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Abstract
We design a novel efficient membership inference attack to au-
dit privacy risks in federated learning. Our approach involves
computing the slope of specific model performance metrics
(e.g., model’s output and its loss) across FL rounds to differ-
entiate members from non-members. Since these metrics are
automatically computed during the FL process, our solution
imposes negligible overhead and can be seamlessly integrated
without disrupting training. We validate the effectiveness and
superiority of our method over prior work across a wide range
of FL settings and real-world datasets.

1 Introduction

Federated Learning (FL) [28, 35] enables multiple parties
(namely, data holders) to train a global model collaboratively
using their sensitive datasets, without sharing their data. While
the training data remains unseen, the shared local updates
can inadvertently leak substantial information about the local
sensitive data [29, 31, 46], leading to privacy concerns. At the
same time, recent data policies such as the European Union’s
General Data Protection Regulation (GDPR) [1] also legalize
the safeguarding of data, including Data Protection Impact
Assessment (DPIA). These situations underscore the pressing
need for privacy auditing in federated learning, which has
been widely used in sensitive domains [34, 41].

In this work, we study the problem of auditing privacy risk
in federated learning, from the perspective of a participating
party. Membership inference attack (MIA) [36] is a canon-
ical framework for assessing such privacy risks in machine
learning and has been adopted by popular machine learning
platforms such as TensorFlow 1. In particular, MIA ascertains
whether a target data point was part of the training set, based
on some metrics computed on it. Despite its comprehensive
literature, existing MIA solutions often fall short of auditing

∗Part of this work was done when the author was at Intel Corporation.
1https://www.tensorflow.org/responsible_ai/privacy/

tutorials/privacy_report

privacy risks in federated learning. In FL, the adversary, who
may be the server or a party, participates in the whole FL train-
ing process and observes multiple model snapshots during
this process. How to extract membership information from
the (sequence of) model snapshots effectively and efficiently
is a challenging problem that is yet unsolved.

Most MIA solutions extract membership information from
an isolated single model snapshot, leading to underestima-
tion of privacy risks in FL (e.g., differentiate a member/non-
member target point based on its loss computed on the final
model [43]). On the other hand, an adversary in FL can ob-
serve multiple model snapshots through which the member-
ship information gradually leaked in the FL process. Train-
ing a deep learning attack model to make use of all the
observed information in FL such as the per-sample gradi-
ent/activation/loss history [31] demands substantial computa-
tion resources, potentially impeding FL. Such computation
investment may also not be affordable for some parties in
the first place. We provide a comprehensive review of the
MIA literature in Section 3 about their limitations of privacy
auditing in FL.

Free training attack. To address these limitations, we present
the free raining attack (FTA) for auditing privacy risks in fed-
erated learning. Regarding efficiency, our solution does not
need to train any additional complicated learning models or
perform costly computations. It can be integrated by the par-
ties seamlessly, without disrupting the FL process. In particu-
lar, FTA only takes the performance metrics of the FL model,
such as the loss of the local training/validation datasets (which
is already computed in the performance monitoring routine),
as the inputs and performs elementary math operations on the
inputs, incurring very little overhead. This flexibility, in turn,
empowers the auditing party to choose her preferred means
of privacy protection/intervention at any time to address the
privacy risk she is facing. This is different from the traditional
approach of applying a universal privacy-enhancing protocol
to all parties throughout the entire process of FL, without
understanding the empirical privacy risks that the parties face.
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The effectiveness of our auditing algorithm relies on a
simple but effective membership signal, called the slope sig-
nal. The slope signal exploits the fact that the model per-
formances for members and non-members change at differ-
ent speeds during the training process–the performance for
members increases more rapidly, whereas the performance of
non-members increases at slower rates. Our FTA predicts the
membership of a target data point based on its slope signal
computed across multiple FL model snapshots.

We validate the performance of our FTA on a wide spec-
trum of settings and real-world datasets. FTA outperforms the
efficient baselines, which are also free of training additional
models, by a clear margin. In addition, to our surprise, FTA
also outperforms more costly baselines that train additional
models. For instance, on the benchmark dataset CIFAR100,
our FTA successfully identifies 54.4% of members while mak-
ing only an error of 1%, outperforming all other baselines,
which at most identify 15.2% of members under the same
error. Supported by its effectiveness and efficiency, we use
FTA to benchmark the privacy risks in different FL settings.

Enhanced auditing. Built upon the slope signal, we further
enhance the performance of privacy auditing by integrating
it with the strong centralized MIA algorithm which trains ad-
ditional reference models [5, 42]. Such integration, however,
is not trivial, as the parties in FL often have limited access to
the underlying training data distributions, making it difficult
to obtain reference models that emulate the target model well.
To resolve this challenge, we incorporate knowledge transfer
when training the reference models to force the closeness be-
tween the target model and the reference model. Validated on
real-world datasets, our enhanced attack further improves the
effectiveness of FTA, identifying 62.6% of members while
making only an error of 1% on the CIFAR100 dataset.

2 Preliminaries and Problem Formulation

Federated learning and notations. We consider K parties
in total. Each party k ∈ [K] has access to her local dataset,
denoted as Sk with |Sk|= nk where each data point of Sk is in-
dependently sampled from the underlying local data distribu-
tion πk. In each round t (t ∈ [T ]), the server sends the current
global model θ̄t to all parties. Each party k updates the local
model along the direction that minimizes the loss on her local
dataset, written as follows, θ

t+1
k = θ̄t−η∑(x,y)∈Sk

∇ℓ(θ̄t ;x,y),
where ℓ is some pre-specified loss function and η is the lo-
cal learning rate. Next, each party sends the local update
to the server, which then computes a weighted average of
the local updates, and obtains the new global model θ̄t+1 as
∑k∈[K]

( nk
N ·θt+1

k

)
, where N = ∑k∈[K] nk.

Membership inference attack. The membership inference
attack (MIA) aims to determine if a target point is used for
training the target model. In particular, given a target point
z = (x,y) and the trained target model, the adversary outputs 0

or 1, predicting z as a non-member or a member, respectively.
In the context of federated learning, an adversary’s position
can take one of two forms: it can either be the server or a
participating party. An adversarial server can observe all local
model updates from each party during the FL process as well
as the global models, while an adversarial party is restricted to
observing only the global model sent from the server. In either
case, the adversary always has access to multiple model snap-
shots (local or global) across different FL rounds. We focus
on semi-honest adversaries, who conduct passive inference
attacks. Namely, the adversary infers membership without
actively manipulating or interfering with the FL process.

Problem statement. Our goal is to design an algorithm for
each party for auditing privacy risk during FL using MIA,
explained as follows. Consider any round t, before sending
the updated local model θ

t+1
k to the server, the party k may

want to know how much privacy information has been leaked
to decide if she/he still participates in the training process.
To answer that question, the party runs an MIA algorithm
and examines its effectiveness (i.e., accuracy) in distinguish-
ing members and non-members with respect to her/his local
dataset Sk. Higher accuracy indicates higher privacy risk, and
vice versa. The MIA algorithm takes inputs from the global
models sent from the server, namely, {θ̄0, ..., θ̄t}. In addition,
when considering an adversarial server, the algorithm also
takes inputs from the local updates shared by the party k,
namely, {θ0

k , ...,θ
t
k}. Our goal is to provide the party with

an effective and efficient MIA algorithm so that the parties
can obtain accurate privacy assessments on the fly without
disrupting FL.

3 Prior Work

We review the existing representative MIA algorithms under
different settings, followed by discussions on their limitations
for auditing privacy in FL.

MIA in centralized setting. Adversaries under the traditional
centralized setting attack the final model. When the adversary
has total access to the parameters of the target model, we refer
to this type of attack as white-box attacks. Nasr et al. [31]
computes the gradient norm of the target data point (x,y)
and decides it as a member if its norm is less than a certain
threshold, and vice versa.

