
This paper is included in the Proceedings of the 
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the 
33rd USENIX Security Symposium 

is sponsored by USENIX.

FAMOS: Robust Privacy-Preserving Authentication 
on Payment Apps via Federated Multi-Modal 

Contrastive Learning
Yifeng Cai, Key Laboratory of High Confidence Software Technologies (PKU), 

Ministry of Education; School of Computer Science, Peking University; Ziqi Zhang, 
Department of Computer Science, University of Illinois Urbana-Champaign; 

Jiaping Gui, School of Electronic Information and Electrical Engineering, Shanghai 
Jiao Tong University; Bingyan Liu, School of Computer Science, Beijing University 
of Posts and Telecommunications; Xiaoke Zhao, Ruoyu Li, and Zhe Li, Ant Group; 

Ding Li, Key Laboratory of High Confidence Software Technologies (PKU), 
Ministry of Education; School of Computer Science, Peking University
https://www.usenix.org/conference/usenixsecurity24/presentation/cai-yifeng



FAMOS: Robust Privacy-Preserving Authentication on Payment Apps via
Federated Multi-Modal Contrastive Learning

Yifeng Cai1,2, Ziqi Zhang3, Jiaping Gui4, Bingyan Liu5, Xiaoke Zhao6, Ruoyu Li6, Zhe Li6, and Ding Li1,2

1Key Laboratory of High Confidence Software Technologies (PKU), Ministry of Education
2School of Computer Science, Peking University

3Department of Computer Science, University of Illinois Urbana-Champaign
4School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University

5School of Computer Science, Beijing University of Posts and Telecommunications
6Ant Group

Abstract
The rise of mobile payment apps necessitates robust user

authentication to ensure legitimate user access. Traditional
methods, like passwords and biometrics, are vulnerable once
a device is compromised. To overcome these limitations, mod-
ern solutions utilize sensor data to achieve user-agnostic and
scalable behavioral authentication. However, existing solu-
tions face two problems when deployed to real-world appli-
cations. First, it is not robust to noisy background activities.
Second, it faces the risks of privacy leakage as it relies on
centralized training with users’ sensor data.

In this paper, we introduce FAMOS, a novel authentication
framework based on federated multi-modal contrastive learn-
ing. The intuition of FAMOS is to fuse multi-modal sensor
data and cluster the representation of one user’s data by the
action category so that we can eliminate the influence of back-
ground noise and guarantee the user’s privacy. Furthermore,
we incorporate FAMOS with federated learning to enhance
performance while protecting users’ privacy. We comprehen-
sively evaluate FAMOS using real-world datasets and devices.
Experimental results show that FAMOS is efficient and ac-
curate for real-world deployment. FAMOS has an F1-Score
of 0.91 and an AUC of 0.97, which are 42.19% and 27.63%
higher than the baselines, respectively.

1 Introduction

Mobile payment apps [5], while enhancing transaction con-
venience, pose challenges in user authentication due to the
prevalent device-sharing habit among friends and family. Tra-
ditional security measures like passwords and two-factor au-
thentication occasionally fail, as evidenced by incidents of
unauthorized transactions by minors using their parents’ de-
vices [66]. These issues underscore the need for innovative,
non-intrusive authentication methods. While facial recogni-
tion via the front-facing camera is a potential solution [8],
its intrusiveness makes it unpopular, particularly in public
settings, prompting the exploration for more user-friendly
authentication alternatives.

Recently, AuthentiSense [23] and KedyAuth [30] emerge
as the state-of-the-art (SOTA) solution for transparent and
user-friendly authentication. They utilize build-in sensors
to capture distinctive user behavioral patterns in an imper-
ceptible manner. These solution can prevent unauthorized
payments and do not harm user experience.

Albeit the pioneering contribution of existing approaches,
there are two limitations that impede their deployment in
Alipay, a widely used payment application with one billion
users, that we conduct experiments on in this paper. The first
limitation is the negative influence of background activities1

on sensor readings in real-world scenarios. They assume that
users should keep stationary and similar actions while using
mobile apps. Thus, they can detect subtle sensor patterns to
differentiate individual users. However, in real-world usage,
users are not always stationary. They may use their smart-
phones while walking or lying on a bed. These background
activities introduce substantial noise to sensor readings, mak-
ing it difficult to observe the subtle user-specific patterns and
significantly degrading the accuracy of authentication. The
second limitation is the violation of user privacy in the sensor
data. The training strategy of existing approaches requires col-
lecting users’ sensor data and uploading all data to a remote
server because the model must be trained in a centralized
manner. However, collecting and uploading such data is not
allowed by regulations (e.g., GDPR [62] and PIPL [16]). Thus
many mobile apps opt not to collect users’ sensor data to miti-
gate privacy concerns [75]. Therefore, it is not feasible to use
them in real-world scenarios.

Addressing the two aforementioned limitations is inher-
ently difficult. For the first limitation, how to deal with low
signal-to-noise ratio data remains an open challenge in ma-
chine learning [31, 50]. In real-world scenarios, the noise in-
troduced by background activities can overshadow the subtle
user-specific features by several orders of magnitude [14, 57].
Isolating these subtle but distinct features from the massive
dominant noise sources is difficult, if not impossible. For the

1We define background activities as the various conditions under which
users are using their phones.
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second limitation, although Federated Learning (FL) complies
with privacy regulations, this technique is not compatible with
the model design of existing approaches. This is because they
require both positive (sensor data of the target user) and nega-
tive (sensor readings of other users) samples to train the model.
This requirement inevitably shares sensor data across users,
thus violating the basic privacy assumption of FL. Therefore,
we need a novel solution to make user-transparent authentica-
tion more practical.

In this paper, we propose FAMOS, FederAted Multi-
MOdal ContraStive Learning, to perform user-transparent
authentication in noisy background activities while comply-
ing with privacy regulations. The key insight of FAMOS is
that by 1) fusing multi-modal sensor data and 2) clustering
one user’s data representation by action categories, we can
effectively eliminate background activities and achieve user
authentication without training data from other users.

By fusing multi-modal sensors, we enhance user authen-
tication by utilizing stable sensor data to counteract noise
from unstable sensors. For example, while walking may af-
fect accelerometer data, touch screen sensor readings remain
consistent, allowing for accurate user authentication by com-
bining these data sources. Conversely, when a user is lying
down, the accelerometer provides more reliable data due to
unstable hand movements affecting the touch screen sensor.
This sensor data fusion aligns with FL paradigm, enabling
training the user authentication only with their own data to
ensure the privacy regulations.

However, we encountered three technical challenges while
implementing our insights. The first challenge is how to iden-
tify the stable sensors under different background activities.
To address this challenge, we propose an attention mechanism
that dynamically assigns different weights to different sensors
based on each sensor’s stability. This attention mechanism
can automatically select stable sensors under different back-
ground activities. The second challenge is the intricacy of
clustering the data representations by their respective action
category. Specifically, clustering representations of identical
actions closely while ensuring that representations of differ-
ent actions are distanced poses a difficulty. To tackle this
challenge, we introduce an action-aware contrastive learn-
ing strategy. By leveraging the combination of cross-entropy
loss and contrastive loss, we can effectively project varied
actions into distinct and uniformly distributed clusters within
the representation space. The third challenge is that, due to the
limited user-side computation resources, the authentication
model should be small and efficient enough to be deployed to
user devices. To address this challenge, we adopt a residual
DNN model architecture [28] to project representatives from
fused features. The proposed architecture is compact enough
to be deployed in TrustZone [33,52] of mobile devices, further
boosting user privacy and framework security [72].

We conducted a comprehensive evaluation of FAMOS us-
ing a real-world dataset collected from Alipay and an in-lab

dataset. Our results demonstrate that, under realistic back-
ground noises, FAMOS achieves an F1-Score of 0.91 and an
AUC of 0.97 for user authentication. On the contrary, the high-
est F1-Score and AUC of baselines are only 0.64 and 0.76.
FAMOS outperforms baselines by 42.19% and 27.63% for
F1-Score and AUC, respectively. Compared with using only
one sensor, FAMOS improves the F1-Score by up to 31.88%,
which demonstrates the effectiveness of the multi-modal sen-
sor scheme. We also deploy FAMOS in the TrustZone to
evaluate the on-device efficiency. On average, the memory
consumption of FAMOS is only 8.58 MB for training and
3.95 MB for inference. CPU utilization increased by 23.77%
during training and 16.36% during inference. Besides, the in-
crease in battery consumption per hour is 1.32% for training
and 0.48% for inference. The averaged training and inference
times for FAMOS are 26.9 minutes and 135 milliseconds,
respectively. It means that FAMOS is lightweight enough and
can be deployed in real-world smartphones.

