfers of data by virtual-devices (e.g. reads
from ring-buffers kept in the guest’s memory to rapidly
transfer data to devices such as network-cards).

• Instruction Emulation (IE). Accesses that are used to
disassemble an instruction that caused a VM-Exit. For
example, when a guest triggers an MMIO read, the hy-
pervisor must locate and disassemble the corresponding
faulting instruction to determine the destination register
and size of the read. The GVA of the PIO/MMIO in-
struction and the guest-page-tables used to identify and
disassemble the instruction should be set up accordingly.

With this information, HYPERPILL can differentiate memory-
accesses between ones that can potentially contain attacker-
controlled data (DMA), and ones that should reflect the guest’s
faulting instruction. To do this, HYPERPILL identifies and
categorizes the frames in the snapshot that belong to the guest
and can contain attacker-controlled data. HYPERPILL per-
forms a page-table walk over the EPT to identify all HPAs
that are mapped to the guest. In practice, HYPERPILL per-
forms the DMA-categorization and enumeration of candidate
MMIO regions during a single walk of the EPT. Addition-
ally, HYPERPILL walks the guest’s page-tables to determine

924 33rd USENIX Security Symposium USENIX Association

which guest-physical-pages contain the last-executed VM
instruction and the page-table entries required to locate it.

As a result of these page-table walks, HYPERPILL classifies
all memory frames in the hypervisor snapshot as:

1. Frames that are not mapped in the guest.

2. Frames that are dedicated to the guest, and are not part
of the guest’s page-tables.

3. Frames that are dedicated to the guest and are part of the
guest’s page-tables.

The IE surface is largely independent of the rest of the trap-
and-emulate cycle. Thus, to increase fuzzing performance,
HYPERPILL fuzzes DMA independent of the IE space. When
the hypervisor reads from memory, HYPERPILL first identi-
fies whether the memory belongs to the guest. If the read tar-
gets guest-memory, HYPERPILL further determines whether
the read targets the guest’s page-table structures, or the frame
that contains the last-executed guest instruction. HYPERPILL
only treats the read as a virtual DMA access and fills the cor-
responding location in memory with fuzzed-data if the access
is not classified as IE. With this capability, HYPERPILL can
fully explore the DMA interface exposed by any hypervisor.

3 Fuzzing the Hypervisor

In the prior sections, we described how HYPERPILL collects
and analyzes a hypervisor snapshot to identify the active
PIO/MMIO/DMA ranges. After completing this offline learn-
ing stage, HYPERPILL leverages the snapshot to fuzz the
hypervisor. To this end, HYPERPILL “restores” the snapshot
(i.e., loads the saved memory and register state, and prepares
to resume the execution). Then, based on the fuzzing input
HYPERPILL injects a PIO/MMIO or Hypercall VM-Exit, as
described in § 3.2.1. HYPERPILL resumes the hypervisor. Un-
less there is a crash, the hypervisor handles the VM-Exit and
resumes the VM, using the vmresume instruction. However,
HYPERPILL intercepts the vmresume and immediately injects
another VM-Exit based on the fuzzer-input, instead of exe-
cuting any guest-code. Thus, fuzzing-time is fully dedicated
to injecting new VM-Exits into the hypervisor and running
the hypervisor’s emulation code on fuzz-inputs. HYPERPILL
repeats this process until the fuzzer-input has been fully ex-
ecuted (no more bytes remain in the input). Hypervisors are
stateful targets and often require multiple IO operations to ex-
ecute certain code. To reflect this statefulness, HYPERPILL’s
inputs are composed of sequences of IO operations executed
from a “clean” snapshot state. This ensures that the fuzzer
can rapidly receive and react to runtime feedback to uncover
new parts of the hypervisor’s code. Then, HYPERPILL re-
sets the hypervisor’s state from the original snapshot, before
executing the next fuzzer input.

3.2.4 Fuzzing Hypercalls

As described in § 2, modern CPUs support hypercalls which
enable fast and flexible requests of services from the hypervi-
sor by the guest. Hypercalls are commonly used to provide an
interface to high-performance paravirtual-devices. As such,
they are a critical part of the virtualization input-space. Seman-
tically, hypercalls behave similarly to PIO/MMIO accesses:
the guest invokes a vmcall instruction that immediately traps
into the host. However, unlike PIO/MMIO, there is no general
hypercall ABI that is shared by all hypervisors. For example,
KVM uses the contents of guest register RAX to identify
the service requested by the hypercall, while Hyper-V relies
on RCX for the same purpose. Furthermore, since there is
no defined interface, hypervisors can use arbitrary registers
to communicate additional hypercall parameters. Depending
on the service requested, Hyper-V can interpret the contents
of registers RDX, R8, XMM0-5 as guest-arguments. More
generally, essentially any register can be used to pass data
through a hypercall. This creates a challenge, as fuzzing the
contents of all registers for each hypercall would result in an
unreasonably large input state space, requiring hundreds of
input bytes for each call and, worse, a majority of these bytes
would be wasted on unused registers that the fuzzer would
spend time mutating. Most prior fuzzers do not cover the hy-
percall input-space. Furthermore, the fuzzers that aspire to
fuzz hypercalls (e.g. Hyper-Cube [38]) handle them by encod-
ing hypervisor-specific expert knowledge about hypercall-ids
and the corresponding registers used to pass arguments. These
approaches require manual work and constant upkeep, since
hypervisors continue to add new hypercalls.

Instead, HYPERPILL leverages powerful introspection ca-
pabilities to efficiently fuzz arbitrary hypercall implementa-
tions. Unlike, the PIO/MMIO/DMA spaces which are enumer-
ated offline in stage 2 , HYPERPILL dynamically constructs
valid hypercalls by leveraging runtime feedback from fuzzing.
HYPERPILL’s approach is based on the observation that hy-
percall argument registers impact the hypervisor’s execution
path. As such, the contents of these registers appear in nu-
meric comparisons during the trap-and-emulate process (e.g.
bounds-checks and hypercall-handler selections). By default,
HYPERPILL fills all guest-registers with randomly generated
data from a pseudo-random-number generator (pRNG), rather
than the fuzzing-input. As the hypervisor handles the vmcall,
HYPERPILL inspects the operands of all comparison instruc-
tions. If any of the operands is found within the randomly
generated register data, HYPERPILL records that subsequent
mutations of the input should set the contents of the corre-
sponding register directly from the fuzzer-input (in § 4.3.1
we explain how this functionality is implemented). HYPER-
PILL automatically identifies registers that affect hypercall
execution, without any prior knowledge of the hypervisor-
specific hypercall-API and without wasting fuzzer-bytes on
unused registers (wasting potentially hundreds of bytes to fill

USENIX Association 33rd USENIX Security Symposium 925

unused registers, severely hampers fuzzing efficiency) Our
novel runtime-feedback-based approach is inspired by AFL++
CmpLog and RedQueen [2, 11]. However, instead of only
solving obstacles, such as magic-bytes, HYPERPILL uses the
feedback to transparently infer hypercall calling-conventions.

