
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

GHunter: Universal Prototype Pollution
Gadgets in JavaScript Runtimes

Eric Cornelissen, Mikhail Shcherbakov, and Musard Balliu,
KTH Royal Institute of Technology

https://www.usenix.org/conference/usenixsecurity24/presentation/cornelissen

GHUNTER: Universal Prototype Pollution Gadgets in JavaScript Runtimes

Eric Cornelissen
KTH Royal Institute of Technology

Mikhail Shcherbakov
KTH Royal Institute of Technology

Musard Balliu
KTH Royal Institute of Technology

Abstract
Prototype pollution is a recent vulnerability that affects

JavaScript code, leading to high impact attacks such as arbi-
trary code execution and privilege escalation. The vulnera-
bility is rooted in JavaScript’s prototype-based inheritance,
enabling attackers to inject arbitrary properties into an ob-
ject’s prototype at runtime. The impact of prototype pollu-
tion depends on the existence of otherwise benign pieces of
code (gadgets), which inadvertently read from these attacker-
controlled properties to execute security-sensitive operations.
While prior works primarily study gadgets in third-party li-
braries and client-side applications, gadgets in JavaScript run-
time environments are arguably more impactful as they affect
any application that executes on these runtimes.

In this paper we design, implement, and evaluate a pipeline,
GHUNTER, to systematically detect gadgets in V8-based
JavaScript runtimes with prime focus on Node.js and Deno.
GHUNTER supports a lightweight dynamic taint analysis to
automatically identify gadget candidates which we validate
manually to derive proof-of-concept exploits. We implement
GHUNTER by modifying the V8 engine and the targeted run-
times along with features for facilitating manual validation.
Driven by the comprehensive test suites of Node.js and Deno,
we use GHUNTER in a systematic study of gadgets in these
runtimes. We identified a total of 56 new gadgets in Node.js
and 67 gadgets in Deno, pertaining to vulnerabilities such as
arbitrary code execution (19), privilege escalation (31), path
traversal (13), and more. Moreover, we systematize, for the
first time, existing mitigations for prototype pollution and
gadgets in terms of development guidelines. We collect a list
of vulnerable applications and revisit the fixes through the
lens of our guidelines. Through this exercise, we also identi-
fied one high-severity CVE leading to remote code execution,
which was due to incorrectly fixing a gadget.

1 Introduction

JavaScript’s widespread adoption as a go-to programming
language for full-stack development speaks to its popularity,

but it also exposes the applications to heightened security
risks. Researchers and practitioners are well-aware of these
issues, as witnessed by a multitude of prior studies [17, 46,
48,51]. JavaScript runtime environments, such as Node.js [4]
and Deno [3], which lie at the heart of server-side JavaScript
applications, become appealing targets for attackers [9,11,17,
29, 43, 45, 49]. Vulnerabilities in the runtime environments
can compromise the security of applications running atop.
In this paper, we set out to study the security implications
of a recent vulnerability, prototype pollution, in JavaScript
runtime environments.

Prototype pollution is a vulnerability affecting the
JavaScript language [10]. JavaScript’s prototype-based in-
heritance allows an object to inherit properties from its ances-
tors via the prototype chain. When accessing a property not
present on the object, the prototype chain will be queried for
that property instead. Unless explicitly changed, this chain
connects all objects to a common root prototype. Pollution
can occur when an attacker-controlled value is used to nav-
igate an object’s structure. Since each object has a runtime
accessible reference to its prototype, the attacker may be able
to pick that reference and add a new property. By doing this,
the attacker can cause a change in behavior in another part of
the application.

The security implications of prototype pollution depend on
the presence of otherwise benign pieces of code (gadgets) that
inadvertently read attacker-controlled properties from the root
prototype to execute sensitive operations, e.g., arbitrary code.
Gadgets in JavaScript runtime environments are particularly
dangerous because they are shared by all applications, thus
increasing the attack surface.

The vast majority of prior works focus on the detection of
prototype pollution by static analysis [26,29,30,43,49], while
the existence of gadgets remains largely unexplored [24, 31,
43,44]. This work is inspired by the recent pioneering of work
of Shcherbakov et al. [43], which uses static taint analysis for
three Node.js APIs to find (combinations of) three gadgets,
dubbed universal gadgets, leading to arbitrary code execution.
Our thesis is that dynamic analysis should be preferable for

USENIX Association 33rd USENIX Security Symposium 3693

identifying universal gadgets for these reasons: (a) the sources
of the analysis pertain to accesses of properties from the
prototype, which is hard to identify statically; (b) the highly-
dynamic nature of JavaScript poses significant challenges
for static analysis, resulting in low precision and recall, and
high manual effort [43]; (c) realistic gadgets should trigger in
common use cases of API usages, which is best captured by
the comprehensive test suite of runtime environments.

To address these challenges, we design, implement, and
evaluate a semi-automated pipeline, GHUNTER, to compre-
hensively and systematically detect universal gadgets in V8-
based JavaScript runtimes, Node.js and Deno. Deno is a par-
ticularly interesting target because it is proposed as a security-
first runtime to counter the shortcomings of Node.js. Specifi-
cally, GHUNTER customizes Deno, Node.js, and the V8 en-
gine to implement a lightweight dynamic taint analysis for
automatically identifying gadget candidates, which we val-
idate manually to derive proof-of-concept exploits. Driven
by the test suite of a runtime environment, GHUNTER de-
tects property accesses from an object’s prototype, it injects a
taint value, and monitors the execution to identify the effects
of the taint value on security-sensitive sinks and unexpected
terminations. Moreover, GHUNTER supports processing and
representation of gadget candidates in SARIF format [36] for
visualization to facilitate the manual analysis.

We use GHUNTER in a comprehensive study of Node.js
and Deno to identify universal gadgets pertaining to a range
of vulnerabilities, including arbitrary code execution, server-
side request forgery, privilege escalation, cryptographic down-
grade, and more. After processing, GHUNTER automatically
identifies 301 and 418 gadget candidates in Node.js and Deno,
respectively. We manually verified the gadget candidates to
find 56 universal gadgets in Node.js and 67 universal gadgets
in Deno for a total of 28 person-hours. We further compare
GHUNTER with Silent Spring [43], showing that it provides
increased precision and recall, while reporting less gadget
candidates for manual analysis. To support further research
on the topic, we make available publicly both GHUNTER [14]
and the gadgets [20].

We have responsibly disclosed our findings to the Node.js
and Deno development teams. Both acknowledged our report
but neither considers them within their current thread model.
Node.js suggested a public discussion with their developers’
community on the dangers of gadgets.

In light of these results, we systematize, for the first time,
existing mitigations for prototype pollution and gadgets in
terms of development guidelines. We then collect a list of
applications with end-to-end exploits pertaining to prototype
pollution, and revisit the fixes through the lens of our guide-
lines. Through this exercise, we also identify existing issues,
including one high-severity CVE-2023-31414 leading to re-
mote code execution, which was due to incorrectly fixing a
gadget.

Our contributions can be summarized as follows:

1 const users = { };
2 router.post("/:uid", (req, res) => {
3 users[req.uid][req.key] = req.value;
4 exec("echo ’A value was stored at’ $(date)");
5 res.status(200).send();
6 });
7 function exec(cmd, opts) {
8 opts = opts || {};
9 const shell = opts.shell || "/bin/sh";

10 op_spawn(‘${shell} -c ’${sanitize(cmd)}’‘);
11 }

Listing 1: Example of prototype pollution and gadget.

• We design and implement a semi-automated pipeline,
GHUNTER, to systematically detect universal gadgets in
JavaScript runtimes (Section 4).

• We conduct a comprehensive analysis of Node.js and Deno
to find 123 universal gadgets subject to a range of vulnera-
bilities (Section 5).

• We systematize existing mitigations against prototype pollu-
tion and gadgets, and outline directions for future work, in-
cluding an in-depth case study leading to RCE (Section 6).

2 Technical Background

In this section, we overview the life cycle of exploits per-
taining to prototype pollution vulnerabilities, and discuss the
JavaScript runtime of interest and the threat model.

2.1 Prototype Pollution and Gadgets

Prototype pollution is a vulnerability that occurs in prototype-
based languages like JavaScript [10]. An attacker manipulates
a program’s prototype-based inheritance, leading to runtime
modification of objects and potentially causing otherwise be-
nign code sequences, called gadgets, to execute dangerous
operations. End-to-end exploitation of gadgets based in pro-
totype pollution requires two steps. The prototype must be
polluted first, for example when processing untrusted user
data incorrectly, and then the gadget must be triggered.

To illustrate the vulnerability, Listing 1 shows an artificial
server application which provides an in-memory key-value
store for its users, logging every request to standard output. It
is vulnerable to prototype pollution and uses function exec
as a gadget. exec (line 7-11) is an otherwise benign runtime-
provided function to execute a command. It accepts the com-
mand to execute as a string and an optional object opts to
configure the shell in which to execute the command.

A request at vuln.com/uid?key=value causes the server
to invoke the handler on line 2-6. It extracts the user ID and
the key-value pair from the URL and stores it in memory (line
3). It then logs the time of the request (line 4) and responds
with a 200 status code (line 5).

3694 33rd USENIX Security Symposium USENIX Association

An attacker can use this handler to per-
form prototype pollution. The malicious request
vuln.com/__proto__?shell=node -e ’...’ will
add the property shell with the value "node -e ’...’;"
to the root object prototype on line 3. This happens
because the request instantiates the statement on line 3 as
users["__proto__"]["shell"] = "node -e ’...’;".
In particular, users["__proto__"] gives a reference
to Object.prototype which is then extended with the
property shell.

The attacker can capitalize on the pollution of the shell
property to turn the benign call to exec into a remote
code execution gadget. In particular, because the applica-
tion provides no options on line 4, line 8 assigns to opts an
empty JavaScript object. When evaluating the expression
opts.shell on line 9, the shell property, missing from
opts, will be looked up in the prototype chain where it ex-
ists because of the pollution. Thus, opts.shell evaluates
to "node -e=’...’;" and is used instead of the default
"/bin/sh" to evaluate arbitrary JavaScript code.

2.2 JavaScript Runtimes: Node.js and Deno
In this work, we study universal gadgets in JavaScript runtime
environments. Two such runtime environments are Node.js
and Deno. Both are open source software projects built on
top of the V8 JavaScript engine from Chromium. Node.js is
a popular JavaScript runtime [4] written in C++, commonly
used for server application development. Deno was created in
response to Node.js with a focus on security [3]. It is written
in Rust and uses TypeScript. The native (C++/Rust) parts of
these runtimes are what provides access to system resources
and common functionality such as buffers and cryptography
libraries. In this work we focus on these runtimes because of
their popularity and shared JavaScript engine.