We summarize our contributions as follows:
• We identify two practical limitations, the influence of

background noises and privacy violations, that impede the
deployment of SOTA user authentication solutions to real-
world applications.

• We propose a novel authentication framework, FAMOS,
based on federated multi-modal contrastive learning. FAMOS
can robustly authenticate users under noisy background activ-
ities without compromising user privacy.

• We comprehensively evaluate FAMOS using real-world
datasets and devices. Experimental results demonstrate the
robustness and efficiency of FAMOS in real-world scenarios.

2 Background and Motivation

In this section, we will discuss the background and the moti-
vation of this paper with realistic data.

2.1 The Challenge of Background Noise

User-transparent authentication leverages the unique action
patterns of users, discernible in sensor readings during mobile
app interactions, for authentication [3, 10, 18, 23]. For exam-
ple, variations in click strength produce distinct accelerometer
vibrations [9, 25], enabling distinguishing users without hin-
dering smartphone usage.

However, the use of sensor data in practice faces a signif-
icant challenge: sensor readings are unstable due to noise
from background activities [17]. For instance, when users are
walking, the accelerometer readings exhibit massive noise due
to the larger body movements of walking. In contrast, when
users lie down, the pressure differences on the touch screen
become more significant, resulting in greater disparities be-
tween data.

Background activities can disrupt sensor readings, making
distinguishing users challenging. We illustrate this with t-SNE
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(a) Accelerometer
(Walking)

(b) Accelerometer
(Lying)

(c) Touch Screen
(Walking)

User A, Swipe User A, Click User B, Swipe User B, Click

(d) Touch Screen
(Lying)

(e) Our Solution

Figure 1: The t-SNE representations of sensor readings.

visualizations [60] of Click and Swipe actions from two users
in Figure 1, represented by blue solid (User A) and purple
hollow (User B) markers, after converting sensor signals to
embedding vectors via a CNN encoder [15]. Figure 1 (a) and
(b) show the visualizations under walking and lying condi-
tions show that users’ accelerometer data overlap significantly
during walking, indicating instability, but are distinct when
lying, reflecting the relative stability of sensor readings in this
state.

Existing research often overlooks the variances in sensor
data due to background activities, which can restrict the prac-
ticality and user experience of interactive systems. Different
sensors exhibit varying levels of stability across activities. As
shown in Figure 1 (c) and (d), touch screen sensors perform
better when users are walking but less stable when users are
lying. This variability highlights the impracticality of man-
ually selecting a universally stable sensor, underscoring the
need for an automated system to determine the most reliable
sensors for any given sensor.

Our key insight to address background noise is to fuse
different sensors. We take advantage of the attention mecha-
nism to automatically identify the stable sensors for different
background activities. To further validate the effectiveness of
sensor fusion, we use our proposed approach to generate fea-
ture vectors by combining sensor readings and visualize the
fused feature vectors of the two users in Figure 1 (e). We can
observe that the fused sensor readings are clearly clustered
into different groups, and thus the two users can be accurately
differentiated.
2.2 Privacy Challenge

Existing work has recognized sensor data as a privacy-
sensitive resource and thus cannot be uploaded to centralized
servers [23, 75]. Sensor data are private because they can be
used to predict private user attributes such as age and gen-
der [51]. Besides, regulations such as China’s PIPL [16] and
EU’s GDPR [62] consider sensor data as personal data and
do not allow applications to upload such data.

FL [47] is an effective privacy-preserving training approach
for user authentication. Specifically, FL allows participants
to share learned models without uploading raw sensitive data,
thus enabling the collaborative training of multiple users.
Thus, we can employ FL to train local models for each user

and mitigate the risk of privacy breaches. However, the latest
works [23, 30] cannot support FL framework because such
work requires data from other users as negative samples to
train the model. This requirement violates the constraint of
FL because it inevitably shares data across different users.

3 Threat Model

We consider two stakeholders in our system model. One stake-
holder is end users who utilize mobile apps to access online
services such as payment and money transfer. The other stake-
holder is a central server responsible for user authentication
and the provision of online services. However, there are poten-
tial attackers who seek to compromise a user’s mobile device
or acquire their credentials. To achieve this goal, the attacker
may exploit vulnerabilities inside the mobile device or induce
the user to install malware [4, 11, 58]. The attacker can also
be children who gain access to the parents’ credentials [1].
Once the attacker successfully acquires the user’s credentials,
they can impersonate the user and deceive the server during
the authentication process. As a result, the attacker has unau-
thorized access to downstream services, including those that
are typically sensitive and rely on user authentication (e.g.,
bank service [34]).

In our threat model, we follow prior work to make assump-
tions on the attacks and defenses of user authentication [23]:
• The device is used by the owner in most cases but maybe
occasionally accessed by the attacker [23, 30].
• The attack can get the credentials of the victim through
technical or non-technical approaches.
• The sensor data is highly related to sensitive personal at-
tributes, including a user’s age, gender, and even potential
health conditions. Thus, the collected data is protected by se-
cure hardware such as TrustZone [33, 52], to prevent possible
injection attacks or data leaks.
• The authentication model can be jointly trained by the user
and the application server. We assume that the model is trust-
worthy since sensor data can be assigned exclusively to the
model in the secure world. Even if the device is compromised,
the malicious attacker cannot read the model from the se-
cure world. Therefore, the authentication model is immune to
typical model backdoor or poisoning attacks [26, 56].
• The server is trustworthy, adhering to the training protocol
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to securely store models and execute computations [73]. The
server can also invoke advanced authentication techniques
(e.g., live-video face authentication) to verify that the col-
lected data during a specific time period is from the victim
him/herself.
• The communication channel is secure and trusted because it
can be protected by a standard secure communication protocol
(e.g., SSL/TLS [36]). Attackers cannot manipulate transmitted
data or conduct attacks such as the MITM attack [23].

4 Design of FAMOS

We now introduce FAMOS, a new user-transparent authenti-
cation system designed for real-world applications, including
mobile payment platforms like Alipay. We aim to achieve the
following goals:
• G1: Robustness. FAMOS should be robust to noises intro-
duced by background activities. For example, when a user is
walking, accelerometer readings can be noisy. FAMOS should
effectively filter out this noise and extract pertinent features
for authentication purposes.
• G2: Lightweight. FAMOS should be deployable within
the TrustZone of users’ smartphones, safeguarding the model
from potential theft by malicious apps. Additionally, FAMOS
should ensure model security under attacks.
• G3: Privacy-Preserving. Since the sensor data constitutes
sensitive user privacy, FAMOS should prioritize user privacy,
minimizing the risk of data leakage. For instance, the raw
sensor readings should not be uploaded to the server.

We propose multiple approaches to achieve the above three
goals. For G1, we propose to fuse multi-modal sensors to
extract more information and attenuate the side effects of
noises. Specifically, we utilize the attention mechanism and
contrastive learning to better fuse features and cluster repre-
sentations.

For G2, we propose to design a residual DNN model ar-
chitecture to achieve good performance while minimizing
the model size. Thus, during deployment, both the model
and sensor readings can be secured by TrustZone on devices.
This solution can effectively prevent malicious attackers from
potentially tampering with the model.

For G3, we propose to leverage the FL paradigm, which
ensures local storage of private data and privacy-preserving
model training while ensuring the model accuracy. We only
upload the learned model to the server to aggregate the learned
knowledge. Additionally, FAMOS does not require readings
from other users as negative samples, further reducing the risk
of privacy exposure.

4.1 Overview

FAMOS operates in three phases: data collection, training and
authentication. The goal of data collection is to collect data
in a user-transparent manner. The goal of the training phase

is to train a model that can closely clusters the representation
vectors of each action. The goal of the authentication phase
is to distinguish whether a new action belongs to the device
owner.
Data Collection Phase. FAMOS intermittently collects user
data and trains the model in the background of users’ daily
usage, without impacting users’ experience. Before data col-
lection, FAMOS first provides a comprehensive notification
to users, detailing the purpose of data collection, the specific
types of collected data, and how the data will be stored lo-
cally. After obtaining user authorization, FAMOS notifies
users when data collection starts and ends.

