
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Privacy Side Channels in Machine Learning Systems
Edoardo Debenedetti, ETH Zurich; Giorgio Severi, Northeastern University;
Nicholas Carlini, Christopher A. Choquette-Choo, Matthew Jagielski, and

Milad Nasr, Google DeepMind; Eric Wallace, UC Berkeley; Florian Tramèr, ETH Zurich
https://www.usenix.org/conference/usenixsecurity24/presentation/debenedetti

Privacy Side Channels in Machine Learning Systems

Edoardo Debenedetti1 Giorgio Severi2 Nicholas Carlini3 Christopher A. Choquette-Choo3

Matthew Jagielski3 Milad Nasr3 Eric Wallace4 Florian Tramèr1

1ETH Zurich 2Northeastern University 3Google DeepMind 4UC Berkeley

Abstract
Most current approaches for protecting privacy in machine

learning (ML) assume that models exist in a vacuum. Yet, in
reality, these models are part of larger systems that include
components for training data filtering, output monitoring, and
more. In this work, we introduce privacy side channels: at-
tacks that exploit these system-level components to extract
private information at far higher rates than is otherwise possi-
ble for standalone models. We propose four categories of side
channels that span the entire ML lifecycle (training data filter-
ing, input preprocessing, output post-processing, and query
filtering) and allow for enhanced membership inference, data
extraction, and even novel threats such as extraction of users’
test queries. For example, we show that deduplicating training
data before applying differentially-private training creates a
side-channel that completely invalidates any provable privacy
guarantees. We further show that systems which block lan-
guage models from regenerating training data can be exploited
to exfiltrate private keys contained in the training set—even if
the model did not memorize these keys. Taken together, our
results demonstrate the need for a holistic, end-to-end privacy
analysis of machine learning systems.

1 Introduction

In the absence of safeguards, machine learning (ML) models
leak private information about their training data [28, 71].
Numerous methods have been proposed to measure and miti-
gate privacy leakage, including formal techniques [1, 23, 27]
and heuristics [42, 47]. However, existing privacy-preserving
methods largely assume that ML models exist in a vacuum,
when in reality ML models are part of larger systems that
include components for training data filtering, input prepro-
cessing, output monitoring, and more. These system-level
components are widely incorporated into real-world ML sys-
tems to maximize accuracy, security, and robustness.

In this work, we introduce privacy side channels: attacks
that exploit system-level components to extract private infor-
mation at much higher rates than is otherwise possible for

isolated ML models. We show that adaptive adversaries of
varying strengths—ranging from black-box query access to
data poisoning capabilities—can mount privacy attacks that
are otherwise impossible without side channels (e.g., reveal-
ing test inputs). We evaluate the impact of these side-channel
attacks on end-to-end systems, including GitHub Copilot—a
black-box production system with millions of users. Con-
cretely, we propose four categories of attacks that span the
entire ML lifecycle (overview in Figure 1):

• Training data filtering (Section 3). Most large-scale train-
ing sets are filtered to remove duplicates and abnormal
examples [2, 42, 47]. We demonstrate that data filters in-
troduce side channels because they create dependencies be-
tween different users’ data. In turn, adversaries can amplify
privacy attacks by inserting poison examples that maxi-
mize these dependencies. Perhaps most surprisingly, we
show that data deduplication [47]—a technique designed
to improve privacy—can make privacy worse, even caus-
ing violations of naive differential privacy (DP) guarantees
(Section 5). Aside from deduplication, we propose similar
attacks for defenses against data poisoning [13, 19, 29].

• Input preprocessing (Section 4). Many models require
their inputs to be preprocessed, e.g., language models re-
quire text to be tokenized. When these preprocessors are
built using training statistics (e.g., tokenizers), we show that
it creates side channels that allows adversaries to extract
private information such as rare training words [66].