4 Implementation

As described in § 3, HYPERPILL collects a snapshot of a
hypervisor, inspects the snapshot, and finally fuzzes the hy-
pervisor. We implemented these three stages as independent
components of HYPERPILL. HYPERPILL-Snap collects a pre-
cise snapshot of a hypervisor at the exact moment it traps a
guest-access for emulation. HYPERPILL-Inspect locates the
guest’s memory within the snapshot and enumerates all the
active PIO and MMIO ranges. HYPERPILL-Fuzz leverages
the results of the prior stages to fuzz the hypervisor.

4.1 HYPERPILL-Snap

HyperPill-Snap L0

L1

Snapshot of the Target Hypervisor

Target1

54

Paravirtual NIC

Virtual Disk

Virtual Display

Virtual Audio

Keyboard

Fuzz-VM

mov rax, 0xdeadbeef
vmcall

2

3

L2

Figure 2: HYPERPILL-Snap snapshots the target hypervisor.

HYPERPILL relies on a full-system snapshot of the hypervi-
sor (the target), hosting a guest (the attacker-controlled VM,
in our threat-model). To collect this snapshot, HYPERPILL
relies on nested-virtualization. HYPERPILL-Snap is, itself,
a hypervisor (a customized version of KVM), designed to
run as L0 (L0 or Layer 0 is the standard name for the outer-
most hypervisor, L1 refers to the VM executed by L0 and L2
refers to a nested VM managed by L1). 1 HYPERPILL-Snap
runs the target hypervisor, in a nested configuration, as an
L1 guest. 2 The analyst launches a guest within the target
hypervisor (configured with desired virtual-devices), creating
the L2 Fuzz-VM. The x86 ISA supports nested virtualiza-
tion and dictates that all L2 VM-Exits first pass through L0,
before being injected into L1. As such, HYPERPILL-Snap
can inspect L2 exit-reasons before injecting them into the tar-
get. In the default case, HYPERPILL-Snap adheres to KVM’s
default behavior and simply forwards all VM-Exits into L1.
3 When HYPERPILL-Snap encounters a hypercall with a

special identifier (the value 0xdeadbeef stored in register
RAX), 4 it likewise injects it into the target by modifying

the VMCS1
2 (the VMCS configured by L1 for the L2 Fuzz-

VM). However instead of resuming the target to allow it to
handle the VM-Exit, HYPERPILL-Snap pauses execution of
the target hypervisor and 5 collects a snapshot of L1’s entire
memory and CPU state. Thus, to trigger the snapshot, the an-
alyst simply needs to invoke the 0xdeadbeef hypercall from
the L2 guest. We take the snapshot once the L2 OS (Linux)
has had the chance to fully boot and initialize all drivers and
virtual-devices. The resulting snapshot includes the L1 (i.e.,
target hypervisor’s) physical memory (which includes L2’s
physical memory), the register state, and internal CPU state,
such as the VMCS1

2 pointer.
Resuming the snapshot will result in L1 receiving the

0xdeadbeef hypercall VM-Exit, and attempting to handle
it. Thus HYPERPILL-Snap achieves our goal of collecting a
snapshot of the target hypervisor at the exact moment it is
about to handle a VM-Exit.

4.2 HYPERPILL-Inspect

HP-Inspect

Snapshot of the Target Hypervisor

VMCS

CR3
EPTP

RIP...

Fuzz-VM

Static

Dynamic

}
}Guest Memory

Frames

Potential MMIO
Regions

Inject IO

Await vmresume

Measure:
 ICount
 Covered PCs
 sysret Usage

Probe PIO/MMIO

1
2

Target

3

4
5

List of PIO/MMIO Regions

Categorized Guest Memory Frames

Paravirtual NIC

Virtual Disk

Virtual Display

...

Figure 3: HYPERPILL-Inspect analyzes the hypervisor’s
PIO/MMIO/Memory input-space.

As described in § 3, HYPERPILL’s snapshot analysis features
both static and dynamic components. HYPERPILL-Inspect
performs an initial static analysis of the snapshot to iden-
tify potential L2 guest’s MMIO ranges and categorize each
memory page contained in the snapshot. Specifically, HY-
PERPILL-Inspect dereferences the VMCS pointer (part of the
snapshotted CPU state), and loads the Extended Page Table
(EPT) pointer from the VMCS. HYPERPILL-Inspect walks
the EPT to identify the memory frames that are allocated to
the L2 guest (L2-guest-memory frames). Additionally, HY-
PERPILL-Inspect identifies candidate MMIO pages, which
are configured within the EPT to cause Misconfig or Violation
VM-Exits. HYPERPILL-Inspect then loads the value of the

926 33rd USENIX Security Symposium USENIX Association

L2 guest’s CR3 register from the VMCS1
2, which stores the

location of the L2 guest’s page-table (see § 3.2.3). By walk-
ing the L2 guest’s page-table, HYPERPILL-Inspect further
categorizes allocated L2-guest-memory frames as either part
or not part of the L2 guest’s page-table.

For PIO/MMIO enumeration, HYPERPILL-Inspect relies
on dynamic feedback from the hypervisor (e.g., instruction-
counts or covered PCs as described in § 3.2.2). HYPERPILL-
Inspect relies on our custom execution environment, called
MELTER, to execute the snapshot and collect dynamic feed-
back. MELTER is a full-system emulation-based fuzzer, based
on Bochs [5]. Bochs is an open-source x86-64 emulator.
Bochs has comprehensive support for VT-x, which is cru-
cial, since HYPERPILL is designed to fuzz hypervisors, that
rely extensively on VT-x. We use this execution environment
in HYPERPILL-Inspect (and reuse it in HYPERPILL-Fuzz).
Upon startup, MELTER loads the target hypervisor memory
and register snapshot taken in stage 1 into the emulation con-
text. MELTER features two modes: enumeration and fuzzing.
HYPERPILL-Inspect only relies on the enumeration mode.

4.2.1 Enumerating PIO and MMIO Ranges

HYPERPILL-Inspect relies on dynamic probing to identify ac-
tive PIO/MMIO ranges. As mentioned in § 3.2.1, HYPERPILL
can inject arbitrary IO operations, by modifying the VMCS
and guest memory, before resuming the snapshot. To iden-
tify active PIO/MMIO regions, we observe the property that
accesses to active PIO/MMIO regions cause the hypervisor
to execute code that implements virtual-device functionality.
Since HYPERPILL-Inspect has instruction-level insight into
the code executed by the hypervisor, it can easily identify
port and memory accesses that execute unique code. For PIO,
HYPERPILL-Inspect iterates over each address in the 16-bit
port-address space and injects a PIO write (simulating an
outb instruction). For MMIO, HYPERPILL-Inspect iterates
over each page within the candidate MMIO ranges identified
during the EPT walk and injects an MMIO write (simulating
a mov instruction with the candidate page as the destination).
After resuming the snapshot, HYPERPILL-Inspect waits for
the hypervisor to handle the injected VM-Exit and resume the
L2 guest using the vmresume instruction. In between each
injected probe, MELTER restores the state of the hypervisor
from the initial snapshot. For each candidate PIO/MMIO
address, HYPERPILL-Inspect records (1) The number of in-
structions executed before the L2 guest was resumed (2) The
executed program-counters (3) Whether the hypervisor en-
tered user-space. HYPERPILL-Inspect merges this informa-
tion to output the final list of active PIO/MMIO regions. Note
that since MELTER is based on Bochs, it is straightforward
to add the necessary instrumentation to the emulator to col-
lect this information. Our probing technique guarantees that
HYPERPILL only fuzzes subregions of the PIO/MMIO input-
space that cause variations in the hypervisor’s behavior. Cru-

cially, unlike past approaches, HYPERPILL-Inspect does not
rely on any instrumentation of APIs responsible for mapping
PIO/MMIO regions.