Deno’s focus on security is interesting for our work be-
cause it adds guardrails for both pollution and gadgets. On the
pollution side, Deno removed the __proto__ property, ren-
dering the attack described on Listing 1 infeasible. However,
prototype pollution is still possible through, e.g., object merge
functions, a common source of prototype pollution. On the
gadget side, Deno has a permission system to reduce access
to system resources and by extension the impact of gadgets.
However, we observe that the presence of a gadget implies
some access to the corresponding resource must have been
granted to the application, thus allowing exploits nonetheless.

2.3 Threat Model
Our threat model focuses on server-side JavaScript/TypeScript
applications running on either Node.js or Deno. We assume
the application is vulnerable to prototype pollution, either
directly or through third-party code. Our aim is to find ex-
ploitable universal gadgets present in the JavaScript runtime

for the purpose of one of (directly or indirectly):

• Arbitrary Code/Command Execution (ACE). Gadgets that
allow an attacker to execute arbitrary JavaScript code or
start an arbitrary command.

• Server Side Request Forgery (SSRF). Gadgets that allow
an attacker to make arbitrary network requests.

• Privilege Escalation. Gadgets that allow an attacker to per-
form an action their normal privileges do not allow.

• Cryptographic Downgrade. Gadgets that downgrade the
cryptography used by the application to be weaker.

• Path Traversal. Gadgets that allow the attacker to manipu-
late the path of file system operations.

• Unauthorized Modifications. Gadgets that allow the at-
tacker to trigger modifications that should not happen as a
result of normal operation.

• Log Pollution. Gadgets that change or control the contents
of program logs.

• Denial of Service (DoS). Gadgets that deny access to the
application.

We posit that many applications use some of these APIs in
practice because of the importance of the functionality they
provide. Furthermore, we assume that the runtime’s own test
suite contains a representative sample of ways to use the APIs.
As a direct consequence, the presence of a gadget in a runtime
implies vulnerabilities in real-world applications.

3 Overview

At a high level we develop a semi-automated dynamic anal-
ysis pipeline, GHUNTER, for finding gadgets in runtime en-
vironments, as depicted in Figure 1. To achieve this goal,
GHUNTER operates in three automated steps and one manual
step. Driven by the runtime’s test suite, the first step identi-
fies candidate properties for prototype pollution by detecting
undefined property accesses. In the second and third step,
GHUNTER uses these candidate properties to simulate pollu-
tion and detect reachability of dangerous sinks and unexpected
termination, respectively. These steps also rely on the run-
time’s test suite and generate output for gadget identification.
The final step consists in manually verifying the results of the
second step, after preprocessing, using visualization of SARIF
files in IDEs, and generating proof-of-concept exploits.

Listing 2 shows a universal gadget in Deno, which we will
use to illustrate the workflow of GHUNTER along with the dif-
ferent challenges we have to tackle. Consider an application
that uses the runtime API fetch, defined in Listing 2, to fetch
user details from another service, for a given trusted user iden-
tifier uid. The application will eventually execute the com-
mand fetch("https://192.168.3.14/users/"+uid) to
safely retrieve user information. Given the assumption that
the application is vulnerable to prototype pollution, our goal
is to find out how we can use prototype pollution to turn this
seemingly benign request into a malicious gadget.

USENIX Association 33rd USENIX Security Symposium 3695

Validation

Test Runner

Modified
Node.js/Deno

Modified
V8

Source
properties

Source to
Sink flows

Unexpected
terminations

SARIF

VSCode

Test suite

Gadget
candidate
generator

1 2 3 4

Figure 1: Architecture and workflow of GHUNTER.

Step 1: Collecting source properties A key requirement is
to find properties that influence the behavior of a runtime API.
These properties must not be defined so that they are looked
up in the prototype chain and a polluted value is used instead.
Hence, GHUNTER needs to determine which undefined prop-
erty accesses happen as a result of normal usage of a target
runtime API. This is achieved by observing the runtime be-
havior of code and taking note of undefined property accesses.
Moreover, GHUNTER uses the runtime environment’s test
suite as a representative sample of normal usage of the API.

For the fetch API in Listing 2, GHUNTER runs Deno’s
test suite to collect a list of undefined properties that includes
method (line 3) and signal (line 9). This leads us to our first
challenge of automatically identifying undefined property
accesses driven by the test suite of runtime APIs, which we
discuss in Section 4.1.

Step 2: Identifying source-to-sink flows GHUNTER uses the
list of undefined property accesses from the previous step as
sources for further analysis. To determine if a property is used
for a purpose that is exploitable, GHUNTER implements a
lightweight taint analysis that identifies the reachability of val-
ues of polluted properties into dangerous sinks. Driven by the
test suite, it pollutes the undefined properties with taint values
and checks whether these values affect the native (C++/Rust)
code of the runtime environment, which conservatively repre-
sents security-relevant sinks.

The function call to op_fetch in Listing 2 (line 13) exe-
cutes Deno’s native networking implementation for fetch. To
determine if a polluted value can reach op_fetch, GHUNTER
simulates prototype pollution and detects the polluted prop-
erty value in the call to op_fetch. For the property method,
GHUNTER pollutes the property with a taint value and runs
the corresponding test case, while intercepting every call to
op_fetch and checking all arguments for the presence of the
taint value used for pollution. Indeed, given the list of prop-
erties for fetch, GHUNTER finds that the property method
reaches the sink op_fetch on line 13. This leads us to our
second challenge of automatically identifying flows from un-
defined properties to sinks, which we discuss in Section 4.2.

Step 3: Unexpected termination If normal usage of a run-

1 class Request {
2 constructor(input , init = {}) {
3 this.method = init.method || "GET";
4 // ...
5 }
6 }
7 function fetch(input , init = {}) {
8 const request = new Request(input , init);
9 const promise = mainFetch(request , false,

request.signal);
10 //...
11 }
12 async function mainFetch(req, recursive ,

terminator) {
13 const res = op_fetch(req.method , /*...*/);
14 terminator[abortSignal.add]();
15 //...
16 }

Listing 2: Simplified Deno fetch implementation.

time API (as represented by the test suite) does not result in a
crash but the pollution of an undefined property does cause
the API to crash, it implies that an attacker can use the API
to cause Denial of Service (DoS) attacks. Similarly to Step
2, GHUNTER leverages the runtime’s test suite to detect DoS
attacks pertaining to prototype pollution. When polluting the
property signal on line 9, GHUNTER causes the fetch API
to crash due to a type error on line 14. This leads us to our
third challenge of automatically identifying fatal crashes that
cause DoS attacks on applications that use the APIs under
pollution, which we discuss in Section 4.3.

Step 4: Manual validation The previous automated steps
yield a list of potential sinks and unexpected program crashes
pertaining to pollution of undefined properties. These results
do not necessarily imply that a runtime API is exploitable,
but require manual validation. To aid the security analyst,
GHUNTER supports processing (e.g., removal of duplicates
from different test cases) and representation of results in
SARIF format for visualization within an IDE.

In our example, the SARIF file contains two results,
called gadget candidates, for the fetch API: One for
property method reaching the sink op_fetch and one
for property signal resulting in a program crash. The
manual analysis of method reveals that an attacker can
override the default HTTP method from GET at wish,
revealing a true gadget. For instance, they can pollute
method with value DELETE, thus causing the command
fetch("https://192.168.3.14/users/"+uid) to delete
user records (in Section 5 we extend this attack to full Server
Side Request Forgery). The analysis of the program crash due
to signal reveals an attacker can perform a DoS attack, thus
denying users of access to data. In Section 4.4 we discuss this
final challenge of effectively validating gadget candidates.

3696 33rd USENIX Security Symposium USENIX Association

4 System Design and Implementation

We design GHUNTER to overcome the challenges outlined
in Section 3. In line with the architecture and workflow of
Figure 1, this section describes and motivates our design and
explains how it supports comprehensive analysis of JavaScript
runtime environments for finding gadgets. First, we discuss
source properties and detail our approach to capturing them
exhaustively. Second, we show how to achieve comprehen-
sive coverage for sinks into native runtime code and how to
identify source-to-sink flows by our lightweight taint analysis.
Third, we discuss unexpected termination and how to detect
fatal terminations leading to DoS attacks. Finally, we discuss
the process of preprocessing and manually validating results,
as well as the current limitations of GHUNTER.

Along with the discussion of the design we also describe
the implementation of GHUNTER, which we implement
against Node.js v21.0.0 and Deno v1.37.2. These are the
most recent versions of the respective runtimes that share a
common V8 engine version, namely v11.8.172.17.

4.1 Source Properties
In this work we consider undefined property accesses as
sources. At a high level, an undefined property access happens
when code tries to read a property that is not one of the ob-
ject’s own properties. There are many ways in which this can
happen in JavaScript, including obj.prop as seen on line 3 of
Listing 2, computed property names such as obj[str_var],
array-indexed properties such as obj[1], for-in loops, and
various syntactic sugar forms such as destructuring assign-
ment. These features pose significant challenges for static
analysis approaches [43], leading to both false positives (due
to conservatively computing undefined properties) and false
negatives (due to computed property names).

To ensure we comprehensively capture all undefined prop-
erty accesses we modify the V8 runtime to trap on property
accesses that are looked up but not present in the root object’s
prototype object. This conservatively covers all property ac-
cesses that may be influenced by prototype pollution, exclud-
ing pollutions with other side effects (i.e. existing prototype
properties) and circumstantial pollutions of specific types.

Because gadgets are pre-existing runtime API function
calls in application code, we are interested in undefined prop-
erty accesses that happen as a result of normal API usage.
Thus, we leverage the runtime’s test suite as a proxy of real
API usage and capture all undefined property access that oc-
cur during test execution. We store the observed property
names on a per-test basis for use in the next steps.

For our example of Section 3 this step yields 95 properties
for fetch from the fetch_test.ts test suite in Deno.

Implementation To intercept all property accesses, we
modify the code of Runtime::GetObjectProperty and
LoadIC::Load methods, which look up the property name

in an object’s prototype chain to read a property value. If the
property is not found in the chain we log the access attempt.

However, V8 implements optimizations to avoid slow calls
to these methods when the property name can be easily
determined, as in obj.prop. Thus, we deoptimize the in-
line caches [12] and remove the bytecode handlers in the
methods AccessorAssembler::LoadIC_NoFeedback for
named properties and AccessorAssembler::KeyedLoadIC
for array-indexed properties. This allows us to trap on every
property access, albeit with some performance degradation.

We also implement a separate file logger to dump the re-
sults of our tests and extend the globals object with the log
function. This enables our modifications in the test suite to
use the same logs for dumping call stacks as described later
in this section. The changes to V8 are limited to 8 files and
modify 233 lines of code in total.

4.1.1 Simulating Pollution

Given the names of undefined properties that are accessed for
a test, we want to simulate pollution of these properties to
observe how it affects the behavior of the runtime. To this end
we extend the test runners to automatically modify test files
by injecting a code snippet that simulates prototype pollution.

To maximize effectiveness, the polluting snippet is injected
at the top of the test file. This ensures the entire test execution
is affected by the pollution. In comparison to injection using
preloaded modules (e.g. through --require or --module in
Node.js) this avoids affecting irrelevant accesses that happen
before the test is started.