• Model output filtering (Section 4). To improve privacy,
many ML systems include filters that prevent the system
from outputting verbatim training data [31, 40]. We show
that this creates a side channel that actually reduces privacy,
even enabling near-perfect membership inference. We use
this attack to reverse engineer details of GitHub Copilot’s
training set (namely, its exact training data cutoff) and
then use it to extract OpenSSH private keys from a public
language model’s training set.

USENIX Association 33rd USENIX Security Symposium 6831

Train
Training Set Model

X1 X2

Y1 Y2

FilterTraining Set Model

X1 X2

Filtered Set

Leakage

Train

Filter

Weak Leakage

Le
ak

ag
e

Filter

Leakage

Isolated ML Model Practical ML System

Figure 1: Most past work studies the privacy leakage of ML models in isolation. However, in reality most models are part of
larger systems that contain components for filtering training data, blocking certain test inputs, monitoring model outputs, and
more. In this work, we show that adaptive adversaries can create side channels that exploit these system-level components to
significantly amplify privacy leakage.

• Query filtering (Section 6). Many ML systems use test-
time query filters that reject certain inputs, e.g., detectors
for adversarial examples [48, 51, 65] and model extrac-
tion attacks [41, 49, 57, 85]. We show that since many of
these filters aggregate information across different users
(to protect against Sybil attacks), adversaries can reveal
information about other users’ queries by sending targeted
inputs. Unlike the previous side channels that reveal pri-
vate training examples, this approach reveals other users’
private test queries, which is otherwise impossible when
considering isolated ML models.

Taken together, our results highlight the need to shift to
a system-level view when analyzing ML privacy. Unfortu-
nately, we show that guaranteeing system-level privacy is
challenging, both empirically and theoretically, due to highly
non-trivial interactions among different components. For ex-
ample, we show that combining DP and deduplication (as
suggested by past work [60]) leads to worse privacy than
DP on its own. Furthermore, system-level analyses require
tackling the trade-offs that arise when we consider a model’s
trustworthiness across multiple axes, e.g., query filters that
improve security can simultaneously hurt privacy. Overall,
we hope that our work can contribute to future improvements
on the frontiers of ML privacy.

2 Preliminaries

2.1 Background and Related Work

Our paper studies a wide range of attacks that exploit numer-
ous ML models and system components. In this section, we
discuss general preliminaries for ML systems and privacy
attacks; we otherwise defer the relevant background to each
self-contained attack section (Sections 3–6).

2.1.1 Standalone ML Models

An ML model is a function y← f (x) that is trained on a
dataset Dtrain and evaluated at inference time on a sequence of
queries Dtest = {x1,x2, . . .}. Most past work on ML privacy
considers a “standalone” or “isolated” ML model where f
is trained directly on Dtrain (e.g., using gradient descent) and
then independently queried on each data point xi ∈ Dtest to
get outputs yi← f (xi).

Privacy attacks and defenses. When considered as stan-
dalone functions, ML models can memorize and leak consid-
erable information about their training data. Numerous attacks
exploit this leakage, including membership inference attacks
[16, 22, 71, 84] that infer whether a specific example was in
the training set, and more powerful data extraction attacks
[5, 14, 15, 17, 54, 72] that can reveal entire training examples.
To defend against these attacks, models can be trained with
differential privacy [27]—typically by clipping and adding
noise to updates in stochastic gradient descent [1, 23]—which
makes them provably secure against privacy leakage. Other
more heuristic approaches such as data deduplication [42, 47]
or output filtering [31] can also mitigate some (but not all)
memorization [18, 40, 42].

Membership and non-membership inference. Many of
our side-channels exploit membership inference attacks,
where the goal is to infer whether a specific data sample
x was used in the training of a model f . In real-world sce-
narios, it is important for attackers to have low false-positive
rates as most arbitrary samples are non-members [16]. In ad-
dition, inferring non-membership is significantly easier than
inferring membership, since ML models typically make no
mistakes on their training data (i.e., if a model gets an exam-
ple wrong then it is probably a non-member). For many of our
attacks, we show that side channels can be used to convert a
membership inference problem into an equivalent (and easier)
non-membership inference problem.