HYPERPILL-Inspect only needs to run once per snapshot
collected by HYPERPILL-Snap (i.e. once per target hypervisor
configuration). It outputs a list of identified and categorized
guest memory frames and active PIO/MMIO regions.

4.3 HYPERPILL-Fuzz

Snapshot of the Target Hypervisor

Input Interpreter

Inject IO

Fuzzing Engine

Modified Input

Instrumented
Execution Comparisons

Guest-Memory
Accesses

Covered Edges

Fuzz-VM

}

}

}

Target

Crashes

List of PIO/MMIO Regions
Categorized Guest Memory Frames

Hyperpill-Fuzz

Figure 4: HYPERPILL-Snap fuzzes the target hypervisor.

HYPERPILL-Fuzz leverages the snapshot collected by HY-
PERPILL-Snap and the enumerated PIO/MMIO/DMA input-
spaces from HYPERPILL-Inspect to efficiently fuzz the hyper-
visor using the fuzzing mode of MELTER. HYPERPILL-Fuzz
relies on an input-interpreter, which splits a single fuzzer-
input into a sequence of IO operations. The input-interpreter
features five core operations.

in[b,w,l](addr) perform a PIO read
out[b,w,l](addr, val) perform a PIO write
read[b,w,l,q](addr) perform an MMIO read
write[b,w,l,q](addr, val) perform an

MMIO write
hypercall(reg_bitmap, *vals) perform a hy-

percall

For these operations, the byte,word,long,quad suffixes specify the
size of the access.

For each of these operations, HYPERPILL-Fuzz reads the
address/value (if needed) and injects the corresponding type
of VM-Exit into the L2 guest (following the procedure out-
lined in § 3.2.1). HYPERPILL-Fuzz resumes the snapshot
and waits for the hypervisor to handle the injected IO opera-
tion. As soon as the hypervisor attempts to re-enter the guest
by using the vmresume instruction, HYPERPILL-Fuzz injects
the next operation in the input. Once HYPERPILL-Fuzz has
executed the entire input, it restores the hypervisor’s initial

USENIX Association 33rd USENIX Security Symposium 927

memory and register state from the snapshot. Thus, there is
no state-leakage between individual fuzzer inputs.

Two types of IO: Hypercalls and DMA require functionality
beyond the simple opcode interpreter. We cover each of these
special cases individually.

4.3.1 Hypercalls

As discussed in § 3.2.4, the vmcall instruction does not spec-
ify any fixed ABI to pass data to the hypervisor. Furthermore,
different hypercalls can feature different APIs. A hypervisor
can use any number of implementation-specific registers to re-
ceive inputs from the guest (e.g., one register can contain the
hypercall-id and another one can contain a DMA pointer to a
structure containing hypercall parameters). Initially, HYPER-
PILL does not use any fuzzer-provided values to fill registers,
when executing hypercalls. Instead, HYPERPILL fills all reg-
isters with random data from a pRNG. During the emulation
of a hypercall, if any of the random-values occur as arguments
of cmp instructions, HYPERPILL-Fuzz identifies the register
that contained the random-value as significant. HYPERPILL-
Fuzz dynamically modifies the vmcall operation within the
input testcase to explicitly specify that the corresponding
register-value should be specified by the fuzzer, and over-
writes the input-interpreter’s “hypercall” operation to reflect
the pRNG-generated value. More specifically, the “hypercall”
operation in fuzzer inputs, is followed by a 32-bit register-
bitmap which specifies whether any of the general-purpose
and 16 XMM registers should be filled with fuzzer-data. The
bitmap is followed by the values of the fuzzer-specified reg-
isters. If new significant registers are identified, the fuzzing
input is modified. If the input achieves new coverage, the
modified input is stored in the fuzzer’s corpus, for future mu-
tation. To support this functionality, we modified the fuzzing
backend (libFuzzer) to support (1) Modifying fuzzer inputs
during execution (so the hypercall operation can be modified
if a significant register is identified) (2) Preventing fuzzer mu-
tations from affecting parts of the input (so the mutations do
not overwrite the 32-bit register-bitmap, which should only be
modified if new significant registers are found). This process
is highlighted in Fig. 4: after executing a testcase, a modified
input is returned to the fuzzing-engine, for further mutation.

4.3.2 DMA

Unlike PIO, MMIO, and Hypercalls, DMA is a reaction to
other IO operations, without the virtual CPU’s direct involve-
ment in the data transfer. In the context of virtualization, the
hypervisor can initiate DMA at any point during its execu-
tion, by accessing some of the guest’s physical memory. Thus,
HYPERPILL-Fuzz cannot implement DMA as a simple op-
code, since there is no way to directly “inject” it through a
VM-Exit. Instead, DMA occurs implicitly as a side effect of
the other IO operations which inform the hypervisor that it
should initiate a DMA transfer. Since HYPERPILL does not

feature any device-grammars, it is not aware, a priori, which
IO operations will cause DMA. State-of-the-art open-source
hypervisor-fuzzers such as Morphuzz and ViDeZZo identi-
fied that the DMA input-space can be effectively fuzzed by
adding strategic fuzzing hooks to the hypervisor source-code,
targeting the DMA access APIs [6, 26]. When the hypervisor
initiates a DMA access, the hook fills the corresponding re-
gion of guest-memory with fuzzer-provided data just-in-time.
This strategy elides the need for prior information about which
IO operations initiate DMA accesses and the size/format of
the DMA data.

Unlike these prior approaches, HYPERPILL cannot directly
modify DMA access APIs. However, since HYPERPILL-Fuzz
runs the hypervisor in an emulator, and has precise informa-
tion about which memory frames are dedicated to the guest’s
memory, it can intercept the hypervisor’s DMA accesses. Af-
ter injecting a PIO/MMIO/Hypercall into the hypervisor, HY-
PERPILL tracks all the hypervisor’s memory accesses. If the
hypervisor reads from memory marked as DMA by HYPER-
PILL-Inspect, HYPERPILL intercepts the access and fills it
with data from the current fuzzer input. This DMA-access
tracking is completely oblivious to the inner workings of the
hypervisor and the structure of its DMA APIs. Furthermore,
unlike prior approaches which require manual modifications
to hypervisor source-code, HYPERPILL does not risk miss-
ing DMA accesses due to incomplete API instrumentation –
DMA is tracked at the level of (emulated) physical memory.
In § 5, we will see that this enables HYPERPILL to outper-
form fuzzers even when they have access to the DMA API
source-code.

5 Evaluation

We evaluate HYPERPILL’s fuzzing capabilities to answer the
following research questions:

RQ1 Does HYPERPILL trigger complex coverage, and
does it compare favorably against state-of-the-art
fuzzers that target open-source hypervisors?

