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Abstract
By supporting computation on encrypted data, fully homo-

morphic encryption (FHE) offers the potential for privacy-
preserving computation offloading. However, its applicability
is constrained to small programs because each FHE multipli-
cation increases the scale of a ciphertext with a limited scale
capacity. By resetting the accumulated scale, bootstrapping en-
ables a longer FHE multiplication chain. Nonetheless, manual
bootstrapping placement poses a significant programming bur-
den to avoid scale overflow from insufficient bootstrapping or
the substantial computational overhead of unnecessary boot-
strapping. Additionally, the bootstrapping placement affects
costs of FHE operations due to changes in scale management,
further complicating the overall management process.

This work proposes DACAPO, the first automatic bootstrap-
ping management compiler. Aiming to reduce bootstrapping
counts, DACAPO analyzes live-out ciphertexts at each pro-
gram point and identifies candidate points for inserting boot-
strapping operations. DACAPO estimates the FHE operation
latencies under different scale management scenarios for each
bootstrapping placement plan at each candidate point, and de-
cides the bootstrapping placement plan with minimal latency.
This work evaluates DACAPO with deep learning models that
existing FHE compilers cannot compile due to a lack of boot-
strapping support. The evaluation achieves 1.21×speedup on
average compared to manually implemented FHE programs.

1 Introduction

Fully homomorphic encryption [22] (FHE) has emerged as
a promising solution for privacy-preserving computation in
untrusted environments, like financial and healthcare appli-
cations on a third-party cloud. FHE allows computations
on encrypted data, and its decrypted results are identical to
those obtained from unencrypted computations. Since Gen-
try’s pioneering work on FHE using lattice-based cryptogra-
phy [22], many FHE schemes [8,11,12,14,20], and supporting
libraries [1, 2, 17, 21, 25, 26, 46, 48, 54] have been proposed.

Among the FHE schemes, RNS-CKKS [11] is suitable for
privacy-preserving machine learning models as it offers opti-
mized fixed-point arithmetic and SIMD support.

In RNS-CKKS, a ciphertext embeds a scaled integer with
the maximum scale capacity, called coefficient modulus Q.
Each FHE multiplication increases its accumulated scale, like
the multiplication of two scaled numbers. When the accumu-
lated scale exceeds the coefficient modulus Q, scale overflow
occurs, leading to an unrecoverable result. Thus, programmers
should carefully design an RNS-CKKS program with a lim-
ited number of multiplications, or insert bootstrapping [10]
operations that reset the accumulated scale of a ciphertext,
enabling a longer multiplication chain. Although existing
RNS-CKKS compilers [18, 39, 41] can automatically manage
ciphertext scales reflecting constraints of RNS-CKKS opera-
tions, their applicability remains limited to small RNS-CKKS
programs due to lack of bootstrapping support. Only manual
bootstrapping placement [36, 38] has been proposed for a
long FHE program such as ResNet, but the manual placement
imposes a significant burden on programmers and easily leads
to inefficient performance.

Optimizing a long FHE program with manual bootstrap-
ping placement is challenging for three reasons. First, pro-
grammers should trace the growth of the accumulated scale
of each ciphertext, and insert the bootstrapping operation be-
fore scale overflow occurs. Second, a bootstrapping operation
has significant latency, which is the most expensive among
RNS-CKKS operations. While avoiding scale overflow from
insufficient bootstrapping, programmers should reduce the
number of bootstrapping operations, not to unnecessarily in-
crease bootstrapping overheads. Third, bootstrapping place-
ment affects scale management. Since bootstrapping resets
the accumulated scales of ciphertexts, and RNS-CKKS opera-
tions have different latencies depending on their accumulated
scale, the bootstrapping insertion points change the latencies
of the other RNS-CKKS operations. Therefore, to optimize
bootstrapping placement, the number of bootstrapping opera-
tions and their performance impact on the other RNS-CKKS
operations should be considered together.
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Figure 1: RNS-CKKS operations. Additions and multiplications require the input operands to have the same level l. Additions
additionally require the operands to have the same scale m. The modswitch and rescale operations reduce level l by one; the
bootstrap operation resets the level l to the initial level L = 5.

This work proposes DACAPO, the first automatic bootstrap-
ping placement compiler that heuristically places bootstrap-
ping operations to minimize the overall latency in an FHE
program. To reduce the number of bootstrapping operations,
DACAPO analyzes live-out ciphertexts, which are used by
later instruction at each program point, and classifies program
points with a minimal number of live-outs as a candidate
set of bootstrapping insertion points. DACAPO identifies a
subset of the live-out ciphertexts that remain unused for a
certain period without requiring bootstrapping, and catego-
rizes them as bypass edges. DACAPO excludes the bypass
edges from the live-outs and thus achieves more precise re-
quired bootstrapping counts. To reflect the latency of the other
RNS-CKKS operations, such as multiplications and rotations,
affected by scale management and bootstrapping insertion
points, DACAPO estimates their latency under different scale
management scenarios for each bootstrapping point and finds
a bootstrapping placement plan with minimal latency among
the candidate set.

This work implements DACAPO compiler on top of MLIR
[33] with a GPU-accelerated RNS-CKKS library called
HEaaN [25]. This work evaluates DACAPO with six deep
learning models such as ResNet20, ResNet-44, AlexNet,
VGG-16, SqueezeNet, and MobileNet. This work implements
the deep learning models with maxpooling and ReLU like the
original models and also implements the same models with
average pooling and SiLU that require a shorter multiplication
chain. The evaluation results show that DACAPO achieves
1.21×speedup on average for diverse deep learning models,
compared to the manually implemented FHE programs.

Followings are the contributions of this work.
• The first automatic bootstrapping management compiler,

DACAPO, for fully homomorphic encryption;
• A new liveness-aware bootstrapping placement analysis

that generates an insertion point candidate set with minimal
live-out counts;

• A new cost-aware bootstrapping placement that reflects
different FHE computation costs under different scale man-
agement affected by bootstrapping placement plan.

2 Background

This section describes RNS-CKKS [11] and scale manage-
ment for RNS-CKKS programs. In contrast to other FHE
schemes [8,12,14,20,22], RNS-CKKS provides better support
for fixed-point arithmetic and SIMD parallelism by leveraging
approximation (i.e., encrypted computation results could be
slightly different from unencrypted ones). These properties
make RNS-CKKS well-suited for machine learning applica-
tions that can accommodate a certain level of approximation.

2.1 RNS-CKKS Encoding and Encryption

RNS-CKKS introduces two encoding and encryption parame-
ters: polynomial modulus degree N and coefficient modulus Q.
RNS-CKKS encodes a vector containing real numbers into a
cyclotomic polynomial [7] whose degree is N. N affects the
security level (e.g., equivalent to 128-bit security) and the la-
tency of RNS-CKKS operations. Q determines the maximum
coefficients of the polynomials. RNS-CKKS encrypts the
plaintext µ into a ciphertext, which is a pair of polynomials
(−a · s+µ+e,a) with random noises (a and e) and the secret
key (s). The security of RNS-CKKS relies on the hardness of
Ring Learning with Errors (RLWE) [42].