Specifically, each data collection step occurs only within
one minute after the user passes real-time video face authenti-
cation, which ensures that the collected data originates from
the target user. Each collection step will be terminated pre-
ventively if the user inputs an incorrect password, locks the
screen, switches Alipay to the background, or remains inactive
for 20 seconds. FAMOS repeats the collection step until the
required amount of data is attained. Based on our empirical
evaluation, active users typically spend over 2.4 minutes per
Alipay session, execute approximately 26.3 valid actions per
minute, and open the app 3.3 times daily. Therefore, collect-
ing 350 action data samples is usually achieved within three
days. Note that FAMOS is a user-transparent authentication
method, which is supplementary to conventional authentifica-
tion methods. The three-day data collection time is acceptable
in practice since users can still use other authentication meth-
ods when FAMOS is not ready. Therefore, FAMOS does not
require immediate user authentication upon the first login. In-
stead, it allows the system to take some time, with low power
consumption, to complete data collection and model training.
Besides, the data collection only needs to be conducted once
before model training. After the model is trained, FAMOS
does not need to collect new data in the next several months.
Thus, the data collection phase does not impose a substantial
burden on users’ devices in the long term.
Training Phase. The training phase of FAMOS is also
conducted in the background intermittently. The high-level
pipeline of the training phase is illustrated in Figure 2. It con-
sists of three modules: the sensor fusion module (Mod①), the
contrastive learning module (Mod②), and the federated learn-
ing aggregation module (Mod③). The first two modules are
combined as a deep neural network model and deployed in the
secure area (e.g., TrustZone) of the users’ devices. The Mod③
is deployed on a centralized server. All three modules do not
require heavy computation and have low power consumption.
Therefore, the training phase does not occupy many compu-
tational resources and will not introduce observable lag. As
the training phase begins, FAMOS will send a notification to
users to inform them that the training has started and another
notification when the training is completed. This ensures that
users are aware that their data is being processed to enhance
security measures. In the notification of the training comple-
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Figure 2: The high-level architecture of FAMOS’s training phase.

tion, FAMOS will also inform users that the app could further
provide authentication services.

During the training phase, FAMOS launches Mod① and
Mod② following an FL paradigm (Mod③). First, it fuses read-
ings from different sensors and clusters representation vectors
based on actions. In FAMOS, we support five standard and
common user actions within a mobile application, as pre-
sented in Table 1. These five actions cover all interactions
in Alipay. Second, FAMOS uploads the trained model to
the server, which employs Mod③ to aggregate the acquired
knowledge from user models. Then, the server sends the ag-
gregated model back to the user. The distributed models are
used as the initial model for the next round of training. This
process repeats multiple times until the desired performance
is achieved.

For the new users that are continuously added to the frame-
work, FAMOS adopts an incremental user selection strategy
after the model has been trained [21]. For each new user,
FAMOS automatically downloads the latest global model and
uses the local data to compute the loss value. The loss values
of all participants are uploaded to the server and the server
selects the top k users with the highest loss values. This selec-
tion scheme steadily enhances the accuracy of local models
when new users join the system. It is noteworthy that this pro-
cess does not impose a substantial burden on computational
resources, because new users tend to achieve convergence
rapidly within a small amount of time.
Authentication Phase. During the authentication phase,
FAMOS authenticates users periodically in the background
in a user-transparent way. Specifically, FAMOS leverages the
trained model to detect potential adversaries. This phase con-
sists of two stages: an offline pre-processing stage and an
online vector-comparison stage. Both stages are conducted
on the user’s device and do not upload any data to the server.
The offline pre-processing stage computes the ground-truth
vector for each action and defines a distance threshold.

After the pre-processing stage is complete, FAMOS authen-

Table 1: Five user actions that FAMOS supports.
Label Action Abbreviation

0 Click on the screen Clk.
1 Swipe on the screen Swp.
2 Click on the screen and hold Hld.
3 Two fingers swipe on the screen Two.
4 Shake the phone Shk.

ticates the user at one-minute intervals. Specifically, given the
sensor readings of a new action, the online vector-comparison
stage predicts the action label a and produces the represen-
tation vector r⃗new based on sensor readings. Then FAMOS
compares r⃗new with the ground-truth vector of the predicted
action r⃗a

gt and computes the distance between them. If the
distance exceeds the threshold, FAMOS considers the action
pattern abnormal and the device may be compromised. Then,
a more stringent authentication method will be invoked for
the next payment.

4.2 Sensor Fusion Module (Mod①)

The goal of Mod① is to fuse the readings from different sen-
sors. This module takes the raw readings of sensors as input
and generates fused feature vectors, in which the noises from
background activities are eliminated.

The key challenge in fusing readings from different sensors
is how to identify the stable sensor in the noisy environment
and mitigate the negative effects of other unstable sensors. In
practice, the data stability of different sensors varies under
different background activities. For example, the accelerom-
eter can capture more user-related activities when the user
is lying compared to when the user is walking. Conversely,
for walking, the touch-screen sensor can better capture the
user-related activities. However, manually creating rules to
identify stable sensors for different activities is impractical
due to the diverse range and combinations of user activities
and background activities.

To solve this problem, we leverage the attention mecha-
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nism [61] to dynamically assign importance weights to differ-
ent sensors and generate fused features. The attention mecha-
nism enables us to automatically select stable sensor readings
under different background activities. It is trained to learn the
complementary knowledge through different sensor modal-
ities, allowing FAMOS to capture the variance in both data
quality and contributions from sensor data. This design takes
advantage of multiple sensors to enhance the performance of
fused features, thereby enabling FAMOS to achieve G1, i.e.,
robustness to noises from background activities.
Mod① comprises two steps. The first step is projecting the

heterogeneous sensor readings to a unified feature space. This
step is important because, in practice, the readings of different
sensors can exhibit substantial variation. For example, the
accelerometer sensor produces readings in three dimensions,
while the data from the touch screen sensor only has six
dimensions. The second step fuses the unified features from
different sensors using the attention mechanism. We will
elaborate on each of the steps in detail below.
Step 1: Sensor Feature Projection. Formally, for M sensors,
let x⃗ = {⃗x1, x⃗2, . . . , x⃗M} represent the readings from the sen-
sors, where j is the sensor index. x⃗ j represents the reading
from the j-th sensor. Hence, this step can be formalized as
Equation 1, in which G j is the encoder for the j-th sensor. Let
Norm(·) represent the normalization operation and Flatten(·)
represent the flatten operation. The goal of these two opera-
tions is to project the features to the unified dimensions, thus
making it easier to fuse. The output f⃗ j can be formulated as:

f⃗ j = Norm(Flatten(G j (⃗x j))), j ∈ {1, ...,M} (1)

In FAMOS, each encoder G j consists of a single-layer con-
volutional neural network. The encoders take each sensor
readings as input and output a feature vector of a uniform
dimension. We chose the CNN architecture because it is bet-
ter at extracting information from sparse sensor data and is
commonly applied to sensor data [50].
Step 2: Attention-based Fusion. The second step of Mod①
is to fuse the feature vectors of different sensors using an
attention module. In this way, FAMOS can identify the stable
sensors under different background activities. The attention
mechanism can be formalized as Equation 2. Different sensors
are assigned to different attention weights and each weight
w j represents the stability and importance of the j-th sensor.
The output f⃗ ′ is the fused vector:

f⃗ ′ =
M

∑
j=1

w j f⃗ j (2)

To obtain w j, we design the attention mechanism follow-
ing prior work [50] that can fuse multi-modal heterogeneous
data [45]. More specifically, we first compute the hidden rep-
resentation µ⃗ j of f⃗ j through a one-layer MLP (shown in Equa-
tion 3). Besides, we normalize the attention weights using a

softmax function to control the magnitude of the importance
weights (shown in Equation 4).

µ⃗ j = tanh(W · f⃗ j +b), j ∈ {1, ...,M} (3)

w j =
exp(⃗µ j · f⃗ j)

∑
M
j=1 exp(⃗µ j · f⃗ j)

, j ∈ {1, ...,M} (4)

4.3 Contrastive Learning Module (Mod②)
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Figure 3: Design of the contrastive learning module.