We use this prototype pollution simulation in the next two
steps. In particular, if N unique undefined property accesses
were detected for a test, we run for both the second and third
stage of GHUNTER with N different instances of that test,
each with a different property polluted.

For our example this means the fetch_test.ts test file
in Deno is dynamically updated on the fly with a snippet that
pollutes one of the 95 detected properties at a time.

Implementation We use two types for the injected val-
ues: strings and objects. To assign the property we use
Object.defineProperty to add gettable (and settable)
value. This allows us to output a stack trace for all accesses
to that property. Additionally, we utilize this getter to return
a unique identifier (incremental number) for every access so
that we can match sources and sinks by the tainted value. List-
ing 9 shows the injected snippet for string values, while the
snippet for object values is similar [14].

One of the values we use is a hexadecimal string so that it
can be converted into a number, if needed. To support code
that expects Object as the type for polluted values, we inject
objects built based on JavaScript Proxy. These tainted values
emulate the reading of arbitrary properties via ProxyHandler,
access to an iterator to support for-of loop against this object,

USENIX Association 33rd USENIX Security Symposium 3697

and conversion to primitive types. Each of these access meth-
ods also produces a tainted value to propagate the taint mark.

4.2 Source-to-Sink Flows
We consider function calls where JavaScript executions flow
into the runtime’s native code as sinks. To be able to exhaus-
tively cover such sinks we study the ECMAScript standard [7]
to determine function calls that flow into V8 as well as the
runtime’s development documentation to understand where
such flows occur for the runtime’s native modules.

For V8, we find that functions such as eval and
new Function() are the sinks that create a function at run-
time from their string arguments. In particular, both functions
create and subsequently execute JavaScript code. Thus, if a
polluted value is used as (part of the) input to these functions,
an attacker can potentially execute arbitrary code.

For Node.js, based on its contributor documentation [1]
and source code, we identified internal APIs that interoper-
ate with the C++ implementation from JavaScript: linked
bindings and internal bindings. After conducting tests, we
confirmed that linked bindings are intended for develop-
ers to extend Node.js with additional C++ bindings, and
this method is not used for Node.js runtime APIs. Conse-
quently, we determined that internal bindings comprehen-
sively cover all data flows from JavaScript to the C++ part
of Node.js and are implemented in a single JavaScript file:
lib/internal/bootstrap/realm.js.

For Deno, similar to Node.js, we identify bindings as the
only bridge between JavaScript and Rust. This is based on
the contributor documentation for #[op] and #[op2] Rust
attributes used throughout the Deno code base. As a result
we identify a single template file written in JavaScript in the
deno_core codebase that comprehensively covers all flows
from JavaScript to Rust: core/runtime/bindings.js.

When the sink receives a tainted value as one of its argu-
ments, it logs information about the sink being reached. This
includes the sink name, call stack, tainted value with an iden-
tifier for source matching, and the access path if the tainted
value is detected in a nested property of the argument.

For the running example of Section 3 this step yields only
one result in Deno, namely that of pollution of the method
property into the op_fetch binding.

Implementation To capture flows involved in cre-
ating functions at runtime, we modified the method
Compiler::GetFunctionFromEval(). This method gener-
ates a function from a string passed into its first argument. Pub-
lic APIs such as eval and new Function() use this method.
We test the value of the first argument, and if it contains our
tainted mark as a substring, we log the argument’s value along
with a record that this sink was triggered.

To capture the flows via binding code we implement a
wrapping layer that we apply to all bindings for both runtimes.
This wrapper recursively replaces all functions on a JavaScript

object with a new function that inspects the arguments for
tainted values, calls the original function, and returns its result.
If a tainted value is detected we log the sink name, the argu-
ment index, the current stack trace, and (if applicable) the path
to the tainted value for objects (e.g. x if the value of property
o.x was tainted). This wrapper consists of approximately 380
lines of JavaScript code and is used in both realm.js and
bindings.js for Node.js and Deno respectively.

4.3 Unexpected Termination
Besides dangerous sinks we are also interested in pollutions
that result in unexpected or non-termination of the program,
indicating potential DoS attack. We focus on fatal crashes
that JavaScript code cannot catch and thus terminates the ap-
plication immediately. Because crashes may happen with no
tainted value reaching a sink, we perform this evaluation sepa-
rately. GHUNTER can also detect non-fatal crashes (catchable
in JavaScript), which we do not include in our results.

To comprehensively cover unexpected termination as a
result of pollution, we monitor all test executions and look for
processes that exit with a non-zero exit code. If a non-zero
exit code is detected we evaluate the stdout and stderr of the
process to filter out expected failures such as test failures in
order to report only unexpected errors such as segfaults/panics,
Out Of Memory (OOM), and timeouts.

To avoid reporting crashes that may happen as a result
of our runtime modifications, we perform this analysis on
the original runtimes. This works because this stage relies
exclusively on externally available information, namely the
previously-obtained list of undefined property accesses.

For the running example of Section 3 this step yields only
one result in Deno, namely that of pollution of the signal
property leading to an unexpected TypeError.

Implementation To perform this part of the analysis, we
re-use the test runner that modifies test files with prototype
pollution and instruct it to use the unmodified version of
the runtime. We extend the test runner to examine the exit
code and output (stdout and stderr) for each test it runs.
In particular, if the exit code is nonzero, it will check if the
output matches an expected error (e.g. a test failed) and if it
does not, log the polluted property name and process output.

4.4 Manual Validation
To effectively validate and create proof-of-concept exploits
from the results of Section 4.2 and Section 4.3, we produce
a SARIF file with all necessary information for manual vali-
dation. The SARIF file format, in combination with a SARIF
file viewer, provides a convenient way for an analyst to inter-
actively view results and browse relevant code locations.

We preprocess the output of stages 2 and 3 to obtain a
gadget candidate for each unique detected sink or unexpected
termination. For a reached sink, this is determined by the

3698 33rd USENIX Security Symposium USENIX Association

property name and the stack trace for the sink call or the
stack trace for the polluted property access. For unexpected
termination, this is determined by the termination output.

For each gadget candidate, we include all relevant infor-
mation for validation and creation of a proof of concept. For
detected sinks the gadget candidate is presented as a triple
consisting of the polluted property name as well as the API
and sink represented by the stack trace for the source and sink
(SARIF viewers allow for interactively browsing the stack).
We also provide the value observed at the sink which helps
the analyst understand if the runtime manipulates the polluted
value. For unexpected terminations, we are limited to provid-
ing the program output after the crash, but additionally we
provide the name of the polluted property as well as the test
file that crashed.

While each result represents only a single polluted property,
if multiple properties affect the same API and sink these
results will be co-located in the generated SARIF file. This
allows the analyst to combine multiple properties in a proof
of concept. Thus, in contrast to a gadget candidate, a gadget
is a triple consisting of the set of properties, API and sink. We
remark that GHUNTER only detects that a value reaches the
sink but not the intended type or structure of that value. The
analyst has to analyze the API documentation and code to
understand what values to use in the proof-of-concept exploit.

For the running example of Section 3, the SARIF file con-
tains two entries, one for the detected flow from the property
method to the sink op_fetch and one for the unexpected
error as a result of polluting the property signal.

Implementation We generate the SARIF file from the logs
of the second and third stages. For the second stage we look
for sinks where a tainted value was observed and the corre-
sponding source (property access for that exact value). As a
result any source that does not reach a sink is automatically
discarded. If no source can be found for a taint value at a sink
(e.g. due to modifications to the value), it is reported to the
analyst separately. For the third stage we report any test run
resulting in a non-zero exit code with a stderr message other
than a test failure, excluding tests that failed in the initial run.

4.5 Limitations

Full-fledged taint tracking Our lightweight taint analysis
favours performance. This can be seen as a limitation with
respect to manual validation because the complete flow from
source to sink is not readily available. In practice, we find that
the runtime code is relatively simple for most cases, and the
flow from source to sink can be identified quickly. Secondly,
our lightweight taint tracking may miss flows from sources
to sinks in the event that the taint value is removed in certain
operation (e.g. splice). Again, we observe that most runtime
code does not perform modifications on values beyond simple
transformations such as converting a string to uppercase.

Polluted types The pollution simulation only pollutes using
strings and objects. We could additionally cover numbers and
arrays for pollutions (booleans cannot be taint tracked with our
approach). This would only find flows where an explicit type
check prevents the tainted value from reaching a sink. Besides
polluting with different types, techniques such as concolic
execution [31, 47] could be used to improve coverage too.
Gadget chains In contrast to works on gadget detection in
libraries and frameworks [31, 44], GHUNTER cannot find
gadget chains where one pollution enables another. This is
because GHUNTER pollutes only a single property at the time.
Running an analysis where multiple properties are polluted at
the same time is possible in theory, but infeasible in practice
due to the number of possible combinations of properties.
Binding coverage For Node.js we are unable to cover 25 bind-
ings because they exist at a property that is not configurable
or not writable, thus preventing us from wrapping them. We
evaluated these functions and find them to have little security
relevance. For Deno we were unable to wrap 4 bindings, all
async, because they do not take any arguments. Such sinks are
not interesting for our analysis so we consider this a non-issue.
Test suite limitations Our approach relies on the comprehen-
siveness of the runtime’s test suite. We are thus limited in
our analysis by the coverage of the source code by the test
suite. We evaluate the coverage statistics and find 95.8% and
91.4% function coverage in Node.js and the Deno standard
library respectively. These percentages give confidence in the
comprehensiveness of our analysis.

5 Evaluation

This section describes the results of our comprehensive evalu-
ation on Node.js and Deno, answering the research questions:

• RQ1: How can we effectively identify exploitable universal
gadgets in the Node.js and Deno runtimes?

• RQ2: How does GHUNTER compare to Silent Spring?
• RQ3: What is the performance overhead of our taint-

enhanced runtimes as compared to the original runtimes?
How to empirically validate transparency of our taint-
enhanced runtime with respect to the original runtimes?

Experimental setup We conduct our experiments on an AMD
EPYC 7742 64-Core 2.25 GHz server with 512 GB of RAM.
To optimize server resource utilization, we execute tests in
parallel. We utilize a modified test runner script that runs test
files in parallel with a 20 second timeout per test file. For
Node.js we adopt the existing test.py runner, for Deno we
write a custom runner that invokes deno test.

5.1 Universal Gadgets in Node.js and Deno
We demonstrate the effectiveness of GHUNTER through the
number of detected gadgets in light of the number of outputs
for intermediate analysis steps.