An RNS-CKKS ciphertext has a scale and a level property,
defined as follows. RNS-CKKS deals with a polynomial with
integer coefficients and encodes a real number as an integer
over a scale. For example, the number x= 1.1 is encoded as an
integer v = 11 with the scale m = 101. The multiplication of
two scaled numbers increases the result’s scale: i.e., the scale
of a ciphertext gradually accumulates on a multiplication. For
instance, y = x · x leads to an integer v = 121 with the scale
m = 101 · 101 = 102. The scale is limited by the maximum
scale capacity (defined by coefficient modulus Q), which is de-
scribed as a product of the small fixed-size scaling factors S f :
i.e., Q≈ S f

L, where L is the initial level. The level l denotes
the number of scaling factors S f available in the ciphertext.

Figure 1a illustrates an RNS-CKKS ciphertext with scale
and level. The ciphertext has the maximum scale capacity S f

L
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Table 1: FHE Parameters and their descriptions. The rightmost
column represents the values used in actual evaluation.

Parameter Description In our evaluation

N Polynomial modulus degree 217

Q Coefficient modulus 21479

S f Rescaling factor 251

Lmax Maximum level of ciphertext 29
L Level after bootstrapping 16

where the initial level L = 5 (depicted with five boxes). Start-
ing from the initial level L, the level l decreases on modswitch
and rescale operations and becomes reset to the initial level
L on bootstrap operation (which will be explained later).
Two dotted gray boxes on the left represent two scale factors
consumed by modswitch or rescale operations, rendering
the current level l = 3. The accumulated scale denotes the to-
tal scale accumulated (by multiplications) so far, and it should
be lower than the scale capacity S f

L. Otherwise, the scale
overflow occurs, leading to an irrecoverable result. The scale
m excludes the consumed scale factors and it should be larger
than the predefined minimum scale, called waterline Sw, to
control the noises introduced by RNS-CKKS operations.

Table 1 shows description and values of FHE parameters
used in the evaluation, including a polynomial modulus degree
(N) of 217, and a ciphertext can contain 65536 elements. The
evaluation uses a coefficient modulus composed of primes
with the same scaling factor (R) of 51 bits, and its value is
equal to 21479. The bootstrapping implementation provided
by library consumes 13 levels. In other words, when boot-
strapping is performed using parameters with a maximum
level of Lmax, the resulting ciphertext will have 16 levels (L).

2.2 RNS-CKKS Operations
2.2.1 Arithmetic and Rotation Operations

RNS-CKKS supports basic arithmetic and rotation operations,
which can be used to implement application algorithms.

Addition (Figure 1b) and Multiplication (Figure 1c):
RNS-CKKS supports two vectorized arithmetic operations:
addition and multiplication. These operations add/multiply
two ciphertexts (CAdd and CMul, respectively) or one plaintext
and one ciphertext (PAdd and PMul). The addition operation
requires the levels and scales of two operands to be the same,
and produces a ciphertext of the same level l and scale m. On
the other hand, multiplication requires only the levels of two
operands to be the same. The scale of the resulting ciphertext
accumulates to the product of the scales of the operands: i.e.,
m = m1 ·m2. Table 2 presents the runtime latency of (some)
RNS-CKKS operations at different levels measured in the
GPU-accelerated HEaaN library [25]. Multiplications are
slower than additions. Arithmetic operations at a high level
are more expensive than ones at a low level.

Table 2: Latency of FHE operations for different levels (µs)

Operation Level

4 6 8 10 12 14 16

PAdd 24 32 40 47 54 64 70
CAdd 33 44 54 65 74 85 94
PMult 214 304 385 459 533 604 675
CMult 1218 1513 1795 2306 2572 2927 3151

Rot 890 1080 1239 1699 1864 2035 2225

Boot 354762

Rotation: For vectorized arithmetic operations, RNS-
CKKS additionally supports the rotate operation that per-
forms a circular shift on a message vector by a given
offset: e.g., rotating (a1,a2, ...,a10) by offset 2 leads to
(a3,a4, ...,a10,a1,a2). The rotate operation is a relatively
expensive operation, next to a CMul operation.

2.2.2 Scale Management Operations

RNS-CKKS further requires programmers to use the follow-
ing scale management operations to meet the RNS-CKKS
constraints (which are irrelevant to application algorithms).

Upscale: The upscale operation is a syntactic sugar (not
a separate RNS-CKKS) operation that multiplies an operand
ciphertext at scale m1 with a multiplicative identity (i.e., 1) at
scale m2, increasing the scale of the operand to m = m1 ·m2
(by an arbitrary amount). The operation can be used to match
the scale of an addition operand if needed.

Modswitch (Figure 1d): The modswitch operation con-
sumes one scale factor S f without affecting the scale of a
ciphertext, which in effect reduces the level by one. The
operation can be used to adjust the level of an addition or
multiplication operand if they do not match.

Rescale (Figure 1e): Multiplications accumulate the scales
of ciphertexts. To avoid scale overflow (where the accumu-
lated scale exceeds the maximum scale capacity S f

L), RNS-
CKKS supports the rescale operation that divides coeffi-
cient modulus Q by the scale factor S f . In effect, the result’s
scale decreases from m to m/S f (unlike modswitch) and its
level decreases from l to l−1. Note that the rescale oper-
ation does not change the accumulated scale. To accommo-
date noises in RNS-CKKS operations, the rescale operation
should be used only if the scale after rescaling still remains
higher than the minimum scale waterline: i.e., m/S f ≥ Sw.

Bootstrap (Figure 1f): Even with rescaling, for a program
with a large number of multiplications, all available scale bud-
gets will be eventually consumed and the accumulative scale
will reach the cap. Further operations become infeasible due
to a scale overflow. As a solution, RNS-CKKS supports the
bootstrap operation that resets the scale and level of a ci-
phertext. After bootstrapping, the accumulated scale (and the
current scale at level L) decreases to scale factor S f . Table 2
shows the runtime latency of bootstrap from a different
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level to the maximum level L(=16). The bootstrap latency
solely depends on the target level and does not depend on
the level gap. As reported, bootstrap is the most expensive
operation in RNS-CKKS: e.g., 3774 times slower than CAdd,
and 112 times slower than CMul at level 16.

3 Motivation

This section discusses the limitations of existing RNS-CKKS
compilers and the difficulties in manual bootstrapping, moti-
vating this work: new compiler support for bootstrapping.

3.1 Prior RNS-CKKS Compilers
Existing RNS-CKKS compilers [18, 41] aim to support au-
tomatic scale management that takes as input a program that
consists of only arithmetic and rotation operations (imple-
menting application computation logic), and inserts scale
management operations upscale, modswitch, and rescale
(but not bootstrap) to produce a new program that satisfies
the RNS-CKKS constraints for security and correctness.

Although EVA [18] and Hecate [41] successfully automate
many parts of scale management in RNS-CKKS, they both
lack support for automatic bootstrapping management. As a
result, they have been applied to relatively small deep-learning
applications such as LeNet-5 [34], leaving more complex
applications with a deep multiplicative depth out of reach.