A more realistic threat model is when the adversary can
only query the target model through APIs. We call such an
attack a black-box attack. Given target (x,y), Modified En-
tropy [37] queries the confidence for the label predictions on
x and computes −(1− py) log(py)−∑y′ ̸=y py′ log(1− py′),
where py is the confidence of the model on predicting y.
The adversary decides (x,y) as a member if the score is
less than a certain threshold, and vice versa. Loss-based at-
tack [42, 43] queries the loss for the target data point (x,y),
written as ℓ(θ;(x,y)). The adversary decides (x,y) as a mem-
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ber if the score is less than a certain threshold, and vice
versa. Merlin [18] compares the loss on the target point
(x,y) with the losses on some other noisy examples with the
same label y to get the membership scores. In particular, each
noisy example is obtained as x perturbed with some random
Gaussian noise. The score is computed as a simulation for
Eξ∼N (0,σ2I)

[
1{ℓ

(
θ;(x+ξ,y)

)
>ℓ

(
θ;(x,y)

)
}
]
. The adversary

decides (x,y) as a member if the score is higher than a certain
threshold, and vice versa.

Apart from black-box access, the adversary may also train
reference models, hoping that the reference models can sim-
ulate the target model. The main idea is to train two sets
of reference models, the IN models, which are trained with
the target data point, and the OUT models, which are trained
without the target data point. Then, the adversary compares
the behaviors of the target model with the IN and OUT mod-
els and makes predictions. After obtaining the IN and OUT
models, LiRA [5] computes the rescaled logit of the target
data point (x,y) on the IN models and OUT models sepa-
rately and fits two Gaussian distributions, denoted as NIN and
NOUT . Next, the adversary queries the rescaled logit r com-
puted on target data point (x,y) using the target model and
computes Pr[r is a sample from NIN ]

Pr[r is a sample from NOUT ]
. The adversary decides (x,y)

as a member if the score is higher than a certain threshold,
and vice versa. Distillation attack and reference attack [42]
only train the OUT models. After obtaining a set of refer-
ence models {θsh1 , . . . ,θshM}. The adversary computes the
fraction of reference models whose loss for the target data
point (x,y) is larger than that computed on the target, written

as
∑

M
m=1 1{ℓ

(
θshm ;(x,y)

)
>ℓ
(

θ;(x,y)
)
}

M . The adversary then decides
(x,y) as a member if the fraction is higher than a certain
threshold, and vice versa. Finally, [21, 25, 36] trains an ad-
ditional attack model to differentiate the IN/OUT reference
models, hoping that it will also perform well in differentiating
whether the target data point is used or not for training the
given target model.
Adaptation to FL and limitations. To adapt the aforemen-
tioned attacks to FL, the adversary runs attacks on the ob-
served model snapshot in each round t independently. One
major limitation of those attacks is their ineffectiveness. In
particular, as the adversary only attacks one model snapshot
at each round, she/he fails to exploit the membership infor-
mation that is encoded in the incremental FL process, lead-
ing to an underestimation of the privacy risk. Moreover, the
more advanced attacks in centralized settings often demand
additional computation resources, e.g., for training reference
models [5], and computing the per-sample gradient [31]. Such
computation overhead burdens participating parties and also
significantly slows down the FL process.

MIA in online learning setting. In the online learning set-
ting, the target model is updated on the arrival of new data
points in each round. Jagielski et al. [17] consider an ad-
versary who has access to the model snapshots (before and

after the updates) through APIs and is interested in the mem-
bership of the target data point in any datasets the model
is trained on. This setting naturally applies to FL, where
the adversary also observes multiple model snapshots. Back-
front attack [17] computes the difference/ratio between the
losses for the first model snapshot θ0 and the final snapshot
θT , namely, ℓ(θ0;(x,y))− ℓ(θT ;(x,y)) (or ℓ(θ0;(x,y))

ℓ(θT ;(x,y)) ). The ad-
versary decides (x,y) as a member if the outcome is larger
than a prefixed threshold, and vice versa. Delta attack com-
putes the loss difference/ratio between model snapshots in
consecutive rounds, namely, ℓ(θt−1;(x,y))− ℓ(θt ;(x,y)), or
ℓ(θt−1;(x,y))
ℓ(θt ;(x,y))

. The adversary decides (x,y) as a member if the
loss difference/ratio at any two consecutive rounds is larger
than the prefixed threshold.
Limitations. Although the above attacks utilize multiple
model snapshots, the adversary’s decision is ultimately deter-
mined using the information obtained from two rounds, rather
than the entire FL process. As a result, they still fall short of
effectiveness, as we will see in Section 5.

MIA in federated learning. Existing MIA solutions in FL
settings leverage all snapshots of the models and we can
directly apply them for privacy auditing. Nasr et al. [31]
propose to train a deep learning attack model, which takes
all the information one can compute on all model snap-
shots to make the prediction, including the concatenation
of the per-sample gradient across all FL rounds. As the di-
mensions of such information change over time, in each
round, a new attack model needs to be trained, demand-
ing huge computation resources. Li et al. [22] find that, for
overparameterized models, the gradients of different data
points are nearly orthogonal. Based on this observation,
they measure the cosine similarity between the gradient for
the target data point and the local model update, written as
⟨∇ℓ(θ̄t−1;(x,y)),θk

t −θ̄t−1⟩
∥∇ℓ(θ̄t−1;(x,y))∥2∥θk

t −θ̄t−1∥2
, where θ̄t−1 represents the global

model sent to the parties and θk
t represents the updated lo-

cal model of party k. The adversary decides the target data
point (x,y) as a member if the cosine similarity is larger than
a threshold, and vice versa (according to their observation
that the gradients of non-members should be orthogonal to
those of members). Alternatively, the adversary can also com-
pute ∥θk

t − θ̄t−1∥2−∥θk
t − θ̄t−1−∇ℓ(θ̄t−1;(x,y))∥2, and de-

cide the target data point (x,y) as a member if the difference
is larger than a certain threshold, and vice versa. The intuition
is similar–when (x,y) is a non-member, the local update and
the gradient on (x,y) are orthogonal, which gives the largest
L2 norm ∥θk

t − θ̄t−1−∇ℓ(θ̄t−1;(x,y))∥2.
Limitations. The main limitation of the above approaches
is their computation overhead, as both approaches require
computing per-sample gradients, which is far more expensive
than local training itself. On top of that, the deep learning-
based approach also trains different attack models at each
round, further burdening the parties and slowing down FL.
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Figure 1: Prediction confidence trajectory of the local models on members and non-members, evaluated on the benchmark
dataset CIFAR10. The left and middle figures show the prediction confidence and slope of the confidence for the members and
non-members during FL rounds, respectively. The right figure shows the histogram of the slope of confidence for members and
non-members at round 30.

4 Proposed Solution for Privacy Auditing

In this section, we present an effective and efficient MIA
solution for auditing privacy, called free training attack (FTA).

4.1 Extracting Membership Efficiently
To avoid excessive overhead, an efficient MIA strategy is to
compute some membership signal solely based on the target
models and then compare it with some pre-fixed threshold,
without computing high-dimensional statistics or training any
additional models. The binary outcome of the comparison
leads to the membership prediction.

Other than obtaining the model snapshots from different
FL rounds, we note that in the standard FL routine, the parties
also need to evaluate the model snapshots (namely, the target
models from the adversary’s perspective) on her/his local
datasets, including the training and validation datasets, for
monitoring the performance of FL. A (by)product of such
evaluation is the calculation of the logit, confidence of labels,
and losses of the data points. To be more specific, for each
point (x,y) in the local training and validation sets, the party
computes the outputs produced by the final network layer
before the softmax function, which are referred to as the logit.
Rescaled logit is referred to as the logit associated with the
predicted label, normalized with respect to the values of other
logit. A higher rescaled logit indicates that the model is more
confident in the prediction confidence of the input data point.
From the logit, the party proceeded to compute the prediction
confidence and loss for the data point.

In what follows, we will present a membership signal that
effectively extracts membership information from the above-
mentioned performance statistics using straightforward arith-
metic operations, thereby circumventing excessive computa-
tion overhead.
Trajectory of model performance. The foundation of our

method hinges on a key observation–the differences between
member and non-member data are revealed not only through
the model’s performance in isolated rounds but also through
the performance trajectory leading up to each round. This is
illustrated in Figure 1 (left), where we notice a marked differ-
ence in local model prediction confidence between members
and non-members. This difference is manifested not just in
the outcomes of each FL round but also in the pace at which
prediction confidence escalates. In particular, members show
a swift ascent in prediction confidence, whereas non-members
(namely, the examples from the validation dataset) show a
more stable rise.