USENIX Association 33rd USENIX Security Symposium 3699

Analysis of Node.js The target of our analysis of Node.js is
the standard library built into the Node.js binary. The first step
of our analysis produced 509,481 unique test-property combi-
nations for 3,782 test files. The second and third steps of our
analysis found 22,860,092 sinks reached, 9,743 segfaults, and
6 tests that timeout. Preprocessing of results reduced the num-
ber of sink-source pairs to 13,029 unique pairs and segfaults to
13 (no reduction in test timeouts). Furthermore, we excluded
source-sink pairs that could only lead to Denial of Service:
11,730 sinks related to infrastructure code such as type check-
ing, internal utils, asynchronous call wrappers, exception and
error message builders; 120 in buffer.byteLengthUtf8;
258 in messaging.postMessage, which sends messages be-
tween workers; and 101 in the buffer parameter in fs.read
which is used for output of the sink call. After filtering, there
are 820 gadget candidates out of which we confirmed 56 to
be exploitable. The manual verification process required 31
person hours.

Analysis of Deno Our analysis of the Deno runtime covers
the core API (accessible by Deno), the Node.js compatibility
module, and the Deno standard library. We ran our pipeline
on each separately, but accounted for duplicates when aggre-
gating the results, which we report here.

The first step of our analysis produced 21,786 unique test-
property combinations for 596 test files. The second and third
steps of our analysis found 13,519 sinks reached, 1 panic, and
139 tests that timeout. Preprocessing of results reduced the
number sink-source pairs to 399 unique pairs, 18 tests that
timeout, and no reduction in panics. As a result, we obtained
418 gadget candidates out of which we confirmed 67 to be
exploitable. The manual validation took 15 person hours.

Node.js vs Deno We observe quite a large difference in num-
bers when comparing Node.js to Deno. First, Node.js pro-
duces significantly more results. One reason for this is that
Node.js has a larger test suite (both in terms of test files and
test cases). Despite Deno’s security focus, we find similar
number of exploitable gadgets. One reason for this is that
Deno has a larger API surface. Another is that prior work on
gadgets has resulted in some protections being implemented
in Node.js, in fact some of the gadgets we find in Deno were
previously identified and addressed in Node.js.

Result classification We categorize our universal gadgets
by the strongest exploit they can be used for. If multiple
properties can be combined to achieve a stronger exploit, we
consider only the combination and not the weaker exploits per-
taining to a subset of properties. Table 1 shows the aggregate
number of gadgets per exploit category.

We omit gadgets without a security impact or that only
cause a JavaScript exception (they have limited impact since
applications can catch such exceptions). We include gadgets
that presume an existing vulnerability (e.g. to write a file on
the systems) and call these second order gadgets.

New detected gadgets We highlight 4 gadgets here and refer

Attack Type Node.js Deno
Arbitrary Code/Command Execution 14 5

Server Side Request Forgery 6 3
Privilege Escalation 7 24

Cryptographic Downgrade 2 0
Path Traversal 3 10

Unauthorized Modifications 0 10
Log Pollution 0 1

Panic/Segfault 12 1
Out of Memory 0 3

Infinite Loop 0 2
Second Order 12 8

Total 56 67

Table 1: Number of gadgets found by type per runtime.

to Table 5 and Table 6 in Appendix, and code artifact [14] for
the complete list of gadgets.

Listing 3 shows a proof of concept (PoC) of the fetch
gadget from Section 3. In addition to the property method,
polluting the properties body and headers allows attackers
to control all aspects of the request to the application-specific
URL. Moreover, due to the way Deno’s fetch implementa-
tion stores request URLs internally, the pollution of property
0 allows the attacker to override the URL and achieve SSRF.
This gadget transforms a simple benign-looking request like
fetch("http://example.com") into a completely unre-
lated HTTP request.

1 // send a POST request to http://fake.com
2 ///
3 // PROTOTYPE POLLUTION:
4 Object.prototype[0] = ’http://fake.com’
5 Object.prototype.method = ’POST’
6 Object.prototype.body = ’{"pwned":"yes"}’
7 Object.prototype.headers = {"content -type":"

application/json"}
8 ///
9 // GADGET:

10 fetch(’http://example.com’)

Listing 3: PoC of fetch gadget (Deno).

Similarly, we found that the fetch API of Node.js can also
exploited to achieve SSRF attacks. In addition to controlling
method and body, an attacker is able to pollute socketPath
to redirect HTTP requests to a local socket rather than the
specified URL. This gadget can be exploited to target local
daemons, such as Docker.

Another universal gadget in Deno allows for path traversal
on temporary files. Polluting dir allows an attacker to control
where Deno.makeTempDir and Deno.makeTempFile create
temporary file system entries. Even if dir is specified by the
application, prefix still allows for path traversal by using a
string like ../ as a prefix (prior to Deno v1.41.1). Depending
on how the temporary file is used, this gadget can be a setup
for a stronger attack.

We also identify two new Arbitrary Code Execution (ACE)
gadgets in Node.js, located in the commonly used require
and import functions. The gadget in require has been fixed

3700 33rd USENIX Security Symposium USENIX Association

API GT Silent Spring GHUNTER
GC TP/FP FN GC TP/FP FN

cp.exec 2 20 1/19 1 3 2/1 0
cp.execFile 1 16 0/16 1 2 1/1 0

cp.execFileSync 4 21 3/18 1 7 4/3 0
cp.execSync 4 13 3/10 1 7 4/3 0

cp.fork 2 25 1/24 1 6 2/4 0
cp.spawn 3 14 2/12 1 5 3/2 0

cp.spawnSync 4 11 3/8 1 7 4/3 0
import 1 0 0/0 1 5 1/4 0
require 3 19 2/17 1 4 1/3 2

vm.compileFunction 1 4 1/3 0 5 0/5 1
Total 25 143 16/127 9 51 22/29 3

Table 2: Silent Spring vs GHUNTER on Node.js v16.13.1 with properties
used in Silent Spring gadgets as ground truth.

as of Node.js v18.19.0. We detail this gadget and its fix in
Section 6.3. The gadget associated with import, shown in
Listing 4, can be exploited by polluting the source property
with JavaScript code and invoking the import function on
any .mjs file. This causes the code from the property to be
evaluated.

1 ///
2 // PROTOTYPE POLLUTION:
3 Object.prototype.source =’console.log("PWNED")’
4 ///
5 // GADGET:
6 import(’./any_file.mjs’)

Listing 4: PoC of import gadget (Node.js).

5.2 GHunter vs Silent Spring
We compare the effectivess of GHUNTER and Silent
Spring [43] in finding universal gadgets. Silent Spring can de-
tect prototype pollution statically and also universal gadgets
in Node.js using a mix of dynamic and static taint analysis.
The two approaches differ in non-trivial ways. GHUNTER
uses dynamic analysis to detect pollutable properties at run-
time and it is driven by the test suite of a runtime environment.
In contrast, Silent Spring syntactically identifies any property
reads and uses them in a dynamic analysis to check if they
are pollutable. This causes challenges with properties that
are not identifiable statically, for example computed proper-
ties. Moreover, GHUNTER analyzes all APIs systematically
(subject to coverage by the test suite), while Silent Spring
analyzes only 3 APIs.

Because of these differences and the fact that some of the
gadgets from Silent Spring have since been fixed, we per-
form the following comparison: we use the gadgets identified
by both toolchains as a basis for ground truth and evaluate
whether or not each tool finds a gadget candidate (GC) for
each property used in the gadgets for a given API. This is
because both toolchains can only taint/pollute one property
at a time and report one GC per property. We focus only on
ACE gadgets as was the case in Silent Spring.

Our first experiment uses the gadgets of Silent Spring as
a ground truth on Node.js v16.13.1. We recreated PoCs for

API GT Silent Spring GHUNTER
GC TP/FP FN GC TP/FP FN

cp.exec 1 9 0/9 1 2 1/1 0
cp.execFile 1 9 0/9 1 2 1/1 0

cp.execFileSync 4 11 3/8 1 7 4/3 0
cp.execSync 2 3 1/2 1 3 2/1 0

cp.fork 1 5 0/5 1 1 1/0 0
cp.spawn 3 9 2/7 1 5 3/2 0

cp.spawnSync 4 6 3/3 1 7 4/3 0
import 1 0 0/0 1 1 1/0 0

vm.SyntheticModule 3 3 1/2 2 1 1/0 2
Total 20 55 10/45 10 29 18/11 2

Table 3: Silent Spring vs GHUNTER on Node.js v21.0.0 with properties used
in GHUNTER ACE gadgets as ground truth.

all its gadgets to determine the affected APIs and necessary
properties. Based on this we created new test cases in the style
of Silent Spring’s dynamic analysis. We reran both Silent
Spring and GHUNTER on Node.js v16.13.1 using these new
test cases to obtain the results shown in Table 2. Ground truth
(GT) is the number of GCs required to identify all gadgets of
an API. False negatives (FN) represent the number of GCs
that were identified manually (and not by a tool), but are in the
GT of a gadget. We see that GHUNTER is more precise (0.43
compared to 0.11) and has better recall (0.88 compared to
0.64). This is due to the underlying dynamic analysis, which
guarantees that a polluted property reaches a sink. GHUNTER
has three FNs because it lacks features necessary to detect the
sink (the require gadget requires a chain of pollution; the
vm gadget requires array support). For Silent Spring we find
nine FNs. The FNs for child process (cp) are due to the lack
of support for for-in analysis, causing it to miss one variant
of the gadgets. For import it fails to detect the gadget API
and for require it fails to detect one property; in these cases
the true and false positives would have allowed the analyst to
extrapolate the properties reported as FNs here.

Our second experiment uses the gadgets of GHUNTER as a
ground truth on Node.js v21.0.0. For a fair comparison, we
created test cases for ACE gadgets from Table 5 in the style of
Silent Spring’s dynamic analysis. We reran both GHUNTER
and Silent Spring on Node.js v21.0.0 using these new test
cases to obtain the results shown in Table 3. For this selection
of gadgets, GHUNTER finds more gadgets while reporting
fewer gadget candidates, again showing better precision (0.62
compared to 0.18) and recall (0.90 compared to 0.50), requir-
ing less manual work. Silent Spring again exhibits FNs for
all child process APIs because it lacks support for for-in
construct. For the import gadget, Silent Spring fails to detect
the API that triggers the gadget.

In summary, these experiments show that GHUNTER is
more precise, resulting in less manual work required and
higher accuracy. We believe this is primarily due to the fully
dynamic approach used by GHUNTER, which guarantees ev-
ery GC reaches a sink and provides support for dynamic
language features. The shortcomings of GHUNTER are due
to the limitations discussed in Section 4.5.

USENIX Association 33rd USENIX Security Symposium 3701

5.3 Performance Overhead and Transparency

We evaluated the performance overhead incurred by
GHUNTER in comparison with the unmodified JavaScript
runtimes. To evaluate the effect of the customized runtimes
and the customized V8 engines on the behavior of runtime
APIs, referred to as transparency, we use the test suites as
oracles to identify behavioral changes.

Node.js Running the full Node.js test suite, which contains
3,810 tests, using our modifications increased runtime by
111.72% (from 252s to 542s). The success rate decreased
from 3,782 to 3,669 cases, marking a 2.99% reduction. The
number of tests failing due to timeout increased from 2 to 44
cases.