3.2 Manual Bootstrapping Placement
Unfortunately, the state-of-the-art that supports large RNS-
CKKS applications is manually adding bootstrap opera-
tions, which is error-prone and time-consuming. The manual
placement is challenging for the following three reasons.

First, to avoid a scale overflow problem and ensure correct-
ness, users should place a bootstrap operation before the
accumulated scale (after the last bootstrapping) exceeds the
maximum scale capacity S f

L. Manually tracking the growth
of the accumulated scales of a large number of ciphertexts is
indeed very difficult because they depend on not only the ex-
isting arithmetic and rotation operations, but also newly added
upscale or rescale operations for scale management.

Second, besides correctness, conducting performance-
aware bootstrap operation placement manually (leading
to lower latency) is even harder. As discussed earlier with Ta-
ble 2, the bootstrap operation is much more expensive than
any other operations. Thus, in most cases, it is a good idea to
minimize the number of bootstrap operations (later we show
that in some cases, more bootstrapping may count-intuitively
lead to better performance).

Third, the bootstrapping placement affects scale manage-
ment and its performance. The bootstrap operation changes
the scale and level of a ciphertext (like other scale manage-
ment operations), implying that the location of a bootstrap

operation has a great influence on the level of the following ci-
phertexts, impacting the latencies of subsequent RNS-CKKS
operations. For example, what should we do if we have multi-
ple solutions with the same minimum number of bootstrap
operations? Reasoning about the cascading impacts of multi-
ple bootstrapping options is not a trivial task.

4 Key Observations and Insights

The RNS-CKKS compilers (e.g., EVA [18] and Hecate [41])
can keep track of the scale and level of ciphertexts while plac-
ing scale management operations. A naïve compiler-based
bootstrapping solution would be to extend them to place a
bootstrap operation right before the RNS-CKKS operation
that exceeds the maximum scale capacity (to avoid a scale
overflow). However, we made two novel observations that
such a naïve extension (based on an accumulated scale analy-
sis) would lead to inefficient performance.

Observation 1: A simple accumulated scale analysis
may introduce (unnecessarily) many bootstrap opera-
tions, incurring significant performance overhead. Con-
sider a simple deep learning example in Figure 2a that consists
of three convolution layers (Conv1, Conv2, and Conv3), two
activation functions (Act), and one addition operation (Add).
Figure 2a (right) shows ciphertexts (white box) and RNS-
CKKS arithmetic and rotation operations (arrows). A simple
convolution layer includes three pairs (channels) of one Rot
and two PMul operations, aggregated by CAdd at the end. A
simple activation function (Act) uses a single CMul operation.

Suppose that the scale of the input ciphertext x is 240, and
its waterline, rescaling factor and the maximum scale capac-
ity are 240, 260 and 2300 (the initial level is 5). Figure 2b
illustrates how the accumulated scale (left y-axis) and the
level (right y-axis) of a ciphertext change in this example
program (while scale management operations are omitted for
simplicity). The x-axis reports the time latency, calculated
using scaled profiled costs based on Table 2. Figure 2b shows
the execution model of a naïve bootstrapping approach in
which a bootstrap operation is added right before the RNS-
CKKS operation that exceeds the maximum scale capacity.
During the third Conv3, the accumulated scale would become
larger than the maximum scale capacity on each of the three
second PMul operations. To prevent scale overflow, the naïve
compiler would add three bootstrap operations to reset the
scales/levels of three ciphertexts Ms.

In Table 2, the bootstrap operation is much more expen-
sive than any other operation. It is thus often profitable to
use fewer bootstrap operations (if possible). The next two
alternatives (analyzed by our compiler DACAPO) in Figure 2c
and Figure 2d demonstrate that it is indeed possible to reduce
the latency by placing fewer bootstrap operations at better
locations. They are based on the following two key insights.

Insight 1A: A ciphertext liveness analysis can help re-
duce the number of bootstrap operations. Our first in-
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(a) Example program and its dataflow. The example consists of three convolution layers and two activation functions.
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Figure 2: Motivating example and its execution models with different bootstrapping placement policies. The example assumes
240 waterline, 260 scaling factor, and 2300 scale capacity (the maximum level is 5).

sight is that the naïve approach added three bootstrap oper-
ations because a ciphertext dataflow diverges and three cipher-
texts Ms are later “used” so they all have to be bootstrapped
for correctness. More formally in a compiler term, there were
three live-out variables Ms in a dataflow graph that must be

bootstrapped. If the optimization goal is to minimize the num-
ber of bootstrap operations, then it would be beneficial to
consider an alternative (and earlier) program point with fewer
live-outs, or equivalently, a program point before a dataflow
diverges or after it converges.
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Based on this insight, DACAPO performs liveness-based
bootstrapping management. More specifically, DACAPO
counts the live-out ciphertexts at each program point, and
regards minimum live-out points as candidate bootstrapping
points. For instance, Figure 2c inserts the first bootstrap
operation at the earlier program point with one live-out ci-
phertext Aa (after a dataflow converges from Conv1(x) and
before it diverges to Conv2(a)), even though the accumulated
scale is still much lower than the maximum capacity.

Insight 1B: A long-lived unused ciphertext that bypasses
other RNS-CKKS operations is unlikely to require boot-
strapping, so it is often profitable to exclude the ciphertext
from the live-out counts. In a ciphertext dataflow graph (e.g.,
Figure 2a), a bypass ciphertext implies the ciphertext that was
defined but not used for a while. For instance, the ciphretext
A is defined at the end of the Conv1(x); not used by (bypass-
ing) Conv2(a), Act(b), and Conv3(c); and finally used by
Add(a,d). The long-lived ciphertext is represented as a long
edge from A in Conv1(x) to a in Add(a,d). Such a long-lived
unused (bypass) ciphertext is unlikely to require bootstrap.
A strict inclusion of those ciphertexts in liveness analysis may
unnecessarily increase live-out counts at some program points,
and remove bootstrapping placement candidates, thus losing
further optimization opportunities. Then, DACAPO would not
consider those program points as bootstrapping candidates.

To address them, DACAPO excludes the long-lived (unused-
for-a-while) ciphertexts from the live-out counts, achieving
better bootstrapping management. For example, consider the
ciphertext T in Act(b). At that program point, the actual live-
out count is two including the short edge from A in Conv1(x)
to b in Act(b), and the bypass edge from A in Conv1(x)
to a in Add(a,d). The plain liveness-based DACAPO would
not consider the program as bootstrapping candidates and
produces the bootstrapping result in Figure 2c. On the other
hand, once the bypass edge is excluded, the new live-out count
will be one. DACAPO could find a better plan in Figure 2d
with only one bootstrap operation.

