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Abstract
Rust is gaining traction as a safe systems programming lan-
guage with its strong type and memory safety guarantees.
However, Rust’s guarantees are not infallible. The use of un-
safe Rust, a subvariant of Rust, allows the programmer to
temporarily escape the strict Rust language semantics to trade
security for flexibility. Memory errors within unsafe blocks in
Rust have far-reaching ramifications for the program’s safety.
As a result, the conventional dynamic memory error detection
(e.g., fuzzing) has been adapted as a common practice for
Rust and proved its effectiveness through a trophy case of
discovered CVEs.

RUSTSAN is a retrofitted design of AddressSanitizer
(ASan) for efficient dynamic memory error detection of Rust
programs. Our observation is that a significant portion of in-
strumented memory access sites in a Rust program compiled
with ASan is redundant, as the Rust security guarantees can
still be valid at the site. RUSTSAN identifies and instruments
the sites that definitely or may undermine Rust security guar-
antees while lifting instrumentation on safe sites. To this end,
RUSTSAN employs a cross-IR program analysis for accu-
rate tracking of unsafe sites and also extends ASan’s shadow
memory scheme for checking non-uniform memory access
validation necessary for Rust. We conduct a comprehensive
evaluation of RUSTSAN in terms of detection capability and
performance using 57 Rust crates. RUSTSAN successfully
detected all 31 tested cases of CVE-issued memory errors.
Also, RUSTSAN shows an average of 62.3% performance
increase against ASan in general benchmarks that involved
20 Rust crates. In the fuzzing experiment with 6 crates, RUST-
SAN marked an average of 23.52%, and up to 57.08% of
performance improvement.

1 Introduction

Rust has been gaining traction as a practical safe system pro-
gramming language. It guarantees memory safety through
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strict compile-time rules and lightweight runtime checking.
Many new developments have adopted Rust as the main pro-
gramming language [2, 4–8, 17, 21, 41]. Also, the inclusion of
Rust infrastructure in the Linux kernel [2] was a landmark in
the ongoing widespread adoption of Rust.

However, Rust’s safety guarantees are not achieved with-
out a price. Rust draws the programmer’s cooperation by
imposing its strict language semantics. By doing so, the lan-
guage design and the programmer together yield code whose
memory safety can be validated by the compiler and minimal
runtime checks. Rust’s safety model can be too restrictive for
certain use cases requiring fine-grained touch. For this reason,
Rust provides a variant of itself called unsafe Rust that lives
within a code block declared using the unsafe keyword. The
unsafe Rust enjoys unconfined access to language semantics
prohibited in Rust, such as raw pointer access and bypassing
strict ownership enforcement [9]. The use of unsafe can be
inevitable in certain programs (e.g., interfacing with low-level
components) or a programmer’s choice to trade safety for
flexibility.

Previous works have studied the common practices regard-
ing using unsafe in Rust and their ramifications of using un-
safe in Rust programs [22, 56]. The findings in these works
indicate that the use of unsafe Rust is nearly the sole source
of memory errors in Rust programs [56]. In response, re-
searchers have proposed static analysis for discovering unsafe
Rust memory errors [14, 26, 36, 37] and runtime isolation of
safe Rust from unsafe in Rust programs [15, 31, 33, 38, 45].

Static analysis methods have limited detection capability
on highly complex bugs or those that reveal themselves during
runtime. Runtime isolation frameworks have laid the foun-
dation for identifying insecure program subsets of Rust pro-
grams to protect safe Rust parts. Runtime isolation contains
the impact of, rather than detect, the memory errors that stem
from unsafe Rust. In addition, the proposed isolation solutions
accompany hardware feature dependency (e.g., Memory Pro-
tection Key (MPK)) [15, 31] that hinders portability. Efforts
are being made towards revamping the existing techniques to
secure Rust amid the rise of safe languages. An efficient and
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portable dynamic memory error detection tool (i.e., sanitiz-
ers) specifically designed for Rust is lacking to the best of our
knowledge.

The Rust community, in fact, has already embraced fuzzing
for Rust and reported an abundant number of memory safety
bugs in Rust programs with the method [1, 3, 13]. The Rust
compiler supports compiling Rust programs with Address-
Sanitizer (ASan) and other sanitizers with compiler flags [3].
Unfortunately, the existing dynamic testing practices and in-
frastructure for unsafe languages (e.g., C/C++) are inherited
without consideration for the nature of Rust memory errors.

ASan [24, 47] established its position as a de facto stan-
dard sanitizer in dynamic memory error detection thanks to
its detection capability and portability. However, its runtime
performance and memory overhead are known to be substan-
tial. Previous works endeavored to improve ASan’s runtime
and memory overhead [27, 59, 60]. Optimization of sanitizer
metadata has been shown to significantly reduce the runtime
overhead of sanitizers including ASan [27]. Recent works
have shown that the elimination of redundant sanitizer checks
imposed on the memory access sites is a promising direction
toward optimizing ASan [59, 60].

ASan and other sanitizers are designed for unsafe languages
such as C/C++ and assume the prevalence of potential mem-
ory errors anywhere in the program. However, a large portion
of a Rust program retains the safety guarantees even in the
presence of its unsafe neighbor [15, 31, 38]. This means an
opportunity exists to significantly reduce ASan’s runtime
overhead on Rust programs without sacrificing its detection
capabilities.

We present RUSTSAN, a retrofitted design of ASan that
fully exploits the unique nature of Rust programs in which the
vast majority of memory accesses retain the language’s safety
guarantees. RUSTSAN accurately identifies the safety of the
memory object and the memory access sites, enabling the
elimination of costly runtime sanitizer checks on safe access
sites.

RUSTSAN’s cross-IR analysis is a key design component
of RUSTSAN that introduces a fine-grained Rust High-level
IR (HIR) and Mid-level IR (MIR)-level analysis. Our finding
is that Rust semantics such as the unsafe is not properly prop-
agated to the backend LLVM IR level, therefore necessitating
the advancement of Rust-specific analysis techniques. More-
over, as our analysis will show, a close inspection of the Rust’s
IRs allows us to improve accuracy and reduce complications
in the later stage of analysis.

With the analysis providing accurate safety information
about the objects and sites, RUSTSAN’s shadow memory
scheme extends that of ASan to apply selective instrumenta-
tion. RUSTSAN frees the safe sites of shadow memory checks
while supporting non-uniform memory access validation for
access sites with different safety classifications.

We conduct an extensive evaluation of RUSTSAN through
a total of 57 Rust crates. With the reproduction of 31 cases of

CVE-issued memory error detection, we validate that RUST-
SAN retains ASan’s detection capabilities even when a large
number of redundant sanitizer checks are lifted. Also, we
measure RUSTSAN’s performance through a benchmark of
18 general Rust programs to report an average of 62.3% ad-
vantage over ASan. In fuzzing scenarios, RUSTSAN provides
an average of 23.52% and up to 57.08% of performance im-
provement.

In all, we summarize our contributions as follows:

• We propose a retrofitted ASan design that significantly
reduces runtime sanitizer overhead through selective in-
strumentation for Rust programs.

• We incorporate a cross-IR static analysis to accurately
identify Rust unsafe blocks and their data-flow propa-
gation.

• We retrofit ASan’s shadow memory scheme to support
selective instrumentation and non-uniform memory vali-
dation model for safe Rust and unsafe Rust.

• We conduct a comprehensive evaluation of RUSTSAN
with 57 Rust crates to investigate its detection capability,
scalability, and performance improvements.

• We make RUSTSAN publicly available1 in the hopes
of community adoption for efficient dynamic testing of
Rust programs.

2 Background

In this section, we concisely explain the concepts that can aid
in understanding this paper.

2.1 AddressSanitizer
ASan [24, 47] is a versatile memory error detector that is
widely used thanks to its compatibility and availability in
commodity compilers. Notably, ASan is a de facto standard
sanitizer component in many dynamic testing scenarios, in-
cluding fuzzing.

ASan provides memory safety by maintaining a shadow
memory that represents the validity of the process virtual
address space. A shadow memory byte can be encoded to rep-
resent so-called redzones, to mark the corresponding memory
address as invalid for access. ASan encodes several redzone
values in its shadow memory to distinguish between types of
errors. On detecting invalid access to a redzone with the non-
zero shadow value (e.g., 0xfd), ASan uses the redzone value
to index a predefined table that contains the root causes and
uses the result to generate reports. All memory access instruc-
tions in programs compiled with ASan are to be validated
using the shadow memory before execution.

ASan detects spatial memory safety violations on memory
objects by inserting redzones before and after the objects.

1RUSTSAN git repository that includes source code and detailed docu-
mentation will be available in the final version
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Thus, out-of-bounds access to objects will be detected through
sanitizer checks that consult the shadow memory. ASan also
detects temporal memory safety violations on heap (use-after-
free) and optionally on stack objects. By marking the object
address range with redzones, the object is invalidated in the
shadow memory. For instance, ASan maintains a quarantined
set of recently freed heap objects by marking the objects with
redzones to catch use-after-free.

2.2 Rust safety model

Rust provides memory safety through its ownership model.
In this model, the Rust compiler statically enforces that ev-
ery memory object belongs to exactly one owner variable.
When a variable goes out of scope, the compiler automati-
cally inserts the deallocation of its owned memory objects,
relieving the programmer of memory management respon-
sibilities. However, such an ownership model might be too
restrictive for general programs. To support more flexible
programming models, Rust also supports the borrowing of
memory objects to allow access to resources without own-
ership. To safely enable borrowing, Rust associates lifetime
to the resources and employs a borrow checker to guarantee
that the borrowed references do not outlive the lifetime of the
underlying resource.