The goal of Mod② is to cluster the representation vectors
of the same action (positive samples) while pushing those of
different actions (negative samples) far away. FAMOS can
categorize representations into several compact clusters based
on different actions. After training, the user’s data samples are
distributed to the corresponding cluster based on the action
representation, while the data samples from other users are
excluded by all clusters due to the feature dissimilarity. There-
fore, during the authentication stage, we detect the identity of
the user by measuring the distance between the representation
vector of the current user and the representation vector of the
registered user (i.e., ground truth).
Mod② is inspired by the recent advances of contrastive

learning [50], which is an effective self-supervised learning
approach to learn representations from unlabeled data. The
advantage of this module is that we can train FAMOS only
with the data from the current user and we do not need the
data from other users. In practice, it is difficult to share such
data across devices because, according to the regulations such
as the GDPR, collecting and sharing such privacy-related data
is illegal without the explicit consent of the users.
Module Design. At a high level, this module projects the
fused sensor representation vectors to a representation space
and minimizes the distances between the representations of
the same user. Note that this is challenging due to the diversity
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of user actions. A naive approach is to define the loss function
as the cosine distance between the representation vectors of
the same user. However, this approach converges to a sub-
optimal solution in practice since different actions of the same
user could be quite different. For example, the representation
vectors of clicking are very different from those of swiping.

To address this challenge, we propose to make the train-
ing phase action-aware, which distinguishes different actions
from the same user. The motivation is that the representation
vectors of different actions should be far away from each
other. The design of our action-aware contrastive learning
module is shown in Figure 3. P1 and P2 represent two posi-
tive actions, and N1 and N2 are two negative actions. Mod②
minimizes the representation distances from the same action
(the green arrow in Figure 3) and maximizes the distances
from different actions (the red arrows in Figure 3). Thus, we
cluster the representation vectors of the same action close
to each other and push other actions far away. In addition,
the above action-aware design enables Mod② to use different
actions from the same user as negative samples to train the
model. Thus, Mod② does not need to use other users’ data.
Loss Design. To realize the training procedure, we propose
a new action-aware loss function Laction which is shown in
Equation 5. The loss consists of two parts: Lce is the classi-
fication loss of different actions, and Lcont is the contrastive
loss between representation vectors of the same action. λ is a
hyperparameter to balance the magnitude between two losses.

Laction = Lce +λLcont (5)

The goal of Lce is to identify different actions and push the
representation vectors of different actions far away from each
other. We use a cross-entropy loss to classify different actions.
Let B denote a batch of training data, and s∈B is a sample
in the batch. r⃗s denotes the representation that is calculated
as r⃗s = M ( f⃗ ′s), where M denotes the representation extrac-
tor. Let C , ys, and cross_entropy(·) denote the classifier, the
label of s, and the cross-entropy function, respectively. We
formulate Lce as:

Lce = ∑
s∈B

cross_entropy(ys,C (⃗rs)). (6)

By minimizing the cross-entropy loss, the model can auto-
matically push the feature vectors of samples from different
classes far away from each other [7].

The goal of Lcont is to minimize the distances of representa-
tion vectors of the same action from the same user by pushing
these vectors close to each other in the space. The formulation
of Lcont is shown in Equation 7. PB(s) is the set of positive
samples of s in the batch B, respectively. We define a sample
as positive to s if it is from the same action as s. Otherwise,
the sample is negative.

Lcont consists of two components. For the action s,
cos(⃗rs ,⃗rp) is the cosine distance between its representation
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Figure 4: Residual DNN model architecture.

vectors r⃗s and the representation vector of a positive sam-
ple p. cos(⃗rs ,⃗rq) is the cosine distance between r⃗s and the
representation of a negative sample q in the same batch. We
then minimize the ratio between cos(⃗rs ,⃗rp) and cos(⃗rs ,⃗rq) to
cluster the representation vectors of the same action:

Lcont =−∑
s∈B

∑
p∈PB(s)

log
cos (⃗rs ,⃗rp)

∑q∈B−{s} cos (⃗rs ,⃗rq)
(7)

Note that we do not necessitate data samples from other
users during training. This is based on findings from previous
research [59], which suggests that in the representation space,
the distance between samples from attackers and victims
is sufficiently large. This distance arises because contrastive
learning effectively clusters the representations of the victim’s
samples closely.
Model Architecture. Another challenge of Mod② is that the
encoders should be small enough to fit in the TrustZone (G2).
The size of TrustZone is typically limited on a mobile device,
thus we must carefully design the model architecture so that
Mod② can fit in the TrustZone and still has enough capacity
to capture the features of sensor readings. A straightforward
design will either introduce too many parameters (e.g., Mo-
bileNet [29]) or too little capacity which harms accuracy (e.g.,
LeNet-5 [35]). To balance the model size and performance,
we choose a modified residual DNN architecture [28] because
its skip connection design can achieve high accuracy with
fewer parameters than other candidates [2].

The model architecture is shown in Figure 4, where we
design encoders (G j) for different types of sensors. Specifi-
cally, we leverage a convolution layer as the architecture of
the encoder that unifies the readings of sensors with differ-
ent dimensions into features of the same size. Besides the
sensor-specific encoders, we have two universal components:
the representation extractor (M ) and the classifier (C ). The
former component consists of three residual blocks (repre-
sented in yellow, green, and blue). Each block includes three
convolution layers, in which the kernel size of the first two
layers is 1×7 and the kernel size of the last layer is 1×1. The
input and output of each block are connected by a skip con-
nection to facilitate gradient propagation [28]. The classifier
is composed of one FC layer. The representation extractor is
used to compute Lcont and the classifier component computes
Lce. The model size is only 1.81 MB with 1.17M parameters,
which is small enough to fit in mobile secure world such as
TrustZone.
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4.4 FL Aggregation Module (Mod③)
FAMOS aims to achieve a high model performance while
avoiding uploading the raw user data to the central server.
With FL, users only need to upload locally-trained models.
Without FL, FAMOS either suffers from degraded perfor-
mance (when trained only with local data) or faces the risk of
breaching user privacy (when user data is collected to a cen-
tral server). For the former case, FAMOS experiences lower
accuracy due to insufficient data. For the latter case, uploading
raw user data to the server may violate regulations.

Using model aggregation in FL to improve the model per-
formance in FL is a recognized practice in the AI commu-
nity [39, 47, 73]. There are two reasons. First, aggregation
enables the global model to learn patterns and features from
different data distributions of diverse devices, thereby enhanc-
ing the robustness and generalization of the global model.
Second, aggregation allows different devices to collabora-
tively contribute to the improvement of the global model.

In FAMOS, Mod③ aims to aggregate the general knowl-
edge from the user-side model while leaving the user-specific
knowledge on the device. This module takes the locally
trained user model as input and outputs an aggregated model.
The aggregated model is sent back to the user device to update
the local model. The aggregation process is conducted on the
server of the app owner. Because FAMOS only uploads the
trained model, it does not leak any user data (G3).
Challenge. The key challenge of this module is that each user
model contains not only general (i.e., user-agnostic) knowl-
edge but also user-specific information. The general knowl-
edge can improve FAMOS’s ability to extract representation
from sensor readings. Differently, FAMOS uses user-specific
information to distinguish the user action from the potential
adversary. Thus, an ideal aggregation strategy should only
aggregate the general knowledge while not aggregating user-
specific knowledge, to better accommodate diverse data dis-
tributions of different devices. However, if we directly use
conventional FL techniques (e.g., FedAvg [47]), we would
aggregate both general and user-specific information, which
is undesirable.
Solution. To address this challenge, we aggregate all layers
across the whole model except the BatchNormalization
layer. Prior work has proved that the BatchNormalization
layers contain most of the user-specific information, and thus
leaving them on the device can prevent the aggregation of user-
specific information [39]. Formally, let Mi be the representa-
tion extractor of user i and Mglobal be the aggregated extractor.
Let ℓ be the layer index except the BatchNormalization lay-
ers. The aggregation rule is as follows:

M (ℓ)
global =

1

∑
N
i=1 ni

N

∑
i=1

niM
(ℓ)

i , (8)

where ni is the amount of training data of user i. Similarly, this
aggregation strategy is applied to both feature encoders {Gi}

and the classifier Ci. The local training and server aggregation
process repeat multiple times until the user models achieve
desirable performance in the classification task. Therefore,
Mod③ can enhance the representation extractor, accelerate
convergence, and improve effectiveness.