Observation 2: Different bootstrapping placements (lo-
cations and numbers) may lead to widely different end-
to-end latency because bootstrapping may allow other
RNS-CKKS operations to be performed at lower levels.
As the bootstrap operation resets the scale and level of a
ciphertext, adding one bootstrap in effect can be viewed as
partitioning a given program into two smaller sub-programs.
Interestingly, if one partition has fewer multiplications (less
multiplicative depth), the arithmetic and rotation operations
in that partition may be executed at lower levels, resulting
in less end-to-end latency. Note that RNS-CKKS operations
run faster at lower levels (See Table 2). For the same rea-
son, we also make a rather counter-intuitive observation that
fewer bootstrap operations do not always lead to lower la-
tency. More bootstrap operations imply more partitioning
of a given program. Each partition would have fewer oper-
ations, which can be performed at lower levels, resulting in

less latency. The performance improvement with lower-level
operations may be greater than the performance overhead of
additional bootstrap operations.

Insight 2: A cost-aware bootstrapping analysis is needed
for performance. Learned from the above observation,
DACAPO leverages the aforementioned liveness analysis to
collect different bootstrapping candidates, and compares static
cost (latency) estimates among them to select the lowest. For
example, compare two different bootstrapping locations be-
tween Figure 2d and Figure 2e for the same number (one)
of bootstrap operations. Figure 2e performs bootstrapping
before CMul in Act(b), allowing many arithmetic and rota-
tion operations in the first partition (the ones in Conv1(x)
and Conv2(a)) to be performed at level 4 or less after early
modswitch (shown in a red arrow). On the other hand, Fig-
ure 2d performs many of these operations at a higher level 5,
leading to higher end-to-end latency.

5 Overview

This work proposes DACAPO, the first FHE compiler that
automatically places bootstrap operations. Given an input
program written in plain operations, DACAPO transforms
the plain operations into RNS-CKKS operations with scale
management operations including bootstrap, and generates
LLVM IR codes that invoke GPU-accelerated HEaaN li-
brary [25] for RNS-CKKS operations. To support cost-aware
bootstrapping placement, DACAPO consists of two compo-
nents: candidate selector and bootstrapping planner. Figure 3
shows DACAPO’s two-step workflow on the left along with
an example on the right side, which will be explained later.

Candidate selector identifies candidate points in the pro-
gram where bootstrapping can be inserted. The candidate
selection consists of three steps: liveness analysis, bypass
edge analysis, and candidate filtering. The liveness analy-
sis step analyzes live-out ciphertexts at each program point,
and the bypass edge analysis step analyzes long-lived unused
edges like the edge from A in Conv1(x) to a in Add(a,d)
in Figure 2a. Combined, the candidate selector can analyze
the number of valid live-out ciphertexts that may need boot-
strapping at each program point. The candidate filtering step
finalizes the candidate points. If the candidate points are too
few to generate a correct FHE program due to scale overflow,
the candidate filtering step increases the threshold number of
live-outs until the scale overflow is resolved.

DACAPO’s bootstrapping candidate program points selec-
tion implies that it adds bootstrap operations synchronously
to all the live-out ciphertexts except for bypass ones at those
program points. If a compiler bootstraps only a subset of
live-out ciphertexts that needs to be refreshed (i.e., not all
at once), chances are that the refreshed accumulated scale
may be wasted because of the level match constraints of RNS-
CKKS arithmetic operations. When the levels of two addition
or multiplication operands are different, a scale management
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Figure 3: Overview design of DACAPO with the example in Figure 2a. Candidate selector analyzes live-outs and bypass edges,
and identifies candidate points where bootstrapping can be inserted. Bootstrapping planner estimates computation costs at each
candidate point, and determines the bootstrapping insertion points with minimum overall latency among the candidate points.
The bold numbers at the end of each candidate indicate the minimum computation cost. Gray arrows and numbers are the best
estimated costs at the bootstrapping insertion point computed in the previous steps. The star indicates the selected plan.

scheme uses modswitch to match them to the smaller level.
If not all live-outs are bootstrapped, this implies the just re-
freshed (bootstrapped) accumulated scale may be increased
to the stale one to be used for following arithmetic operations.
DACAPO avoids such a bootstrapping waste.

Bootstrapping planner computes the costs of RNS-CKKS
operations and, determines the bootstrapping placement plan
with minimum overall latency among the candidate insertion
points from the candidate selector. The bootstrapping plan-
ner consists of two steps: cost estimation and bootstrapping
insertion point selection. The cost estimation step estimates
the latency at each candidate point using profiled RNS-CKKS
operation costs. Since RNS-CKKS operations have different
costs at different levels, this step implicitly executes scale
management from the last bootstrapping points to the cur-
rent candidate points. Among the estimated costs, the boot-
strapping insertion point selection chooses the plan with the
minimal costs, and finalizes the bootstrapping placement plan.

6 Bootstrapping Candidate Selector

This section introduces the bootstrapping candidate selector
with an algorithm that analyzes appropriate candidates for
bootstrapping placement. The candidate selector analyzes
the live-out of each program point via liveness analysis, and
identifies the required number of bootstrap for each pro-
gram point by excluding bypass edges (§6.1). Then, the candi-
date selector finalizes the candidates from the candidate sets
grouped by the number of bootstrap (§6.2).

6.1 Liveness and Bypass Edge Analysis

Liveness and bypass edge analysis find all the ciphertexts
that should be bootstrapped if DACAPO decides to insert
bootstrap at a program point. With the liveness analysis,
DACAPO can find all the live-out ciphertexts that will be
used later at a certain program point (LiveVariable in Algo-
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Algorithm 1: Bootstrap Candidate Selection
Input: Func: Function of an HE application
Output: Set: Set of candidates

1 Function CandidateSelector (Func) :
2 // Bypass Edge Analysis (Section 6.1)
3 BypassEdges, CandidatesSet←{}
4 foreach target ∈ Func do
5 BootTarget← LiveVariable(target) − BypassEdges
6 CandidatesSet[BootTarget.size] += target
7 Managed← ScaleManagement(Func, target)
8 foreach op ∈Managed after target do
9 if op.AccumulatedScale > Sth and

10 EndOperation(target) after op then
11 BypassEdges += {target}
12 if op.AccumulatedScale > S f

L then
13 target.Coverage← op
14 break
15 end
16 end
17 // Candidate Filtering (Section 6.2)
18 threshold← 1
19 Candidates← CandidatesSet[threshold]
20 while not success do
21 success← true
22 Managed← ScaleManagement(Func, Candidates)
23 foreach op ∈Managed do
24 if op.AccumulatedScale > S f

L then
25 threshold += 1
26 Candidates += CandidatesSet[threshold]
27 success← false
28 end
29 end
30 return Candidates
31 end

rithm 1), and the last program point where the ciphertext is
used (EndOperation in Algorithm 1). The bypass edge anal-
ysis finds ciphertexts that are live but not used during a long
computation (that the accumulated scale exceeds the thresh-
old Sth), and excludes them from the required bootstrapping
counts at a certain program point.