6832 33rd USENIX Security Symposium USENIX Association

2.1.2 ML Systems

We consider part of an ML system everything that composes
the data collection, training and deployment pipeline. These
components augment the standalone model in Section 2.1.1
with additional components that act upon model inputs or out-
puts. In particular, we consider the following generic system
components (see Figure 1 for an illustration):

• A training data filter (Section 3) is a function that modi-
fies or removes inputs from the data before training. Popu-
lar examples include outlier removal or deduplication.

• An input pre-processor (Section 4) is a function that mod-
ifies inputs to prepare them for running through the model.
Popular examples include image cropping, or tokenization
and truncation for language models.

• An output post-processor (Section 4) is a function that
acts on the output y← f (x) produced by the trained model
and returns a modified output y′ (possibly an empty output
y′ = ⊥). Most relevant to our work are memorization fil-
ters that reject outputs y that leak information about some
training example.

• A query filter (Section 6) is a function that acts on the
sequence of input queries Dtest sent to a trained model and
returns modified inputs D′test = {x′1,x′2, . . .}. The function
may reject some input queries (i.e., x′i =⊥) in which case
the system returns no output for that query. Common exam-
ples include methods for rejecting inputs that are perceived
as being part of some attack attempt.

Privacy side channels in ML systems. We broadly define a
privacy side channel in an ML system as any instance where
an attacker can probe the system-level components to leak
significantly more information about the training set Dtrain or
query set Dtest than what a similarly capable attacker could
leak by interacting with a standalone model. This additional
leakage is made possible when instantiations of the above fil-
ters introduce dependencies between different model inputs—
either at training or inference time.

We do not consider modifications to the training algorithm
[73] or to the training data [77] to be “side channels” as they
also apply to the isolated model case. Similarly, other types
of attacks such as exploiting ML models used for computer
systems [68] (e.g., caches, databases, etc.) are out-of-scope
for our study.

We note that prior work has considered the impact of sys-
tem components on the integrity of ML model deployments,
e.g., by abusing image preprocessing algorithms to create
adversarial examples [61, 82].

2.1.3 A Comparison to Physical Side Channels

In cryptography and computer security, side-channel attacks
are typically defined as attacks that exploit leakage from the
implementation of a protocol or algorithm, rather than from

the design itself. Side-channel attacks often rely on leak-
age through physical phenomena (e.g., power consumption
or timing [44, 45]) or auxiliary functionalities such as er-
ror messages [11, 78]. In the context of machine learning,
physical side-channel attacks can recover the weights or ar-
chitecture of standalone ML models, e.g., via electromag-
netic signals [6], timing [26], power consumption [81], GPU
context-switches [79], memory access patterns [37], fault in-
jections [12], or cache timing [35, 83]. In addition, one can
reconstruct model queries at inference time using power anal-
ysis [80].

Our work considers a different form of side channel that
does not rely on physical signals, but instead relies on leakage
introduced by auxiliary functionalities present in real-world
deployments of machine learning. This is analogous to how
deploying secure encryption alongside functionalities like
error reporting enables new side channel attacks [11, 78]), or
how deduplication can harm cloud storage systems [33]. In
contrast to physical side-channel attacks, our attacks do not
require any physical access or fine-grained measurement of
the ML model. Instead, we only require black-box access to
the system’s prediction function.

2.2 Threat Model

Adversary’s goal. The adversary’s goal is to leak informa-
tion about the training data Dtrain or test queries Dtest of an ML
system by leveraging system-level side channels. For member-
ship inference attacks, we consider the standard adversarial
game where we pick a data point x, include this sample in
Dtrain with 50% probability, and then have the attacker predict
whether x was in Dtrain. We also consider test-time member-
ship inference attacks where the attacker has to guess whether
some query x has previously been made to the system or not,
i.e., if x ∈ Dtest.