4.5 Authentication

After the training, FAMOS uses the trained model to authenti-
cate users on the devices. The authentication phase consists of
two stages: the offline pre-processing stage and the online vec-
tor comparison stage. The first stage computes a ground-truth
vector for each action and defines a distance threshold. The
second stage continuously takes sensor readings as input, pre-
dicts the action label, and computes a representation vector
for the input readings. Then FAMOS compares the represen-
tation vector with the ground-truth vector of the predicted
action to determine whether the user action is abnormal.
Offline Pre-Processing. Due to the contrastive learning
scheme, representations of the actions performed by the same
user tend to be spatially proximate in the representation
space [20]. Thus we construct ground-truth vectors r⃗a

gt for
each action a by computing the center of correctly classified
samples in the training data. Let Aa

i be the set of correctly
classified samples of action a for the i-th user, the ground-truth
vector is computed as:

r⃗a
gt =

1
|Aa

i |
∑

r⃗a
i ∈Aa

i

r⃗a
i . (9)

The ground-truth vector acts as a reference point for the
user’s own data. After the vectors are computed, they are
stored in the TrustZone of the user’s device to prevent privacy
leakage and tampering.

In the offline stage, FAMOS also computes the thresh-
old t from the validation set to distinguish the abnormal
user actions. Specifically, FAMOS chooses the threshold that
achieves the best trade-off between the False Acceptance Rate
and False Rejection Rate are equal in the validation set. A
more detailed illustration of how to choose the threshold is
included in Section 5.4.
Online Vector Comparison. This stage begins after the user
logs into the payment application and periodically captures
the interaction actions of the user at a certain interval. For
each action, FAMOS uses the classifier C to predict the action
label a. Then, FAMOS produces the representation vector
r⃗new of the action and computes its cosine distance between
the ground-truth vector r⃗a

gt : dis = 1− cos(⃗rnew, r⃗a
gt). At last,

FAMOS uses the threshold t to determine whether the action
passes (dis < t) the authentication or fails (dis > t). Note that
this online stage is performed on the user’s device and the
data is never uploaded to the server. Thus the authentication
phase does not leak the user’s privacy.
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5 Evaluation
In this section, we perform comprehensive experiments to
evaluate the effectiveness of FAMOS. Our experiments aim
to answer the following research questions:

• RQ1: How is FAMOS’s performance compared with
existing solutions?

• RQ2: How well can FAMOS mitigate background
noises effectively?

• RQ3: Can contrastive learning cluster actions from
different users?

• RQ4: Can federated learning improve the perfor-
mance and facilitate training process?

• RQ5: How is the on-device efficiency of FAMOS?

5.1 Implementation
We use PyTorch 1.8 to implement FAMOS. We train the mod-
els (feature encoders, representation extractor, and classifier)
in a decentralized manner. The encoders, representation ex-
tractor, and classifier are updated simultaneously. We trained
the model using the contrastive and cross-entropy loss, which
are provided by the library pytorch.nn.

We use the Grid Search [41] to find the optimal hyper-
parameter. Specifically, we set the optimizer to Adam, the
learning rate to 1e-2, the batch size to 32, the feature length
to 128, and the local training epoch to 5.

5.2 Ethical Disclaimer
We obtain the IRB approval from the ethics review committee
in Alipay before we install Alipay-b and collect the data.
Besides, all the volunteers are aware that the sensor readings
are collected for research purposes. The data is not used for
any other commercial purposes nor shared with any third party.
We properly stored the data in an encrypted database.

5.3 Evaluation Protocol
To ensure the generalizability and soundness of our evalu-
ation, we measure the performance of FAMOS with both
real-world user data and carefully simulated in-lab data. We
first use the real-world data to evaluate the overall perfor-
mance of FAMOS in realistic settings. This experiment en-
sures the external validity of our evaluation. Then we take a
well-controlled in-lab experiment to evaluate the performance
of the internal components of FAMOS. This experiment en-
sures the internal validity of our experiments.

Our testbeds include a server and four smartphones from
different brands. The server is used to evaluate the authen-
tication accuracy, while the smartphone is used to measure
the training and inference cost. The server is equipped with
Ubuntu 20.04.6, 128 GB memory, an Intel Xeon CPU with
48 cores, and 4 NVIDIA GeForce GTX 2080Ti GPUs. We
use four latest smartphones of different brands to measure the
on-device performance and demonstrate the generalizability

of FAMOS to different smartphone devices. The smartphones
are Huawei Mate X3, Xiaomi 13 Pro, VIVO X100, and Honor
Magic 6. The smartphones are equipped with TrustZone in
which we can deploy our model, as discussed in the threat
model (Section 3) and prior work [23] to prevent the model
from being tampered with by attackers.

We use AuthentiSense [23] and KedyAuth [30] as the
baselines because they are the latest state-of-the-art user-
transparent authentication approach that was published on
the top-tier conference. We rigorously implemented the base-
lines following the description in the paper as we did not find
the source code of them. We use the same dataset as FAMOS
to train and evaluate the baselines. Note that they do not fuse
readings of different sensors. Instead, they directly sums the
readings of the sensors as the input feature. Thus, existing
baselines are not robust against background noises, as we will
show in our evaluation.

We report both the averaged values and the specific values
of each user model. To comprehensively evaluate FAMOS,
we use six different metrics in the evaluation: False Accep-
tance Rate (FAR), False Rejection Rate (FRR), Equal Error
Rate (EER), True Positive Rate (TPR), F1-Score, Area Under
ROC Curve (AUC). These metrics are consistent with prior
work [23].

5.3.1 Data Collection

To ensure that our experiments can faithfully simulate real-
world user scenarios, we use a commercial mobile payment
app, Alipay as the target app to evaluate FAMOS. We imple-
mented Alipay-b by adding extra code for recording sensor
readings in the callback functions for different user actions in
the original version of Alipay. When the user takes an action
(e.g., click or swiping), the corresponding callback will be
invoked. Then, the added code will start a background thread
that records the readings of sensors for two seconds and log
the readings of the sensors along with the label of action.
We call a tuple action-data tuple <action, sensor_data> as a
data sample or sample for simplicity in this paper. Alipay-b
records the five types of actions in Table 1.

sensor_data={Screen, IMU} contains the readings of touch
screen sensors and IMU sensors. The touch screen sensor
data Screen is a series of data points sampled as the rate of
twenty milliseconds. Each point is a six-dimension vector that
contains the following values:

• start_x: the X-coordinate of action’s starting position.
• start_y: the Y-coordinate of action’s starting position.
• current_x: the X-coordinate of current position.
• current_y: the Y-coordinate of current position.
• duration: the tap duration.
• pressure: the current tap pressure.
IMU={accelerometer, gyroscope, magnetometer} records

the readings of three types of IMU sensors. Specifically, ac-
celerometer measures the vibration or acceleration of the
phone. Gyroscope measures the angular velocity of the phone
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around the real-world coordinates. Magnetometer measures
the Earth’s magnetic field. These three IMU sensors all mea-
sure a vector in the three-dimensional real world. The data of
accelerometer, gyroscope, and magnetometer are a series of
data points with three-dimensional coordinates: x, y, and z
for index at the X-, Y-, and Z- real-world coordination. The
value of the coordinates is sampled every ten milliseconds.

5.3.2 Dataset Construction

We developed two datasets for our study: a real-world dataset
for assessing FAMOS’s overall performance in real-world
environment and an in-lab dataset, which allows us to con-
trol background activities for a more precise evaluation of
FAMOS’s effectiveness in mitigating their impact.
Real-World Dataset. Our real-world dataset contains data
from 70 realistic Alipay users. We delegated the developing
team of Alipay to identify the candidates in our experiment
and publish Alipay-b to users. We asked the experiment candi-
dates to replace the original Alipay with Alipay-b and use the
beta version in their daily lives. Note that we do not impose
any restrictions on the background activities of the user ac-
tions. Hence, users are free to interact with phones in a natural
manner under various background activities such as walking
and lying. This makes the collected data more realistic and
representative of the daily use cases.

We split the 70 users into two groups: 20 victims and 50
attackers. For each of the victims, we collect 500 data samples,
100 samples for each action. We then divided these samples by
the ratio of 7:1:2 to form the training (350 samples), validation
(50 samples), and test sets (100 samples), respectively. For
the attackers, we collect 150 data samples (30 for each action)
in total and divide the samples by 1:2 to form the validation
(50 samples) and test sets (100 samples). For each victim user,
the training set is used to train the authentication model. The
validation and test sets are used to evaluate the model. For
each victim user, the validation and test sets contain an equal
number of victim samples (i.e., positive samples) and attack
samples (i.e., negative samples). Note that the attacker’s data
is only used for evaluation the model in the validate and test
sets. The attacker’s data is not used for training FAMOS. This
process simulates a typical attack scenario of user-transparent
authentication as described in Section 3.
In-Lab Dataset. To build the in-lab dataset, we hired 24 vol-
unteers from Ant Group, the mother company of Alipay, to
collect data under specific background noises. The dataset
construction process is approved by the IRB. Among the 24
volunteers, four act as victims and 20 as attackers. The 24
volunteers are divided into four groups, each group consists
of one victim and five attackers. Each group uses one device
to collect data from the victim and the attackers. The design
of this volunteer setting is to simulate a realistic attack sce-
nario that the victim and attackers use the same device. For
background activities, we ask the volunteer to perform five
activities: walking, lying, sitting, jogging, and climbing.
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Figure 5: (a) FAR, FRR, and EER on the validation set. (b)
FAR, FRR, and EER on the test set. EER is computed from
the optimal threshold of the validation set.