Algorithm 1 illustrates the algorithm for the bootstrapping
candidate set generation. First, the algorithm performs bypass
edge analysis (line 2-16). For each program point (target)
in a function, the algorithm analyzes bootstrap-required
ciphertexts by removing bypass edges from the live-outs
(line 5), and adds the target into a candidate set with the
same number of the required bootstrap operations (line 6).
Then, the algorithm checks if the result ciphertext of the oper-
ation at target includes bypass edges, and calculates the cov-
erage of bootstrap at target. Assuming that bootstrap
is inserted at the target, the algorithm executes scale man-
agement on the given function using the proactive rescaling
scheme of Hecate [41] (line 7). The algorithm categorizes

the result of the operation at target as a bypass ciphertext if
the result is live after an operation whose accumulated scale
exceeds the threshold Sth (line 9-11). Furthermore, the algo-
rithm checks the accumulated scale of operations in managed
and identifies the operations that can be executed without
additional bootstrap (line 12-14). The remaining algorithm
will be explained in §6.2.

Figure 3 illustrates how the liveness and bypass edge anal-
ysis analyze the example program. First, the liveness analysis
gives the number of live variables for each program point.
For example, there are 3 live variables (3 Rs) after Rot in
Conv1. Note that this analysis counts the live-out variables,
not the uses of the variables, so there is 1 live variable after
Conv1. Then, the bypass edge analysis detects and removes a
bypass edge from the live-out variable sets. For example, Aa
in Conv1 is live-out until Add, but the accumulated scale of Ad
in Conv3 before Add is 280 (see Figure 2c) that exceeds the
threshold Sth (e.g., 180). Therefore, the analysis classifies Aa
as a bypass edge and then removes Aa from the live variable
set of other operations. Then, the number of live variables
after Ab (Conv2) is reduced from 2 ({Aa,Ab}) to 1 ({Ab}).

The Sth value, which is heuristically determined by users,
impacts the performance of the generated code. A higher Sth
makes Algorithm 1 detect fewer bypass edges, thus causing
DACAPO to insert unnecessary bootstrapping operations for
long-lived unused ciphertext. On the other hand, a lower Sth
makes Algorithm 1 mark more edges with a shorter life-span
as bypass edges, so DACAPO may exclude edges requiring
bootstrapping from the candidates. Thus, assigning an appro-
priate Sth value is crucial for optimizing the bootstrapping
placement. This work uses Sth as half of the maximum scale
capacity for the evaluation.

6.2 Candidates Filtering

DACAPO generates a candidate set by filtering the bootstrap-
ping targets based on the number of bootstrap. If the scale
management cannot generate a valid program for a given can-
didate set, meaning that the accumulated scale of a ciphertext
exceeds its scale capacity, the given candidate set needs to
be expanded. On the other hand, to minimize the number of
bootstrap, the algorithm should find the minimal threshold
of filtering. Hence, to find the minimal filtering threshold, the
candidate filtering gradually increases the threshold from 1 to
a value that can generate a valid scale management plan.

Line 17-29, describe the candidate filtering algorithm. The
algorithm initializes the candidate set with targets requiring
only one bootstrap (line 19). The algorithm executes scale
management for the candidate set (line 22), and checks if the
accumulated scale of a ciphertext exceeds the scale capacity.
If so, the algorithm increases the threshold and expands the
candidates (line 23-27). If the filtering is finished, the algo-
rithm returns the finalized bootstrap candidate set (line 30).

Figure 3 illustrates how the candidate filtering works for the
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Algorithm 2: Bootstrapping Planner Algorithm
Input: Set: Candidates
Output: Set: Bootstrapping Targets

1 Function BootstrappingPlanner (Func, Candidates):
2 Candidates.push (Func.ReturnOp)
3 foreach to ∈ Candidates do
4 foreach from ∈ Candidates do
5 if to before from.Coverage then
6 Managed← ScaleManagement (Func,

BestPlan[from] + to)
7 cost← EstimateCost (Managed, from, to)
8 cost← cost + MinCost[from]
9 if cost < MinCost[to] then

10 MinCost[to]← cost
11 BestPlan[to]← BestPlan[from]
12 BestPlan[to] += to
13 end
14 end
15 return BestPlan[ReturnOp]
16 end

example. First, the candidate filtering algorithm only consid-
ers the bootstrapping candidate set ({C1,C2,C3,C4,C5}) that
has only one valid live variable {Aa,Ab,T,Ad,Ae}, respec-
tively. For the candidate set, the algorithm inserts bootstrap
for each candidate and then performs scale management. If
there is no operation whose accumulated scale exceeds the
scale capacity, the candidate set is valid. If the candidate set
is not valid, the algorithm increases the threshold number of
valid live variables to expand the candidate set.

7 Cost-aware Bootstrapping Planner

This section describes the bootstrapping planner that finds
bootstrapping insertion positions with minimal latency costs,
for the given bootstrapping placement candidates from boot-
strapping candidates selection (§6). Since bootstrap opera-
tion resets the scale and level of a ciphertext, depending on
the bootstrapping placement, the scale management results
vary, and thus the latency (level) of each ciphertext varies
also. To optimize the bootstrapping placement plan reflecting
the varying latency, the bootstrapping planner estimates the
cost for each candidate and decides the placement plan with
minimum overall cost. Here, this work employs a simple cost
estimation that adds the profiled latency of each RNS-CKKS
operation (e.g., Table 2).

Algorithm 2 illustrates the bootstrapping placement plan
decision algorithm. For each to candidate, the algorithm an-
alyzes the minimum estimated cost from the beginning of
the program to the to program point. Iterating other from
candidates before to, the algorithm executes scale manage-
ment from from to to, estimates its latency cost, adds the
estimated cost and the minimum cost at from, and finds the

minimum cost by comparing the added result with the existing
minimum estimated cost at to. Note that the scale manage-
ment result is memorized while not reflected in the algorithm.
Since the scale management of subprograms before and after
bootstrap is decoupled, and the input scale and level of the
succeeding subprogram only depend on bootstrap, the min-
imum cost can be computed by adding the current estimated
cost and the minimum cost at from. The algorithm returns the
bootstrapping plan at ReturnOp as the final placement plan.

Figure 3 illustrates how the bootstrapping planner algo-
rithm works in the example. First, the planner executes scale
management and estimates the cost of the partial program. For
example, the planner estimates the cost of a partial program
until C1 as 343. Then, to find a bootstrapping placement plan
with the minimal estimated cost until the next candidate C2,
the planner considers two different cases. For the case that
bootstrap is not inserted at C1, the planner estimates the cost
(935) in the same way as C1. For the case that bootstrap is
inserted at C1, the planner reuses the previous estimation re-
sult for C1 (343), and adds the latency of bootstrap (27000)
and the latency of the partial program from C1 to C2 (604),
calculating the resulting cost (27947). The planner compares
the estimated costs of two cases and selects the lower one (no
bootstrap). The selected plan for C2 is reused for the other
candidates such as C3, C4, C5, and Ret.

8 Evaluation

The evaluation section first describes our experimental setup
in §8.1 and demonstrates the overall performance improve-
ment of DACAPO compared to manually implemented pro-
grams in §8.2. We also show the effectiveness of DACAPO
by comparing the bootstrapping counts in §8.3, and highlight
its practicality by analyzing the compile time in §8.4. Fur-
thermore, we present the accuracy of performance estimation
in §8.5. Lastly, we perform the latency sensitivity study with
varying waterlines for each benchmark application in §8.6.