Unsafe Rust and Rust safety guarantees. Rust provides
the unsafe sub-language, denoted by the unsafe keyword, to
temporarily bypass its strict ownership model. The use of un-
safe Rust is quite prevalent, as reported by existing works [22],
and also can be seen in our evaluation targets. The unsafeness
of unsafe is not contained within the unsafe blocks. In fact,
the objects that undergo interactions inside unsafe blocks are
propagated outside through the data flow path, endangering
the safety assumptions with the safe Rust [15, 31, 38]. The
corrupted objects inside unsafe may be consumed in the safe
Rust to coerce the safe Rust to commit memory errors. As
such, even the memory access sites that are in safe Rust (i.e.,
not inside unsafe blocks) can be rendered unsafe.

Runtime isolation of unsafe Rust. Existing works pro-
posed runtime isolation that protects the safe Rust from the
memory unsafe unsafe [10, 15, 31, 33, 38, 45]. The task in-
volved containing not only the operations of unsafe blocks
but possible occurrences of vulnerabilities due to unsafe-
bound corrupted objects in the safe Rust [15, 38].

3 RUSTSAN overview

Figure 1 shows an overview of RUSTSAN. In this section,
we first discuss the concepts and terminologies that must be
explained before we elaborate on RUSTSAN design (§3.1).
Then, we provide the overview of the RUSTSAN’s compile
time (§3.2) and runtime operations in (§3.3).

3.1 Definitions and memory validation model

Here, we introduce our terminology structure used throughout
the paper to describe RUSTSAN’s design.

Objects and access sites. RUSTSAN maintains the validity
state of memory objects in shadow memory. Memory access
instructions (i.e., load and store) within the program are in-
strumented to consult the shadow memory for validity before
execution. We refer to these instructions as access sites, or
simply sites.

Safety of objects. We distinguish safe and unsafe objects,
similar to the existing works [15, 38]. When an object is
modified inside an unsafe block, it becomes a source for un-
safeness propagation. Unsafe objects are all objects affected
by the unsafe source through the data flow. The term safe
object is self-explanatory; all objects that are not unsafe are
considered safe. Another type of object safety that RUST-
SAN defines is called overlapping objects. We will revisit this
concept after explaining other intertwined concepts.

Safety of sites. The safety of sites is dictated by the objects
that can be accessed at the site. For instance, a safe site, by
definition, is a site that can only access safe objects regardless
of control flow. An unsafe site is a site that is within an
unsafe block. We use the term false-safe site to refer to the
sites within safe Rust that may access unsafe objects. More
concretely, a site is false-safe if it is not inside an unsafe
block but can access unsafe objects during runtime.

Overlapping objects. Overlapping objects should be ex-
plained through the points-to relation [11]. When a false-safe
site may access both safe and unsafe objects during runtime,
all objects that can be pointed by the site form a may-point-to
set. We define overlapping objects as safe objects that belong
to such may-point-to set along with unsafe objects. This type
of object safety has significance in RUSTSAN’s memory val-
idation model for its shadow memory scheme. We visit this
concept again as we elaborate on our program analysis later.

Memory validation model of sites. While eliminating
sanitizer checks on the safe sites, RUSTSAN enforces sepa-
rated access validation for the remaining unsafe and false-safe
memory access sites in addition to the ASan’s redzone-based
out-of-bounds memory error checking. RUSTSAN detects all
access to safe objects from unsafe memory access sites. Note
that safe objects, by definition, are not reachable from unsafe
memory access sites, as identified during the offline analysis.
For false-safe memory access sites, RUSTSAN only allows
memory accesses to 1) the overlapping objects, a subset of
safe objects, and 2) unsafe objects.
unsafe keyword and unsafe. Now that (un)safety of the

sites and objects is explained, we again accentuate the dif-
ference between unsafe and the word “unsafe” in our ter-
minology. When referring to the unsafe Rust keyword, we
always refer to them as unsafe (bold and typewriter). The
word “unsafe” is used in a general sense to refer to potentially
corrupted objects that can be accessed on every site.
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Figure 1: RUSTSAN overview.

3.2 Cross-IR analysis
The first task that RUSTSAN must do is to classify the safety
of objects and sites according to the definitions described
previously. To this end, RUSTSAN implements a fine-grained
analysis to extract information only available in the Rust IR
forms (HIR and MIR). One such information being extracted
is the memory-modifying statements unsafe blocks, which is
used in the subsequent analyses in LLVM IR as the source of
unsafeness when determining the safety of objects and sites
( 1 in Figure 1). Extracting and delivering more fine-grained
information to the LLVM IR analysis renders the analyses at
this stage more efficient. The next piece of information is the
Rust-specific allocation functions that our LLVM IR analysis
must be aware of to track heap allocation sites reliably ( 2 ).

More concrete analysis and instrumentation are performed
at the LLVM IR phase of compilation. In LLVM, RUSTSAN
utilizes points-to analysis [11] that relies on the Value-Flow
Graph [50] to iteratively determine the safety of objects and
sites, starting from the distilled sources analyzed in the previ-
ous MIR/HIR analysis ( 3 ). It also tracks the allocation sites
in Rust with an allocation site identification scheme to reliably
override the allocation of heap objects in its instrumentation
( 4 ).

3.3 RUSTSAN shadow memory scheme
The information and facilities from the compile-time time
analyses can then be materialized into shadow memory man-
agement and instrumentation in RUSTSAN’s shadow memory
scheme. RUSTSAN retrofit its non-uniform access validation
model into ASan’s shadow memory scheme to enforce differ-
ent memory views for the classified safe, unsafe, and false-safe
sites.

RUSTSAN first introduces an allocator overriding scheme
that colors the safe and unsafe/overlapping objects accord-
ingly in the shadow memory. This is achieved by replacing the
heap memory allocation sites of the unsafe and overlapping
object allocation sites ( 5 ) with RUSTSAN’s allocator wrap-

pers. RUSTSAN now extends ASan’s instrumentation scheme
using the site safety information obtained from its cross-IR
analyses. It lifts ASan instrumentation on memory access
sites classified as safe, and instruments unsafe and false-safe
sites to consult the shadow memory for the safety of the object
being accessed to achieve its safety-aware memory validation
model ( 6 ).

4 Cross-IR: Rust HIR/MIR analysis

RUSTSAN employs a fine-grained Rust HIR/MIR-level ana-
lyzer to render the analysis of Rust-specific information ac-
curate and efficient. Existing works [15, 38] also used MIR.
However, they are limited to marking all statements within
unsafe such that they are propagated to the LLVM IR level.
Our findings indicate that the unsafe semantics of Rust do
not propagate well to LLVM IR. unsafe is a Rust language
semantic meant to be consumed by the HIR/MIR compilation
stage, and the resulting LLVM IR does not convey the infor-
mation. Also, the LLVM IR instructions that correspond to the
unsafe HIR instructions become indistinguishable during the
multiple stages of transformation. Moreover, certain analyses
can be made much more efficient by involving HIR/MIR-level
pre-analysis. Our HIR/MIR-level analysis must identify the
following four key information in the HIR/MIR stage:

I1 Memory access statements in unsafe blocks
I2 Memory modification statements in unsafe blocks
I3 Heap memory allocating Rust functions
I4 Rust-specific methods that may allocate heap memory

This information can be lost during translation or compli-
cate the later stage analysis if not collected in this stage. I1 is
used during memory access site during safety classification
in the LLVM IR and ultimately used to apply selective in-
strumentation in RUSTSAN’s shadow memory scheme (§3.1).
I2 are the birthplace of unsafe objects; any object that are
modified within unsafe at least once is considered unsafe by
definition. These statements, therefore, create the sources for
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the propagation of object unsafety. Hence, precisely differen-
tiating memory-modifying statements and their superset (I1)
can reduce the overtainting of unsafe objects. I3 and I4 are
necessary for the accurate identification of heap allocation
sites in the later LLVM analysis.

In the process of extracting this information, RUSTSAN’s
HIR/MIR-level analyzer introduces three novel techniques,
namely 1) Statement-level memory accesses tracking, 2) Re-
cursive safety scope analysis, and 3) Allocation function iden-
tification. Now we explain the more detailed operations of
RUSTSAN’s analysis.

4.1 Background: Rust HIR/MIR
The Rust front-end compiler, rustc, internally uses two IR
forms, namely HIR and MIR. unsafe blocks can only be
identified at the HIR-level and become indiscernible as the
code is translated to MIR format. For this reason, RUSTSAN
uses HIR to extract information regarding the unsafe blocks.
However, it uses the analyzer-friendly MIR for more detailed
statement-level analysis. Also, there is a one-to-one mapping
between MIR and HIR, such that an analysis can query the
compiler for HIR-specific information from a MIR statement.

4.2 Statement-level memory access tracking
RUSTSAN implements a statement-level analysis to precisely
track memory access statements (I1) and further distill writes
to objects (I2) among them. Overapproximation on I2 set
would increase the number of unnecessary unsafe objects
in the LLVM IR analysis, eventually increasing the number
of unsafe and false-safe sites in a cascaded way. Therefore,
minimizing even a small portion of I2 with MIR analysis is
crucial to RUSTSAN’s performance gain, whose source is the
elimination of checks on safe sites.

Differentiating write statements. We differentiate write
statements from read statements by analyzing the MIR syntax
of I1 statements. We closely examined Rust MIR syntax to
list all possible MIR statement forms of memory writes. Thus,
RUSTSAN can create the I2 set, a subset of I1 that includes
the statements that can modify the memory object. Note that
while we track down only write statements in unsafe as they
are the sources of unsafe objects, sanitizer checks on the
resulting unsafe objects from this analysis detect both reads
and writes.