Deno Running the three different test suites using our mod-
ifications increased runtime by 4.46% (from 157s to 164s)
for Deno core, by 43.85% (from 130s to 187s) for Deno’s
Node.js compatibility module, and by 5.93% (from 253s to
268s) for Deno std. In total that is 14.63% (from 540s to
619s). The success rate decreased by by 0.17% (from 1,145
to 1,143 out of 1,340) for Deno core, by nothing for Deno’s
Node.js compatibility module, and by 0.27% (from 2,207 to
2,201 out of 2,258) for Deno std. In total that is 0.15% (from
5,364 to 5,356 out of 5,648). The number of tests failing due
to timeout increased from 1 to 2 cases.

Evaluation The main reason for the decreased performance
and higher failure rate is the code responsible for checking
tainted values in internal sinks. This code recursively traverses
received values of each argument of the sink. Unexpected
exceptions in the traversed objects’ code, such as in property
getters, lead to failures. Additionally, the modified version
extends globalThis with log, causing some tests to fail.

6 Defense Best Practices

While previous works provide convincing evidence on the
dangers of prototype pollution, as of today, there is no com-
prehensive defense against this vulnerability. In this section,
we systematize the current proposals and mitigations and
outline directions for future work. Since our universal gad-
gets require the existence of prototype pollution, a reasonable
question to ask is whether we should mitigate the impact
of the vulnerability by fixing the gadgets. Given the lack of
comprehensive defenses against prototype pollution, we think
that gadgets should be treated similarly to memory corruption
vulnerabilities such as return-oriented programming (ROP)
and jump-oriented programming (JOP), due to their high im-
pact. Developers of runtimes or libraries are unaware of the
presence of prototype pollution in the applications using their
code. Therefore, it stands to reason to assume the presence
of vulnerabilities and treat the prototype objects as untrusted
data, thus guaranteeing security by fixing gadgets in their
code. Similarly, application developers are unaware of pro-

totype pollution in third-party libraries or runtimes of their
application, hence they should mitigate gadgets.

6.1 Gadget Mitigations
Gadget can be mitigated by avoiding the use of potentially
polluted properties in the code. A solution is to ensure that any
access to the properties of an object does not fall back to the
object’s prototype chain. We distinguish different mitigations
depending on where in the code an object with a polluted
prototype may be created. This can be either the developer’s
own code (e.g., a library or module) or third-party code (e.g.
dependencies or application code that use APIs provided by
the developer). This leads us to the first guideline.

G1: Explicit access to own properties

If the code accesses a property in only a few instances,
developers should verify each access explicitly.

Developers should check if an object defines an own prop-
erty before accessing it. This can be achieved with built-in
methods such as Object.hasOwn(obj, ’prop’). We en-
countered this pattern regularly during our analysis of for-in
loops to prevent reading unexpected properties. These checks
should be added every time a potentially undefined property is
accessed, thus preventing access to a polluted property. This
guideline can be applied regardless of where the object be-
ing checked was created. However, overuse of these checks
increases the codebase’s complexity. Therefore, developers
should follow other recommendations whenever their code
makes use of many property accesses. We also recommend
using the method Object.keys, which returns the object’s
own enumerable properties rather than for-in loops, which
additionally iterate over properties in the prototype chain.

G2: Safe object creation

When creating an object, developers should use either
null prototypes or built-in objects Map and Set.

The method call Object.create(null) and the object
literal {__proto__:null} allow to create objects that do not
inherit from the prototype hierarchy. In this case, any property
access obj.prop returns undefined unless prop is an own
property of object obj. On the downside, this solution can
lead to unexpected exceptions. For example, code patterns like
obj + "str" will throw an exception because no toString
method is available without the prototype.

When the created object is returned by the underlying func-
tion or it is passed as an argument to a third-party function,
developers should copy the object to a new object that in-
cludes Object.prototype to ensure backward compatibility.
We recommend assigning default values to unused properties
to prevent pollution with attacker-controlled values in third-
party code. This operation can be facilitated by, e.g., using

3702 33rd USENIX Security Symposium USENIX Association

the method Object.assign({}, defaultObj, obj). We
remark that the prototypes of nested objects require cloning
the object by means of a deep copy algorithm, for example,
using the global method structuredClone().

An alternative solution is to use built-in objects that provide
safe access to properties. For instance, the Map object holds
key-value pairs and provides methods such as Map.get that
do not use the prototype chain to look up the stored values.
Hence, map.get(’prop’) can serve as a replacement for
accesses to objects.

G3: Safe copy of input data

Whenever an object is received as input data, developers
should copy the object’s properties to a safe object.

If a developer uses an object as a function argument (for
example, options in Listing 5), or an object originating from
a deserialization function (for example, JSON.parse in List-
ing 7), they should assume that the object’s prototype can be
polluted. A safe solution is to copy the expected properties
to a new object with null prototype. This can be achieved
by creating a copy with only own properties, using the ex-
pression {__proto__:null,...obj}. If the code returns the
received object back, the developers should use the original
value instead of the copied one to avoid compatibility issues.

The guidelines G1 and G3 may be backward incompatible
when an object relies on a prototype chain to define properties
within nested prototypes. We expect this design pattern to
be used for functions rather than data-type properties, which
are subject to prototype pollution. An empirical evaluation is
necessary to validate this claim.

As we can see, systematic mitigation of gadgets is an open
problem. Developers are expected to identify all gadgets to
universally apply mitigation techniques to any potentially un-
defined property, which is infeasible in practice. Moreover,
gadget mitigation can be hard to apply to existing code bases
since it requires identifying every access to undefined proper-
ties. These considerations motivate the need for solutions like
the one proposed in this paper but we believe the guidelines
can be automated as suggestions for quick fixes in IDEs or
similar tooling. Detection may require inter-procedural analy-
sis, yet we expect that G1 and G2 can be implemented based
on quick intra-procedural analysis.

6.2 Prototype Pollution Mitigations
Prototype pollution is the root cause for exploitation of gad-
gets, hence a comprehensive mitigation technique would solve
the problem altogether. As with gadget mitigations, this re-
quires striking a balance between security and usability, which
makes it a challenging task. Here we discuss recommenda-
tions for developers and opportunities for researchers.
Guidelines for developers A general solution is to pre-
vent any accesses to the prototypes of objects, which can

be achieved by the above-mentioned guidelines for gadget
mitigation. Following guideline G1, developers should avoid
accesses to object prototypes through property reading ex-
pressions. This is because properties such as __proto__ and
constructor.prototype, which give accesses to the proto-
type chain, are not defined in the object itself. Alternatively,
this can also be achieved by explicitly checking accesses to
properties __proto__, constructor, and prototype. Sim-
ilar to own property checks for gadget mitigation, this miti-
gation introduces additional verbosity. Following guideline
G2, one can instead use data structures with either null pro-
totypes or safe get and set functions.

Another solution is to prevent unintended modification
to the prototype object itself, which can be achieved with
built-in functions such as freeze, preventExtension, and
seal [5]. These functions offer a mechanism to prevent the
creation of new properties on an object. The freeze function
additionally prevents overwriting. Node.js provides the ex-
perimental command-line feature, --frozen-intrinsics,
which freezes the prototypes of built-in objects like Array
and Object. Similarly, Deno removes __proto__ from
Object.prototype by default.

While mitigating prototype pollution, these solutions can
be problematic for third-party packages that rely on chang-
ing the prototype to implement, e.g., polyfills. Also, they re-
quire coverage of all prototype object, including user-defined
classes which makes it verbose and hard to maintain for large
projects. We recommend these solution for the development
of a new project while existing project should perform regres-
sion testing to ensure that no functionalities are disrupted.

Research opportunities Mitigation of prototype pollution
and gadgets remains an open problem. A recent proposal
driven by Google aims to prevent prototype pollution at the
language- and runtime-level [6]. It proposes an opt-in secure
mode, which, if enabled, prevents accesses to prototypes with
dynamic string keys. It allows prototype access through reflec-
tion APIs instead of strings, thus only requiring changes to
__proto__ and constructor, whenever they are accessed
purposefully. While an important step in the right direction,
this solution poses challenges of backward compatibility for
server- and client-side applications.

6.3 Case Studies
We evaluate fixes of known server-side prototype pollution
vulnerabilities and their gadgets to identify common issues
in mitigations that permit attackers to bypass the fixes. We
conducted our search through public vulnerability reports
on HackerOne, blog posts, and publications related to open-
source applications over the past 5 years, summarizing our
findings in Table 4. Our results contain 12 exploitable cases
leading to Remote Code Execution (RCE) in 4 popular appli-
cations. The root cause of their exploitability, namely code
patterns that allow to pollute prototypes, has been addressed

USENIX Association 33rd USENIX Security Symposium 3703

Application Version Vulnerability Report PP Fix Gadget Gadget Fix App Mitigations

Kibana

6.6.0 CVE-2019-7609 Ë child_process.spawn é Ë G2, G3∗

7.6.2 HackerOne #852613 Ë lodash.template é é
7.7.0 HackerOne #861744 Ë lodash.template é Ë G3
8.7.0 CVE-2023-31415 Ë nodemailer é é

npm-cli 8.1.0 Reported by [43] Ë child_process.spawn Ë G2 é

Parse Server

4.10.6 CVE-2022-24760 Ë bson é Ë Denylisting
5.3.1 CVE-2022-39396 Ë bson é Ë Denylisting
5.3.1 CVE-2022-41878 Ë bson é Ë Denylisting
5.3.1 CVE-2022-41879 Ë bson é Ë Denylisting
5.3.1 Reported by [43] Ë require Ë G2∗, G3 é
6.2.1 CVE-2023-36475 Ë bson Ë –

Rocket.Chat 5.1.5 CVE-2023-23917 Ë bson Ë –

Table 4: A summary of the RCEs exploited via prototype pollution. For each application, we list the vulnerable version, a reference to the report, and the
exploited gadget. PP Fix shows whether the prototype pollution was fixed; Gadget Fix shows whether the gadget was fixed, including any applied guidelines;
App Mitigations details if mitigations against the attack were implemented in the application. é indicates that no fix has been applied; Ë indicates that a fix was
applied but later bypassed; Ë indicates that a fix was applied and effectively protects against similar attacks. (∗) denotes a guideline that might be bypassed.

in all cases. These vulnerabilities involve 5 unique gadgets to
achieve RCEs. For 4 of these gadgets, developers proposed
either fixes or mitigations for the attacks.

We identify 6 vulnerabilities that exploit a gadget in the
bson package. The Parse Server developers fixed 5 vulnera-
bilities that use this gadget with input data validation through
denylisting. However, these mitigations were bypassed sev-
eral times through unexpected means, e.g. with files metadata.
Ultimately, the dangerous feature was removed from bson,
thereby fixing the gadget. Both Parse Server and Rocket.Chat
fixed their vulnerabilities through this method. This highlights
the need to fix gadgets because mitigation is difficult and often
leaves room for exploitation by other means.

The gadgets in lodash.template and nodemailer re-
main unaddressed and could be exploited given new proto-
type pollutions. The maintainers of Kibana banned the use
of lodash.template in their code and mitigated it by inter-
cepting template calls and validating the polluted property
when the package is included as a transitive dependency.