Slope of trajectory. Building on this observation, we propose
to use the rate of change in the model performance metric
(namely, the slope) as the membership signal. In the middle of
Figure 1, we plot the slope of average confidence for members
and non-members. Just after the 10-th round, we observe a
clear separation between them, and the separation remains
noticeable in the final round. For a more detailed investigation,
we draw the histogram of the slope signals for members and
non-members at round 30 in the right of Figure 1. As the non-
overlapping region of members and non-members is quite
noticeable, the adversary could accurately infer membership
based on this slope signal. Moreover, another advantage of
such a membership signal lies in its simplicity of computation–
computing the slope of a trajectory only involves elementary
operations, as we will see later.

Next, we present how to extract the membership signal
based on the trajectory of prediction confidence history. Con-
sider any target data point (x,y) associated with the prediction
confidence ct at each round t, the slope up to the t−th round
is computed as follows.

bt =
t

∑
u=1

wu · cu, (1)
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where wu is defined

wu := 6 · 2tu− t2 +1
t4− t2 , (2)

for u taking values from 1 to t. We refer interested readers to
the well-established regression literature [8] for more detailed
derivation.

Given our intuition, the value bt for a member is expected
to be larger than that for a non-member. Hence, the adversary
decides the target data point as a member if bt is larger than
some threshold, and vice versa. Similar computations also
apply to other performance metrics, such as rescaled logit
and loss. Here we omit the formulations for brevity and their
corresponding experimental results are shown in Section 5.

Summary. Our slope signal achieves effectiveness and effi-
ciency at the same time. In Section 3, we have extensively
discussed the limitations of adapting existing membership in-
ference attacks for auditing privacy risks in federated learning
from both effective and efficient perspectives. Compared to
the centralized MIA solutions, where the membership signal
is only computed on an isolated snapshot of the model, our
slope signal captures the information that is encoded in the
whole trajectory of the training. Compared to MIA solutions
designed for online learning settings, our slope, instead of
looking at the changes between two snapshots of the models,
leverages the whole training trajectory for auditing. Compared
to the solutions in FL, which require expensive computation,
our slope signal can be computed very efficiently, as the par-
ties only need to retrieve the performance metrics for each
data point and compute a weighted average of these statistics
across FL rounds.

4.2 Free Training Attack
Given the slope bt computed on the target point, our free
training attack strategy is straightforward, that is, comparing
this value with a threshold. The output of our attack algorithm
FTA, denoted as AFTA, is computed as follows:

AFTA := 1
[
bt ≥ τ

]
. (3)

Considering a set of target data points for privacy auditing,
we note that for every selected threshold τ, there are two
error types regarding the whole set of data. False Positive
Rate (FPR) represents the fraction of non-members that are
incorrectly identified as members, while False Negative Rate
(FNR) represents the fraction of members that are incorrectly
identified as non-members. Note that the auditor (namely,
the participating party) has access to the ground truth for
the membership of the target data points and hence, she/he
can obtain the TPR and FPR. In practice, the auditor may be
interested in a strict FPR tolerance γ such as 1%. To achieve
that, we iterate through a spectrum of τ and pick the τ that

results in the highest TPR with FPR below the tolerance γ. The
highest TPR, constrained by the acceptable FPR, is reported
as the privacy risk.

To avoid iterating infinitely many τ’s from an unbounded
range, in practice, the auditing party may select different
quantiles (e.g., 1%,25%,50%) of some observed empirical
distribution of the slope signal, e.g., on her/his local train-
ing/validation dataset, and use those quantiles as the candi-
dates for τ. In the experiments, we use a non-overlapping
dataset for computing such quantiles. As we will demonstrate,
this dataset can be as small as 1

50 of the training dataset, with-
out affecting the performance of FTA. The above technique
for determining the threshold τ for membership prediction
is prevalent in the MIA literature [21, 22, 26, 42]. For a fair
comparison, we adopt the above selection process of τ for all
baselines and our solution in the empirical evaluation.

Adversary’s observation. Regarding an adversarial party in
FL, she/he could launch FTA based on the observed global
model snapshots. On the other hand, regarding an adversarial
server, she/he can launch two separate FTAs on the observed
global and local model snapshots. To deal with the latter type
of adversary, the auditing client may consider the higher attack
performance (measured as TPR) as the privacy risk.

5 Empirical Evaluation

In this section, we evaluate the effectiveness and efficiency of
FTA compared to existing baselines.

5.1 Baselines
Among many MIA solutions (see Section 3), we include the
most representative ones as the competitors for our solution.
For the attacks that were originally designed for other settings,
we also adapt them to the FL setting. To ensure a fair com-
parison, we do not tune the hyperparameters in favor of any
particular solution.

Efficient MIAs. Efficient attack algorithms that do not de-
mand additional computation resources naturally fit as a good
candidate for efficient privacy auditing in FL. We include
the following ones as baselines in our evaluation: Modi-
fied Entropy [37], Population (01-Loss) [42, 43], Back-Front-
Diff [16], and Back-Front-Ratio [16]. We also include the
Fed-Loss that is also used in prior work [22]. Fed-Loss com-
putes the average loss of the target data point across all FL
rounds and predicts it as a member if the outcome is lower
than a threshold.

Inefficient MIAs. We also include the algorithms which
demand additional computation resources, including Mer-
lin [18], Gradient Norm [31], Gradient-Cosine [22], and
Gradient-Diff [22]. For Merlin, which evaluates the model
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Table 1: Setup for experiments on the different datasets. For each setup, we uniformly split the datasets into four clients and use
the Adam optimizer to train the local model.

Dataset CIFAR10 CIFAR100 Skin Retinal Texas Purchase Medical-MNIST Pneumonia Kidney

Model Resnet56 Resnet56 AlexNet AlexNet 5-layer-FC-NN 5-layer-FC-NN LeNet AlexNet AlexNet
Rounds 100 200 500 200 500 100 50 200 200

Learning rate 0.001 0.001 0.0001 0.0001 0.0001 0.001 0.0001 0.001 0.001
Number of classes 10 100 23 4 100 100 6 2 4

Dataset size 60,000 60,000 6,095 35,472 67,330 197,324 53,724 3,166 5,508
Train accuracy 1.0 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0
Test accuracy 0.72 0.34 0.25 0.82 0.43 0.9 1.0 0.91 0.96

performance on noisy perturbations of the input target data
point, we follow the same hyperparameters as in the origi-
nal implementation [18], which generates 100 noisy samples
with σ = 0.01. For the Gradient Norm attack, we compute the
norm in the last layer, as suggested in the original paper [31]
since including more layers does not improve the performance
of the attack. Gradient-Cosine and Gradient-Diff attacks [22]
(recall Section 3) attack on a single layer only. To select the
best layer to attack, they use a non-member dataset to find the
layer that gives the smallest variance (across all data points)
for the designated membership signal. In addition, for each
target data point, they average the signals computed across
different rounds and use that for predicting its membership.
In our evaluation, we follow the same procedure.

Finally, as we have mentioned in Section 4.2, for all base-
lines, we also compute the membership signal on a non-
member dataset to calibrate the threshold τ.

5.2 Setup

Dataset and model. Following prior works [5, 31, 42], we
primarily focus on evaluating the two benchmark datasets CI-
FAR10 and CIFAR100 [20] and train a resnet56 model [10].
Besides, we also evaluate additional datasets in our extended
experiments, including the Purchase dataset from Kaggle, the
Texas hospital discharge dataset, the medical MNIST [3], the
Pneumonia dataset, and the Retinal OCT image dataset [19],
the CT Kidney dataset [13], and the skin disease dataset
(http://www.dermnet.com/).

By default, we consider homogeneous data partitioning
(in short, IID setting). For each dataset, we uniformly split it
among 4 parties (we also provide ablation studies later). After
data partitioning, each party takes 30% of their sampled data
for training (referred to as members in privacy auditing) and
another 30% for validation (referred to as non-members in
privacy auditing). For the relatively small Pneumonia dataset,
each party takes 40% of their sampled data for training and
another 40% for validation. We train the models until con-
vergence using FedAvg, the standard training algorithm used
in FL [28], where each party trains the local model for one
epoch and then sends the updated local model to the server.

The detailed description of the model structures and hyperpa-
rameters is in Table 1.

Variants for FTA. For our FTA, we evaluate three of its
variants on different model performance metrics, including
the slope computed on loss, prediction confidence (in short,
confidence), and rescaled logit (in short, logit). For loss, the
members are expected to have a smaller slope than the non-
members as the loss for members often decreases more rapidly
compared with non-members. Accordingly, the direction of
the inequality sign in Eq. (3) is flipped. We would also like to
emphasize that due to the efficiency of our FTA, the auditing
party can choose to assess the privacy risk using all three
variants and use the best performance among all three variants
as the estimation for the privacy risk.