Excluding strictly-local writes. The statement-level anal-
ysis also allows us to reduce further write statements in the
I2 set. RUSTSAN utilizes an MIR data-flow analysis to find
statements that modify strictly-local variables. These vari-
ables do not have data-flow edges outward from their current
unsafe scope. It is safe to remove them since they can corrupt
no safe variable. For statements that modify the strictly-local
variables, RUSTSAN marks the stack allocation for the lo-
cal variable as allocating an unsafe object and removes the

statement from I2 to reduce the load on the RUSTSAN’s sub-
sequent LLVM IR analysis.

4.3 Recursive safety scope analysis
In addition to our efforts to limit overapproximation, we also
mitigated a case of false negatives that can arise during MIR
analysis. The scope is the basic unit of the code block in
Rust. For instance, unsafe{...} itself uses a scope to enclose
its statements. We found that nested scopes inside unsafe
frequently appear when the MIR-level optimizer internally
inserts scopes (i.e., curly brackets) around inlined function
calls inside unsafe blocks.

Recall that the safety (i.e., is the block inside unsafe?) of a
block is not visible in MIR. Therefore, during MIR analysis,
determining the scope safety requires consulting the HIR with
scope ID. We found that without a conscious effort to make
the scope analysis recursive (i.e., traverse up to the outermost
scope) and HIR-aware, the nested scopes inside unsafe can
be misidentified as safe. A consequence of this shortcoming
can be missing unsafe memory access statements inside the
entire inlined function. An existing work [38] did not cor-
rectly identify these nested scopes inside unsafe, creating
false negative cases on I1. We could not confirm such a prob-
lem for TRust [15] as their implementation is yet to be made
public at the time of writing.

4.4 Allocation function identification
Finally, RUSTSAN introduces two Rust-specific heuristics that
rely on type information only available in MIR to identify
possible heap allocation functions/methods. First, if the type
implements allocator-based traits (e.g., Global or bumpalo),
we mark the implemented methods (e.g., Global::alloc())
as heap allocating functions (I3). The SVF-based points-to
analysis in LLVM later uses the information to model heap
object allocations in Rust. Second, on the types that contain
allocator-based traits as bounds (e.g., Vec<T, A:Allocator>),
RUSTSAN regards all of their implemented methods as poten-
tial heap-allocating method I4. Our analysis in LLVM further
refines these potential methods into the concrete set of allo-
cation methods by determining if they actually trigger heap
allocations on their call graphs (§5.2). Identifying the allo-
cation functions and using them as taint sources reduces the
complexity of the program analysis. This heuristic eliminates
the need for tainting from the Rust allocation function all the
way down to the native allocation function (i.e., C library’s
malloc) in the LLVM analysis, which could unnecessarily
increase complexity.

5 Cross-IR: LLVM IR analysis

Figure 2 shows RUSTSAN’s analyses performed at LLVM IR
level. RUSTSAN’s LLVM IR analysis engages as the MIR has
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Figure 2: RUSTSAN’s LLVM IR analysis.

now been translated to LLVM IR along with the key informa-
tion (I1-I4) extracted in the previous stage. Now, RUSTSAN
must use them to identify the following information:

I5 Safety of memory access sites (safe/unsafe/false-safe)
I6 Satety of allocation sites (safe/unsafe/overlapping)

The above information is necessary for RUSTSAN’s run-
time components to manage shadow memory and instrumen-
tation of access sites.

I5 allows RUSTSAN’s sanitizer checks to be selectively ap-
plied according to the site’s safety. The instrumentation to safe
sites would be omitted, while the unsafe and false-safe sites
will have differing memory access views, as we will explain
in the next section (§6). I6 is necessary to identify all occur-
rences of Rust allocation functions (e.g., already obtained I3,
I4 set) that may be used to allocate unsafe/overlapping heap
objects. These allocation sites will be replaced with wrapper
allocation functions that update the shadow memory entries
of the object with the safety information.

5.1 Object and site classification pipeline
RUSTSAN uses SVF’s implementation of field-sensitive, con-
text and flow-insensitive Andersen’s points-to analysis [11],
to classify the safety of memory objects and memory access
sites (I5). The context-insensitive and flow-sensitive analysis
offers reasonable precision while also allowing to scale with
large programs, an imperative requirement for a sanitizer.

We follow the memory model of SVF [50] to model mem-
ory objects as their allocation sites, which could either stack
allocations (alloca instructions) or heap allocations (calls of
heap allocation functions such as exchange_malloc, identi-
fied in I3). RUSTSAN uses points-to and value flow analyses
similarly to the previous works [15, 38] to find objects that
a memory access site may access, i.e., its may-points-to set.
The points-to information is used to classify the safety of
objects and sites according to its definitions in §3.1, which
we will explain in detail as follows.

Unsafe site set. We first classify the memory accessing
statements in unsafe as unsafe sites. This is achieved by
inserting the matching translated LLVM instructions of the
statements in I1 into the unsafe site set.

Unsafe object set. RUSTSAN then identifies the unsafe
objects. Recall that all objects that are modified by an un-

safe block are considered unsafe objects. The refined write
statement set I2 from HIR/MIR analysis has also been trans-
lated into a set of LLVM IRs. RUSTSAN performs points-to
analysis with this set to find memory objects to which these
instructions can point – a set of objects that can be modified
by unsafe. These objects are then classified as the unsafe
object set.

False-safe site set. At this stage, all sites not in the unsafe
site set are currently considered safe sites. RUSTSAN must
identify and separate the false-safe site set from the current
safe site set. By our definition, any sites that do not belong
in an unsafe block but access at least one of the objects in
the unsafe object set are false-safe. The points-to analysis is
performed on the safe set with this definition, resulting in the
separated false-safe set.

Overlapping object set. Finally, we identify the overlap-
ping object set. The overlapping object set is a subset of
the safe object set (i.e., complementary of the unsafe object
set) to be separated. An object in the overlapping set has a
pointed-by relationship with at least one false-safe site. We
iteratively perform the points-to analysis on the identified
false-safe site set and obtain the overlapping object set. The
overlapping objects and unsafe objects are the tenants of the
same may-points-to set of false-safe sites, and hence the name
overlapping.

5.2 Allocation site safety identification

Now, we have the information necessary to determine the
safety of allocation sites (I6). RUSTSAN must identify the
allocation sites of the objects such that they can be overridden
to mark the object’s safety information in the shadow mem-
ory through instrumentation (explained in §6). Rust exhibits
indirect heap allocation behavior through Rust object’s traits.
Hence, along with handling the direct heap allocation sites,
we introduce a Rust-specific method for handling the indirect
heap allocation sites.

Direct heap allocation sites. We first determine the safety
of heap memory allocation directly obtained from a heap
through allocation functions in I3. For such allocation sites,
their safety is already classified by our analysis in 5.1. Hence,
we simply mark the allocation site with the safety of the
allocated object so that the later instrumentation can override
them accordingly.

Indirect heap allocation sites. RUSTSAN implements a
scheme to classify the safety of the indirect heap allocation
triggered by trait method invocation. We demonstrate such
indirect heap allocation in Listing 1a. Here, a Rust object is
defined at Line 1 and is modified by unsafe at Line 4. Its
compiled LLVM IR counterpart is shown in Listing 1b, where
the invocation of Vec::set_len (Line 4) is classified as an
unsafe site, and the stack object allocated at Line 1 is classified
as an unsafe object. On line 3, Vec::reserve() is invoked,
which is a trait invocation that will trigger a heap allocation
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1 let mut v = Vec::new() ;

2 v. reserve(10) ;

3 unsafe{

4 v. set_len(100) ;

5 }

1 %v = alloca ...

2 call void Vec::new(%v)

3 invoke Vec::reserve(10, %v)

4
invoke Vec::set_len(100, %v)

!unsafe

(a) Rust source code (b) Simplified LLVM IR

: candidate allocation method (I4)
: unsafe object : indirect unsafe allocation site (I6)

Listing 1: RUSTSAN allocation site safety identification for
indirect heap allocation.

and store the result into the stack object %v. However, such
heap object allocation will not be detected if we only find the
points-to set for the argument %v at Line 4, since it will only
contain the stack object %v in its points-to set.

To track the safety of such allocation sites, RUSTSAN starts
by analyzing the LLVM invocation of methods identified in
I4. On those invocations, RUSTSAN checks for the following
conditions. First, the object method that is being invoked
must be connected to the heap allocation function (I3) on its
call graph. Second, one of the arguments used in the method
invocation must point to an unsafe/overlapping object. If the
two conditions are met for a method invocation, RUSTSAN
marks the method invocation as a heap allocation site and
attaches the safety of the pointed-to object to the site. Using
this heuristic, RUSTSAN identifies Line 5 in Listing 1b as an
indirect heap allocation site of unsafe objects.

5.3 Adapting analysis techniques to Rust

Our LLVM IR analysis depends on the SVF [50]’s state-of-
the-art Value-Flow analysis and Andersen’s points-to analy-
sis [11]. However, we made several modifications to SVF to
improve its compatibility with Rust.

Rust-specific allocation functions. First, we modify SVF
such that it can be aware of Rust’s heap allocation functions
that we found through HIR/MIR analysis (I3). This way, SVF
can recognize the object pointers returned from such functions
as newly allocated heap objects.

Emulation of pointer operation traits. If an object type’s
pointer operators are not overloaded, the default symbols that
are invoked for the overloadable operators are called from
the Rust standard library’s operator module (std::ops). We
found that we could minimize the complexity of points-to
analysis by simply replacing these with the default pointer
referencing and dereferencing behavior.

Supporting commonly used instruction. We add support
for LLVM instructions such as ExtractValue and Insert-
Value to SVF. These instructions are heavily used in Rust
compilation but are not recognized by SVF. A very recent
paper [15] also mentions a similar change in SVF. Since their
implementation is not yet available at the time of writing, our

SVF modification is our own.