However, as illustrated, it can be dangerous to leave gadgets
unfixed. Next, we detail two interesting gadgets and highlight
issues in their fixes to demonstrate the risk.
child_process.spawn The first mention of the spawn gad-
get appears in the report CVE-2019-7609 by Michał Ben-
tkowski, outlining a prototype pollution vulnerability in
Kibana. Kibana spawns a node process, and the security
researcher discovered a method to execute arbitrary code
through crafted environment variables of the new process.

Listing 5 presents the necessary code of the spawn func-
tion to understand the attack. If an application invokes spawn
with two arguments, file and args, then the third argument
options is undefined. Line 3 creates a new object that inher-
its Object.prototype, making it susceptible to prototype
pollution. Line 4 makes a shallow copy of options to prevent
changing the user’s options object if passed. In our scenarios,
this copy operation is inconsequential because options is
an empty object created within the function itself. Line 5 re-
trieves the value of the env property. If the value is undefined,

1 function spawn(file , args , options) {
2 if (options === undefined)
3 options = {}
4 options = Object.assign({}, options)
5 options.env = options.env || process.env
6 options.file = options.shell || file
7 //...
8 internalSpawn({
9 file: options.file ,

10 env: options.env,
11 //...
12 })
13 }

Listing 5: Simplified Node.js spawn implementation.

the code defaults to process.env, assigning this to the env
property of options. Line 6 similarly handles the shell prop-
erty from options and the file parameter. Subsequently, the
code passes the aggregated options to the internal implemen-
tation of the spawn function, which initiates a new process. If
an attacker pollutes the env property in Object.prototype,
line 5 will read the attacker-controlled value instead of sys-
tem environment variables. It allows the attacker to execute
arbitrary code, leading to RCE in Kibana.

The Kibana team fixed the prototype pollution vulnerabil-
ity and mitigated the gadget in PR #55697 to prevent sim-
ilar attacks in later versions. Because the gadget is part of
Node.js’ source code, application developers are limited to
intercepting spawn calls and altering the arguments. Listing 6
provides a simplified version of this mitigation. The code
uses a JavaScript Proxy to invoke the patch function, thereby
securing the options. It evaluates passed arguments from the
zero-based array args. If the argument at position 1 is an
array, line 5 simply advances the position. If the subsequent
argument at position 2 is an object, it is treated as the options,
and the prototypeless function then copies the options’
own properties to new objects with null prototypes.

This mitigation follows our guidelines G2 and G3. Lines

3704 33rd USENIX Security Symposium USENIX Association

https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609/
https://hackerone.com/reports/852613
https://hackerone.com/reports/861744
https://arxiv.org/pdf/2311.03919.pdf
https://huntr.com/bounties/ac24b343-e7da-4bc7-ab38-4f4f5cc9d099/
https://github.com/parse-community/parse-server/security/advisories/GHSA-prm5-8g2m-24gg
https://github.com/parse-community/parse-server/security/advisories/GHSA-xprv-wvh7-qqqx
https://github.com/parse-community/parse-server/security/advisories/GHSA-93vw-8fm5-p2jf
https://github.com/parse-community/parse-server/security/advisories/GHSA-462x-c3jw-7vr6
https://hackerone.com/reports/1631258
https://github.com/elastic/kibana/pull/55697

1 cp.spawn = new Proxy(cp.spawn , {apply: patch})
2 function patch(target , thisArg , args) {
3 var pos = 1;
4 if (Array.isArray(args[pos]))
5 pos++ // fn(file , args , ...)
6 if (typeof args[pos] === ’object’) {
7 // fn(file , options , ...)
8 // fn(file , args , options , ...)
9 args[pos] = prototypeless(args[pos])

10 }
11 //...
12 return target.apply(thisArg , args)
13 }
14 function prototypeless(obj) {
15 var newObj = Object.assign(
16 Object.create(null), obj)
17 newObj.env = Object.assign(
18 Object.create(null), newObj.env)
19 return newObj
20 }

Listing 6: Simplified spawn gadget mitigation in Kibana.

16 and 18 create new objects with null prototypes in accor-
dance with G2, ensuring that care is also taken for nested
objects to prevent pollution of env when the value is read
from process.env. The use of Object.assign in lines 15
and 17 copies only own properties from the original objects
to the new objects with null prototypes, following G3.

However, this mitigation has two critical weaknesses that
allow the attacker to bypass it. Developers are constrained
to validating arguments and lack control over modifications
to arguments after passing them to Node.js functions. As
observed in line 5 of Listing 5, the spawn function makes a
copy of the received options into a common empty object that
shares its prototype with others. Consequently, any properties
of the options might be polluted again. Fortunately, spawn
does not copy the env property, so environment variables
are not affected. The other weakness is more dangerous and
allows for bypassing all mitigations and even security fixes
in Node.js, as we will see later. Lines 6 and 9 of Listing 6
are also exploitable by prototype pollution. The array args,
like any array, has Object.prototype in its prototype chain
and looks up an undefined property. Therefore, polluting the
property 2 allows the attacker to control the options. For this
exploit, a gadget trigger might look as follows:

1 Object.prototype[2] = { env:
2 {NODE_OPTIONS: ’--inspect -brk=0.0.0.0:1337’}
3 }
4 spawn(’node’, [’any_file.js’])

Thus, the spawn gadget is still exploitable in Kibana after
mitigations. This case highlights the importance for devel-
opers to exercise caution with security-critical code, such as
gadget mitigations, and to test it against other gadgets using
tools like GHUNTER to avoid introducing new exploitation
flows into the code.

Shcherbakov et al. [43] introduce a variation of the spawn

1 // lib\internal\modules\cjs\loader.js
2 function readPackage(dir) {
3 const jsonPath = resolve(dir, ’package.json’)
4 const json = packageJsonReader.read(jsonPath)
5 if (json === undefined)
6 return false
7 return JSON.parse(json)
8 }
9 function tryPackage(requestPath) {

10 const pkg = readPackage(requestPath)?.main
11 if (!pkg) {
12 const js = resolve(requestPath , ’index.js’)
13 return loadFile(js)
14 }
15 loadFile(pkg)
16 }

Listing 7: Simplified Node.js require implementation.

gadget. They find that the name of a running process can be
manipulated through the polluted property shell, as shown in
line 6 of Listing 5. Additionally, they disclose new payloads
for the exploit that operate without controlling environment
variables and controlling only one variable. They identify a
vulnerability in the JavaScript package manager npm-cli, and
exploit it to demonstrate the practical feasibility of using this
gadget. Although npm-cli contributors addressed the reported
prototype pollution, they did not mitigate the gadget.

In June 2022, the Node.js team attempted to fix this
gadget in PR #43159. In terms of our terminology,
they implemented guideline G2 by assigning the value
ObjectFreeze(ObjectCreate(null)) to options in line 3
of Listing 5 and eliminated Object.assign() in line 4 to
maintain the usage of options with a null prototype. As dis-
cussed in Section 6.1, G2 alone is insufficient to prevent all
forms of gadget exploitation, and G2 should be used in con-
junction with G3. GHUNTER reports a gadget for spawn when
a user supplies their own options object to spawn:

1 Object.prototype.shell = ’node’
2 Object.prototype.env =
3 {NODE_OPTIONS: ’--inspect -brk=0.0.0.0:1337’}
4 spawn(’app’, [’file.log’], {cwd: ’/tmp’})

This case illustrates the importance of a consistent ap-
proach in implementing gadget fixes. When applying guide-
line G2, it is crucial to carefully handle input data and copy it
safely, while also applying G3. Relying on validating security-
critical parameters outside the gadget proves to be insecure.

require Shcherbakov et al. [43] report a gadget in require,
a built-in function in Node.js for including external modules
from separate files as well as Node.js modules, and utilize
this gadget in one of the Parse Server exploits. Listing 7
illustrates a gadget based on simplified Node.js code. The
function tryPackage receives a directory path for a module
and invokes readPackage() in line 10. The code in line 4
attempts to read package.json from the given directory. If
the read operation is successful, readPackage() parses the

USENIX Association 33rd USENIX Security Symposium 3705

https://github.com/nodejs/node/pull/43159

content of the file as JSON and returns the parsed object in line
7. tryPackage then accesses the main property in line 10,
loads a file based on the path specified in the main property,
and evaluates its JavaScript code in line 15. Consequently,
if package.json lacks the main property, line 10 looks up
the property in the prototype chain of the returned object,
allowing a polluted property from Object.prototype to be
assigned to pkg. This leads to the evaluation of JavaScript
code from an attacker-controlled file in line 15.

The Node.js team attempted to fix this gadget by applying
guidelines G2 and G3 to readPackage function. They cor-
rectly make a safe copy of the parsed object in line 7 to an ob-
ject with a null prototype. However, GHUNTER detects a vari-
ation of the gadget in v18.13.0. If packageJsonReader can
not find the package.json file, the function returns false
in line 6. Since Boolean is a primitive type and all primi-
tive types in JavaScript inherit from Object.prototype, the
expression (false)?.main in line 10 accesses the polluted
value in Object.prototype and assigns it to pkg, achieving
the same attack. This makes the require function exploitable,
albeit through a different gadget.
End-to-end exploit To demonstrate the impact of this gadget,
we analyze Kibana version 8.7.0 for end-to-end exploits. We
initially utilized the Silent Spring [43] toolchain to detect pro-
totype pollution vulnerabilities. The analysis reports 44 cases
in the server-side code, with 6 being potentially exploitable.
The simplified code of one of the cases is presented in List-
ing 8. Kibana loads a config file, parses it into an object, and
expands the properties from dot notation into nested objects
(e.g., {a.b:0} to {a:{b:0}}) with the ensureDeepObject
function. This code is vulnerable to prototype pollution. On
line 19, the first argument allows an attacker to get a reference
to the prototype and then assign a value to any property of the
prototype in line 14.

To exploit this prototype pollution, an attacker should up-
load a configuration file with a payload via the Web UI form
and restart Kibana to trigger the parsing of the new configura-
tion file. During the restart process, Kibana crashed at an early
stage due to an unexpected polluted property that prevented
gadget execution via another web request. However, the ap-
plication invoked require multiple times during loading,
allowing us to trigger it and achieve RCE. The investigation
process took 8 hours for one author already familiar with
Kibana. We reported this vulnerability, and the Kibana team
acknowledged the issue, assigning CVE-2023-31414 with a
critical CVSS 9.1, and rewarding a substantial bounty. The
Node.js team fixed the require gadget in version 18.19.0.
Takeaways If developers fix only the prototype pollution vul-
nerabilities while leaving its associated gadget exploitable,
they remain at risk. Our case studies show that many develop-
ers are aware of this risk and attempt to mitigate the gadgets
and similar attacks. However, this task is far from trivial. We
identified numerous gadgets and common coding issues that
lead to new gadgets, emphasizing the need for more princi-

1 function ensureDeepObject(obj: any): any {
2 return Object.keys(obj).reduce((res, key)=>{
3 const val = obj[key];
4 if (!key.includes(’.’))
5 res[key] = ensureDeepObject(val);
6 else
7 walk(res, key.split(’.’), val);
8 return res;
9 }, {} as any);

10 }
11 function walk(obj:any, keys:string[], val:any){
12 const key = keys.shift()!;
13 if (keys.length === 0) {
14 obj[key] = val;
15 return;
16 }
17 if (obj[key] === undefined)
18 obj[key] = {};
19 walk(obj[key], keys , ensureDeepObject(val));
20 }

Listing 8: Prototype pollution vulnerability in Kibana.

pled solutions. Our proposed guidelines are a step forward in
this direction.