Metrics. We are interested in two metrics, effectiveness and
efficiency. The efficiency is measured by the time spent on the
auditing in each round over the time spent on the local train-
ing in each round for one epoch. We measure the efficiency
as the GPU time required for conducting the MIA/privacy
auditing algorithm in each round. To ensure a fair comparison,
the GPU time is computed with the same machine configura-
tion with 1 NVIDIA Titan RTX GPU. On the other hand, the
effectiveness is measured by the attack success rate. Follow-
ing prior work [5, 42], we use the TPR at low a FPR as the
measurement for effectiveness. A higher TPR at a low FPR
indicates a better estimation of the privacy risks. All results
are averaged across all parties over 5 independent runs. For
clearer demonstration, in our experiments, we report the ef-
fectiveness results on the local and global models in separate
figures and tables.

5.3 Main Results

We first compare our auditing algorithm with baselines based
on privacy auditing for the local models (considering the
adversarial server setting) with IID data partitioning on the
benchmark datasets CIFAR10 and CIFAR100. We focus on
the privacy risks with respect to the whole FL process (i.e., up
to the final round). We compare the efficiency and effective-
ness of different solutions in Table 2. We show the true posi-
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Table 2: Effectiveness and efficiency of auditing the privacy risk for local models trained on CIFAR10 and CIFAR100 (abbreviated
as C-10 and C-100, respectively). We focus on the local models with respect to the whole FL process and use benchmark datasets
CIFAR10 and CIFAR100 (abbreviated as C-10 and C-100, respectively) with IID data partitioning. Efficiency is measured as
the ratio between the GPU time used for auditing versus training. For each solution, we mark whether it uses multiple model
snapshots by ‘Final’ or ‘Multiple’ in the ‘Snapshots’ column.

Algorithm Snapshots Efficiency
AUC TPR @0.1% FPR TPR @0.5% FPR TPR @1% FPR

(C-10) C-10 C-100 C-10 C-100 C-10 C-100 C-10 C-100

Modified Entropy [37] Final 0.56 0.691 0.902 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
01-Loss [42] Final 0.56 0.687 0.903 0.0% 0.4% 0.0% 2.4% 0.0% 5.1%
Fed-Loss [22] Multiple 0.56 0.712 0.901 0.1% 0.0% 0.5% 0.6% 0.9% 1.6%
Back-Front-Diff [17] Multiple 0.56 0.66 0.879 0.3% 0.8% 0.7% 2.6% 1.2% 4.8%
Back-Front-Ratio [17] Multiple 0.56 0.689 0.903 0.0% 0.4% 0.0% 2.6% 0.0% 5.3%
Delta-Diff [17] Multiple 0.56 0.324 0.2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Delta-Ratio [17] Multiple 0.56 0.697 0.858 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Merlin [18] Final 57.3 0.508 0.581 0.0% 0.3% 0.4% 0.7% 1.1% 2.0%
Gradient Norm [31] Final 373 0.684 0.893 0.2% 0.3% 0.7% 2.3% 1.2% 5.2%
Gradient-Cosine [22] Multiple 373 0.359 0.368 0.0% 0.0% 0.2% 0.0% 0.3% 0.2%
Gradient-Diff [22] Multiple 373 0.803 0.947 0.4% 0.1% 1.4% 3.4% 2.8% 6.6%

FTA (loss) Multiple 0.56 0.817 0.95 3.1% 0.0% 5.9% 15.6% 9.0% 26.1%
FTA (confidence) Multiple 0.56 0.801 0.975 3.0% 12.8% 9.2% 43.2% 12.9% 54.4%
FTA (logit) Multiple 0.56 0.783 0.971 0.3% 0.1% 0.4% 2.0% 0.8% 11.2%

tive rate (TPR) at low false positive rates (FPR) (i.e., 0.1%,
0.5%, and 1%) and the area under the ROC curve (AUC).
The best performance under each metric is bolded. We also
measure the efficiency of auditing on CIFAR10.

As a reference, the GPU time for updating the local model
for one round is around 2.3 seconds (on average). For ef-
ficient MIA solutions, including our FTA and some base-
lines [16, 37, 42, 43], the additional cost is evaluating the
model performance on the non-member dataset, which only
takes around 1.2 seconds. For Merlin [18], the additional cost
is evaluating the model performance on 100 noisy versions of
each point in both target and non-member datasets, which cost
around 131.8 seconds. For gradient-based approaches [22],
the cost is computing the per-sample gradients for all samples
in target datasets and non-member datasets, which cost around
860 seconds. This is 373 times larger than the time spent on
local training! Consider the case where FL takes 3 GPU hours
with 4 parties. Using the auditing algorithm based on gradient
information will slow down FL to more than 46 GPU days
when simulating FL and auditing the privacy risk for each
party, which may prevent researchers from understanding the
risks in FL.

Regarding effectiveness, our FTA surpasses all the base-
lines by a significant margin. Notably, FTA achieves a TPR of
43.2% on CIFAR100 when FPR is 0.5%, which is more than
10 times higher than the best performance achieved by the
gradient-based baseline [22]. On CIFAR10, our FTA achieves
a TPR of 9.22% when FPR is 0.5%, which is 7 times larger
than the best performance [22]. As claimed in the original
paper [22], the key observation of the gradient orthogonal-

ity is highly dependent on the model structure. Furthermore,
only after enough training epochs will the overparameterized
model gradients of different data points be nearly orthogonal.
Such limitations may contribute to the performance gap be-
tween our FTA and [22]. In addition, [22] requires more than
700 times more computation resources than our FTA.

Compared with efficient baselines, our improvement in ef-
fectiveness is even more significant. While FTA achieves a
TPR of 43.2% on CIFAR100 when FPR is 0.5%, the most
efficient baseline [17] only achieves a TPR of 0.8%. Although
multiple model snapshots are utilized in [17], they are still
processed in an isolated manner. In contrast, our FTA exploits
the membership information from the entire FL trajectory,
leading to much higher effectiveness. In conclusion, FTA not
only stands out as the most effective approach in our experi-
ments, but it also maintains this superior performance without
imposing any significant computational burden, establishing
itself as a practical auditing algorithm accessible to any party
in FL.

Auditing global models. We next present the effectiveness re-
sults for auditing the privacy risk of the global models Table 3.
For each solution, as the computation for auditing privacy is
necessarily applied to the global model instead of the local
model, the efficiency remains the same, and hence, is omitted
from the table. We also omit the baselines, which give 0 for
all settings. As we can see from Table 3, our FTA still outper-
forms the baselines, by a large margin. In addition, compared
with the results for auditing local models in Table 2, our FTA
can be more effective for auditing global models. We suspect
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Table 3: Effectiveness of auditing global models on CIFAR10
and CIFAR100 with IID data partitioning.

TPR@0.1%FPR TPR@0.5%FPR

Algorithm CIFAR10 CIFAR100 CIFAR10 CIFAR100

Population 0.00% 0.00% 0.00% 1.76%
Fed-Loss 0.11% 0.11% 0.64% 0.69%
Back-Front-Diff 0.36% 0.71% 0.67% 3.09%
Gradient-Cosine 0.27% 0.07% 1.40% 2.78%
FTA (confidence) 2.58% 15.22% 8.44% 27.16%
FTA (loss) 1.00% 2.42% 3.31% 10.60%
FTA (logit) 0.04% 0.22% 0.31% 4.31%

Table 4: Effectiveness of FTA (confidence) for auditing global
models under different sizes of non-member set for selecting
the threshold τ. We measure TPR when FPR is fixed at 0.5%.

Non-member
Size of Dataset

Dataset 100 500 1000 2000 3000 4000 5000

CIFAR10 0.5% 5.5% 6.1% 6.3% 6.3% 6.5% 6.5%
SVHN 0.0% 0.0% 0.0% 1.8% 3.2% 3.8% 3.9%

that this is because, for global models, the performance tra-
jectory is more stable, leading to a more stable slope signal
for inferring membership. We support this hypothesis with
Figure 2, where we plot the average prediction confidence
of the global model and the local models on members and
non-members. As we can see, the confidence for the global
model is more stable, whereas there are more fluctuations for
the local model. Finally, as we have discussed in Section 4.2,
when auditing the risks with respect to a malicious server, the
actual privacy risk should be computed as the higher one be-
tween the local and global model snapshots, as the adversary
can observe both during FL process.