6 RUSTSAN shadow memory scheme

RUSTSAN’s retrofitted ASan shadow memory scheme takes
advantage of the information obtained from compile-time (I5,
I6) to perform safety-aware object allocation and selective
instrumentation.

6.1 Safety-aware object allocation
RUSTSAN implements safety-aware objection allocation that
encodes the object’s safety information (I6) in the shadow
memory. To this end, RUSTSAN extends ASan’s heap memory
allocator that manages shadow memory to reflect the safety
of objects. RUSTSAN’s instrumentation then replaces the
object allocation sites with one of the three (safe, unsafe,
and overlapping) allocator wrappers. The wrappers perform
shadow memory entry updates for the new heap memory
address returned by the successful heap memory allocation.

Allocation site override. RUSTSAN hooks the default heap
allocation function used by the program to use the safe allo-
cator, using the existing method of by ASan. For allocation
sites of unsafe and overlapping objects, RUSTSAN compiler
replaces the allocation sites using the safety information from
I6. It starts by visiting the call graphs of the function invoked
at the allocation sites. For each of the called functions on the
call graph, RUSTSAN clone the functions into a function that
is only used when allocating an object with a particular safety,
e.g., foo is cloned into foo, foo_unsafe and foo_overlap-
ping. RUSTSAN then replaces the function call on the call
graph with the new function based on the allocation site’s
safety. Finally, it replaces occurrences of heap allocation calls
on the call graph with RUSTSAN’s allocator wrapper that
performs shadow memory management.

Shadow byte scheme. RUSTSAN colors the objects ac-
cording to the safety of the object. The unsafe objects are non-
colored, while we conceptually associate safe objects with
magenta and overlapping objects with pink (i.e., pinkzone)
to aid reader understanding as shown in Figure 3. RUSTSAN
chooses 2 bits, bits 4 and 5, in the upper 5 bits of the shadow
byte that represent various types of redzone, to represent safe
and overlapping objects, respectively. That is, the shadow
byte representation of the safe and overlapping objects are
0b00001aaa and 0b00010aaa. Note that the aaa field is used

Unsafe  site POV

False-safe  site POV

Unsafe Obj. RZ …RZSafe Obj… Overlap. Obj.

Unsafe Obj. RZ …RZSafe Obj… Overlap. Obj.

Unsafe Obj. RZ …RZSafe Obj… Overlap. Obj.

RZ

RZ

RZ

Figure 3: RUSTSAN’s shadow memory coloring scheme. Safe
objects are colored with magenta, overlapping objects with
pink, and unsafe objects are non-colored.

USENIX Association 33rd USENIX Security Symposium    3735



by ASan to express addressable bytes within the 8-byte mem-
ory mapped by the shadow memory.

In addition to the safe and overlapping object coloring, we
use two previously unused 5-bit combinations to represent
quarantined unsafe and overlapping objects. For example,
when an overlapping object is deallocated, the shadow byte of
the object memory is updated accordingly to the quarantined
pink object. Then, we extend ASan’s report() function that
is called upon memory error detection such that it can report
the cases of use-after-free on unsafe or overlapping objects.

6.2 Selective instrumentation
With the safety of objects classified (I5), RUSTSAN now must
instrument the memory access sites according to their safety.
RUSTSAN brings a significant runtime overhead reduction by
lifting the costly shadow memory-based checks on the safe
sites. However, the false-safe and unsafe sites are subject to
RUSTSAN’s cross-safety memory access validation as well
as ASan’s existing memory error detection. We now discuss
the two aspects in more detail.

Cross-safety memory access validation. RUSTSAN in-
troduces a unique cross-safety memory access validation
model. It applies different memory access validation logic on
false-safe and unsafe sites, as shown in Listing 2. For unsafe
sites, RUSTSAN reports an invalid access error whenever the
shadow value is non-zero (Listing 2a). This means their
access to the magenta-colored safe and pink-colored overlap-
ping objects will be detected during sanitizer checks. On the
other hand, false-safe sites are allowed to access pink-colored
objects, and thus can access both unsafe and overlapping ob-
jects (Listing 2b). Hence, access to safe objects is detected in
both unsafe and false-safe sites.

Note how RUSTSAN makes a conscious design choice
on the false-safe sites. ASan’s address-based sanitization is
inherently incapable of performing context-sensitive checks
since there is no feasible way to discern which data-flow path
the objects were delivered from. Hence, our design choice
was to inherit ASan’s compatibility and performance while
relaxing the detection coverage on the false-safe sites.

Interoperability with existing ASan capabilities. RUST-

#define PINKZONE_MASK ~0b00010000

...
1 shadow = *memToShadow(ptr);

2 // Disallow PinkZone access

3

4 if (shadow != 0)

5 report();

6 // Memory access site

7 *ptr = 0xdeadbeef;

(a) Unsafe site

1 shadow = *memToShadow(ptr);

2 // Allow PinkZone access

3 shadow &= PZ_MASK;

4 if (shadow != 0)

5 report();

6 // Memory access site

7 *ptr = 0xdeadbeef;

(b) False-safe site

Listing 2: RUSTSAN’s instrumentation for unsafe sites (left)
and false-safe sites (right).

SAN’s shadow memory scheme fully retains the original ASan
detection capabilities on the unsafe and false-safe sites. Recall
that ASan’s detection mechanism involves two methods of
utilizing the redzones: overflow detection through redzones
in-between objects and invalidation of objects themselves by
marking object address range with redzones as they are freed.
Since the former, inter-object redzones, are placed for object
allocation regardless of safety, overflows that occur at unsafe
and false-safe sites can be detected. For instance, if a legal
object access (e.g., overlapping or unsafe access at a false-safe
site) goes out-of-bound to touch the object-end redzone, it
will be detected and reported.

Likewise, unsafe and overlapping objects are also subject
to ASan’s quarantine-based use-after-free detection scheme
implemented through object invalidation. RUSTSAN’s heap
allocator retains the ASan allocator’s object invalidation and
quarantining scheme. That is, the heap allocator invalidates
the object by marking the object range with redzone and
placing it in the quarantine list. One key addition in RUSTSAN
is the ability to represent quarantined-unsafe and quarantined-
overlapping leveraging the unused bits in the shadow byte, as
we already explained. This aids in generating reports of site
and object safety upon error detection.

7 Evaluation

In this section, we evaluate the RUSTSAN implementation
that is based on LLVM 13.0.0 [39] and rustc 1.66.0 nightly
[46]. All experiments were conducted on a workstation with
an AMD Ryzen Threadripper 3990X (64 cores@2.9GHz),
256GB RAM, and Ubuntu 20.04 LTS.

We evaluate RUSTSAN with large test sets in terms of its de-
tection capabilities, scalability, and performance improvement
over ASan. We built Rust program test sets for our experi-
ments, namely the CVE reproduction, scalability evaluation,
general performance benchmark, and fuzzing benchmark sets.
The CVE reproduction set is a specific version of programs
that contain one or more CVE-issued memory errors and de-
terministic input sequences that trigger them. We empirically
evaluate RUSTSAN’s detection capability by reproducing the
CVEs in §7.2. The scalability set contains programs with
relatively larger code bases. With the set, we evaluate the
scalability of RUSTSAN’s program analysis passes with large
Rust MIRs and LLVM IRs in §7.4. The general performance
and fuzzing benchmark set are used to measure the runtime
overhead of RUSTSAN imposed on target Rust programs (§7.6
and §7.7).

7.1 Unsafe Rust usage statistics
Table 1 shows the statistics on the occurrence and safety

statistics access sites of all Rust crates we used for our evalu-
ation. The table illustrates the total number of memory access
instructions, including the memory intrinsics. The average
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Whole Program Unsafe Instructions (unsafe + false-safe) False-safe Instructions
Target Load / Store Intrinsic Total Load / Store Intrinsic Total Load / Store Intrinsic Total Unsafe Obj / All Obj alloc.

bat 1050235 77225 1127735 41604 (3.96%) 2914 (3.77%) 44568 (3.95%) 24166 (2.30%) 2914 (3.77%) 27130 (2.41%) 12485 / 717529 (1.74%)
fd 625885 41775 668020 27209 (4.35%) 848 (2.03%) 28187 (4.22%) 18188 (2.91%) 848 (2.03%) 19166 (2.87%) 5646 / 409130 (1.38%)

ripgrep 587696 35591 623487 37830 (6.44%) 727 (2.04%) 38632 (6.20%) 22448 (3.82%) 727 (2.04%) 23250 (3.73%) 7022 / 116451 (6.03%)
tokio 397079 41507 439176 21902 (5.52%) 1093 (2.63%) 23165 (5.27%) 15432 (3.89%) 1093 (2.63%) 16695 (3.80%) 5405 / 76885 (7.03%)

firecracker 354015 24312 378512 19898 (5.62%) 1635 (6.73%) 21588 (5.70%) 12891 (3.64%) 1635 (6.73%) 14581 (3.85%) 5493 / 341180 (1.61%)
hyper 219199 21522 241166 11758 (5.36%) 703 (3.27%) 12536 (5.20%) 8692 (3.97%) 703 (3.27%) 9470 (3.93%) 2780 / 24301 (11.44%)Sc

al
ab

ili
ty

Se
t

(S
)

Rocket 2560541 214122 2775973 144394 (5.64%) 8699 (4.06%) 153613 (5.53%) 101860 (3.98%) 8699 (4.06%) 111079 (4.00%) 30762 / 1680984 (1.83%)
wasmtime† 3259408 213306 3473659 273751 (8.40%) 15271 (7.16%) 289392 (8.33%) 213541 (6.55%) 15271 (7.16%) 229182 (6.60%) 48740 / 2014050 (2.42%)