7 Related Work

We discuss our work in the context of closely-related works
that address prototype pollution vulnerabilities and position
our contributions in the area of web application security.

Universal gadgets in JavaScript runtimes The problem of
identifying universal gadgets in JavaScript runtimes remains
largely unexplored. To the best of our knowledge, only the
work of Shcherbakov et al. [43] studies universal gadgets in
Node.js. Section 5.2 compares their work to GHUNTER.

Recent work by Shcherbakov et al. [44] uses dynamic taint
analysis via program instrumentation to find gadgets in NPM
packages. This approach cannot be used to identify universal
gadgets which require modifications of runtime environments
(Node.js and Deno) and the underlying V8 engine. Our univer-
sal gadgets are complementary and contribute with additional
dangerous sinks for analysis such as [44], thus increasing
their attack surface coverage. Kang et al. [24] study proto-
type pollution on the client-side application by dynamic taint
tracking. Their analysis is implemented at the V8 JavaScript
engine by adapting the tool of Melicher et al. [32]. Their focus
on client-side vulnerabilities is incompatible with server-side
runtimes such as Node.js and Deno.

Other work [31, 47] uses concolic execution to find gad-
gets in client-side JavaScript code. Concolic execution is a
promising enhancement of dynamic analysis. Liu et al. [31]
focus specifically on finding gadget chains where one gadget
unlocks the use of another gadget (e.g. by forcing a branch). It
would be interesting to apply these ideas to backend systems.

Prototype pollution In recent years, we have seen increased

3706 33rd USENIX Security Symposium USENIX Association

attention on prototype pollution vulnerabilities by both
academia and practitioners [2,10,21,24,26,29,30,43,50]. The
work of Arteau [10] is the first to demonstrate the feasibility
of prototype pollution in a number of libraries. On the aca-
demic front, the vast majority of research contributions focus
on the detection of prototype pollution [26, 29, 30]. These
works use static taint analysis to find zero-day vulnerabilities
leading to DoS attacks. Our contributions are complementary
as they focus on the detection of universal gadgets rather than
prototype pollution. The security impact of prototype pollu-
tion is discussed in practitioner forums [2,21,50]. Heyes [21]
describes how prototype pollution can be exploited in Node.js
to find vulnerabilities beyond DoS in black-box scenarios.
Their semi-automated approach uses PP-finder [50] to report
all undefined properties encountered during the execution and
conducts manual inspection of packages for vulnerabilities.
This approach is practical for a few specific targets, yet it is
neither feasible at scale nor able to identify universal gadgets.

Code reuse attacks for the web Prototype pollution is a
new class of code reuse vulnerabilities in web applications
and, as such, it shares similarities with object injection vul-
nerabilities. Several works use static taint analysis to detect
code reuse vulnerabilities for a variety of languages including
PHP [15, 16, 18, 37], .NET [33, 42], and Java [22, 34]. Xiao
et al. [49] study a related type of vulnerability coined hid-
den property attacks. Lekies et al. [27] and Roth et al. [38]
study the implications of script gadgets in bypassing existing
XSS and CSP mitigations. While all of these vulnerabilities
rely on the reuse of code gadgets, their precise connection
is yet to be studied systematically. GHUNTER implements
a lightweight form of dynamic taint analysis at the level of
JavaScript runtimes and V8 engine. Dynamic taint analy-
sis [39,40] is a popular technique used to identify web-related
vulnerabilities, including instrumentations at both program-
and runtime-level [8, 13, 19, 23, 25, 28, 35, 41].

8 Conclusion

We have presented a semi-automated pipeline, GHUNTER,
able to find exploitable universal gadgets in Node.js and
Deno by lightweight dynamic taint analysis. We have used
GHUNTER in a comprehensive study of universal gadgets,
finding a total 123 exploitable gadgets. In absence of compre-
hensive defenses, we have systematized existing mitigation
for prototype pollution and gadgets in the form of guidelines.
We have used these guidelines in a study of existing exploits
in real applications to illuminate the current status, finding a
high-severity exploit due to the lack of principled mitigations.

Acknowledgments We thank anonymous reviewers for the
helpful suggestions and feedback. This work was partially
supported by the Swedish Foundation for Strategic Research
(SSF) under project CHAINS, the Swedish Research Council

(VR) under project WebInspector, and Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation under project
ShiftLeft.

References

[1] Adding v8 fast api. https://github.com/nodej
s/node/blob/v21.0.0/doc/contributing/addin
g-v8-fast-api.md.

[2] Client-Side Prototype Pollution and useful Script Gad-
gets. https://github.com/BlackFan/client-sid
e-prototype-pollution.

[3] Deno, the next-generation JavaScript runtime. https:
//deno.com/.

[4] Node.js JavaScript runtime. https://nodejs.org/.

[5] Object - JavaScript - MDN. https://developer.mo
zilla.org/en-US/docs/Web/JavaScript/Refere
nce/Global_Objects/Object.

[6] Prototype pollution mitigation / symbol.proto. https:
//github.com/tc39/proposal-symbol-proto.

[7] Standard ecma-335 common language infrastructure
(cli). https://www.ecma-international.org/pub
lications/standards/Ecma-335.htm.

[8] Marco Abbadini, Dario Facchinetti, Gianluca Oldani,
Matthew Rossi, and Stefano Paraboschi. Cage4deno: A
fine-grained sandbox for deno subprocesses. 2023.

[9] Mohammad M. Ahmadpanah, Daniel Hedin, Musard
Balliu, Lars Eric Olsson, and Andrei Sabelfeld. Sand-
Trap: Securing JavaScript-driven trigger-action plat-
forms. In USENIX Security Symposium, 2021.

[10] Olivier Arteau. Prototype pollution attack in NodeJS
application. NorthSec, 2018.

[11] Fraser Brown, Shravan Narayan, Riad S. Wahby, Daw-
son R. Engler, Ranjit Jhala, and Deian Stefan. Finding
and preventing bugs in JavaScript bindings. In Sympo-
sium on Security and Privacy (S&P), 2017.

[12] Mathias Bynens. Javascript engine fundamentals:
Shapes and inline caches. https://mathiasbynens.
be/notes/shapes-ics.

[13] Darion Cassel, Wai Tuck Wong, and Limin Jia.
Nodemedic: End-to-end analysis of node.js vulnerabil-
ities with provenance graphs. In 8th IEEE European
Symposium on Security and Privacy, EuroS&P 2023,
Delft, Netherlands, July 3-7, 2023. IEEE, 2023.

USENIX Association 33rd USENIX Security Symposium 3707

https://github.com/nodejs/node/blob/v21.0.0/doc/contributing/adding-v8-fast-api.md
https://github.com/nodejs/node/blob/v21.0.0/doc/contributing/adding-v8-fast-api.md
https://github.com/nodejs/node/blob/v21.0.0/doc/contributing/adding-v8-fast-api.md
https://github.com/BlackFan/client-side-prototype-pollution
https://github.com/BlackFan/client-side-prototype-pollution
https://deno.com/
https://deno.com/
https://nodejs.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://github.com/tc39/proposal-symbol-proto
https://github.com/tc39/proposal-symbol-proto
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://mathiasbynens.be/notes/shapes-ics
https://mathiasbynens.be/notes/shapes-ics

[14] Eric Cornelissen, Mikhail Shcherbakov, and Musard Bal-
liu. Ghunter: Universal prototype pollution gadgets in
javascript runtimes. https://github.com/KTH-Lan
gSec/ghunter.

[15] Johannes Dahse and Thorsten Holz. Static detection
of second-order vulnerabilities in web applications. In
USENIX Security 14, 2014.

[16] Johannes Dahse, Nikolai Krein, and Thorsten Holz.
Code reuse attacks in PHP: automated POP chain gener-
ation. In Conference on Computer and Communications
Security (CCS), 2014.

[17] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan El-
der, Brendan Saltaformaggio, and Wenke Lee. Towards
measuring supply chain attacks on package managers
for interpreted languages. In Network and Distributed
System Security Symposium (NDSS), 2021.

[18] Stefan Esser. Utilizing Code Reuse/ROP in PHP Ap-
plication Exploits. Proceedings of the Black Hat USA,
2010.

[19] François Gauthier, Behnaz Hassanshahi, and Alexander
Jordan. AFFOGATO: runtime detection of injection
attacks for node.js. In International Symposium on Soft-
ware Testing and Analysis (ISSTA), 2018.

[20] Language-Based Security group at KTH Royal Insti-
tute of Technology. Server-side prototype pollution
gadgets. https://github.com/KTH-LangSec/ser
ver-side-prototype-pollution, 2024.

[21] Gareth Heyes. Server-side prototype pollution: Black-
box detection without the dos. https://portswigge
r.net/research/server-side-prototype-pollu
tion.

[22] Philipp Holzinger, Stefan Triller, Alexandre Bartel, and
Eric Bodden. An in-depth study of more than ten years
of java exploitation. In Conference on Computer and
Communications Security (CCS), 2016.

[23] Jordan Jueckstock and Alexandros Kapravelos. Visi-
bleV8: In-browser Monitoring of JavaScript in the Wild.
In Proceedings of the ACM Internet Measurement Con-
ference (IMC), October 2019.

[24] Zifeng Kang, Song Li, and Yinzhi Cao. Probe the proto:
Measuring client-side prototype pollution vulnerabili-
ties of one million real-world websites. In Network and
Distributed System Security Symposium (NDSS 2022),
2022.

[25] Rezwana Karim, Frank Tip, Alena Sochůrková, and
Koushik Sen. Platform-independent dynamic taint anal-
ysis for javascript. IEEE Transactions on Software En-
gineering, 46(12), 2020.

[26] Hee Yeon Kim, Ji Hoon Kim, Ho Kyun Oh, Beom Jin
Lee, Si Woo Mun, Jeong Hoon Shin, and Kyounggon
Kim. Dapp: automatic detection and analysis of proto-
type pollution vulnerability in Node.js modules. Inter-
national Journal of Information Security, 2021.

[27] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß,
Eduardo A. Vela Nava, and Martin Johns. Code-reuse
attacks for the web: Breaking cross-site scripting miti-
gations via script gadgets. In Conference on Computer
and Communications Security (CCS), 2017.