RQ2 Can HYPERPILL discover new bugs in a wide range
of hypervisors without hypervisor-specific configu-
ration or modifications?

RQ3 Can HYPERPILL find new bugs even in virtual-
devices that have already been fuzzed extensively?

RQ4 Can HYPERPILL rediscover previously known bugs
in hypervisors?

RQ5 How does HYPERPILL’s emulation-based execution
performance compare to that of other fuzzers?

5.1 Experimental Setup

We conducted our experiments for QEMU version 8.0.0 (re-
leased April 2023), Hyper-V shipped with Windows 10, and
macOS Virtualization Framework shipped with macOS Ven-
tura (version 13). We selected these three hypervisors as

928 33rd USENIX Security Symposium USENIX Association

they are the default hypervisors that ship with the three most-
popular consumer operating-systems. As these hypvervisors
run the gamut from open-source (KVM) to closed-source (ma-
cOS, Hyper-V) , different programming languages (C: KVM,
C++: Hyper-V, Unknown: macOS), and availability of debug-
ging symbols (KVM: full, Hyper-V: some, macOS: none) this
selection showcases the broad applicability of HYPERPILL.

We performed a coverage comparison with the two most
recently updated fuzzers (i.e., Morphuzz and ViDeZZo) that
target QEMU and have their source-code available [6, 26].
For Morphuzz, we use the upstream version maintained in
the QEMU repository. For ViDeZZo, we adjusted the code
to support QEMU v8.0.0. We conducted our evaluation over
12 devices (i.e., four block devices, three graphics adapters,
three network adapters, and two USB controllers). For each
category, we selected the most complex devices estimated by
lines of code in the QEMU repository. Nine of these devices
overlap with the ones evaluated in prior works [6, 26]. We
fuzzed each QEMU device for 24 hours on 8 cores (8 fuzzing
workers per device) and repeated these experiments five times.
Similarly, we fuzzed our Hyper-V and macOS snapshots for
24 hours on 8 cores. We performed all experiments on univer-
sity cluster servers equipped with 2x Intel Xeon Gold 6132
@ 2.60 GHz with memory ranging from 192 GB to 512 GB
(memory was not a limiting factor for any fuzzer instance).

5.2 Coverage
We compared HYPERPILL’s coverage performance to Mor-
phuzz and ViDeZZo on QEMU, a hypervisor well suited to

Morphuzz ViDeZZo HYPERPILL

12 Cores 24 Hours

Device ⊡ Branch Coverage (Executions/Second) Bug
Block

ahci ✓ 42.43% (25.68) 30.42% (562.24) 45.90% (26.18) ✓
nvme 29.12% (23.82) 36.44% (14.45) ✓
sdhci ✓ 69.81% (22.98) 72.37% (107.22) 66.85% (32.34)

virtio-scsi ✓ 27.96% (23.83) 11.73% (217.28) 48.83% (51.68)

Display
cirrus 88.10% (19.06) 83.42% (138.78) 88.67% (32.18) ✓

qxl ✓ 59.68% (26.96) ✓
virtio-gpu ✓ 24.37% (26.21) 2.77% (222.42) 45.52% (36.53) ✓

Networking
e1000e ✓ 50.27% (24.83) 41.52% (53.04) 55.99% (42.22) ✓

igb ✓ 29.73% (25.63) 35.93% (60.85) ✓
vmxnet ✓ 50.75% (27.01) 19.64% (145.73) 56.89% (48.14)

USB
ehci ✓ 73.76% (24.58) 74.38% (177.08) 73.32% (10.46)
xhci ✓ 55.54% (28.83) 29.25% (1061.36) 76.64% (69.26) ✓

Geo. Mean 45.20% (24.65) 28.00% (203.07) 55.45% (33.20)

Table 2: HYPERPILL coverage results side-by-side with re-
sults reported by prior work. Empty cells indicate that prior
work did not include the corresponding device in its evalu-
ation. In parentheses, we indicate the execution per second.
The ⊡ column indicates whether the device accesses guest-
controlled memory via coarse-grained DMA APIs that return
indexable pointers to guest-memory. The final column indi-
cates whether we found bugs, for each device.

comparing fuzzers due to its popularity and broad suite of
virtual-devices [6, 17, 26, 29, 37, 38]. For all fuzzers we instru-
mented the qemu-binary with LLVM source-coverage [43].
Since HYPERPILL is based on a snapshot-fuzzing approach,
we added instrumentation to MELTER to prevent the fuzzer
from resetting LLVM’s coverage-bitmap after each input.
Tab. 2 presents our coverage results to answer RQ1. For
10 out of 12 devices, HYPERPILL outperformed Morphuzz
and ViDeZZo. HYPERPILL achieved the best coverage across
all paravirtual VIRTIO devices, which are used in security-
sensitive cloud environments. Furthermore, HYPERPILL was
the only fuzzer capable of fuzzing the QXL device, which
no prior fuzzer targets due to QXL’s reliance on the multi-
threaded external libspice library. HYPERPILL performed
well both for devices that require no DMA interactions (cirrus)
and for devices that rely on them extensively (e.g. xHCI—the
most advanced USB controller implemented in QEMU).

For 8 of the 10 devices that rely on coarse-grained DMA
APIs that return pointers to large regions of guest-memory
(see ⊡ column in Tab. 2), HYPERPILL achieves the high-
est coverage. We attribute this to the fact that, unlike prior
approaches, HYPERPILL can precisely hook atomic DMA-
accesses, rather than having to pre-fill large DMA-pointer
regions.

We identified two problems resulting in low ViDeZZo cov-
erage for some evaluated devices. First, ViDeZZo’s intra-
message annotation is not well-supported, for certain devices
(virtio-scsi/virtio-gpu) and is missing for igb and nvme. Addi-
tionally, since ViDeZZo does not reset state between inputs,
ViDeZZo requires discovered bugs to be fixed, so that the
fuzzer can continue making progress.

Note that no fuzzer achieves 100% coverage for any de-
vice. This is due to the fact that devices contain code that is
unreachable by fuzzing, e.g., initialization code. Furthermore,
devices contain options which essentially create dead-code
regions which are only accessible with a particular device con-
figuration (e.g., virtio-gpu provides 44 configuration options,
alone). In our experiments, all three fuzzers were started with
identical configuration options.

RQ1: HYPERPILL outperforms the coverage of previous
fuzzers across a wide range of complex virtual-devices.

5.3 Bug-Finding
In total, HYPERPILL identified 26 new bugs (11 in QEMU, 9
in Hyper-V, and 6 in macOS Hypervisor-Framework, detailed
in Appendix Tab. 3) in all the hypervisors it fuzzed and across
all device-categories, which answers RQ2. Of these 11 are
bugs found in QEMU, which has been fuzzed extensively
on OSS-Fuzz (with Morphuzz) since 2020, which answers
RQ3. All bugs were identified during the 24-hour fuzzing
campaigns. Here, we detail four bugs found by HYPERPILL
since they are representative of HYPERPILL’s focus on gener-

USENIX Association 33rd USENIX Security Symposium 929

0%

50%

100%
ahci cirrus e1000e ehci igb nvme

0 36000 72000
0%

50%

100%
qxl

0 36000 72000

sdhci

0 36000 72000

virtio-gpu

0 36000 72000

virtio-scsi

0 36000 72000

vmxnet

0 36000 72000

xhci

Time (Seconds)

B
ra

nc
h

C
ov

er
ag

e

HYPERPILL Morphuzz ViDeZZo

Figure 5: Branch coverage over 24 hours fuzzing 12 devices. The shaded regions represent the maximum/minimum coverage
achieved by the corresponding fuzzer, across five experiments.