B
∩

S

RustPython† 3061746 229165 3291721 258251 (8.43%) 12447 (5.43%) 271098 (8.24%) 220621 (7.21%) 12447 (5.43%) 233468 (7.09%) 54304 / 1872552 (2.90%)
uuid 1286 126 1412 9 (0.70%) 2 (1.59%) 11 (0.78%) 7 (0.54%) 2 (1.59%) 9 (0.64%) 6 / 203 (2.95%)

chrono 373383 37322 410910 6765 (1.81%) 863 (2.31%) 7663 (1.86%) 4959 (1.33%) 863 (2.31%) 5857 (1.43%) 1627 / 325400 (0.50%)
adler 351077 35617 386899 6521 (1.86%) 840 (2.36%) 7396 (1.91%) 4733 (1.35%) 840 (2.36%) 5608 (1.45%) 1580 / 309804 (0.51%)

unicode-xid 347317 35394 382916 6519 (1.88%) 841 (2.38%) 7395 (1.93%) 4731 (1.36%) 841 (2.38%) 5607 (1.46%) 1556 / 305098 (0.51%)
base64 372304 37193 409707 12442 (3.34%) 1182 (3.18%) 13659 (3.33%) 6541 (1.76%) 1182 (3.18%) 7758 (1.89%) 5715 / 317500 (1.80%)
btree 52118 5363 57486 5542 (10.63%) 187 (3.49%) 5729 (9.97%) 1451 (2.78%) 187 (3.49%) 1638 (2.85%) 3924 / 286423 (1.37%)
image 624398 73205 698093 23139 (3.71%) 1934 (2.64%) 25253 (3.62%) 19159 (3.07%) 1934 (2.64%) 21273 (3.05%) 3410 / 454667 (0.75%)
slice 42494 2504 45003 5605 (13.19%) 192 (7.67%) 5797 (12.88%) 1514 (3.56%) 192 (7.67%) 1706 (3.79%) 3932 / 206947 (1.90%)
regex 228994 24707 253796 17475 (7.63%) 521 (2.11%) 18001 (7.09%) 10103 (4.41%) 521 (2.11%) 10629 (4.19%) 3576 / 55875 (6.40%)
vec 33181 2600 35786 5565 (16.77%) 193 (7.42%) 5758 (16.09%) 1470 (4.43%) 193 (7.42%) 1663 (4.65%) 3930 / 124762 (3.15%)
str 32953 1819 34777 5583 (16.94%) 187 (10.28%) 5770 (16.59%) 1492 (4.53%) 187 (10.28%) 1679 (4.83%) 3925 / 282374 (1.39%)

byteorder 38437 2235 40677 7178 (18.67%) 196 (8.77%) 7374 (18.13%) 3073 (7.99%) 196 (8.77%) 3269 (8.04%) 4094 / 115000 (3.56%)
string 19057 1256 20318 5542 (29.08%) 187 (14.89%) 5729 (28.20%) 1451 (7.61%) 187 (14.89%) 1638 (8.06%) 3924 / 67539 (5.81%)

binary_heap 19119 1230 20354 5564 (29.10%) 187 (15.20%) 5751 (28.25%) 1473 (7.70%) 187 (15.20%) 1660 (8.16%) 3925 / 50580 (7.76%)
linked_list 17850 1187 19042 5542 (31.05%) 187 (15.75%) 5729 (30.09%) 1451 (8.13%) 187 (15.75%) 1638 (8.60%) 3924 / 51496 (7.62%)

bytes 20092 1289 21426 6043 (30.08%) 248 (19.24%) 6291 (29.36%) 1724 (8.58%) 248 (19.24%) 1972 (9.20%) 4065 / 26603 (15.28%)
vec_deque 16019 1109 17133 5542 (34.60%) 187 (16.86%) 5729 (33.44%) 1451 (9.06%) 187 (16.86%) 1638 (9.56%) 3924 / 66508 (5.90%)

B
en

ch
m

ar
k

Se
t

(B
)

json 9901 610 10511 2253 (22.76%) 62 (10.16%) 2315 (22.02%) 1492 (15.07%) 62 (10.16%) 1554 (14.78%) 283 / 3997 (7.08%)
† Included in both scalability and benchmark set.

image-tiff 87460 4539 92089 1519 (1.74%) 24 (0.53%) 1543 (1.68%) 783 (0.90%) 24 (0.53%) 807 (0.88%) 679 / 52231 (1.30%)
minidump 437131 45187 482483 10268 (2.35%) 150 (0.33%) 10438 (2.16%) 4460 (1.02%) 150 (0.33%) 4630 (0.96%) 1535 / 255833 (0.60%)

pdf 480686 55125 535971 15076 (3.14%) 1846 (3.35%) 16962 (3.16%) 8460 (1.76%) 1846 (3.35%) 10346 (1.93%) 5051 / 315688 (1.60%)
png 37591 2236 39827 2212 (5.88%) 96 (4.29%) 2308 (5.80%) 1077 (2.87%) 96 (4.29%) 1173 (2.95%) 863 / 22891 (3.77%)

cpp_demangle 28564 4637 33201 2078 (7.27%) 20 (0.43%) 2098 (6.32%) 2076 (7.27%) 20 (0.43%) 2096 (6.31%) 88 / 21463 (0.41%)Fu
zz

in
g

Se
t

brotli-rs 17709 854 18563 1185 (6.69%) 0 (0%) 1185 (6.38%) 1185 (6.69%) 0 (0%) 1185 (6.38%) 141 / 9400 (1.50%)

Table 1: Instrumentation statistics for scalability, general application set, and fuzzing set Rust programs. intrinsic include memory
transfer intrinsics such as memmove or memcpy.

proportion of unsafe sites (unsafe blocks + false-safe) is mea-
sured to be 10.24% across the crates. Notably, crates that
require raw pointer manipulation (e.g., linked_list) or pro-
cess low-level data (e.g., string, bytes) show a higher ratio
of unsafe Rust.

The ratio of unsafe sites supports RUSTSAN’s motivation
and approach; The memory access sites that require sani-
tizer checks are approximately 34.60% (vec_deque) of the
total sites at the most, while they can be as low as 0.7%
(uuid). However, these numbers do not directly indicate run-
time overhead that RUSTSAN can eliminate since the runtime
performance would depend on the number of sanitizer checks
encountered during program execution. We discuss the run-
time overhead reduction through crate benchmarks §7.6 and
fuzzing experiment §7.7 later in this section.

7.2 Detection capability: robustness of selec-
tive instrumentation

Regarding detection capability, we empirically validate RUST-
SAN’s for possible false-negatives. In other words, we vali-
date that the eliminated sanitizer checks in RUSTSAN do not
cause false negatives. Towards this goal, we test a total of 31
memory-related CVEs that can be detected with ASan, then
we reproduce the results with RUSTSAN.

CVE test set collection. We amass a test set of CVE-issued
memory vulnerabilities in common Rust programs that can be
reproduced and detectable by ASan. The vulnerabilities are
collected from the RustSec Advisory Database [55], where
the CVEs reported on Rust programs from crates.io are ac-

cumulated. We collected all 408 CVEs listed in the advisory
database and assessed their reproducibility. Among these 408
entries, we used the category column on the advisory database
to have identified 227 entries as memory-related vulnerabili-
ties. 91 out of 227 entries included a PoC code that allowed us
to reproduce the vulnerability, of which 52 were successfully
detected by ASan. RUSTSAN was also able to detect all of
these 52 cases.

Detection results. Table 2 highlights 31 cases out of 52
cases that demonstrate the robustness of RUSTSAN. These
cases are detected through inlined shadow memory checks
that are subject to RUSTSAN’s selective instrumentation.
While RUSTSAN drastically reduces shadow memory checks
in Rust programs as shown in Table 1, all CVE cases were suc-
cessfully detected. The other 21 reproduced cases not shown
in Table 2, include cases such as double free. These cases
are detected through intercepting standard library calls (e.g.,
free) which remain unaffected by RUSTSAN’s check elimi-
nation and obviously detected by RUSTSAN as expected.

Memory errors in false-safe sites. The FS/U* column in
Table 2 reports that 21 out of 31 reproduced memory errors
were detected at false-safe sites. We identified these cases by
placing additional instrumentation on memory instructions
within the unsafe that identified 10 within-unsafe cases. The
abundance of memory errors detected at false-safe memory
instructions reassures the accuracy of RUSTSAN’s false-safe
site identification and the correctness of the retrofitted shadow
memory scheme. We manually validated selected CVEs in
the 21 false-sate site detection cases. Among them, we choose
one case of heap overflow (CVE-2018-21000) and use-after-
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Crate Name CVE Vuln. Class Detected FS/U*

base64 CVE-2017-1000430 Heap Ovf. ✓ U
bumpalo CVE-2020-35861 Heap Ovf. ✓ U
generic-array CVE-2020-36465 UAF ✓ FS
smallvec CVE-2018-20991 UAF ✓ FS
smallvec CVE-2021-25900 Heap Ovf. ✓ U
smallvec CVE-2019-15551 UAF ✓ FS
futures-task CVE-2020-35906 UAF ✓ U
http CVE-2019-25009 UAF ✓ FS
http CVE-2020-25574 UAF ✓ FS
prost CVE-2020-35858 Stack Ovf. ✓ FS
lru CVE-2021-45720 UAF ✓ U
sized-chunks CVE-2020-25792 Stack Ovf. ✓ FS
sized-chunks CVE-2020-25791 Stack Ovf. ✓ FS
sized-chunks CVE-2020-25795 UAF ✓ FS
rusqlite CVE-2021-45713 UAF ✓ FS
heapless CVE-2020-36464 UAF ✓ U
sys-info CVE-2020-36434 UAF ✓ U
string-interner CVE-2019-16882 UAF ✓ FS
safe-transmute CVE-2018-21000 Heap Ovf. ✓ FS
chttp CVE-2019-16140 UAF ✓ FS
cbox CVE-2020-35860 UAF ✓ U
id-map CVE-2021-30455 UAF ✓ FS
id-map CVE-2021-30457 UAF ✓ FS
simple-slab CVE-2020-35892 Heap Ovf. ✓ U
simple-slab CVE-2020-35893 Heap Ovf. ✓ U
scratchpad CVE-2021-28031 UAF ✓ FS
toodee CVE-2021-28028 UAF ✓ FS
rdiff CVE-2021-45694 Heap Ovf. ✓ FS
qwutils CVE-2021-26954 UAF ✓ FS
insert_many CVE-2021-29933 UAF ✓ FS
ordnung CVE-2020-35891 UAF ✓ FS

* detected at false-safe (FS) / unsafe (U) site.