5.4 Ablation Studies and Extended Results

Effect of the validation data. Recall from Section 4.2 that,
our FTA uses a non-member dataset for selecting the thresh-
old τ. We first show how the size of this dataset influences the
performance of our FTA (confidence) in Table 4. Remarkably,
only 500 data points of CIFAR10 are enough for effective
privacy auditing, achieving a TPR of 5.9% with an FPR of
0.5%, for the CIFAR10 dataset. As a reference, the best TPR
of the baselines is only 1.4%. This suggests that parties need
not reserve large validation datasets for auditing, further un-
derscoring the practicality of the FTA approach. Instead of
taking validation data from the target dataset CIFAR10, the
auditor party may also use data from external sources, such
as SVHN [33], to audit the privacy risk regarding CIFAR10.
In particular, FTA produces a TPR of 3.9% with an FPR of
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Figure 3: Comparison of fitting different polynomial functions
for privacy auditing.

0.5%. This observation also suggests the high applicability of
FTA even when access to validation data is limited.

Effect of linear fitting. In our approach, we have modeled
the performance history as a linear function with respect to
the FL round t. However, one might consider fitting other
types of functions to the performance history, such as the
quadratic function represented by ℓt = a+b · t + c · t2. To ex-
plore such kinds of alternatives, we apply more complex
functions from the polynomial function family, including the
quadratic (second-order function of the FL round t), cubic
(third-order), and quartic functions (fourth-order), on the loss
history. The results are shown in Figure 3. Interestingly, the
application of more complex functions, as opposed to linear
ones, appears to reduce the effectiveness of the attacks (the
curves of quadratic and cubic functions overlap). This finding
is remotely related to the Neural Tangent Kernel theory, high-
lighted by Jacot et al. [14], which posits that model outputs
may evolve linearly during training.

Equipped with the powerful and efficient auditing tool of
FTA, we further evaluate the privacy risks in FL under differ-
ent settings. The following results are based on auditing the
global models.

Results on different data partitioning settings. We vary the
size of the local datasets in each party from N

10 to N
100 (N is the

overall number of training data points) and the overall num-
ber of participating parties from 10 to 100 for the CIFAR10
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Figure 4: Effectiveness of auditing global models with varying numbers of parties and sizes of local datasets.
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Figure 5: Effectiveness of auditing global models on CI-
FAR10 with varying data discrepancies. The error bar is com-
puted on the standard deviation across all parties.

dataset with IID data partitioning. Overall, there are 28 dif-
ferent settings. We include results of the Back-Front-Ratio
baseline, which achieves the best performance compared to
the Back-Front-Diff, Delta-Diff, and Delta-ratio baselines. We
have omitted the expensive baselines due to their timely costs.
We present the resulting TPR at FPR 2% for different solu-
tions for auditing the global models (as there are fewer data
points, we increase the FPR tolerance) in Figure 4.

First, we note that our method outperforms the baselines
in all settings, as indicated by the colors. Next, we fix the
number of parties while reducing the size of local datasets
(inspect each column separately), and observe an increase in
privacy risks. This is because when the training dataset size
is smaller, each data point has a larger impact on the model,
leading to a higher privacy risk. In addition, we fix the size
for each party while increasing the number of parties in FL
(inspect each row separately), and observe a decrease in the
privacy risks. For instance, when each party has 1

100 of the
whole training dataset, increasing the number of parties from
10 to 100 reduces the TPR of FTA (confidence) by almost a
half (from 52.1% to 22.9%). Both results highlight the benefit
of having more parties/data points in FL to reduce privacy
risks.

Discrepancy in local datasets. We evaluate how the data dis-

crepancies in the parties’ local datasets may affect the privacy
risk. Specifically, we consider the common heterogeneous
setting (in short, non-IID setting). In particular, for each label
y ∈ Y , the distribution for the number of local samples of
label y among parties is controlled by the Dirichlet distribu-
tion, as is done in prior works [24, 40, 44]. We use DirK(β) to
represent a K-dimensional Dirichlet distribution of parameter
β. Here, K represents the number of parties and β controls the
degree of heterogeneity. For every class y, we first sample as
py ∼ DirK(β). Next, each dimension in the vector py is used
to allocate a proportion py,k of instances that belong to class y,
to party k. This partitioning strategy was initially introduced
by [44] and has been subsequently employed in several recent
FL studies, e.g., [24, 40].

We fix the whole training dataset of CIFAR10 size and
set the number of parties to 10 and 20. In both setups, we
vary the discrepancy parameter β from 0.1 to 1.0. A smaller
β indicates higher data discrepancy in class labels among
the parties’ partitions for CIFAR 10, and vice versa. When
β = 1.0, it is the same as the setting of IID data partitioning.

In Figure 5, we report the performance (measured as TPR
when FPR is fixed at 2%) using our FTA (confidence) as an
illustration. The first observation is that the variance of privacy
risks for parties is larger in the non-IID partitioning (β < 1)
than in the IID setting (β = 1). This indicates that in FL with
heterogeneous local data, parties are experiencing different
levels of risk, especially in the Non-IID setting. The average
privacy risk also reduces when increasing the discrepancies
in the data between the parties. Such an effect cannot be
observed using the existing baselines. These findings further
highlight the importance of having an efficient and effective
auditing algorithm that is available for all parties.

Varying model structures. We include the results for dif-
ferent models on CIFAR10 with IID data partitioning for 4
parties. Specifically, we consider three CNN models (with
16, 32, and 64 convolutional filters), and three Wide ResNets
(WRN) with widths 1, 2, and 10. The results are shown in
Figure 6. Under all setups, our FTA (confidence) consistently
achieves the highest performance, highlighting the wide appli-
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Figure 6: Effectiveness of auditing global models with differ-
ent model structures.

cability of the slope signal regardless of the model structure.
In addition, with more complicated models, the privacy risks
increase. This is aligned with the observations in [5].

Auditing FedSGD. So far, our focus is on the FL algorithm
of FedAvg. Next, we audit the privacy risk in FedSGD. We
implement the FedSGD based on canonical settings, where
each party computes the gradient on her/his local dataset and
shares the gradient with the server in each communication
round. We train the model on CIFAR10 that is uniformly
partitioned among 4 parties for 2000 communication rounds.
Regarding the evaluation of attack algorithms, we have omit-
ted the gradient-based approaches in [22], which compute
individual gradients and cost almost 20 GPU days in total (as
a comparison, our FTA only costs 0.66 GPU hours in total).
The results for auditing the global model are shown in Ta-
ble 5. We have neglected the baselines that perform close to
random guessing. Overall, our FTA (confidence) consistently
achieves much better performance under all settings. In ad-
dition, we note that the privacy risk for FedSGD is low. We
suspect this may be contributed by the fluctuations in training
(as demonstrated in Figure 8 in Appendix). In particular, for
members and non-members, the model performs similarly
at each FL round. However, we note that FedSGD does not
obtain a model with high accuracy. Even with 2000 rounds,
the test accuracy for the model is 0.536. Due to the unsatis-
factory model performance and large communication costs,
we suspect that FedSGD is not an interesting subject to study
for privacy-preserving FL.

Different datasets. We show the performance of our FTA
(confidence) and different baselines for auditing the global
models on the nine datasets introduced in Section 5.2 in Ta-
ble 6. Overall, the results show that our FTA consistently

Table 5: Effectiveness of auditing global models in FedSGD.