QEMU
Arbitrary memory-access in e1000e_start_xmit
Heap-overflow in usb_mouse_poll
Heap-overflow in virtqueue_alloc_element
Heap-overflow in qxl_cookie_new
Heap-overflow in igb_tx_pkt_switch
Out-of-bounds memory access in nvme_process_sq
Out-of-bounds memory access in nvme_io_mgmt_send
DoS via arbitrary-sized allocation in qxl
DoS via arbitrary-sized allocation in virtio_gpu
DoS in process_ncq_command
DoS in icmp_input

Hyper-V
Heap-corruption in EthernetCard::HandleTransmitSetupFrame
Abort in EthernetCard::PollForTransmitDataTimer
Abort after IdeChannel::EnlightenedHddCommand
EthernetCard::SetupEthernetCardModeFromRegisters
Out-of-bounds write in GuestStateAccess::SetDeviceInfo
Abort after PitDevice::NotifyIoPortRead
Abort in I8042Device::HandleCommand
Abort after HvCallDetachDevice
Abort after HvCallGetGpaPagesAccessState

macOS Virtualization Framework
Memory-privilege violation in xHCI
Out-of-bounds write in virtio-gpu
Out-of-bounds write in virtio-audio
Out-of-bounds access in virtio-block
Out-of-bounds access in virtio-console
Out-of-bounds access in virtio-net

Table 3: New bugs found by HYPERPILL

ically fuzzing arbitrary hypervisors across the entire spectrum
of input spaces, while producing complex inputs that require
intricate interactions with individual hypervisor components.

QEMU: Heap-Buffer-Overflow in virtio-scsi. QEMU’s
VIRTIO devices are security-sensitive paravirtual-devices that
are actively used for cloud-applications. QEMU’s virito-scsi
device has been fuzzed on OSS-Fuzz since 2020. HYPER-
PILL discovered a heap-buffer-overflow in virtio-scsi’s call to
the virtqueue_alloc_element() function. This bug was
neither discovered by ViDeZZo nor Morphuzz [6, 26]. HY-

PERPILL hooked 12 individual DMA accesses (3 of which
were performed through lossy DMA-pointer APIs) and pop-
ulated a total of 278 bytes. Source-code level hooking of
the DMA-pointer API would require filling several thousand
bytes (most of which are not touched). As such, API-hooking
approaches (e.g., Morphuzz and ViDeZZo) waste effort mu-
tating input bytes used to populate unused memory. However,
HYPERPILL does not have the same problem since HYPER-
PILL performs DMA hooking at the level of atomic accesses.

QEMU: Heap-Overflow in QXL. QEMU’s high-
performance QXL (Spice) display device is the preferred
display driver for cloud applications and thin-client solutions.
However, due to QXL’s multithreaded design, past fuzzers
have been unable to fuzz it. Threading is incompatible with
Morphuzz’s fork-server and since ViDeZZo does not reset
state in between inputs, ViDeZZo is unable to produce
deterministic inputs [6,26]. Furthermore, QXL uses QEMU’s
memory_region API to allocate a VRAM buffer that it
accesses via a pointer. Since accesses to this buffer do not
pass through the DMA APIs, Morphuzz and ViDeZZo
do not receive feedback when the QXL device accesses
guest-controlled data within this buffer. Additionally, QXL
relies extensively on an external library (i.e., libspice),
which is not instrumented for coverage-collection, by
default. However, HYPERPILL discovered a heap-overflow in
QXL’s qxl_cookie_new() function due to the introspection
capabilities enabled by emulation. The testcase reproducing
this bug required interaction with QXL via PIO and DMA.

Hyper-V: Denial-of-Service via Hypercall. One of the 9
bugs HYPERPILL identified in Hyper-V is a denial-of-service
bug via Hyper-V hypercall 0x83 (HvCallDetachDevice). This
bug showcases HYPERPILL’s ability to explore the complex
hypercall input space. HYPERPILL successfully used com-

930 33rd USENIX Security Symposium USENIX Association

parison feedback to identify that Hyper-V uses register RCX
to communicate the hypercall-id. Leveraging feedback from
comparisons, HYPERPILL learned that 0x83 is an “interest-
ing” hypercall-id. Furthermore, HYPERPILL used the runtime
feedback to identify registers RAX and R8 as registers that
contain argument values used by the hypercall’s handler. Af-
ter injecting the hypercall, HYPERPILL hooked accesses to
five distinct DMA buffers, filling with a total of 60 bytes, to
trigger the bug. This example demonstratrs that HYPERPILL’s
ability to simultaneously fuzz all input-spaces, while leverag-
ing runtime feedback to continually refine inputs, enabling
HYPERPILL to produce complex test-cases.

macOS: Out-of-Bounds in virtio-net. One of the 6 bugs
HYPERPILL identified in macOS Virtualization-Framework
is an out-of-bounds memory access in the virtio-net device.
The crashing input performed three MMIO accesses to the
device’s MMIO regions. HYPERPILL detected accesses to
four distinct DMA buffers (populating 47 bytes), to trigger
the crash. To the best of our knowledge, there are no symbols
publically available for macOS Virtualization Framework. As
such, manually hooking macOS’ DMA access APIs would
require a considerable amount of work by a virtualization
expert. However, HYPERPILL’s use of feedback from the
hardware-virtualization interface allows it to transparently
fuzz complex attack-surfaces (e.g., DMA).

RQ2: HYPERPILL effectively finds bugs across a wide
range of devices and hypervisors with diverse designs.
RQ3: Furthermore, HYPERPILL finds new bugs in code
that has already been extensively fuzzed.

QEMU: Unique AHCI Coverage. In all of our runs,
HYPERPILL was the only fuzzer that reached the AHCI
device’s execute_ncq_command function. Upon inspec-
tion, we attributed this to the fact that the caller
(process_ncq_command), relies on a coarse-grained DMA
API to map an entire guest page containing a table of AHCI
slot IDs. As HYPERPILL does not rely on API-hooking, it can
detect individual accesses to the table. In combination with
the virtio-scsi and QXL bug case-studies, this demonstrates
the value of instruction-level hooking of DMA accesses over
API hooking approaches as proposed by Morphuzz, ViDeZZo
and V-Shuttle.

5.3.1 Rediscovering Previously-Known Bugs

We backported the 5 CVEs used in the ViDeZZo evaluation
to QEMU v8.0.0 and used each fuzzer to fuzz each affected
device (5 total) for 24 hours. Our results averaged over 5 runs
are presented in Table 4.