Table 2: Reproduction experiment result of RUSTSAN with
CVE reproduction test set.

free (CVE-2021-45713) in Appendix A with code examples.

7.3 Detection capability: cross-safety object ac-
cess

Here we evaluate the detection capability unique to RUSTSAN,
detection of safe object access detection explained in §6.2.
We prepare two synthetic examples of safe object corruption
from unsafe and false-safe shown in Listing 3.

We resort to crafting synthetic examples instead of real-
world bugs due to the difficulty of identifying and reproducing
them. Many real-world memory errors are initially discov-
ered with ASan through its inter-object redzones. We found
that a memory error at an unsafe or false-safe site that does
not touch any of inter-object redzones but corrupts the safe
objects, thus not triggering the ASan alarm is too specific
to identify and reproduce. Both examples, inspired by real-
world CVEs (CVE-2017-1000430 and CVE-2018-21000) but
slightly altered, allow arbitrary memory corruption on safe
objects. In Listing 3a both and Listing 3b, the adversary can
control the argument to the function to corrupt the pointer to
point to safe objects at an unsafe and false-safe sites respec-

tively.
These cases do not necessarily touch the redzones, but

can corrupt only the contents of safe objects (i.e., intra-object
corruption). These examples illustrate RUSTSAN’s Rust cross-
safety memory access detection; the unmodified ASan would
not have detected the illustrated memory errors, while RUST-
SAN extends the ASan with the capability to detect a new
class of memory error specific to Rust.

7.4 Compile time with RUSTSAN

We now measure the compile time of RUSTSAN in larger
Rust crates to evaluate its scalability.

Scalability test set collection. We selected the nine crates
based on the crate’s popularity (e.g., Github stars over 10k)
and codebase size. Table 3 shows RUSTSAN’s compile time
for large programs in the scalability set.

Result discussion. Overall, RUSTSAN increased the com-
pile time of the Rust crates by 19.50×. wasmtime, a We-
bAssembly interpreter, produced the largest whole-program
LLVM IR of 2253MB. The compile time for the crate with
RUSTSAN took 29 minutes and 56 seconds, 30.45× longer
than the instrumented normal build. The second largest was
RustPython, with 2127MB of LLVM IR size and 1688s (28
minutes and 8 seconds) of compile time, which is 24.82×
slower than the normal build.

We concluded that the computational complexity of RUST-
SAN’s analysis remains reasonable even for large programs.
The refined information extraction in the HIR/MIR analysis is
a contributing factor, as it reduced the amount of taint source
(I2 from §4) by 12.86% compared to a previous work [38] in
our experiment (Appendix B).

Considering the typical dynamic testing scenario in which
RUSTSAN would be used, the cost of building Rust pro-

1 pub fn encode_config_buf(len: usize, buf: &mut Vec<u8>) {

2 let mut output_ptr = buf.as_mut_ptr();

3 unsafe {

4 // new_ptr now points to safe object.

5 let new_ptr = output_ptr.offset(len);

6 ptr::write(new_ptr, ...);

7 }

(a) Case for safe object corruption at unsafe site

1 fn to_bytes_vec(ptr: *mut T, offset: usize) {

2 let v = unsafe{

3 Vec::from_raw_parts(ptr, USIZE_MAX, 0);

4 }

5 // v[offset] now points to safe object.

6 v[offset] = ...;

7 }

(b) Case for safe object corruption at false-safe site

Listing 3: Cases of cross-safety memory corruption detected
by RUSTSAN
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Target IR Size
(MB)

Compile Time

Normal ASan RUSTSAN

bat 712 28.48s 29.94s (1.05×) 479.00s (16.81x)
fd 410 23.91s 24.80s (1.02×) 289.00s (12.08x)
ripgrep 387 26.23s 27.41s (1.04×) 232.00s (8.84x)
tokio 289 26.60s 27.20s (1.02×) 178.00s (6.69x)
firecracker 244 19.89s 20.87s (1.04×) 137.00s (6.68x)
hyper 157 23.72s 24.10s (1.02×) 104.00s (4.38x)
Rocket 1911 40.11s 41.05s (1.02×) 1259.00s (31.38x)
wasmtime 2253 58.97s 62.00s (1.05×) 1796.00s (30.45x)
RustPython 2127 68.00s 72.00s (1.06×) 1688.00s (24.82x)

Avg. 943 35.10s 36.59s (1.04×) 684.67s (19.50x)

Table 3: Compile time of scalability set crates with ASan and
RUSTSAN.

grams with RUSTSAN once before testing would be trivial.
TRust [15] mentions its strategy for dealing with heavy pro-
grams that fall back to less precise context-sensitive analysis.
The work’s evaluation mentions tokio and hyper (both are
also included in our set in Table 3) as examples of large
programs. A direct comparison is infeasible due to the imple-
mentation’s unavailability as of writing. However, we showed
that RUSTSAN could build much larger programs with man-
ageable compile times.

7.5 Microbenchmarks

We conducted microbenchmarks on RUSTSAN’s safety-aware
shadow memory scheme and modified heap allocator. A closer
look into the overhead of the two components provides a
context into the general application and fuzzing benchmark
presented later in this section.

Shadow memory checks. RUSTSAN’s shadow memory
scheme introduces an additional shadow byte masking in
the false-safe sites as shown in Listing 2b. For this reason,
while RUSTSAN improves sanitization performance through
sanitizer check elimination, its false-safe site checks may
add a small overhead. In order to measure the isolated
overhead from such mask-then-branch checks, we compiled
nbench [52] into two versions: one with unmodified ASan
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Figure 4: Result of nbench-byte of ASan and worst-case of
RUSTSAN instrumentation normalized to uninstrumented ver-
sion of the benchmark.

and the other with theoretic worst-case RUSTSAN. The worst-
case RUSTSAN instruments all memory access sites with
the mask-then-branch checks of false-safe sites and does not
eliminate any checks. Figure 4 shows the comparison be-
tween the theoretic worst-case RUSTSAN and the unmodified
ASan. On average, the ASan version showed 2.06x runtime
overhead, and the theoretical worst-case RUSTSAN version
showed 2.08x. The experiment results indicate that the perfor-
mance overhead from the false-safe site checks is minimal.

Heap allocator. Our benchmark reported that RUSTSAN’s
heap allocator incurs 5.52% additional overhead in addition
to that of ASan. Due to its negligible overhead and straightfor-
ward experiment method, we discuss the topic in Appendix C.

7.6 Runtime overhead in general applications

We measured the runtime overhead of RUSTSAN in com-
parison to ASan in general Rust programs with each crate’s
built-in benchmark set (i.e., cargo bench).

General application benchmark set collection. We
collected the most downloaded Rust programs from
Crates.io [20], and also referenced benchmarked programs
from previous works [15, 38]. We manually verified if the
included benchmarks worked correctly and yielded a single-
number result that allowed us to compare the performance of
RUSTSAN and ASan conveniently.

Benchmark results. Figure 5 compares the runtime over-
head of ASan and RUSTSAN with average execution times
taken for benchmark completion normalized to those of the
uninstrumented versions. The average normalized execution
time was 2.40× (=140.3% overhead), and 1.53× (=52.9%
overhead) for ASan and RUSTSAN respectively, RUSTSAN
reduce the overhead to 62.3% in average. In order to validate
that the performance increase is due to the eliminated sani-
tizer checks, we devised a metric that we call sanitizer check
hit decrease rate (Check Hit Decr. (%)) in Figure 5. The
metric explains the percentage of ASan runtime sanitizer hit
count RUSTSAN eliminates. We confirm that the performance
increase is directly proportional to the metric.

The crate with the highest overhead reduction was adler.
The ASan-instrumented version suffers 5.4× slower runtime
performance, while RUSTSAN removed 100% of the sanitizer
checks and thus achieved near-native speed. On the other
hand, several crates showed little to no ASan overhead re-
duction. vec_deque and vec are such examples. We suspect
these programs seldom encounter unsafe or false-safe sites
and, therefore, do not benefit from RUSTSAN’s check removal.
Among the evaluated crates, wasmtime and RustPython are
some of the most complex and large Rust ecosystem programs,
also included in our scalability set. The experiment, therefore,
shows the feasibility of RUSTSAN on larger Rust programs,
not to mention the significant performance improvement in
both (64% and 63% improvement over ASan, respectively).

Besides the performance, the crates did not experience
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program crashes due to RUSTSAN-induced false positives
during the benchmark.

7.7 Fuzzing
We further investigate the performance gain that RUSTSAN
offers over ASan in the context of fuzzing.

Fuzzing test set collection. We selected our target pro-
grams from the Rust trophy-case [13]. We chose the top six
crates that have the highest count of reported bugs and also
provide built-in fuzzing harnesses.