8.1 Experimental Setup

This paper evaluates multiple complex deep learning models
with two different activation functions, including ResNet-
20/44 [24], AlexNet [31], VGG16 [49], SqueezeNet [29], and
MobileNet [27]. ResNet-20 was initially introduced as a
HE-friendly model in [38], and we use the improved versions
of ResNet-20/44 presented in [36]. The activation functions
were implemented based on the algorithm proposed in [37].
In detail, we use the Remez algorithm to approximate SiLU
as a 96th-order single polynomial (multiplicative depth of 7).
On the other hand, ReLU employed a minimax composite
polynomial approximation using degrees {15, 15, 27} (multi-
plicative depth of 13) in [37]. For linear operations such as
convolution, we adopt the multiplexed parallel convolution
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Table 3: Classification accuracy for multiple CIFAR-10 images using models on the RNS-CKKS scheme generated by DACAPO.

Model
ResNet-20 ResNet-44 AlexNet VGG16 SqueezeNet MobileNet

ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU

Pytorch 90.6% 92.6% 91.2% 92.7% 89.0% 86.6% 93.8% 93.0% 89.4% 88.0% 91.4% 91.4%
DACAPO 90.7% 92.6% 91.3% 92.7% 89.0% 86.6% 93.8% 92.9% 89.2% 87.9% 91.2% 91.4%
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Figure 4: Speedup of algorithms based on the Manual with waterline 240. The activation functions utilized in each deep learning
model are denoted as (R) for ReLU and (S) for SiLU.

technique introduced in [36], which enables the compact rep-
resentation of sparse output data across multiple channels.
The evaluation includes a total of 12 benchmark results, con-
sidering two activation functions and pooling layers: ReLU
with max pooling (R), and SiLU with average pooling (S).

We implemented the above deep learning benchmark appli-
cations using a GPU-accelerated RNS-CKKS library HEaaN
[25]. To facilitate development, we implemented common
neural network operators such as convolution (Conv) and acti-
vation functions ReLU and SiLU on the RNS-CKKS scheme.

We validate our implementation by comparing the accu-
racy using 1,000 CIFAR-10 images between PyTorch’s and
the DACAPO programs (with a waterline of 240). Table 3
reports the classification accuracy results. ResNet-20(R),
SqueezeNet(R) and (S), and MobileNet(R) exhibited a minor
difference of 0.1% in accuracy. The usage of approximate
activation functions introduced a maximum error of 13 bits,
leading to negligible differences in accuracy.

Given the lack of bootstrapping compilers, our evalua-
tion uses manually implemented bootstrapping placement
(Manual) as the baseline. According to the state-of-the-art
ResNet-20/44 implementation with bootstrapping [36], which
inserts bootstrap operations before activation functions only
when deemed necessary, we manually insert bootstrapping
operations for the benchmark applications. The manual in-
sertion, verification, and optimization take approximately 4
hours for each benchmark for a single waterline. Since an
incorrect placement of bootstrapping causes FHE operation
errors such as ciphertext scale overflow, sophisticated time-

consuming placement analysis and verification are required.
For this version, bootstrap operations are added between
each layer. In addition, the sign function used in ReLU and
maxpooling cannot be executed without bootstrapping, so we
incorporate additional bootstrapping at the point where the
second 15th-degree term is multiplied. The manual imple-
mentation assumes a scale management waterline of 240.

We compare DACAPO’s three different variants with the
manual implementation (Manual). Liveness only considers
the number of live-out values at program points (without by-
pass edge or cost analysis). This method greedily utilizes the
scale budget in that it inserts bootstrap synchronously while
maximizing the utilization of the scale capacity by inserting
bootstrap into the closest candidates when the accumulated
scale exceeds the scale capacity. Figure 2c represents this
scheme. Bypass considers more bootstrap candidates by
excluding the bypass edges. Like Liveness, it greedily max-
imizes the scale capacity utilization but does not perform
cost-aware bootstrapping. Figure 2d is an example of this
scheme. DACAPO use all the proposed liveness, bypass, and
cost analyses, as illustrated in Figure 2e. It regards the latency
of all operations and determines the placement of bootstrap
based on the bypass-aware candidates set.

This evaluation runs on Intel(R) Core(TM) i7-12700 for
CPU and NVIDIA GeForce RTX 3090 with 24GB memory
for GPU, utilizing unified virtual memory (UVM).
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Table 4: Bootstrapping counts for each benchmark in manual placement and DACAPO

Model
ResNet-20 ResNet-44 AlexNet VGG16 SqueezeNet MobileNet

ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU

Manual 37 19 85 43 66 12 54 20 58 18 53 27
DACAPO 37 19 85 43 67 12 53 20 57 19 61 27

ResNet-20(R)

ResNet-20(S)

ResNet-44(R)

ResNet-44(S)
AlexNet(R)

AlexNet(S)
VGG16(R)

VGG16(S)

SqueezeNet(R)

SqueezeNet(S)
MobileNet(R)

MobileNet(S)
0

20

40

60

80

100

La
te

nc
y 

(s
ec

)

Bootstrap time Manual Liveness Bypass DaCapo

Figure 5: Inference time for a single image. The white portion of bar represents the latency introduced by bootstrapping.

8.2 Performance Evaluation

Figure 4 represents the speedup of inference time for a sin-
gle CIFAR-10 image achieved by each approach (Liveness,
Bypass, and DACAPO) compared to Manual.

In Figure 4, Liveness allows for effective reduction of #
bootstrap, which achieves comparable performance to Man-
ual in VGG16(R) and VGG16(S), and even improves the per-
formance in cases like AlexNet(S) and SqueezeNet(S). The
main reason Liveness improves the performance is that the
compiler considers the bootstrapping points the user cannot
consider, such as the points within an activation function. By-
pass increases the number of valid liveness candidates, finding
more beneficial bootstrap candidates. In ResNet-20/44(R)
and VGG16(R), improved latencies can be observed by identi-
fying appropriate points considering liveness. However, in the
case of VGG16(S) and AlexNet(S), the total latency actually
increases as shown in Figure 5, due to increased latencies
in other operations. The geometric mean of speed up for
DACAPO is 1.21×. The reason why DACAPO achieves bet-
ter results compared to Manual is that DACAPO takes into
consideration the aspects that users may overlook. DACAPO
has the ability to analyze the detailed RNS-CKKS operations
that make up deep learning model APIs. While users can an-
alyze the provided library and insert bootstrap, due to the
variability of scale management with each function call, the
optimal point for bootstrap can vary each time. DACAPO,
on the other hand, is aware of scale management variations
based on the placement of bootstrap, allowing it to discover
a lower latency plan than Manual.

8.3 Bootstrapping Counts
In Table 4, the number of bootstrap operations is similar be-
tween Manual and DACAPO. However, in Figure 5, DACAPO
yields apparently better latency for AlexNet, VGG16, and
SqueezeNet because DACAPO places the bootstrapping
where the latency of arithmetic is reduced. Interestingly, in
the case of MobileNet, DACAPO involves a higher number
of bootstrap operations, yet it still achieves a lower total
latency. This is strong evidence that the latency of arithmetic
operations has an impact on the overall latency, although each
arithmetic operation has multiple orders lower latency than
bootstrapping. In the case of MobileNet(R), there are a large
number of channels leading to increased rotate and multipli-
cation operations, which outweigh the latency of bootstrap,
increasing the number of bootstrap operations can actually
result in a lower total latency by lowering the levels of interme-
diate operations. This demonstrates that simply minimizing
the bootstrap count does not guarantee optimal results.