HYPERPILL identified all of the bugs. ViDeZZo identified
4 out of the 5 bugs faster than HYPERPILL because it does

CVE Description Morphuzz ViDeZZo HYPERPILL
CVE-2020-11869 ATI Integer-overflow 0:37 0:11 0:13
CVE-2020-25084 EHCI UAF 4:31 0:43 1:11
CVE-2020-25085 SDHCI Heap-Overflow 5:34 2:36 6:24
CVE-2020-25625 OHCI DoS 0:14 0:04 0:06
CVE-2021-20257 E1000 DoS 3:34 Timeout 1:29

Table 4: Mean times to find known bugs (h:mm)

not perform any state resetting between inputs. However, as
shown in our coverage and new-bug evaluation (§ 5.2 and
§ 5.3), this has a long-term effect of limiting total coverage
achieved, for complex devices.

RQ4: HYPERPILL consistently finds previously-known
bugs in hypervisors and outperforms related works for
complex devices.

5.4 Throughput

HYPERPILL fuzzes hypervisors by leveraging snapshot-
fuzzing in an emulated environment, allowing it to perform
rapid state-resets and achieve hypervisor-introspection capa-
bilities that do not exist natively. However, due to the nature
of emulation, HYPERPILL has to pay an intrinsic performance
penalty. To measure the penalty, we compared the execution-
rate of test-cases executed by HYPERPILL with Morphuzz
and ViDeZZo. The results are presented in Tab. 2. ViDeZZo
executes QEMU code natively and does not reset state in-
between inputs. As such it has the highest execution rate,
outperforming Morphuzz and HYPERPILL by a factor of 9.
Morphuzz relies on a fork-server, incurring a high-overhead
due to the costly system-calls invoked between inputs.

Orthogonally, HYPERPILL’s full-system snapshot resetting
occurs entirely within the emulator process and does not re-
quire any system-calls. To measure the difference between
Morphuzz’s and HYPERPILL’s state-resetting, we configured
both fuzzers to fuzz all virtual-devices for 24 hours and mea-
sured the amount of time each fuzzer spends resetting state.
We found that Morphuzz spends 71% of the time resetting
state, while HYPERPILL only spends 9%.

As such, HYPERPILL outperforms Morphuzz for 8 target
devices, even though it relies on emulation. Note that both
ViDeZZo and Morphuzz provide inputs to QEMU through
the internal “QTest” framework, skipping the costs associated
with executing KVM’s VM-Exit processing code.

RQ5: The lower execution rate of HYPERPILL is more
than compensated by the detailed feedback and its generic
applicability to any (even closed-source) hypervisor.

USENIX Association 33rd USENIX Security Symposium 931

6 Discussion

Despite HYPERPILL’s positive results, we briefly discuss
avenues for future improvements.

Detecting Crashes. Similar to other full-system snapshot-
fuzzers, HYPERPILL features target-specific methods for de-
tecting crashes. For QEMU (an open-source target), HYPER-
PILL hooks into common failure-cases such as assert(),
abort(), and asan_stack_trace(). For closed-source tar-
gets, HYPERPILL relies on coarser-grained methods, such
as detecting hlt instructions, debugging interrupts, and
protection-violating page-faults. In the future, HYPERPILL’s
crash-detection can be improved by integrating binary sani-
tizers and adding hooks to crash-detection mechanisms such
as Windows’ page-heap [31] and macOS’ KASAN.

Improving Performance. Since HYPERPILL runs the hy-
pervisor in an emulator, some operations (such as large mem-
ory copies), are significantly slower than counterparts running
on native hardware. HYPERPILL’s performance could be im-
proved by leveraging multiple snapshots (e.g., ones taken
after expensive operations), caching results and side effects of
identical function-calls, and adding “accelerated” implementa-
tions of common expensive functions such as memcpy(). Fur-
thermore, though HYPERPILL is the first hypervisor-fuzzer
tailored toward fuzzing hypervisors across multiple threads
or execution environments, HYPERPILL currently does not
optimize the L1 OS scheduler to ensure that only hypervisor-
related threads are executed. In the future, HYPERPILL could
configure the OS to only schedule hypervisor-related tasks,
or to skip execution of unrelated tasks by re-invoking the
scheduler until a hypervisor task is selected.

Automatically Generating Standalone Reproducers. Cur-
rently, we manually convert HYPERPILL crashes into stan-
dalone crash-reproducers that can be used without the snap-
shot or emulator. In the future, these crashes can automatically
be converted into reproducers using a custom kernel that can
be booted within a hypervisor to replay HYPERPILL’s crash.

Extensions to Other Architectures. HYPERPILL targets
x86-64 hypervisors that leverage Intel VT-x. However HY-
PERPILL’s techniques similarily apply to other popular archi-
tectures, such as ARM and POWER which feature similar
virtualization extensions. Similar to Bochs for x86, there are
mature emulators for these architectures (QEMU). Further-
more, for ease of use, HYPERPILL’s stages can be modified,
without affecting the core design. For example, a hardware de-
bugging interface (JTAG) can be used to collect a full-system
snapshot, rather than nested-virtualization.

Additional Attack Surfaces. In this work, we focus primar-
ily on bugs in virtual-device implementations and hypercall
handlers. However, hypervisors also feature code that parses
guest instructions and walks guest page tables. With addi-
tional consideration for the semantics of these attack-surfaces
(e.g. ensuring parsed instructions match the instructions that
trigger VM exits), HYPERPILL can be adapted to fuzz these
surfaces. We leave these extensions to HYPERPILL as future
work.

7 Related Work

Fuzzing has gained academic momentum with the introduc-
tion of the American Fuzzy Lop (AFL) [52]. AFL’s coverage-
guided fuzzing approach significantly influenced research,
leading to improvements in various aspects of fuzzing perfor-
mance. Scholars have enhanced input scheduling [21, 35, 47],
mutation algorithms [7, 28, 34], and input feedback mecha-
nisms [1, 15, 54]. Some researchers have explored concolic
execution techniques [22, 23, 51] to overcome challenges
such as comparisons against “magic constants” and check-
sums [33]. Fuzzers like AFL with laf-intel [24], CmpLog [11],
RedQueen [2], and libFuzzer [41] have applied source-code
instrumentation to navigate comparisons against magic bytes.

The scope of fuzzing extends to diverse targets, including
code interpreters [16, 19, 45, 50], compilers [8, 25, 27], and
network protocols [3, 10, 14]. Operating system kernels have
been a focal point, with specialized systems addressing kernel
drivers [9], kernel race conditions [20], file systems [49], and
the system-call interface [12,18,39]. Periscope [42] examines
MMIO and DMA communication to identify vulnerabilities
in a kernel exposed to a compromised device. Other studies
apply static [46, 48] and dynamic [40] techniques to detect
and analyze double-fetch issues in software.

In the realm most pertinent to our work, researchers have
recognized that virtual-devices present similar challenges to
fuzzers as kernel system calls and drivers. IOFuzz [30] iden-
tifies bugs in virtual-devices by writing random values to
PIO. VDF [17] collects MMIO and PIO traces as seeds for
coverage-guided fuzzing, but it does not fuzz DMA or reset
state between input executions. Hyper-Cube [38] and Nyx
[37], are virtual-device fuzzers, that rely on a custom-built
guest operating system. Hyper-Cube is a black-box fuzzer
that faces limitations when fuzzing virtual-devices reliant on
magic constants and DMA. Hyper-Cube does not support
Hyper-V. Nyx uses full-system snapshotting and hardware-
assisted coverage but requires manually-written specifications
for complex DMA devices.