AUC TPR@Low FPRs
FPR=0.1% FPR=0.5% FPR=1%

Modified-
Entropy

0.77 0.00% 0.00% 0.00%

01-Loss 0.77 0.07% 0.71% 1.42%
Back-Front-Diff 0.69 0.11% 0.38% 0.91%
Back-Front-Ratio 0.77 0.07% 0.78% 1.29%
Fed-Loss 0.62 0.00% 0.62% 1.00%
Merlin 0.64 0.00% 0.00% 0.00%
FTA (conf) 0.79 0.56% 1.91% 3.53%
FTA (loss) 0.76 0.67% 2.69% 5.33%
FTA (logit) 0.75 0.00% 0.47% 0.84%
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Figure 7: Classification accuracy of the global model and
effectiveness of auditing global models during training on
CIFAR10 with IID partitioning.

archives the best performance on almost all datasets, except
for one trivial case where the inherent privacy risk is low.
To be more specific, on the relatively easy dataset Medical-
MNIST, the highest AUC is 0.51, which is only slightly better
than random guessing (corresponding to an AUC of 0.5); and
the highest TPR is 2.11% which is also only slightly better
than the random baseline of 2%. Despite such a trivial case,
the results demonstrate the universal effectiveness of our pro-
posed FTA on different datasets and model structures. Such a
difference in the privacy risks also highlights the importance
of having an efficient auditing tool that is applicable to all
kinds of datasets and model structures.

Privacy risks dynamics. Finally, we fix the FPR to 0.5%
and see how the TPR varies as the training proceeds in FL.
We focus on CIFAR10 with IID partitioning. From Figure 7,
we see that FTA outperforms other baselines. Comparing
the model performance (train and test accuracy) in Figure 7
(left) with the exhibited privacy risk in Figure 7 (right), we
find that while the train and test accuracies of the global
model stop rising at some point, the attack performance of
our FTA (confidence) continues to increase. On the contrary,
the TPR of other baselines barely changes over time. This
further provides evidence that the proposed slope signal is a
robust membership indicator throughout the FL process and
also highlights its applicability, in particular, for discovering
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Table 6: Effectiveness of auditing the global models on different datasets. We report the AUC and the TPR when FPR is fixed at
2%. When FPR is fixed at 2%, the random-guessing baseline for TPR is 2%.

CIFAR10 CIFAR100 Skin Retinal Texas Purchase Medical-MNIST Pneumonia Kidney
Algorithm AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR

Modified-Entropy 0.68 0.96% 0.93 0.00% 0.91 0.00% 0.65 0.00% 0.80 0.00% 0.54 0.00% 0.51 0.00% 0.55 0.00% 0.57 0.00%
Merlin 0.58 0.00% 0.72 0.00% 0.79 0.00% 0.57 0.00% 0.70 0.00% 0.51 0.00% 0.50 0.00% 0.54 0.00% 0.52 0.00%
01-Loss 0.67 1.25% 0.93 15.27% 0.90 8.75% 0.64 0.00% 0.80 1.80% 0.54 0.00% 0.51 0.00% 0.54 0.00% 0.57 0.00%
Fed-Loss 0.60 2.44% 0.85 2.87% 0.84 3.06% 0.58 2.18% 0.73 2.18% 0.53 2.12% 0.50 1.74% 0.53 1.58% 0.57 2.66%
Back-Front-Diff 0.61 2.67% 0.86 7.47% 0.89 6.56% 0.64 3.31% 0.84 8.40% 0.55 2.68% 0.51 2.08% 0.52 4.11% 0.54 1.69%
Back-Front-Ratio 0.67 1.39% 0.93 15.44% 0.90 8.75% 0.64 0.00% 0.80 2.02% 0.54 0.00% 0.51 0.00% 0.54 0.00% 0.57 0.00%
Delta-Diff 0.42 0.19% 0.26 0.00% 0.39 0.00% 0.43 0.00% 0.38 0.00% 0.47 0.72% 0.50 1.69% 0.48 0.00% 0.43 0.00%
Delta-Ratio 0.59 1.37% 0.81 6.64% 0.74 0.00% 0.54 0.00% 0.69 0.00% 0.52 1.74% 0.51 1.34% 0.50 0.00% 0.47 0.00%
Gradient-Cosine 0.59 3.80% 0.79 12.67% 0.67 8.10% 0.55 3.57% 0.78 31.27% 0.52 2.47% 0.51 2.06% 0.49 0.00% 0.49 2.91%
Gradient-Diff 0.38 0.37% 0.09 0.00% 0.14 0.00% 0.41 0.00% 0.23 0.00% 0.47 0.05% 0.50 2.11% 0.43 0.00% 0.43 0.00%
FTA (confidence) 0.69 9.82% 0.95 49.62% 0.90 19.04% 0.65 6.39% 0.90 34.11% 0.58 2.82% 0.50 1.86% 0.57 4.75% 0.57 2.42%
FTA (loss) 0.67 6.33% 0.91 28.31% 0.90 11.16% 0.64 5.41% 0.88 26.04% 0.56 2.99% 0.50 1.89% 0.57 3.48% 0.56 2.91%
FTA (logit) 0.69 2.16% 0.97 44.58% 0.89 9.63% 0.65 2.14% 0.87 5.41% 0.54 1.84% 0.51 1.59% 0.54 2.22% 0.58 2.91%

the privacy risks in late training phases.

6 Enhanced Auditing

Certain parties in FL may invest more computation resources
in exchange for a more accurate assessment of the privacy
risk. To that end, we propose a more advanced solution that
is built upon the slope signal, called Knowledge Transfer
Attack (KTA), which combines the existing state-of-the-art
centralized MIA algorithm [5] and our slope signal. We show
that KTA further improves the effectiveness of FTA, validating
the effectiveness and broad applicability of the slope signal.

6.1 Algorithm

Adapting slope signal to reference model attack. The origi-
nal idea of [5] is to train reference models that simulate the
behavior of the target model. In particular, they first obtain a
set of reference models, referred to as the IN models, using
datasets with the target data point; and then train another set
of reference models, referred to as the OUT models, using
datasets without the target data point. Next, the most straight-
forward way to decide if the target model was trained using
the target data point is to look at the distributions of model
parameters of the IN and OUT models, and then determine
which distribution the target model’s parameters are sampled
from.

Indeed, estimating the distribution for the whole model pa-
rameters is intractable in practice. Thus, existing solution [5]
estimates the distributions of the rescaled logit in the IN and
OUT models, referred to as IN and OUT distributions (for
rescaled logit). The adversary can query the rescaled logit on
the target model and determine whether it is a sample of the
IN or OUT distribution.

Now we adapt our proposed slope signal to this process for
auditing privacy in FL. Without loss of generality, we focus
on the performance metric of loss. In particular, the adversary
fits two Gaussian distributions to the empirical slope of loss

distributions for the IN and OUT reference models, and then
determines which one is more likely–the slope computed for
the target data point on the target model (referred to as the
target slope) is sampled from the IN distribution or the OUT
distribution. As we will explain next, such an adaptation is
highly non-trivial in FL settings.

Improved training. In practical FL settings, the auditor
can only train reference models using her/his own dataset,
whereas an adversary may also have access to other datasets,
leading to difficulties in obtaining IN and OUT reference mod-
els with fidelity. Consider an extreme case: party 1, tasked
with auditing, possesses only truck images from CIFAR10,
while other parties hold images of dogs. Accurately estimat-
ing the true slope distributions demands data access to both
truck and dog images whereas the auditing party, could only
obtain models relying on the truck image.

In what follows, we overcome this challenge by adding a
regularization that forces the local reference models trained
on truck images only obtained by the auditing party to be
similar to the models trained on both images. In each round
t, given the observed target model θt , the auditor trains the
reference model θs to optimize the following objective.

min
θs

(1−α)L(θs;Ssh)+αR(θs,θ
t), (4)

where the Ssh represents the dataset used for training the local
reference model (termed as reference data) and R is a reg-
ularizer that measures the closeness between the reference
model θs and the target model θt . The overall objective is to
minimize the reference model’s loss on the reference data and
the distance between the reference model and the target model
at the same time. Parameter α controls the relative level of
importance of the two minimization objectives. We study the
effect of α is studied in our evaluation.

Choice of the regularizer. The regularizer R serves the ob-
jective of aligning the reference model closely with the target
model based on the model outputs, which is a critical aspect

USENIX Association 33rd USENIX Security Symposium    317



of knowledge transfer (KT). The idea of KT is to transfer
knowledge from a larger model to a smaller one, even in
the absence of shared training data. Among the literature, the
Knowledge Distillation (KD) regularizer [11], which employs
the Kullback-Leibler divergence [38], to measure the output
distribution discrepancies between the two models, is particu-
larly effective. We adopt this measurement as our choice of R
in Eq. (4).

Optimizing training efficiency. To save the computation
time for obtaining reference models, in each round t, the audi-
tor fine-tunes the reference models from the previous round,
instead of training from scratch. Accordingly, the reference
models are updated as follows.