8.4 Compile Time
Table 5 shows the total compile time and bootstrapping man-
agement time for each benchmark, along with a comparison of
the number of operations and bootstrap candidates. Bench-
marks with ReLU have more candidates because the compos-
ite polynomial approximation of ReLU has multiple points
with a single live-out. For all the benchmarks except AlexNet,
the management time is less than 5 minutes, which is accept-
able as usual. To discuss the scalability of the algorithm, we
perform an in-depth analysis of the compile time.
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Table 5: Compile time and bootstrapping management time by DACAPO on the RNS-CKKS scheme (sec)

Model
ResNet-20 ResNet-44 AlexNet VGG16 SqueezeNet MobileNet

ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU

# Ops 8784 9144 19412 20204 53533 50535 45798 44766 21404 19264 44919 45411
# Candidates 138 100 306 220 662 95 166 71 251 52 191 136

Compile Time (s) 33.0 31.0 116.5 109.2 1163.8 454.0 332.7 290.2 131.2 84.8 302.3 302.1
Bootstrap

Mgmt. Time (s)
15.8 14.4 79.4 72.8 1042.3 336.5 230.1 188.1 89.1 44.1 222.8 218.0
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Figure 6: Precision of the estimation results. The x-axis rep-
resents the estimated results by DACAPO based on profiled
data, and the y-axis indicates actual latency.

In bootstrapping management, time-consuming parts are
bypass edge detection and the bootstrapping plan decision.
The bypass edge detection algorithm, which calculates cover-
age through scale management for each operation, has a time
complexity of O(N2), where N is the number of operations.
On the other hand, Algorithm 2 has a time complexity of
O(D×d×N), where D is the number of bootstrap candi-
dates and d is the maximum number of bootstrap candidates
within the coverage of a certain bootstrap candidate.

Comparison between the ResNet-20(S) and the AlexNet(S)
shows the impact of the number of operations on the by-
pass edge detection clearly ((50535/9144)2 = 30.54 vs
336.5/14.4 = 23.37). The scale management unit [41] will
greatly reduce the effective number of operations, enhancing
its scalability. On the other hand, the comparison between
AlexNet(R) and AlexNet(S) clearly shows the impact of the
number of candidates on the plan decision algorithm. Since
the intermediate feature maps cannot be packed in a single
ciphertext in AlexNet(R), the candidate filtering threshold
is larger than other benchmarks, increasing candidates a lot.
We believe that further research on a fine-grained filtering
threshold that reflects the program context can improve the
scalability of the plan decision algorithm.

8.5 Performance Estimation
To evaluate the accuracy of the latency estimation used in Al-
gorithm 2, we compared the estimated latency with the actual

latency with 108 data points using 12 benchmarks across 9 dif-
ferent waterlines in Figure 6. The equation, y = 1.034x, is a
regression model between the estimated and actual costs, and
R2 indicates predicted latency closely aligns with the actual
latency. Since the coefficient of the regression model and the
R2 value (0.9986) are close to 1, the overall precision is quite
satisfactory. The small variances in the coefficient and R2 are
caused by the memory transfer latency in UVM. We use a
GPU that has 24GB of physical RAM, whereas the memory
requirement exceeds the capacity in some benchmarks. There-
fore, UVM was used for the experiment to fulfill the memory
usage, which might have imposed an additional latency to the
actual execution time compared to the estimated time in the
memory-starving benchmark. Nonetheless, the variance in the
performance estimation will not degrade the efficacy of the
bootstrapping plan decision, because the penalty of memory
starvation will affect the bootstrapping placement plans of the
same benchmark consistently.

8.6 Waterline Sensitivity
Figure 7 illustrates the latency for deep learning benchmarks
with respect to the waterline. The approximation of the activa-
tion function has a maximum 13-bit error. To align the error
caused by RNS-CKKS operations with the approximation
error of activation functions, the waterline needs to be larger
than 230 in our measurement. The latency of Manual is plot-
ted as a point based on a waterline of 240. A lower waterline
gives a different scale management plan that slows down the
scale accumulation, leading to different optimal positions for
bootstrapping placement. Greedy bootstrapping placements
(Liveness and Bypass) can find reasonable positions as ob-
served in ResNet-20 and SqueezeNet but result in a significant
variance of latency for AlexNet and MobileNet, because the
position of bootstrap significantly changes the latency of
arithmetic operation. On the other hand, DACAPO exhibits
lower variation with respect to the waterline and shows a de-
creasing trend of total latency as the waterline decreases. For
Figure 7k, there is a small variance depending on the water-
line. The variance comes from the scale management scheme
(the proactive rescaling of Hecate) that does not optimize
the latency of arithmetic operation consistently and produces
sub-optimal scale management plans. Hecate [41] conducts
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Figure 7: The latency of each benchmark corresponding to different waterlines (lower is better). Manual results are represented
by one point based on waterline 240.

space exploration to find the optimal points but requires sig-
nificantly longer compile time due to the larger benchmark
size. Further improvement on the scale management scheme
could lead to improvements in this aspect.

9 Related Work

FHE compilers. The existing compiler works [4–6, 9, 13,
15, 18, 19, 35, 39–41, 43, 50, 51, 53], have proposed optimiza-
tion techniques to improve performance, accuracy, and pro-
grammability. EVA [18] introduces the concept of waterline
which signifies the minimum required scale and automates in-
serting scale management operations. However, EVA misses
the opportunity for optimization as it uses fixed-factor rescale.
To address the limitation of EVA, HECATE [41] proposes
downscale operation which enables proactive rescale and
finds an optimal scale management plan by using space explo-
rations. ELASM [39] points out that using a fixed waterline in
HE applications does not reflect errors during scale manage-
ment. With a new error-latency-aware scheme, ELASM pro-

duces better latency and error results than prior works [18,41].

DACAPO and the existing compilers such as Hecate and
ELASM have complementary relations. This work focuses
on how to partition DNN models using bootstrapping, while
the other compilers focus on scale management optimiza-
tion of each partition. The bootstrapping management algo-
rithm of DACAPO can be applied in conjunction with any
scale management scheme. However, simply applying Hecate
or ELASM to this work is impractical due to their high ex-
ploration overheads. Hecate and ELASM optimize cipher-
text scales by exploring scale management spaces, and scale
management space exploration takes huge compilation over-
heads. Since DACAPO generates multiple different bootstrap-
ping insertion candidates, and optimizes ciphertext scales
that are reinitialized at each bootstrapping insertion point,
exploration-base scale management like Hecate and ELASM
would severely amplify the compilation time. Thus, this work
adopts only a part of Hecate such as the proactive rescaling
scheme to manage ciphertext scales, while excluding the scale
management space exploration from Hecate.
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In addition, performance improvement is achieved through
effective data layout and parallelization methods for cipher-
texts. CHET [19] automatically selects the encryption param-
eters and data layout while ensuring security and accuracy of
the target tensor circuit. EVA [18] and ALCHEMY [16] also
provide data packing, but still lacks usability as programmers
have to perform vectorization manually. Coyote [43] allows
automatic vectorizing for arbitrary applications considering
data movement. HECO [50] incorporates circuit optimiza-
tions to reduce noise growth, as well as target hardware and
scheme-specific optimizations, enabling developers to achieve
performance similar to experts. However, none of the compil-
ers support large benchmarks that require bootstrapping.