Simultaneously, V-Shuttle [32] introduces a targeted
method to fuzz the DMA input-space by replacing DMA ac-
cess calls with reads from a file generated by AFL. Morphuzz,
ViDeZZo, and MundoFuzz leverage source-code analysis and
hooking to alleviate the need for manual specifications. Hy-
perFuzzer is a closed-source fuzzer that targets Hyper-V’s

932 33rd USENIX Security Symposium USENIX Association

instruction emulation code (a surface largely independent
of the virtual-devices we examine in this work) [13]. In an
industrial context, there is previous work on fuzzing virtual-
devices [44] using a minimal OS connected to AFL.

8 Conclusion

HYPERPILL is the first generic fuzzer capable of auto-
matically fuzzing arbitrary hypervisors across all major
input-spaces (i.e., PIO/MMIO/Hypercalls/DMA). HYPER-
PILL takes advantage of the standard hardware-virtualization
interface to enumerate the input-spaces. During fuzzing, HY-
PERPILL leverages the fine-grained feedback afforded by
emulation, to create complex inputs and identify crashes
in hypervisors. In our evaluation, we found that HYPER-
PILL can outperform state-of-the-art techniques that lever-
age hypervisor modifications and API hooking, achieving
the highest coverage for 10/12 QEMU devices. Our sys-
tem identified 26 new bugs, which we are responsibly dis-
closing to the vendors. HYPERPILL is available at https:
//github.com/HexHive/HyperPill

9 Acknowledgements

We thank the anonymous reviewers and our deeply involved
shepherd for their feedback on the paper. We would like to
thank Jeremy Lai for his help making HYPERPILL a reality.
This work was supported, in part, by the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation program (grant agreement No. 850868),
SNSF PCEGP2_186974, DARPA HR001119S0089-AMP-
FP-034, NSF CNS-1942793, and Red Hat Collaboratory grant
2024-01-RH05.

References

[1] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi,
and Thorsten Holz. IJON: Exploring Deep State Spaces
via Fuzzing. In Proceedings of the IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA,
2020.

[2] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with input-to-state correspondence. In Symposium on
Network and Distributed System Security (NDSS), San
Diego, CA, 2019.

[3] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin
Almeroth, Richard Kemmerer, and Giovanni Vigna.
SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr.
In Proceedings of the International Conference on In-
formation Security (ISC), Samos, Greece, 2006.

[4] William Blair, Sajjad Arshad, Andrea Mambretti,
Michael Weissbacher, Engin Kirda, William Robert-
son, and Manuel Egele. HotFuzz: Discovering Al-
gorithmic Denial-of-Service Vulnerabilities Through
Guided Micro-Fuzzing. In Proceedings of Network and
Distributed Systems Security Symposium (NDSS), San
Diego, CA, 2020.

[5] Bochs: the open source ia-32 emulation project. https:
//bochs.sourceforge.io/.

[6] Alexander Bulekov, Bandan Das, Stefan Hajnoczi, and
Manuel Egele. Morphuzz: Bending (input) space to fuzz
virtual devices. In Proceedings of the USENIX Security
Symposium, 2022.

[7] Sang Kil Cha, Maverick Woo, and David Brumley.
Program-adaptive mutational fuzzing. In Proceedings
of the IEEE Symposium on Security and Privacy (Oak-
land), San Jose, CA, 2015.

[8] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen
Wong, Xiaoli Fern, Eric Eide, and John Regehr. Taming
compiler fuzzers. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), Seattle, WA, 2013.

[9] Jake Corina, Aravind Machiry, Christopher Salls, Yan
Shoshitaishvili, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. Difuze: Interface aware fuzzing for
kernel drivers. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security
(CCS), Dallas, TX, 2017.

[10] Joeri De Ruiter and Erik Poll. Protocol State Fuzzing of
TLS Implementations. In Proceedings of the USENIX
Security Symposium, Washington, DC, 2015.

[11] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. AFL++: Combining Incremental Steps of
Fuzzing Research. In 14th USENIX Workshop on Of-
fensive Technologies (WOOT 20). USENIX Association,
2020.

[12] Bernhard Garn and Dimitris E Simos. Eris: A tool for
combinatorial testing of the Linux system call interface.
In Proceedings of the IEEE International Conference on
Software Testing, Verification and Validation Workshops
(ICSTW), Cleveland, OH, 2014.

[13] Xinyang Ge, Ben Niu, Robert Brotzman, Yaohui Chen,
HyungSeok Han, Patrice Godefroid, and Weidong Cui.
HYPERFUZZER: An efficient hybrid fuzzer for vir-
tual cpus. In Proceedings of the ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
2021.

USENIX Association 33rd USENIX Security Symposium 933

https://github.com/HexHive/HyperPill
https://github.com/HexHive/HyperPill
https://bochs.sourceforge.io/
https://bochs.sourceforge.io/

[14] Serge Gorbunov and Arnold Rosenbloom. Autofuzz:
Automated network protocol fuzzing framework. In-
ternational Journal of Computer Science and Network
Security, 10(8), 2010.

[15] Istvan Haller, Asia Slowinska, Matthias Neugschwandt-
ner, and Herbert Bos. Dowsing for Overflows: A Guided
Fuzzer to Find Buffer Boundary Violations. In Proceed-
ings of the USENIX Security Symposium, Washington,
DC, 2013.

[16] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha.
CodeAlchemist: Semantics-Aware Code Generation to
Find Vulnerabilities in JavaScript Engines. In Proceed-
ings of Network and Distributed Systems Security Sym-
posium (NDSS), San Diego, CA, 2019.

[17] Andrew Henderson, Heng Yin, Guang Jin, Hao Han,
and Hongmei Deng. VDF: Targeted evolutionary fuzz
testing of virtual devices. In Proceedings of the Inter-
national Symposium on Research in Attacks, Intrusions,
and Defenses (RAID), Atlanta, GA, 2017.

[18] Jesse Hertz and Tim Newsham. Triforceafl. https:
//github.com/nccgroup/TriforceAFL, 2017.

[19] Christian Holler, Kim Herzig, and Andreas Zeller.
Fuzzing with code fragments. In Proceedings of the
USENIX Security Symposium, Bellevue, WA, 2012.

[20] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar,
Byoungyoung Lee, and Insik Shin. Razzer: Finding
kernel race bugs through fuzzing. In Proceedings of the
IEEE Symposium on Security and Privacy (Oakland),
San Francisco, CA, 2019.

[21] Siddharth Karamcheti, Gideon Mann, and David Rosen-
berg. Adaptive grey-box fuzz-testing with thompson
sampling. In Proceedings of the ACM Workshop on Arti-
ficial Intelligence and Security (AISec), Toronto, Canada,
2018.

[22] Su Yong Kim, Sungdeok Cha, and Doo-Hwan Bae. Au-
tomatic and lightweight grammar generation for fuzz
testing. Computers & Security, 36, 2013.

[23] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungy-
oung Lee, Youngtae Yun, and Taesoo Kim. Cab-fuzz:
Practical concolic testing techniques for COTS operat-
ing systems. In Proceedings of the USENIX Annual
Technical Conference (ATC), Santa Clara, CA, 2017.