For each victim users, we collected 1250 samples in total.
Among 1250 samples, each action has 250 samples, 50 sam-
ples for each of the five background activities. All the samples
of victims are divided into training, validation, and test sets
by the ratio of 7:1:2. Thus each victim has 875 samples in
the training set, 125 samples in the validation set, and 250
samples in the test set. For each of the attackers, we collected
75 samples. Each action has 15 samples, with three for each
of the five background activity. These 75 samples are divided
into validation and test sets by the ratio of 1:2. Thus each
attacker has 25 samples in the validation set and 50 samples
in the test set. For each victim user with five attackers, there
are 125 attack samples in the validation set and 250 attack
samples in the test set. This design ensures that the validation
and test sets contain an equal number of victim samples (i.e.,
positive samples) and attack samples (i.e., negative samples).

5.4 RQ 1: Overall Effectiveness
In this section, we assess FAMOS’s performance using a real-
world dataset, comparing it with AuthentiSense across various
metrics. Firstly, we determine the optimal threshold by com-
puting the EER, FAR, and FRR on the validation set, which
is then applied to the test set to ascertain the FAR and FRR.
Second, we plot the ROC curve and compute the AUC score
on the test set. Third, we evaluate F1-Score to report a fine-
grained comparison between FAMOS and AuthentiSense.
FAR, FRR, and EER. The result of the first part is shown
in Figure 5.The x-axis represents different thresholds and
the y-axis represents the error rate. The blue line represents
the FAR and the purple line represents the FRR. We mark
the optimal threshold (chosen by the validation set) with a
vertical dashed line. In each figure, FAMOS is represented
by the solid lines and AuthentiSense is represented by the
blurred lines. Figure 5 (a) shows the results on the validate
set and Figure 5 (b) shows the results of the test set.

We use the validation set to find the optimal threshold
that FAR equals to FRR (the intersection between the blue
curve and the purple curve). The optimal threshold represents
the setting that keeps both the FAR and FRR low. In Fig-
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Figure 6: (a) Comparison of ROC curves. (b) F1-Score of
different sensors and the sensor fusion. (c) The relationship
of attention weight and the Inter-Intra Ratio. (d) Convergence
curves of F1-Score of FAMOS and FAMOS-local.

ure 5 (a), we mark the optimal point with a black star (★). As
the figure shows, the optimal threshold of FAMOS is 0.35,
where the FAR=FRR=0.11. For AuthentiSense, the optimal
threshold is 0.43, where FAR=FRR=0.30. For KedyAuth, the
optimal threshold is 0.48, where FAR=FARR=0.29. As EER
represents the optimal threshold to balance declined benign
attempts (false positive) and accepted attack attempts (true
negative), a lower EER of FAMOS represents a higher effec-
tiveness for authentication.

For the results on the test set in Figure 5 (b), we report
the EER based on the optimal threshold from the validation
set. For FAMOS on the optimal threshold (0.35), FAR is 0.09
and FRR is 0.04. For AuthentiSense on the optimal threshold
(0.43), FAR is 0.43 and FRR is 0.22. For KedyAuth on the
optimal threshold (0.48), FAR is 0.40 and FRR is 0.23. In
the authentication service, FAR is more important than FRR,
because a false rejection only introduces an additional au-
thentication step, while a false acceptance leads to malicious
access and may cause severe security accidents. The FAR
of FAMOS is over 4.44× lower than the other two baselines,
which means FAMOS provides a more reliable authentica-
tion service in real-world scenarios. Meanwhile, the FRR of
FAMOS is over 5.51× lower than baselines, which means it
can effectively reduce the probability of identifying the user
as an attacker, thus enhancing the user experience.
ROC and AUC. Figure 6 (a) shows the ROC score to detect
malicious access on the test dataset. Except for FAMOS and
two baselines, we also plot a Naive baseline to represent
the result of random guess (AUC is 0.50). As shown in the
figure, the AUC of FAMOS, AuthentiSense, and KedyAuth
are 0.97, 0.76, and 0.75, respectively. The AUC of FAMOS
approaches the optimal value of 1.00 and is 27.63% higher
than baselines, which means FAMOS can detect malicious
access more precisely.

F1-Score. For FAMOS, the average F1-Score of FAMOS is
0.91, which demonstrates that FAMOS could provide a more
reliable authentication service that can effectively distinguish
victim users from malicious attackers. On the contrary, the
performance of baselines is much lower than FAMOS. The
F1-Score of AuthentiSense and KedyAuth are only 0.62 and
0.64, which are 31.87% and 29.68% lower than FAMOS.
Overall Effectiveness. As a summary, FAMOS can achieve
over 4.44× lower FAR, 5.51× lower FRR, 27.63% higher
AUC, and 42.19% higher F1-Score than the two state-of-the-
art baselines. FAMOS is more effective and reliable than
existing approaches in the user authentication service.

5.5 RQ 2: Mitigating Background Activities
In this section, we evaluate whether combining different sen-
sors can effectively mitigate background noises. To this end,
we first evaluate the improvement of using fused sensor data
of the real-world dataset. Then, we evaluate how our attention
identifies stable sensors and eliminates background noises.
Improvement on Accuracy. To evaluate how much can fus-
ing multiple sensors improve the overall accuracy, we re-
moved the sensor fusion module of FAMOS and evaluated its
accuracy on real-world data with different sensors. We report
the results in Figure 6 (b). Each bar represents the F1-score of
using only one sensor. For example, TouchScreen means we
only use the touch screen data to achieve user authentication.
The bar of Fusion represents the result of FAMOS.

As shown in Figure 6 (b), fusing different sensors indeed
improves the overall accuracy. The F1-Score for using touch
screen, accelerometer, gyroscope, and magnetometer only is
0.79, 0.69, 0.72, and 0.78, respectively. These are all at least
0.12 lower than the F1-Score of FAMOS, which is 0.91.
Insight Verification. Our insight to mitigate the background
noises is that different sensors have different stability under
different background activities. Thus, by fusing different sen-
sors, they can mitigate the background noise for each other.
To evaluate the validity of this insight, we evaluate how the at-
tention can improve the quality of the feature vectors learned
by Mod① (See Figure 4) with the In-lab dataset.

Specifically, we evaluate the quality of the features vectors
learned by Mod① and the attention with the stability score,
following previous studies [12, 53]. The stability is defined
as the ratio between the action similarities between different
users (Inter-User Similarity, represented as “Inter” in Table 2).
and the action similarities from the same user(Intra-User Sim-
ilarity, represented as “Intra” in Table 2). We denote the action
similarities of a set of samples as the average of Euclidean dis-
tances of the feature vectors of the samples [48]. The feature
vectors are computed through our feature encoder module. A
higher stability means the samples from the different users are
well clustered: samples from the same users are close while
samples from different users are far from each other [70].

We report the results in Table 2, the first four columns
represent the Intra-User Similarity, Inter-User Similarity, and

USENIX Association 33rd USENIX Security Symposium    299



Table 2: Stability (Inter-Intra Ratio) of data samples of each sensor and fused sensor. The Touch Screen sensor is represented as
"-" as it produces no readings during the "Shake" action. “BG.” denotes the background activity, “Act.” denotes the action.