[28] Sebastian Lekies, Ben Stock, and Martin Johns. 25
million flows later: large-scale detection of DOM-based
XSS. In Conference on Computer and Communications
Security (CCS), 2013.

[29] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao.
Detecting Node.js prototype pollution vulnerabilities
via object lookup analysis. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2021, 2021.

[30] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao.
Mining Node.js vulnerabilities via object dependence
graph and query. In USENIX Security Symposium, 2022.

[31] Zhengyu Liu, Kecheng An, and Yinzhi Cao. Undefined-
oriented programming: Detecting and chaining proto-
type pollution gadgets in node. js template engines for
malicious consequences. In 2024 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society,
2024.

[32] William Melicher, Anupam Das, Mahmood Sharif, Lujo
Bauer, and Limin Jia. Riding out DOMsday: Toward
detecting and preventing DOM cross-site scripting. In
NDSS 2018, 2018.

[33] Alvaro Muñoz and Oleksandr Mirosh. Friday the 13th
json attacks. Proceedings of the Black Hat USA, 2017.

[34] Alvaro Muñoz and Christian Schneider. Serial killer:
Silently pwning your java endpoints, 2018.

[35] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and
François Gauthier. Nodest: feedback-driven static anal-
ysis of node.js applications. In Joint Meeting on Eu-
ropean Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, (FSE),
2019.

[36] OASIS. Static analysis results interchange format (sarif)
version 2.1.0. https://docs.oasis-open.org/sa
rif/sarif/v2.1.0/sarif-v2.1.0.html.

3708 33rd USENIX Security Symposium USENIX Association

https://github.com/KTH-LangSec/ghunter
https://github.com/KTH-LangSec/ghunter
https://github.com/KTH-LangSec/server-side-prototype-pollution
https://github.com/KTH-LangSec/server-side-prototype-pollution
https://portswigger.net/research/server-side-prototype-pollution
https://portswigger.net/research/server-side-prototype-pollution
https://portswigger.net/research/server-side-prototype-pollution
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

[37] Sunnyeo Park, Daejun Kim, Suman Jana, and Sooel
Son. FUGIO: automatic exploit generation for PHP
object injection vulnerabilities. In 31st USENIX Security
Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022.

[38] Sebastian Roth, Michael Backes, and Ben Stock. As-
sessing the impact of script gadgets on CSP at scale.
In Asia Conference on Computer and Communications
Security, (ASIA CCS), 2020.

[39] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld.
Explicit secrecy: A policy for taint tracking. In Eu-
roS&P, 2016.

[40] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In IEEE S&P, 2010.

[41] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and
Simon Gibbs. Jalangi: A selective record-replay and
dynamic analysis framework for javascript. In Proceed-
ings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’22, New York,
NY, USA, 2013.

[42] Mikhail Shcherbakov and Musard Balliu. SerialDe-
tector: Principled and Practical Exploration of Object
Injection Vulnerabilities for the Web. In 28th Annual
Network and Distributed System Security Symposium,
NDSS 2021, virtually, February 21-25, 2021, 2021.

[43] Mikhail Shcherbakov, Musard Balliu, and Cristian-
Alexandru Staicu. Silent spring: Prototype pollution
leads to remote code execution in node.js. In 32nd
USENIX Security Symposium, USENIX Security 2023,
Anaheim, CA, USA, August 9-11, 2023. USENIX Asso-
ciation, 2023.

[44] Mikhail Shcherbakov, Paul Moosbrugger, and Musard
Balliu. Unveiling the invisible: Detection and evaluation
of prototype pollution gadgets with dynamic taint anal-
ysis. In Proceedings of the ACM on Web Conference
2024, WWW ’24, New York, NY, USA, 2024. Associa-
tion for Computing Machinery.

[45] Cristian-Alexandru Staicu, Michael Pradel, and Ben-
jamin Livshits. SYNODE: understanding and auto-
matically preventing injection attacks on Node.js. In
Network and Distributed System Security Symposium
(NDSS), 2018.

[46] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Bal-
liu, Michael Pradel, and Andrei Sabelfeld. An empirical
study of information flows in real-world JavaScript. In
14th ACM SIGSAC Workshop on Programming Lan-
guages and Analysis for Security, PLAS, 2019.

[47] Marius Steffens. Understanding emerging client-side
web vulnerabilities using dynamic program analysis.
2021.

[48] Ben Stock, Martin Johns, Marius Steffens, and Michael
Backes. How the web tangled itself: Uncovering the
history of client-side web (in)security. In 26th USENIX
Security Symposium, USENIX Security 2017, Vancouver,
BC, Canada, August 16-18, 2017. USENIX Association,
2017.

[49] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang
Yang, Hong Hu, Guofei Gu, and Wenke Lee. Abusing
hidden properties to attack the Node.js ecosystem. In
USENIX Security Symposium, 2021.

[50] YesWeHack. Server side prototype pollution, how to
detect and exploit. https://blog.yeswehack.com/t
alent-development/server-side-prototype-p
ollution-how-to-detect-and-exploit/.

[51] Markus Zimmermann, Cristian-Alexandru, Cam Tenny,
and Michael Pradel. Small world with high risks: A
study of security threats in the npm ecosystem. In
USENIX Security Symposium, 2019.

A Appendix

1 let __pollutedValue = ’0xEFFACED’,
__accessIndex = 0;

2 Object.defineProperty(Object.prototype , ’${prop
}’, {

3 get: function() {
4 const returnValue = __pollutedValue +

__accessIndex;
5 __accessIndex += 1;
6 try {
7 throw new Error();
8 } catch(error) {
9 globalThis.log(returnValue + ’ source stack:

’ + error.stack);
10 }
11 return returnValue;
12 },
13 set: function(newValue) {
14 Object.defineProperty(this, ’${prop}’, {
15 value: newValue ,
16 writable: true,
17 enumerable: true,
18 configurable: true
19 });
20 },
21 enumerable: ${prop === FORIN_SYMBOL ? "true" :

"false"},
22 configurable: true,
23 });

Listing 9: Injected snippet for polluting with a string value.

USENIX Association 33rd USENIX Security Symposium 3709

https://blog.yeswehack.com/talent-development/server-side-prototype-pollution-how-to-detect-and-exploit/
https://blog.yeswehack.com/talent-development/server-side-prototype-pollution-how-to-detect-and-exploit/
https://blog.yeswehack.com/talent-development/server-side-prototype-pollution-how-to-detect-and-exploit/

Gadget Properties Attack Type
cluster.fork NODE_OPTIONS ACE

cp.exec NODE_OPTIONS ACE
cp.execFile NODE_OPTIONS ACE

cp.execFileSync

shell, NODE_OPTIONS ACE
shell, input ACE
uid PE
gid PE
cwd PT

cp.execSync NODE_OPTIONS ACE
input ACE

cp.fork NODE_OPTIONS ACE

cp.spawn

shell, NODE_OPTIONS ACE
uid PE
gid PE
cwd PT

cp.spawnSync

shell, NODE_OPTIONS ACE
shell, input ACE
uid PE
gid PE
cwd PT

crypto.privateEncrypt padding CD
crypto.publicEncrypt padding CD
crypto.subtle.encrypt kty Segfault

crypto.publicKey.export kty Segfault
crypto.privateKey.export kty Segfault

crypto.createPrivateKey type Segfault
passphrase Segfault

crypto.createPublicKey type Segfault
passphrase Segfault

fetch
socketPath, body,
method, referrer SSRF

fs.createWriteStream mode PE

https.get
hostname, headers,
method, path, port,
NODE_TLS_REJEC...

SSRF

https.request

hostname, headers,
method, path, port,
NODE_TLS_REJEC...

SSRF

0 Segfault

http.get
hostname, headers,
method, path, port SSRF

http.request
hostname, headers,
method, path, port SSRF

http.Server.listen backlog Segfault
import source ACE

require (v18.13.0) main ACE
Socket.send address SSRF

stream.Duplex readableObjectMode Segfault
tls.TLSSocket.connect path Segfault

vm.SyntheticModule
sourceText,
lineOffset,
columnOffset

ACE

zlib.createGzip().write writableObjectMode Segfault

Table 5: A summary of the exploitable first-order gadgets in Node.js. Gadget
identifies the public API that triggers a gadget; Properties specifies which
properties must be polluted; Attack Type specifies one of Arbitrary Code/-
Command Execution (ACE), Cryptographic Downgrade (CD), Path Traversal
(PT), Privilege Escalation (PE), Server Side Request Forgery (SSRF), or Seg-
fault.

Gadget Properties Attack Type
fetch body, headers, method, 0 SSRF

Worker

env PE
ffi PE
hrtime PE
net PE
read PE
run PE
sys PE
write PE

Deno.makeTempDir dir PT
prefix PT

Deno.makeTempDirSync dir PT
prefix PT

Deno.makeTempFile dir PT
prefix PT

Deno.makeTempFileSync dir PT
prefix PT

Deno.mkdir mode PE
Deno.mkdirSync mode PE

Deno.open
append UM
mode PE
truncate UM

Deno.openSync
append UM
mode PE
truncate UM

Deno.writeFile append UM
mode PE

Deno.writeFileSync append UM
mode PE

Deno.writeTextFile append UM
mode PE

Deno.writeTextFileSync append UM
mode PE

Deno.run
cwd PT
gid PE
uid PE

Deno.Command
cwd PT
gid PE
uid PE

cp.exec shell, env ACE
cp.execFileSync shell, env ACE

cp.execSync shell, env ACE

cp.spawn
shell, env ACE
gid PE
uid PE

cp.spawnSync shell, env ACE

fs.appendFile length Loop
offset OOM

fs.writeFile length Loop
offset OOM

http.request hostname, method, path, port SSRF
https.request hostname, method, path, port SSRF

zlib.createBrotliCompress params Panic

json.JsonStringifyStream prefix UM
suffix UM

log.FileHandler formatter LP

tar.Tar.append gid PE
uid PE

yaml.stringify indent OOM

Table 6: A summary of the exploitable first-order gadgets in Deno. Gadget
identifies the public API that triggers a gadget; Properties specifies which
properties must be polluted; Attack Type specifies one of Arbitrary Code/-
Command Execution (ACE), Log Pollution (LP), Loop, Out of Memory
(OOM), Panic, Path Traversal (PT), Privilege Escalation (PE), Server Side
Request Forgery (SSRF), or Unauthorized Modifications (UM).

3710 33rd USENIX Security Symposium USENIX Association

	Introduction
	Technical Background
	Prototype Pollution and Gadgets
	JavaScript Runtimes: Node.js and Deno
	Threat Model

	Overview
	System Design and Implementation
	Source Properties
	Simulating Pollution

	Source-to-Sink Flows
	Unexpected Termination
	Manual Validation
	Limitations

	Evaluation
	Universal Gadgets in Node.js and Deno
	GHunter vs Silent Spring
	Performance Overhead and Transparency

	Defense Best Practices
	Gadget Mitigations
	Prototype Pollution Mitigations
	Case Studies

	Related Work
	Conclusion
	Appendix