[24] Circumventing fuzzing roadblocks with compiler trans-
formations. https://lafintel.wordpress.com/,
2016.

[25] Christopher Lidbury, Andrei Lascu, Nathan Chong, and
Alastair F Donaldson. Many-core compiler fuzzing.
ACM SIGPLAN Notices, 50(6), 2015.

[26] Qiang Liu, Flavio Toffalini, Yajin Zhou, and Mathias
Payer. Videzzo: Dependency-aware virtual device
fuzzing. In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland). IEEE Computer Soci-
ety, 2023.

[27] Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao
Wu. Deepfuzz: Automatic generation of syntax valid c
programs for fuzz testing. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, Hon-
olulu, HI, 2019.

[28] Charlie Miller, Zachary NJ Peterson, et al. Analysis of
mutation and generation-based fuzzing. Independent
Security Evaluators, Tech. Rep, 56, 2007.

[29] Cheolwoo Myung, Gwangmu Lee, and Byoungyoung
Lee. Mundofuzz: Hypervisor fuzzing with statistical
coverage testing and grammar inference. In Proceedings
of the USENIX Security Symposium, 2022.

[30] Tavis Ormandy. An empirical study into the security
exposure to hosts of hostile virtualized environments.
taviso.decsystem.org/virtsec.pdf, 2007.

[31] Gflags and pageheap. https://learn.microsoft.
com/en-us/windows-hardware/drivers/
debugger/gflags-and-pageheap.

[32] Gaoning Pan, Xingwei Lin, Xuhong Zhang, Yongkang
Jia, Shouling Ji, Chunming Wu, Xinlei Ying, Jiashui
Wang, and Yanjun Wu. V-shuttle: Scalable and
semantics-aware hypervisor virtual device fuzzing. In
Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2021.

[33] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
Fuzz: Fuzzing by Program Transformation. In Proceed-
ings of the IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, 2018.

[34] Mohit Rajpal, William Blum, and Rishabh Singh. Not
all bytes are equal: Neural byte sieve for fuzzing. arXiv
preprint arXiv:1711.04596, 2017.

[35] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,
Jonathan Foote, David Warren, Gustavo Grieco, and
David Brumley. Optimizing seed selection for fuzzing.
In Proceedings of the USENIX Security Symposium, San
Diego, CA, 2014.

[36] Mendel Rosenblum and Tal Garfinkel. Virtual machine
monitors: Current technology and future trends. Com-
puter, 38(5), 2005.

[37] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wörner, and Thorsten Holz. Nyx: Greybox hy-
pervisor fuzzing using fast snapshots and affine types. In

934 33rd USENIX Security Symposium USENIX Association

https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://lafintel.wordpress.com/
taviso.decsystem.org/virtsec.pdf
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap

Proceedings of the USENIX Security Symposium, Van-
couver, BC, 2021.

[38] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Si-
mon Wörner, and Thorsten Holz. HYPER-CUBE: High-
Dimensional Hypervisor Fuzzing. In Proceedings of the
Network and Distributed Security Symposium (NDSS),
San Diego, CA, 2020.

[39] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. Kafl:
Hardware-assisted feedback fuzzing for OS kernels. In
Proceedings of the USENIX Security Symposium, Van-
couver, CA, 2017.

[40] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémen-
tine Maurice, Thomas Schuster, Anders Fogh, and Stefan
Mangard. Automated detection, exploitation, and elimi-
nation of double-fetch bugs using modern cpu features.
In Proceedings of the Asia Conference on Computer and
Communications Security (AsiaCCS), 2018.

[41] Kostya Serebryany. libFuzzer–a library for coverage-
guided fuzz testing. https://releases.llvm.org/
10.0.0/docs/LibFuzzer.html, 2015.

[42] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad
Spensky, Yeoul Na, Stijn Volckaert, Giovanni Vigna,
Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. PeriScope: An Effective Probing and Fuzzing
Framework for the Hardware-OS Boundary. In Proceed-
ings of the Network and Distributed Security Symposium
(NDSS), San Diego, CA, 2019.

[43] source-based code coverage — clang
18.0.0. https://clang.llvm.org/docs/
SourceBasedCodeCoverage.html.

[44] Jack Tang and Moony Li. When virtualization encounter
AFL. Black Hat Europe, 2016.

[45] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and
Herbert Bos. Ifuzzer: An evolutionary interpreter fuzzer
using genetic programming. In Proceedings of the Eu-
ropean Symposium on Research in Computer Security
(ESORICS), Heraklion, Greece, 2016.

[46] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve
Dodier-Lazaro. How double-fetch situations turn into
double-fetch vulnerabilities: A study of double fetches
in the linux kernel. In Proceedings of the USENIX
Security Symposium, 2017.

[47] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and
David Brumley. Scheduling black-box mutational
fuzzing. In Proceedings of the ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
Berlin, Germany, 2013.

[48] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable detection
of double-fetch bugs in os kernels. In Proceedings of the
IEEE Symposium on Security and Privacy (Oakland).
IEEE, 2018.

[49] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning
Tseng, and Taesoo Kim. Fuzzing file systems via two-
dimensional input space exploration. In Proceedings
of the IEEE Symposium on Security and Privacy (Oak-
land), San Francisco, CA, 2019.

[50] Dingning Yang, Yuqing Zhang, and Qixu Liu. Blend-
fuzz: A model-based framework for fuzz testing pro-
grams with grammatical inputs. In Proceedings of the
IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom),
Liverpool, England, UK, 2012.

[51] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A practical concolic execution
engine tailored for hybrid fuzzing. In Proceedings of the
USENIX Security Symposium, Baltimore, MD, 2018.

[52] Michal Zalewski. American fuzzy lop. https://
lcamtuf.coredump.cx/afl/, 2014.

[53] ZERODIUM - How to Sell Your 0day Exploit to ZE-
RODIUM. https://zerodium.com/program.html.

[54] Gen Zhang, Xu Zhou, Yingqi Luo, Xugang Wu, and
Erxue Min. Ptfuzz: Guided fuzzing with processor trace
feedback. IEEE Access, 6, 2018.

USENIX Association 33rd USENIX Security Symposium 935

https://releases.llvm.org/10.0.0/docs/LibFuzzer.html
https://releases.llvm.org/10.0.0/docs/LibFuzzer.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://zerodium.com/program.html

	Introduction
	Virtualization Background
	HyperPill Approach
	Making a Snapshot of the Hypervisor
	Timing the Snapshot

	Probing the Snapshot
	Injecting IO into the Hypervisor
	Enumerating MMIO and PIO
	Enumerating Guest-Memory (DMA)

	Fuzzing the Hypervisor
	Fuzzing Hypercalls

	Implementation
	HyperPill-Snap
	HyperPill-Inspect
	Enumerating PIO and MMIO Ranges

	HyperPill-Fuzz
	Hypercalls
	DMA

	Evaluation
	Experimental Setup
	Coverage
	Bug-Finding
	Rediscovering Previously-Known Bugs

	Throughput

	Discussion
	Related Work
	Conclusion
	Acknowledgements