BG. Act. Touch Screen Accelerometer Gyroscope Magnetometer Fusion
Intra↓ Inter↑ Ratio↑ Intra↓ Inter↑ Ratio↑ Intra↓ Inter↑ Ratio↑ Intra↓ Inter↑ Ratio↑ Intra↓ Inter↑ Ratio↑

W
al

ki
ng

Clk. 5.24 16.48 3.15 40.34 38.56 0.96 37.25 39.63 1.06 14.21 31.71 2.23 2.05 8.39 4.09
Swp. 4.15 15.12 3.64 34.15 37.28 1.09 36.94 38.64 1.05 12.08 31.22 2.58 1.98 8.24 4.16
Hld. 4.43 15.38 3.47 35.22 38.33 1.09 33.68 38.29 1.14 11.26 29.36 2.61 1.84 8.08 4.39
Two. 4.36 15.08 3.46 36.13 36.71 1.02 32.49 37.28 1.15 10.07 28.54 2.83 1.88 8.30 4.41
Shk. - - - 37.82 38.14 1.01 36.71 39.26 1.07 13.09 31.88 2.44 2.03 8.11 4.00

Ly
in

g

Clk. 12.19 16.83 1.38 4.12 8.39 2.04 4.85 8.50 1.75 9.01 18.97 2.11 1.38 6.98 5.06
Swp. 10.58 18.26 1.73 3.86 8.46 2.19 4.36 9.26 2.12 8.87 19.30 2.18 1.31 6.53 4.98
Hld. 12.07 17.04 1.41 4.01 8.83 2.20 4.74 9.15 1.93 9.32 18.26 1.96 1.43 7.02 4.91
Two. 11.21 17.27 1.54 3.86 8.45 2.19 4.26 8.76 2.06 8.69 20.28 2.33 1.36 6.72 4.94
Shk. - - - 4.02 8.37 2.08 4.31 8.95 2.08 9.14 19.73 2.16 1.42 6.80 4.79

Si
tti

ng

Clk. 4.49 10.29 2.29 3.52 8.11 2.30 4.91 11.38 2.32 9.18 20.76 2.26 1.28 6.41 5.01
Swp. 4.52 11.03 2.44 3.97 9.52 2.40 5.02 12.18 2.43 9.41 21.48 2.28 1.32 6.55 4.96
Hld. 4.44 10.68 2.41 3.69 9.36 2.54 4.72 11.58 2.45 8.59 22.12 2.58 1.49 6.64 4.46
Two. 3.94 9.71 2.46 4.11 10.14 2.47 4.75 10.54 2.22 9.41 22.43 2.39 1.43 6.82 4.77
Shk. - - - 4.08 9.96 2.44 5.31 11.43 2.15 9.51 21.62 2.27 1.61 6.88 4.30

Jo
gg

in
g

Clk. 5.66 17.82 3.15 40.13 39.25 0.98 37.33 42.44 1.14 14.62 30.66 2.10 1.88 7.75 4.12
Swp. 6.29 18.7 2.97 42.52 42.68 1.00 34.11 38.08 1.12 13.02 28.79 2.21 1.85 7.92 4.28
Hld. 6.31 20.62 3.27 40.31 42.99 1.07 39.10 40.85 1.04 12.14 26.30 2.17 2.14 8.63 4.03
Two. 6.76 19.10 2.83 32.64 33.93 1.04 33.41 35.16 1.05 11.48 26.50 2.31 1.84 7.93 4.31
Shk. - - - 40.80 41.92 1.03 36.08 35.83 0.99 13.66 29.69 2.17 1.99 8.02 4.03

C
lim

bi
ng

Clk. 6.37 19.25 3.02 32.75 37.30 1.14 33.23 38.50 1.16 14.82 33.64 2.27 2.14 9.55 4.46
Swp. 6.02 18.46 3.07 36.16 39.77 1.10 30.29 31.23 1.03 14.69 33.87 2.31 2.06 8.57 4.16
Hld. 6.53 20.15 3.09 29.26 33.72 1.15 32.05 35.03 1.09 15.13 33.90 2.24 2.08 8.31 4.00
Two. 6.50 19.81 3.05 34.48 36.86 1.07 36.51 39.17 1.07 11.23 25.73 2.29 2.01 8.15 4.05
Shk. - - - 28.51 31.53 1.11 35.34 37.37 1.06 15.13 34.25 2.26 1.94 8.18 4.22

Table 3: Attention weight in various background activities.
“BG.” denotes the background activity, “Act.” denotes the
action. “Touch.” denotes the touch screen sensor.

BG. Act. Attention Weight
Touch. Accelerometer Gyroscope Magnetometer

W
al

ki
ng

Clk. 0.36 0.13 0.20 0.31
Swp. 0.37 0.10 0.20 0.33
Hld. 0.35 0.11 0.21 0.33
Two. 0.40 0.10 0.20 0.30
Shk. 0.00 0.21 0.25 0.54

Ly
in

g

Clk. 0.14 0.34 0.19 0.33
Swp. 0.21 0.28 0.22 0.29
Hld. 0.20 0.28 0.23 0.29
Two. 0.23 0.27 0.21 0.29
Shk. 0.00 0.37 0.24 0.39

Si
tti

ng

Clk. 0.25 0.25 0.25 0.25
Swp. 0.26 0.25 0.25 0.24
Hld. 0.24 0.25 0.25 0.26
Two. 0.26 0.26 0.24 0.24
Shk. 0.00 0.34 0.32 0.34

Jo
gg

in
g

Clk. 0.44 0.14 0.16 0.26
Swp. 0.42 0.14 0.16 0.28
Hld. 0.45 0.13 0.12 0.30
Two. 0.41 0.14 0.14 0.31
Shk. 0.00 0.22 0.23 0.55

C
lim

bi
ng

Clk. 0.38 0.15 0.16 0.31
Swp. 0.42 0.14 0.14 0.30
Hld. 0.41 0.14 0.13 0.32
Two. 0.40 0.15 0.14 0.31
Shk. 0.00 0.26 0.22 0.52

Stability (Inter-Intra Ratio) for the four sensors we used in
this paper (touch screen, accelerometer, gyroscopes, and mag-
netometer), respectively. The fusion column represents the
results for FAMOS. From the results in Table 2, we can first

observe that background noise can significantly affect the
stability of sensor readings. For example, when walking, ac-
celerometer and gyroscope have higher Intra-User Similarity
and lower Inter-Intra Ratio than the touch screen and magne-
tometer. It means the accelerometers and gyroscopes are not
stable under the background of walking. Similarly, we can
observe that the touch screen and magnetometer are unstable
under the background of lying. Therefore, we can conclude
that background noise can significantly affect the stability of
sensor readings and bring difficulties to user authentication.
This result confirms our insight that different sensors have
different stability under different background activity.

Second, according to the results in Table 2, we conclude
that FAMOS improves the stability by fusing sensors. We can
observe that the last column of Table 2 (column “Fusion”)
has the highest Inter-Intra Ratio for all actions with both
background activities. The Inter-Intra Ratio of fused sensors
is 2.24× higher than a single sensor under two background
activities (averagely 4.21 in walking, 4.93 in lying, 4.8 in
sitting, 4.16 in jogging, and 4.18 in climbing).

Effectiveness of Attention. FAMOS uses the attention to
identify stable sensors for authentication. To validate this in-
sight, we report the average attention weight for each sensor
under different background activities in Table 3. The sensor
with higher stability (higher Inter-Intra Ratio) receives higher
weights, while the sensor with lower stability receives lower
weights. For example, when the background is walking, the
touch screen sensor receives a relatively lower weight (av-
eragely 0.19) as it exhibits weaker stability in this scenario.
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Table 4: Compared of the averaged distance of fused features
and representation vectors.

Action type Features Representations
Victim Samples (Different actions) 0.54 0.83
Victim Samples (Same action) 0.49 0.31
Victim & Attacker Samples (Same action) 0.52 0.50

Conversely, when the background is lying, the touch screen
sensor receives a relatively higher weight (averagely 0.36).

Further, we display the correlation between the Inter-Intra
Ratio and the attention weights in Figure 6 (c). To improve
the clarity of the figure, we normalized the ratios of four
sensors into the range [0,1] 2. We can observe a positive linear
correlation between the Inter-Intra Ratio and the attention
weights, which are automatically learnt by FAMOS. This
demonstrates that the attention module can effectively select
stable sensors under different background noises.

5.6 RQ 3: Effective of Contrastive Learning
The goal of our contrastive learning (Mod②) is to cluster sam-
ples from the same user while pushing the samples from
different users far from each other. To evaluate the effective-
ness of contrastive learning, we compare the cosine distance
of fused features (fused by the attention mechanism after the
feature encoder) and representation vectors (learned by the
representation extractor). In Table 4, we compared the dis-
tance of victim samples in different actions, the distance of
victim samples in the same action, and the distance between
victim and attackers samples in the same action.