Performance measurements. As with the general applica-
tion benchmark set, we compiled the crates with RUSTSAN
and ASan for comparison. Then, we fuzzed two versions
of each crate in the fuzzing set with AFL++ [23] version
4.05c for 24 hours. We used the built-in harness and seed
set included in each crate. We illustrate RUSTSAN’s perfor-
mance gain through the difference run executions per second,
a conventionally accepted statistic in fuzzing performance
evaluation [23, 60]. Thanks to RUSTSAN’s runtime overhead
reduction, the fuzzer can perform more runs with RUSTSAN
than ASan given a fixed duration (24 hours).

Table 4 shows the comparison of RUSTSAN with ASan.
We first compared the performance in terms of execution per
second, in which RUSTSAN showed an average of 23.52% of
performance increase (Incr(%)) over ASan. To better illus-

Target
Exec/s Incr.

(%)

Avg. checks/exec Reduc.
(%)AS RS AS RS

image-tiff 879.41 952.49 8.31% 7599.75 28.92 99.62%
minidump 432.57 571.33 32.08% 20618.15 76.61 99.63%
pdf 296.68 414.75 39.80% 288990.49 2771.96 99.04%
cpp_demangle 846.63 853.98 0.87% 2535.67 41.43 98.37%
png 795.89 819.38 2.95% 1606.78 935.19 40.68%
brotli-rs 142.46 223.77 57.08% 390218.61 704.22 99.82%

Table 4: Fuzzing performance benchmark of ASan (AS) and
RUSTSAN (RS). RUSTSAN significantly increases (Incr.) the
number of executed runs per second.

trate the source of the performance gain, we measured average
checks per execution. Since RUSTSAN has a total execution
number than ASan, we use the average number of checks
rather than the total encounter checks. Among the targets,
brotli-rs exhibited the most significant margin of improve-
ment (57%). During runtime, RUSTSAN removed approxi-
mately 390K sanitizer checks for each run, which explains the
performance improvement. In the case of cpp_demangle, the
overhead reduction is minimal (0.87%), although the reduc-
tion rate is very high (98.37%). This is because the limited
number of memory access occurrences (2535.67 checks/sec)
is dominated by other sources of overhead in fuzzing, such as
seed mutation and relaunching of the process.

Result discussion. RUSTSAN shows substantial perfor-
mance gains in several Rust crate fuzzing (e.g., brotli-rs).
However, the performance of fuzzing a target depends on
other influential factors. For instance, load and store instruc-
tions may have a limited proportion in the target program.
Also, the duration of the pure target program execution time
in each run can be relatively shorter in certain programs,
allowing the operations of the fuzzer itself (e.g., respawn
target process, seed mutation) to dominate the overall execu-
tion time. RUSTSAN can only contribute to minimizing the
shadow memory checks (i.e., Reduc. % in Table 4). The ex-
periment focused on presenting the isolated performance gain
from RUSTSAN in real-world fuzzing scenarios. We expect
that RUSTSAN can be adapted with other ASan optimizations
to alleviate the aforementioned factors. For instance, FuZ-
Zan [27] optimizes the shadow memory initialization, which
directly affects the fuzzer’s process respawning time.

Detected errors. Neither ASan nor RUSTSAN found cases
of crashes induced by memory error detection. Judging from
the included fuzzing harnesses and documentation, we suspect
that it is because these crates have been fuzzed to a certain
extent already (e.g., more than 24 hours). Hence, easily reach-
able bugs are likely to have been fixed. Even so, this result at
least shows that RUSTSAN did not exhibit any cases of false
positives.
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8 Security and robustness discussion

Sanitizers are always best-effort solutions since they must
balance detection coverage, portability, and performance to
be practical. In this sense, we argue that RUSTSAN has shown
its value as a practical solution through extensive empirical
testing. Here we revisit our evaluation with a robustness per-
spective and also qualitatively discuss possible sources of
incorrectness in RUSTSAN.

8.1 Empirical validation
Our evaluation confirms RUSTSAN’s performance advantages
and also provides empirical validation to a certain extent given
the large number of tested crates. As discussed in our CVE
reproduction experiment (§7.2), we confirmed that RUSTSAN
successfully detected all CVE cases.

RUSTSAN did not produce any false positives, i.e., program
crashes, during the benchmarking. The crates’ built-in bench-
marks are not meant to trigger bugs in the program; therefore,
they also serve as an isolated robustness test on RUSTSAN. In
retrospect, RUSTSAN checked approximately 1500 million
memory access sites across 18 Rust crates. If a single safe
site were marked as unsafe or a false-safe site, then it would
have caused a program-crashing false-positive case, as these
sites would then not be able to access safe objects.

During the fuzzing experiment, RUSTSAN checked a total
of 89 billion memory access sites throughout 24 hours of
fuzzing for 6 crates. False positives were also absent in this
experiment. As with the CVE experiment, the fuzzing exper-
iment could serve as a false negative validation. However,
as we mentioned, the baseline ASan also did not discover
any previously unknown memory error during this period.
Understanding relatively untested Rust crates and manually
generating fuzzing harnesses for fuzzing tests would be a
rather daunting task that we could not include in this work.

8.2 Qualitative analysis
While RUSTSAN makes a conscious effort to be conservative
in its program analysis techniques, complex program anal-
ysis techniques can often be challenging to achieve perfect
completeness and soundness. We use Table 5 to discuss the
potential issues of the RUSTSAN validation model systemati-
cally.

Incomplete HIR/MIR analysis. MC1 and MC2 can hap-
pen due to an incomplete HIR/MIR analysis. Recall that the
unsafe sites are memory access sites within the unsafe blocks
by definition and are to be identified by the MIR-level anal-
ysis. The consequence of these misclassifications is that the
unsafe site would be able to silently corrupt safe objects (in
the case of MC1) or overlapping objects (in the case of MC2).
Therefore, these are false negative cases that may undermine
RUSTSAN’s memory validation model.

Unsound HIR/MIR analysis. Conversely, the HIR/MIR
analysis may misidentify safe or false-safe sites that are out-
side the unsafe blocks as unsafe sites (MC3, MC5). MC5 is
a false positive case where the misclassified unsafe site would
cause a false alarm as it attempts to (legitimately) access safe
objects. Another implication of the MC5 cases is that they
diminish the performance advantage of RUSTSAN, as unnec-
essary sanitizer checks are added in this case. MC3 is also a
false positive because false-safe sites, under RUSTSAN’s vali-
dation model, should be able to access safe objects. A false
alarm will be raised as the site must access the safe objects
received through a safe data flow during runtime.

Robustness of RUSTSAN HIR/MIR anlaysis. Our MIR
analysis is a targetted analysis of the unsafe blocks that only
amount to a very small portion of Rust programs. For this rea-
son, the MIR analysis can be made complete and sound. Fur-
thermore, RUSTSAN’s introduction of recursive scope safety
in MIR analysis addressed a source of false negatives present
in a previous work [38]. As such, we argue that HIR/MIR is
robust, and the occurrences of related misclassification cases
would be extremely rare. Also, our evaluation empirically
proved the absence of false positive cases.

Incomplete points-to analysis. Incomplete data flow and
points-to analysis may result in the cases of MC4. The analy-
sis may mistakenly omit the points-to relation between a site
and an unsafe object. Consequently, a false-safe site that must
access only overlapping and unsafe objects is falsely vindi-
cated of the sanitizer check. RUSTSAN would be oblivious of
such a site corrupting safe objects; therefore, this is a false
negative case.

Unsound points-to analysis. An unsound points-to anal-
ysis may cause the case of MC6, in which a safe site is mis-
classified as a false-safe site. As with MC5, this case would
cause a false positive and performance degradation due to
unnecessary sanitizer checks.

Robustness of points-to anlaysis. RUSTSAN employed
a state-of-the-art program analysis tool [50] that has been
widely used in the domain of software security [15, 18, 28–
30, 38, 44]. Our evaluation indicated that the cases of MC6-
type false positives would be rare. However, the risk of MC4
remains an external dependency, while we still deem the tool
reliable given its extensive usage in the domain.

Misclassification False {Pos, Neg} Cause

MC1 Unsafe→Safe False Neg Incomplete HIR/MIR
MC2 Unsafe→False-safe False Neg Incomplete HIR/MIR
MC3 False-safe→Unsafe False Pos Unsound HIR/MIR
MC4 False-safe→Safe False Neg Incomplete points-to
MC5 Safe→Unsafe False Pos Unsound HIR/MIR
MC6 Safe→False-safe False Pos Unsound points-to

Table 5: Classification of potential site misclassifications.
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9 Related Work

9.1 Sanitizers for detecting memory bugs

Sanitizers have long been used for detecting bugs in programs
written in memory-unsafe languages to detect memory er-
ros [12, 34, 40, 42, 47–49, 53, 58]. Both spatial memory error
sanitization [12, 19, 40, 42, 47, 54], and temporal memory er-
ror sanitizers [34, 47, 53, 58] have been well-studied offers
multiple alternatives in program dynamic testing.

Among the sanitizer designs, ASan [24, 47] is the most
widely-used sanitizer integrated into the mainstream compiler
thanks to its lightweight shadow memory-based checking
mechanism and high compatibility [48]. RUSTSAN aims to
retrofit ASan for Rust by eliminating redundant checks while
inheriting its portability and compatibility.

9.2 Optimizing sanitizers for performance

Sanitizers often induce a very high runtime overhead, so pre-
vious works have endeavored to optimize them.