θ
t+1
s = θ

t
s−η

(
(1−α)∇L(θt

s;Ssh)+α∇R(θt
s,θ

t)
)
, (5)

where η is some pre-fixed learning rate, and θt
s and θt+1

s rep-
resent the old and newly-updated reference model at round t,
respectively.

Knowledge transfer attack. We put everything together
and present the complete attack procedure called Knowledge
Transfer Reference Attack (KTA). Specifically, the party sam-
ples multiple reference datasets such that each point in the
target dataset (union of local training and validation datasets)
is included in exactly half of the reference datasets. Then the
party trains one reference model for each reference dataset.
This ensures that the target point is used by exactly half of the
models (i.e., IN models) and not used by the rest (i.e., OUT
models). The party computes the slope for the target point for
all reference models. Based on the computed slope from the
IN and OUT models, the adversary fits two Gaussian distri-
butions, referred to as the IN Gaussian and OUT Gaussian
distributions. As shown in Figure 1, the empirical distribu-
tions of the slope indeed look like Gaussian distributions. The
idea of fitting the empirical distribution to a Gaussian was also
used in [5]. Lastly, given the estimated slope distributions,
we compute the likelihood that the target slope is a sample
from the IN Gaussian and the OUT Gaussian and make the
corresponding membership prediction. Our KTA relies on
using the slope signal and apply knowledge distillation reg-
ularization for training the reference models, which are also
compatible with recent more advanced reference model based
attacks in centralized settings, including [45].

Comparison with [42] and [5]. Knowledge distillation is
also employed by Ye et al. [42] and Liu et al. [25] for MIA
in the centralized setting with a single target model (the final
model). The main difference is that our KTA extracts member-
ship information from multiple model snapshots. To further
optimize efficiency, we repeatedly fine-tune reference mod-
els from previous rounds, instead of training models from
scratch. Due to the high computational demands of Liu et
al.’s method in auditing privacy risks in FL (recall Section 3),

we exclude this baseline from our experiments. The original
approach in [5] does not involve the regularizer. Namely, the
only objective is to minimize the loss of the reference model
on the reference dataset. As we will see next, such a design
is unfavorable under the FL setting, compared with training
reference models with regularization.

6.2 Empirical Results

Setup. The evaluation setup is the same as in Section 5. We
empirically compare KTA with existing baselines with the
existing state-of-the-art attacks [5, 42] in the centralized set-
ting, both of which train reference models. For the baselines
and our KTA, we train 16 reference models in total using
the same optimizer and model structure as in Section 5. In
practice, if parties possess greater computational resources,
they can enhance their estimation of privacy risks by increas-
ing the number of reference models, as demonstrated by the
findings in [5]. By default, we set α as 0.8, which consistently
performs better than other values across different settings.

Results. Table 7 summarizes the effectiveness results of our
algorithms and the baselines on auditing local models trained
on CIFAR10 and CIFAR100 under IID data partitioning, con-
sidering the whole FL process. We also include the best per-
formance of FTA (among loss, confidence, and rescaled logit)
for comparison.

Overall, our KTA outperforms the baselines [5, 42] under
all settings. Among the three model performance metrics,
confidence and rescaled logit lead to the highest performance
for KTA. For example, on CIFAR100, KTA (rescaled logit)
achieves a TPR of 32.4% with an FPR of only 0.1%, which
is ten times larger than that of LiRA. The same conclusion
applies to the same datasets with non-IID partitioning, as
shown in Tables 9 in Appendix B.

Both LiRA and distillation attacks require training refer-
ence models, which cost about 76 GPU seconds to fine-tune
reference models in each round. Note that we have applied
the fine-tuning strategy for obtaining the reference models in
each round (without it, the overall cost would be 76t GPU sec-
onds at the t-th round). Our KTA costs about 94 GPU seconds
to fine-tune reference models in each round. The additional
20 seconds is for calibrating our model to the regularizer. As
a comparison, our FTA, which does not train any reference
model, only costs around 1.2 GPU seconds. Despite such
expenses, these baselines still perform worse than FTA. As
we have mentioned, this is, again, attributed to the fact that
our slope signal effectively exploits the membership infor-
mation across FL rounds, whereas the compared baselines,
which attack only one model snapshot, fail to extract such
information.

Effect of parameter α. We study the effect of α, the param-
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Table 7: Effectiveness of auditing local models with IID data partitioning. We show the TPR at low FPR rates, 0.1%, 0.5%, and
1%, as well as the AUC (area under the ROC curve). The highest performance under each setting is bolded.

Algorithm
AUC TPR @0.1% FPR TPR @0.5% FPR TPR @1% FPR

CIFAR10 CIFAR100 CIFAR10 CIFAR100 CIFAR10 CIFAR100 CIFAR10 CIFAR100

FTA 0.817 0.975 5.0% 12.8% 9.2% 43.2% 12.9% 54.4%
Distillation [42] 0.608 0.583 1.0% 0.1% 2.1% 1.1% 3.7% 2.1%
Lira [5] 0.721 0.882 2.2% 3.1% 6.1% 6.9% 8.3% 15.2%

KTA (loss) 0.788 0.943 4.7% 7.0% 8.4% 19.1% 11.8% 29.4%
KTA (confidence) 0.796 0.975 5.0% 18.6% 11.3% 46.6% 15.5% 56.4%
KTA (logit) 0.682 0.983 3.0% 32.4% 9.6% 53.5% 12.5% 62.6%

Table 8: Effectiveness of KTA under different parameter α.
We show the TPR when FPR is fixed to 0.5%.

Dataset Partition
α

0 0.2 0.4 0.6 0.8 1.0

CIFAR10
IID 6.6% 6.8% 7.3% 9.4% 11.7% 3.1%
Dir(0.5) 3.0% 5.3% 4.1% 4.7% 5.8% 1.1%
Dir(0.1) 1.8% 2.1% 2.8% 2.7% 3.7% 0.9%

CIFAR100
IID 41.5% 46.8% 50.0% 49.6% 46.1% 25.4%
Dir(0.5) 51.6% 51.7% 51.8% 51.1% 51.4% 26.3%
Dir(0.1) 35.7% 43.0% 41.8% 37.8% 35.4% 19.6%

eter that controls the level of regularization in KTA. Recall
Eq. (4), larger α means that we want the reference model
to behave more similarly to the target model rather than to
achieve minimal loss on the reference training dataset. The
effectiveness results under different choices of α are shown
in Table 8.

We first examine two extreme cases, α = 0 and α = 1.
When α = 0, a reference model is trained to minimize the
loss on the reference dataset only (similar to LiRA [5]); and
when α = 0, the models are trained to minimize the distance
between the reference model and the target model only (simi-
lar to [42]). We note that choosing α ∈ (0,1) leads to better
effectiveness. For instance, while the straightforward adapta-
tions of LiRA and distillation attack using the slope signal
achieve 41.5% and 25.4% TPR (with FPR fixed at 0.5%) on
CIFAR100 with IID data partitioning, our KTA with α = 0.4
further improves TPR to 50.0%. Recall from Table 7 that the
original TPRs of Lira and distillation attack are lower than
7% for the same setting. Such performance improvement of
KTA highlights the effectiveness of using (i) the slope signal
and (ii) the regularizer for reference model training.

7 Other Related Works

We review the other directions in privacy-preserving federated
learning.

Other privacy risks. Other than membership information,
there are also other types of privacy risks in FL [7, 12, 23, 29,
46]. For instance, the adversary may also try to reconstruct
the training data [4, 6, 9, 46] or infer the properties (e.g., label
distribution [39]) of the training data. Auditing such privacy
risks are left as future work directions.

Auditing DP algorithms. Auditing the differentially private
(DP) algorithms aims to ensure that the algorithm preserves
the privacy levels as claimed [2, 15, 27, 30, 32]. This line of
work differs from ours in the sense that DP considers the worst
case scenario, preventing the adversary from distinguishing
any any pair of neighboring datasets with high confidence.
In contrast, our auditing algorithm focuses on the empirical
privacy risk that can be exploited by an adversary who is
computationally bounded.

8 Conclusion and Future Work

We study privacy auditing for federated learning. We propose
to use the slope signal to extract membership information
from the training trajectory of FL. Built upon it, we propose
FTA, which simultaneously achieves high effectiveness and
efficiency for auditing privacy in FL, without disrupting the
training process. We also propose an enhanced auditing al-
gorithm called FTA, catering to parties who want to invest
more computational power for a more accurate assessment
of privacy risks. KTA further improves the performance of
FTA, by incorporating the slope signal with the knowledge
distillation technique.