Table 4 shows that before applying our representation ex-
tractor, distinguishing between different users or actions is
challenging due to the minimal average distance differences
in their features. Specifically, the distance between different
actions is 0.54, very close to the distance between users and
attackers, and only slightly higher than within-user sample
distances. However, employing a contrastive learning-based
representation extractor significantly improves differentiation:
the distance between different actions’ representation vectors
jumps to 0.83, a 1.63 times increase that enhances user authen-
tication accuracy by effectively clustering same-user actions
closer and distancing those of different users or attackers.

5.7 RQ4: Effectiveness of Federated Learning
Different from previous approaches, our framework utilizes
FL paradigm to aggregate the user-agnostic knowledge to fa-
cilitate the training process. In this part, we study how much
the FL paradigm can improve the performance of FAMOS. As
for the baseline, we create a local training version of FAMOS,
denoted as FAMOS-local, by only training FAMOS with the
private data of each user (i.e., without aggregation). We com-
pare the F1-Score and the convergence speed of FAMOS and
FAMOS-local to evaluate the effectiveness of FL, as shown

2The range of the coordinate axis in Figure 6 (c) is set to [0,0.6] because
we found that all the values of normalized ratios and attention weights are
smaller than 0.06.

in Figure 6 (d). On average, the F1-Score of FAMOS-local
is only 0.80, about 15.1% lower than FAMOS (averaged F1-
Score is 0.91). The results demonstrate that applying FL can
effectively improve authentication accuracy. All user models
are well-trained and get convergence within 26.21 aggrega-
tion rounds on average. This aligns with the average cost
for modern FL tasks [42, 43]. On contrary, the FAMOS-local
spends more than 42.73 rounds to convergence, about 62.98%
slower than FAMOS.

5.8 RQ5: On-device Performance
In this section, we study the on-device performance of
FAMOS in the TrustZone of four different smartphones
(Huawei Mate X3, Xiaomi 13 Pro, VIVO X100, and Honor
Magic 6). We use MNN [32] library to convert the model to
the .mnn format. This format is a highly optimized format for
ARM architecture [44]. Then we deploy the converted model
in the TrustZone and measure the on-device performance and
usability.
Overhead. We measure the overhead of FAMOS in terms of
four aspects: memory usage, CPU usage, battery consump-
tion, and running time for both training and inference phases.
For the first three types of overhead, we compare the perfor-
mance of Alipay with FAMOS running in the background
and Alipay without FAMOS. We report the increased value
when FAMOS is running. For the running time, we mea-
sure the end-to-end training time until convergence and the
end-to-end authentication inference time of one input sample.
We use Android dumpsys tool, sample information from the
/proc/stat file, and invoke the built-in APIs of TrustZone
to comprehensively measure the memory usage, CPU usage,
and battery utilization. Each experiment is conducted five
times and report the average value. We manually checked the
variance of the results and found that it is less than 5%.

The results of the overhead measurement results are shown
in Table 5. On average, the additional memory consumption
of FAMOS is only 8.58 MB for training and 3.95 MB for in-
ference. CPU utilization increased by 23.77% during training
and 16.36% during inference. Besides, the increase of battery
consumption per hour is 1.32% for training and 0.48% for
inference. These results demonstrate that FAMOS has a neg-
ligible impact on the Alipay system. Furthermore, FAMOS
completes training in averagely 26.9 minutes (i.e., 1618K mil-
liseconds) and requires 135 milliseconds for inference. Such
overhead is acceptable for applications using TrustZone [49].
Note that the training stage only needs to perform once and
is a one-time cost. According to the findings of prior works,
when the inference time is less than one second, it will not
harm the user experience [67], and can support online real-
time services [69]. Thus, the overhead measurement demon-
strate that FAMOS is practical in real-world deployment.
Usability. We hire the 24 volunteers of the in-lab dataset

to conduct the study. Volunteers were asked to engage in
three independent Alipay usage sessions in a randomized
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Table 5: The overhead measurement of four devices.

Device Memory (MB) CPU (%) Battery (%/h) Time (ms)
Train Infer Train Infer Train Infer Train Infer

Huawei Mate X3 8.42 3.94 23.83 16.21 1.34 0.52 1590K 132
Xiaomi 13 Pro 8.51 3.83 21.28 14.72 1.18 0.45 1542K 109
VIVO X100 8.74 4.11 25.11 17.61 1.22 0.51 1644K 143
Honor Magic 6 8.63 3.90 24.85 16.90 1.33 0.42 1698K 155
Average 8.58 3.95 23.77 16.36 1.32 0.48 1618K 135

order: one session using Alipay without FAMOS, one session
with the training phase of FAMOS, and one session with the
authentication phase of FAMOS. All the three sessions lasted
for 10 minutes. Volunteers were not informed about which
session they were currently participating in, and they were
asked to carry out their usual activities as much as possible
and to cover the five actions listed in Table 1. The goal of
this user study is to investigate if there exist any obvious
delays, including lags, freezes, or slowdowns during display,
keystrokes, and button interactions. After each session, the
volunteers complete a brief survey to provide feedback on the
presence of delays. The first question in the survey is "Did you
perceive any delays?" If the answer is "Yes," we ask further
questions as "During which actions did you experience delays
with the display/keystrokes/buttons?" "How significant was
the impact of the delay?" and "How often did you experience
delays?" We also record the response time of interactions in
the three sessions to provide quantitative results.

21 out of 24 volunteers (87.5%) reported no noticeable
delays. Two volunteers experienced about five instances of
acceptable display delays during the training phase. One vol-
unteer reported an experience about 10 instances of minor but-
ton press delays during training phase, stating that these were
acceptable. For quantitative results, the average response time
of interactions without FAMOS is 1242.43 milliseconds with
a standard deviation (SD) of 979.22. The average response
time of interactions during the training phase is 1502.63 mil-
liseconds (SD is 1117.38), and the average response time of
interactions during the authentication phase is 1263.85 mil-
liseconds (SD is 994.84). To rigorously evaluate the user ex-
perience, we use Welch’s t-test to conduct significance testing
on the response times of the training phase and the authenti-
cation phase compared to the response times with FAMOS
disabled. The null hypothesis is that there is no significant dif-
ference between the two sets of response times. The p-values
for training and inference are 0.91 and 0.97, respectively. The
p-values can not reject the null hypothesis (p > 0.05). Over-
all, these results indicate that users only experienced minor
delays during the training phase, with no difference during
the authentication phase.

6 Related Work
In mobile payment, user authentication is crucial for down-
stream services. While several approaches have been sug-
gested, including passwords [55], SMS verification [54],
and authenticators [46]. However, they often lack user-
friendliness [23, 65] and are susceptible to sophisticated at-
tacks [38, 64].

Researchers have studied various behavior patterns to au-
thenticate users, such as touch gestures [13,24,68,74], motion
sensor [3, 22, 27, 37, 40, 63], or correlated multi-modal fea-
ture [6, 9, 19]. AuthentiSense [23] and KedyAuth [30] are the
latest works that leverage standard built-in sensors for con-
tinuous user authentication. They have two key limitations.
First, they are not robust to actions under various background
activities. Second, they rely on centralized training to learn
user’s behavioral biometrics, which violate users’ privacy.

7 Discussion
Device-dependency implications. The four sensors used by
FAMOS are commonly deployed in modern mobile devices
and widely utilized in research related to user action pat-
terns [30]. The data format generated by these sensors is
generally consistent across different devices. Although there
exist some differences in sensor data for different devices,
such variation can be mitigated by the training process of
FAMOS. Specifically, FAMOS employs local model training
to enhance the accuracy and reliability of user authentication.
The training process not only takes into account device-related
variations but also aligns with the heterogeneity of sensor data
in practice. Thus FAMOS is robust and effective across a va-
riety of mobile devices.
Generalization. FAMOS is a general solution that can be in-

tegrated into other payment app due to two reasons. First, the
four sensors used in FAMOS are commonly deployed in mod-
ern mobile devices and widely utilized in the research about
user action patterns. Besides, the payment apps (e.g., AliPay
and WeChat) have similar authentication requirements and in-
teraction designs [71], allowing for the consistent deployment
process of data collection, model training, and authentication.

8 Conclusion
In this paper, we introduce FAMOS to achieve robust privacy-
preserving authentication. FAMOS integrates an attention
mechanism to identify and utilize stable sensors, an action-
aware model for clustering action-specific representations,
and a residual DNN for effectively projecting representa-
tions. By incorporating the FL framework, FAMOS miti-
gates privacy concerns. Our comprehensive evaluation demon-
strates FAMOS’s effectiveness, significantly outperforming
the SOTA with a 42.19% enhancement in F1-score and a
27.63% increase in AUC.
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