Privacy Preserving Machine Learning (PPML). A Con-
volution algorithm for homomorphic encryption is proposed
by Gazelle [30], and [3,28,32,44,47,52] perform Convolution
Neural Network (CNN) based on this algorithm. These works
adapt multi-party computation to perform non-linear func-
tions on secure side, which compromised the advantages of
homomorphic encryption and required significant communi-
cation overhead. [38] first implements the standard ResNet-20
with the RNS-CKKS FHE with bootstrapping, but a substan-
tial amount of bootstrapping operations and convolutions lead
to performance degradation. To improve the efficiency of the
application, [36] constructs an efficient very deep standard
CNN model on FHE, which minimized the bootstrapping
runtime by applying multiplexed packing and multiplexed
parallel convolution algorithm. All existing PPML are hand-
optimized and do not reflect scale management. Additionally,
programmers need to manually insert bootstrapping for each
change in waterline and model structure, which increases their
burden and might create target programs inefficiently.

Automatic Bootstrap Placement. Previous work [45]
proves that finding the minimal number of bootstrap for
a given FHE program and corresponding bootstrapping place-
ment is an NP-complete problem. They propose heuristics
for bootstrapping placement based on a mixed-integer linear
programming method. Compared to DACAPO, they only con-
sider the multiplicative depth not reflecting scale management,
and do not consider the latency of the other operations. Fur-
thermore, they do not automatically generate the bootstrap-
managed code to reduce the programming burden.

This work proposes an automatic bootstrapping manage-
ment compiler to reduce the burden on developers and enable
easy privacy-preserving use of large-size models. Also, the
results show improved performance to manual-implemented
models and demonstrate the minimum number of bootstrap-
ping counts does not always result in better performance.

10 Conclusion

This paper introduces DACAPO, which is the first automatic
bootstrapping management compiler. DACAPO efficiently
restricts bootstrapping candidates through liveness analysis,

considering bypass edges. Additionally, DACAPO finds the
bootstrapping plan with the minimum cost based on these can-
didates. The results demonstrate that DACAPO consistently
outperforms manually implemented FHE programs on deep
learning models, achieving an average speedup of 1.21×.
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Appendix A Existing RNS-CKKS Compilers

Existing RNS-CKKS compilers propose automatic scale man-
agement schemes that insert scale management operations
like rescale and modswitch to the input program that does
not include scale management operations with optimizing
performance and error.

EVA [18] proposes the first scale management algorithm
that attempts to minimize the accumulated scale. A smaller
accumulated scale is preferred as it allows the compiler to
use smaller encryption parameters coefficient modulus Q and
polynomial modulus N at the same security level, which in
turn is expected to result in better performance. To this end,
EVA regards the minimum scale of input ciphertexts to a
program as the minimum scale requirement, called waterline
Sw, of all ciphertexts. Then it inserts a rescale operation
if the scale after rescaling is higher than the waterline: i.e.,
m/S f ≥ Sw. Besides, EVA uses upscale and modswitch to
meet the same level and scale requirements of arithmetic
operations as needed.

Hecate [41] introduces a new scale management operation,
called downscale, which combines upscale and rescale op-
erations and supports decreasing the scale of a ciphertext by
an arbitrary amount. Note that rescale can only reduce the
scale by the fixed rescale factor S f . Hecate makes use of the
downscale operation to proactively bring the scale of a cipher-
text down to the waterline Sw, and shows that it can achieve
a lower accumulated scale than EVA. Furthermore, Hecate
shows that a lower accumulated scale does not always lead to
better performance, and presents a greedy latency-aware scale
management algorithm based on static cost estimation. Recall
that scale management operations modswitch and rescale
change the levels of ciphertexts, affecting the latencies of the
following arithmetic and rotation operations (Table 2). Com-
bined with downscale and a greedy search algorithm, Hecate
demonstrates a better performance (lower latency) than EVA.

ELASM [39] improves Hecate by reflecting the noise of
RNS-CKKS operations. Because the RNS-CKKS operations
add operation-specific and scale-independent noise to the re-
sult, the scale of the result affects the error of the operation by
dividing the noise by the scale. To incorporate error awareness
into the scale management scheme, ELASM proposes a noise-
aware waterline that controls the waterline of each operation
in a fine-grain manner reflecting the operation noise. To con-
trol the error level, ELASM controls the waterline based on
the user-level compilation parameter called Scale-to-Noise-
Ratio (SNR). Furthermore, ELASM proposes an efficient
error estimator and error-aware exploration-based optimizer
called Error-Latency-Aware Scale Management (ELASM)
based on the error estimation. Combined with a noise aware
waterline and an efficient error estimation scheme, ELASM
achieves 4.2-bits better error and 16.7% better performance
compared to Hecate.
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Table 6: Function Parameters of AlexNet. Based on the multiplexed parallel packing method presented in [36], we implemented
the convolution and pooling layers, using the same parameter notation.

Layer ni no fh fw s hi ho wi wo ci co ki ko ti to pi po q

ConvBN1 1 2 3 3 1 32 32 32 32 3 96 1 1 3 96 16 1 6
AvgPool1 2 1 3 3 2 32 16 32 16 96 96 1 2 96 24 1 2 96

ConvBN2 1 1 5 5 1 16 16 16 16 96 256 2 2 24 64 2 1 128
AvgPool2 1 1 3 3 2 16 8 16 8 256 256 2 4 64 16 1 4 256

ConvBN3 1 1 3 3 1 8 8 8 8 256 384 4 4 16 24 4 2 96
ConvBN4 1 1 3 3 1 8 8 8 8 384 384 4 4 24 24 2 2 192
ConvBN5 1 1 3 3 1 8 8 8 8 384 256 4 4 24 16 2 4 128
AvgPool3 1 1 3 3 2 8 4 8 4 256 256 4 8 16 4 4 16 64

Appendix B Parameters Used in Evaluation

Table 6 shows the function parameters that are used in each
component of the AlexNet structure. ConvBN refers to a func-
tion that combines convolution and batch normalization, and
AvgPool represents average pooling. The implementation of
convolution and pooling layers is based on the paper from [36].
ni and no denote the numbers of input and output ciphertexts.
The tuples {wi, hi, ci}, {wo, ho, co} represent input and output
tensors. A kernel with a size fw× fh strides by s. The remain-
ing parameters such as ki,ko,ti,to,pi,po, and q are related to
the multiplexed parallel convolution method presented in [36]
Finally, the fully connected layer is implemented using the
diagonal method in [23].
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