For future work, we plan to utilize our solution to assess
the privacy risks under different FL scenarios, including au-
diting the risks in personalized FL. Further improving the
effectiveness of the slope signal is also a promising direction.
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A Full Description of Algorithms

For completeness, we present the detailed algorithmic descrip-
tion for FTA and KTA as in Algorithms 1 and 2. For KTA, the
adversary trains reference models such that the target point
is included in exactly half of the models (i.e., “IN” models)
and excluded in the rest (i.e., “OUT” models) and computes
the slope for the target point for all reference models (Lines
3-11 in Algorithm 2). Based on the computed slope from the
“IN” models and “OUT” models, the adversary estimates the
slope distributions for the target point when it is in and not
in the training dataset. As we show in Figure 1, the slope
distribution looks like a Gaussian. Therefore, we fit the slope
distribution into a Gaussian distribution, whose mean and
variance are the empirical mean and empirical variance of the
slope computed on the “IN” models and the “OUT” models)
(Lines 13-16 in Algorithm 2). The idea of fitting the empirical
distribution to a Gaussian was also used in [5]. Lastly, given
the estimated slope distributions, we compute the likelihood
ratio based on two distributions to determine if the point is
used for training or not.

Algorithm 1 Free Training Attack (FTA)

Input: A sequence of models θ1, ...,θt , the target point z, data
population pool π (can be a subset of the validation dataset).

1: Let Bpop = {}
2: bobs = B((θ1, ...,θt),z) ▷Initialize the membership signal

set for non-members
3: for M times do
4: zpop← π ▷Sample a non-member from the

distribution
5: bpop = B((θ1, ...,θt),zpop,φ) ▷Compute the slope of

the signal for the non-member
6: Bpop = Bpop∪{bpop} ▷Update the membership

signal set for non-members
7: end for ▷Compute the slope of the signal for the target

data
8: return |{bpop∈Bpop:bpop≤bobs}|

|Bpop| ▷Compute the likelihood
that the target point is a non-member.

B Additional Experiments

Datasets. For completeness, we describe the additional
datasets we have used beyond the CIFAR datasets. For all
datasets, we follow the same pre-processing as in [22].
Purchase: Derived from Kaggle’s “acquire valued shopper”
challenge, the dataset includes records for thousands of indi-
viduals and is processed as described in [36]. It features 600
binary attributes per instance, is divided into 100 classes, and
contains 197,324 instances in total. This dataset is commonly
utilized to assess membership inference attacks, employing
the neural network model from [31].
Texas: The dataset comprises hospital discharge records pub-
lished by the Texas Department of State Health Services and
features information on inpatient stays across multiple facil-
ities. This processed dataset, as described in [36], contains
67,330 records with 6,170 binary features representing the
100 most frequent medical procedures. It is divided into 100
classes, each corresponding to a different patient type, and is
employed to evaluate membership inference attacks.
Medical MNIST [3]: The dataset contains 58,954 MNIST-
style medical images in 64×64 resolution across six classes.
We sampled a balanced dataset with 53,724 images, each
class having 8,954 images, and resized all images to 32×32.
Pneumonia [19]: The dataset consists of Chest X-ray images
from pediatric patients aged one to five at Guangzhou Women
and Children’s Medical Center. We sub-sample a balanced
dataset of 3,166 X-rays, originally varying in size, and uni-
formly resize images to 64×64.
Retinal OCT Image [19]: The dataset includes 84,492 high-
resolution retinal OCT images for diagnosing conditions
across four classes: CNV, DME, DRUSEN, and NORMAL.
We sampled a balanced training set with 35,472 images. We
resize images to 64 uniformly because the original images
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Algorithm 2 Knowledge Transfer Reference Attack (KTA).

Input: A sequence of models θ1, ...,θt , the target point z, the data population pool π of target party k∗ (the union of the local
training and validation datasets).

1: Bin = {},Bout = {} ▷Initialize the membership signal sets for the IN models and OUT models
2: bobs = B({θ1, ...,θt},z) ▷Compute the slope of the signal on the target point from the target models
3: for N times do
4: Ssh← πnsh ▷Sample a reference dataset of size nsh
5: θ1

in,θ
2
in, ...,θ

t
in← Tsh({θ1,θ2, ...,θt},Ssh∪{z}) ▷Train a reference model with the target point using Algorithm 3

6: bz,in = B({θ1
in,θ

2
in, ...,θ

t
in},z) ▷Compute the slope of the signal based on the IN reference model

7: Bin = Bin∪{bz,in} ▷Update the membership signal set for IN models
8: θ1

out ,θ
2
out , ...,θ

t
out ← Tsh({θ1,θ2, ...,θt};Ssh) ▷Train a reference model without the target point

9: bz,out = B({θ1
out ,θ

2
out , ...,θ

t
out},z) ▷Compute the slope of the signal based on the OUT reference model

10: Bout = Bout ∪{bz,out} ▷Update the membership signal set for OUT models
11: end for
12: µin = mean(Bin) ▷Model the slope distribution for IN models and OUT models using Gaussian distributions
13: σ2

in = var(Bin)
14: µout = mean(Bout)
15: σ2

out = var(Bout)

16: Return Λ = p(bobs|N (µout ,σ
2
out ))

p(bobs|N (µin,σ
2
in))

▷Compute the likelihood ratio of the target point based on estimated distributions

Algorithm 3 Reference model training algorithm Tsh.
Input: A sequence of target global models θ̄1, ..., θ̄t ; the ref-
erence dataset Ssh.

1: Initialize reference model θ0
s

2: for u = 1...t do
3: Update the reference model parameter θu

s as in Eq. (5).
4: end for
5: return θ1

s ,θ
2
s , ...,θ

t
s

are in different sizes.
CT Kidney [13]: The dataset is from PACS [13], collected
from various Dhaka hospitals, includes diagnoses of "tumor,"
"cyst," "normal," or "stone" from coronal and axial CT scans.
These images, from whole abdomen and urogram studies,
were de-identified and converted to lossless jpg format af-
ter careful selection. A balanced dataset of 5,508 images,
originally in various sizes, was uniformly resized to 64×64.
Each image’s accuracy was reconfirmed by a radiologist and
a medical technologist.
Skin disease: The dataset is sourced from Dermnet
(http://www.dermnet.com/), comprises approximately
19,559 images of 23 skin disease types, serving as an
educational online dermatology resource. The dataset
is accessible at https://www.kaggle.com/datasets/
shubhamgoel27/dermnet. We formed a balanced dataset
with 6,095 images.

Results in non-IID settings. In the Tabel 9, we show the per-
formance of our algorithms and the baselines in the non-IID
settings. Our algorithms, FTA and KTA, consistently outper-
form other baselines in all settings.

Table 9: Effectiveness of auditing local models with the
Dir(0.5) data partitioning.

Method TPR @0.1% FPR TPR @0.5% FPR TPR @1% FPR

C-10 C-100 C-10 C-100 C-10 C-100

01-loss [43] 0.0% 0.1% 0.0% 3.0% 0.0% 6.3%
Gradient-Diff [22] 0.1% 1.8% 1.2% 7.2% 2.5% 11.3%
Lira [5] 0.4% 2.4% 2.3% 7.6% 4.1% 15.8%

FTA (loss) 1.4% 10.5% 3.4% 22.1% 5.5% 33.6%
FTA (confidence) 0.2% 13.6% 4.6% 38.6% 8.2% 55.7%
FTA (logit) 0.1% 0.0% 0.5% 5.4% 0.9% 19.0%

KTA (loss) 0.8% 10.7% 3.5% 24.3% 5.7% 36.6%
KTA (confidence) 0.4% 20.3% 5.3% 51.4% 7.6% 62.5%
KTA (logit) 0.9% 38.1% 5.7% 59.1% 10.5% 70.3%
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Figure 8: Classification accuracy of the global model in
FedSGD during FL.

Training trajectory of FedSGD. We show the train and test
performance of FedSGD in Figure 8. As we have mentioned
in Section 5.4, the training and test accuracies of FedAvg are
much more stable than FedAvg. This phenomenon explains
why FedSGD exhibits lower privacy risks than FedAvg.
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