Eliminating sanitizer checks. Identifying and removing
redundant sanitizer checks has been one of the approaches for
lowering the runtime overhead [16, 25, 32, 43, 51, 60]. Several
works have located and removed unnecessary checks through
accurate static analysis methods without compromising de-
tection coverage. For instance, SANRAZOR [59] combines
dynamic code coverage data and static data dependencies
of checks to find redundant sanitizer checks. ASan-- [60]
perform lightweight static analysis to detect and remove re-
curring checks and optimize sanitizer checks. These works
have sought to optimize ASan for its intended target programs,
such as the ones written in C/C++. On the other hand, RUST-
SAN points out ASan’s inefficiency for only partially-unsafe
Rust programs and proposes a solution.

Making tradeoffs. Some works propose a trade-off be-
tween detection capability and performance for a chosen per-
formance budget. ASAP [47] profiles the target programs to
determine frequently accessed code sections with the most
performance gain when sanitizer checks are removed. SAN-
RAZOR [59] offers a configuration with a sanity level for
varied performance trade-offs. Unlike these works, RUST-
SAN retains ASan’s detection capabilities while providing
additional rust-specific safe object protection.

Optimizing sanitizer runtime. A few works focused on
optimizing the sanitizer runtime to make it more suitable for
certain workloads, such as fuzzing. Fuzzan [27] designed
an efficient metadata for redzone management to accelerate
fuzzing with ASan. PartiSan [35] partitions the application
into sanitized and unsanitized slices so that the unsanitized
slice can run without the overheads. Bunshin [57] divides
sanitizer checks among various programs that are run concur-
rently. We expect that RUSTSAN can be combined with these
techniques to further optimize its performance.

9.3 Securing Rust Programs

Static analysis for securing Rust. Static analyzers have
been introduced to detect bugs in unsafe Rust. Rudra [14]
introduced a scalable static analysis in Rust’s MIR and HIR
to find bugs with specific patterns. MirChecker [37] com-
bines static numerical analysis and symbolic execution in
MIR to detect potential runtime panic and memory errors. Ru-
pair [26] automatically detects the overflow inside the unsafe
code and rectifies it using a lightweight dataflow analysis in
MIR. RUSTSAN also adapts HIR and MIR analysis to achieve
a more fine-grained information extraction on the Rust un-
safe blocks. Static and dynamic testing of programs offers
varying advantages and disadvantages depending on the use
case. Unlike these works, RUSTSAN is a runtime sanitizer
that detects memory errors during program execution (e.g.,
through fuzzing).

Runtime isolation for Rust programs. Many proposed
runtime isolation mechanisms to contains the ramifications
of memory errors triggered by unsafe blocks and memory-
unsafe external libraries. XRust [38] and TRust [15] introduce
a split memory allocator scheme and place objects touched
by unsafe into the unsafe heap. They also include custom
instrumentation frameworks that contain safe memory instruc-
tions affected by unsafe objects (false-safe as explained in
§3.1). MPK-based isolation is also explored to isolate the
memory access by the C libraries [15,31,45]. PKRUSafe [31]
automatically identifies objects shared between Rust and C
through dynamic profiling and isolates memory accesses to
those objects using MPK.

The static analysis methods for identifying the safety of
Rust program instructions and objects [15,38] inspired RUST-
SAN, while RUSTSAN improves them with its statement-level
analysis in MIR. Moreover, RUSTSAN is a sanitizer and there-
fore must detect memory errors as they occur. RUSTSAN
consciously inherits the compatibility and portability of ASan.
One concrete design decision in this regard is the avoidance
of architecture-specific features such as MPK. In addition,
it avoids computationally expensive techniques such as the
context-sensitive points-to analysis [15] to ensure scalability.

10 Conclusion

In this paper, we presented RUSTSAN, a retrofitted Address-
Sanitizer (ASan) design for Rust programs. RUSTSAN signifi-
cantly improves the performance of AddressSanitizer on Rust
programs through selective memory access site instrumen-
tation. The key insight was that a large number of sites still
retain Rust security guarantees and therefore identified and
freed of sanitizer checks. Our evaluation empirically proved
RUSTSAN’s detection capability through CVE reproduction.
Also, RUSTSAN showed 62.3% of performance gain against
ASan in the application benchmark, and 23.52% in the fuzzing
experiment.
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A CVE case study

1 fn to_bytes_vec(mut from: Vec<T>) -> Vec<u8> {

2 ...

3 let capacity = bytes.capacity() / size_of::<T>();

4 let len = bytes.len() / size_of::<T>();

5 unsafe{

6 Vec::from_raw_parts(ptr as *mut T, capacity, len )

7 }

8 }

(a) Heap overflow vulnerability in CVE-2018-21000.

1 let db = Connection::open_in_memory().unwrap();

2 {

3 let obj = Box::new(...);

4 let closure = |...| {

5 *obj = ...; // obj is captured here

6 };

7 db.update_hook(Some(closure));

8 }

9 fn update_hook<'c, F>(&'c self, hook: Option<F>)

10 where

11 F: FnMut(Action, &str, &str, i64) + Send + 'c,

12 {

13 ...

14 let boxed_hook: *mut F = Box::into_raw(Box::new(hook));

15 unsafe {

16 ffi::sqlite3_update_hook(..., boxed_hook as *mut _)

17 }

18 }

(b) Use-after-free vulnerability in CVE-2021-45713.

Listing 4: CVE Case Studies

We provide the case studies that analyze the root cause of
memory error patterns in Rust and RUSTSAN detection on
them below.

Case Study 1: CVE-2018-21000. This CVE is a case of
heap overflow on the Rust implementation of transmute. Line
5 of Listing 4a is the culprit of the problem. Vec::from_raw_-
parts is a Rust standard library function that constructs a new
vector object from a raw pointer, taking vector length and
capacity arguments. The mistake here is the reversed second
and third argument order. In Rust terminology, the capacity of
a vector is the maximum space allocated accounting for the
future insertion of elements, while length refers to the current
number of elements in the vector. Hence, the constructed
vector is highly like to cause out-of-object-bound memory
access in later use. In our reproduction, RUSTSAN reported
object-end redzone access on an unsafe object at a false-safe
site.

Case Study 2: CVE-2021-45713. The CVE in rusqlite
was a case of use-after-free caused by a violation of the
Rust object lifetime guarantee in unsafe Rust. In Line 16
of Listing 4b, update_hook API casts the closure to a func-
tion pointer and registers it to the external foreign (C/C++)
library inside the unsafe block. The unsafe Rust and the for-
eign libraries do not conform to Rust’s lifetime guarantees.

As a result, the callback invoking when the closure and obj
dropped results in a use-after-free. With this CVE reproduc-
tion, RUSTSAN reported quarantined safe object access at a
false-safe site.

B Taint source reduction with HIR/MIR anal-
ysis

Scale. Set IR Size Identified taint source

XRust [38] RUSTSAN Decrease (%).

bat 712 3772 3066 18.72%
fd 410 8075 7007 13.23%
ripgrep 387 7907 6470 18.17%
tokio 289 16373 15382 6.05%
firecracker 244 9932 9021 9.17%
hyper 157 19210 17438 9.22%
Rocket 1911 47547 42534 10.54%
wasmtime 2253 44076 37630 14.62%
RustPython 2127 71697 60210 16.02%

Table 6: The identified taint source number with RUSTSAN
for large programs.

We also evaluated RUSTSAN’s and XRust [38]’s method of
HIR/MIR analysis for taint source identification (i.e., I1 and
I2 explained in §4). Note that XRust uses I1, all statements in
unsafe blocks, directly as a taint source while RUSTSAN uses
I2, which is a refined subset of I1 that only contains write
statements. Also, RUSTSAN can identify the statements inside
inlined functions, while XRust misses such statements. Hence
using the I2 set reduces the number of taint sources, while the
inlined functions increase RUSTSAN’s set compared to that
of XRust. Even so, RUSTSAN showed an average of 12.86%
decrease in the taint source set. This means that RUSTSAN
delivers more refined analysis results in the HIR/MIR stage
to the LLVM stage, thereby attenuating the complexity in the
LLVM IR analyses.

C Heap allocator microbenchmark
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Figure 6: Microbenchmark of RUSTSAN runtime heap alloca-
tion function (malloc()

RUSTSAN modifies the ASan’s heap allocator to color the
allocated memory with RUSTSAN’s shadow memory scheme.
To measure the overhead of the runtime shadow memory man-
agement, we compare the average execution time of malloc()
for varied allocation sizes using RUSTSAN and ASan. The
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allocation (malloc()) for each memory size was repeated 10
million times.

Figure 6 shows the experiment results; Against the alloca-
tor of ASan, RUSTSAN’s allocator shows an average overhead

of 5.52%. Based on this microbenchmark, we consider the
influence of heap allocator changes negligible in general ap-
plication and fuzzing benchmarks.

3746    33rd USENIX Security Symposium USENIX Association


	Introduction
	Background
	AddressSanitizer
	Rust safety model

	RustSan overview
	Definitions and memory validation model
	Cross-IR analysis
	RustSan shadow memory scheme

	Cross-IR: Rust HIR/MIR analysis
	Background: Rust HIR/MIR
	Statement-level memory access tracking
	Recursive safety scope analysis
	Allocation function identification

	Cross-IR: LLVM IR analysis
	Object and site classification pipeline
	Allocation site safety identification
	Adapting analysis techniques to Rust

	RustSan shadow memory scheme
	Safety-aware object allocation
	Selective instrumentation

	Evaluation
	Unsafe Rust usage statistics
	Detection capability: robustness of selective instrumentation
	Detection capability: cross-safety object access
	Compile time with RustSan
	Microbenchmarks
	Runtime overhead in general applications
	Fuzzing

	Security and robustness discussion
	Empirical validation
	Qualitative analysis

	Related Work
	Sanitizers for detecting memory bugs
	Optimizing sanitizers for performance
	Securing Rust Programs

	Conclusion
	CVE case study
	Taint source reduction with HIR/MIR analysis
	Heap allocator microbenchmark