Adversary’s system access. We assume that the attacker has
only black-box access to the ML system, i.e., they can send
arbitrary queries and observe outputs, but they do not know
the exact weights of the ML system. On the other hand, we
assume the attacker knows which system components are used
(e.g., output filters) and how they are implemented (for some
of our attacks, this knowledge is not strictly necessary). We
believe this assumption is reasonable for three reasons: (1) we
want to distinguish privacy that may be inherent in a system,
from “privacy-through-obscurity” that arises solely due to
(likely short-lived) secrecy of some system configurations; (2)
many system components we consider have a small number of
standardized implementations that practitioners are likely to
use. For example, imagededup1 and DataTrove2 are the most
widely used implementations for data deduplication of images
and text, respectively, and offer only one or two canonical

1https://github.com/idealo/imagededup
2https://github.com/huggingface/datatrove

USENIX Association 33rd USENIX Security Symposium 6833

https://github.com/idealo/imagededup
https://github.com/huggingface/datatrove

methods; (3) some of our attacks are reasonably robust to
uncertainty and work even without precise knowledge of the
system: for instance, our attack against GitHub Copilot works
even though the system is a black-box.

In some of our attacks (Section 3, 5), we assume that the
attacker can poison the training set, roughly mirroring the
setting of Tramèr et al. [77]. In our data extraction attack
against language models (Section 4.1), the attacker is assumed
to know the prefix p of a string p||s from the training set. For
all other attacks, we make no additional assumptions on the
adversary.

Since we are introducing a new class of attacks, we gener-
ally assume that there are no explicit defenses in place against
privacy side channels. However, many of our attacks operate
in settings where a model developer has deployed provable or
heuristic defenses against privacy leakage (e.g., differential
privacy, data deduplication, or memorization filters).

2.3 Ethics and Broader Impact
The attacks that we present could present a threat to user
privacy in deployed ML systems. To mitigate these harms, we
either study systems that we create ourselves using public data
(e.g., CIFAR-10 classifiers) or ones such as GitHub Copilot
that are trained on publicly-available data and thus do not
pose any real-world privacy risks. The goal of our work is
to bring to light these privacy vulnerabilities in order to spur
future work on developing private end-to-end systems.

3 Attacking Training Data Filters

We first study side-channel attacks on training data filters.
We show that common data filters introduce strong co-
dependencies between data samples: a data point might be
filtered out if and only if some other data points are present in
the training set. This introduces a side channel where an ad-
versary can determine, with high confidence, whether a target
data sample was present in the training set.

To isolate the privacy leakage that stems from the addition
of a specific filter, we assume throughout this section that the
system applies a single data filtering scheme before training.

3.1 Attacking Training Data Deduplication
Most large-scale ML models are trained on data scraped from
the Internet [30, 67]. Due to the nature of Internet content, it
is common for some training data instances to be repeated
multiple times; this is problematic for several reasons, in-
cluding that repeated training data is much more likely to be
memorized [18]. The process of deduplication addresses this
challenge by removing exact or near-duplicated samples [47].
Most modern large language models and image generation
models use training data deduplication, e.g., Gopher [63],
DALLE-2 [64], LLaMA 2 [75], PaLM 2 [2], and others.

Types of data deduplication. We primarily focus on dedu-
plication applied to images, although the principles underly-
ing our attacks are directly applicable to other domains such
as text, as we show in Section 3.1.5. As in Lee et al. [47],
we consider both exact and approximate deduplication. Exact
duplicates are samples x,x′ that are equivalent, i.e., x = x′.
Approximate duplicates are samples x,x′ that are “close”, i.e.,
sim(x,x′)≥ α for some similarity measure sim and threshold
α. Once duplicates are identified, there are two approaches for
deduplication: delete-all and delete-all-but-one. If x ∈ Dtrain
has as least one duplicate x′ ∈ Dtrain, then delete-all removes
all duplicates x,x′. Delete-all-but-one keeps exactly one copy,
i.e., only one of x′ and x is retained. While the latter may
seem more natural, the former is simpler to implement; both
approaches have been proposed in prior work and used in
practice [47].

The side channel intuition. Data deduplication introduces
co-dependencies between data points: a sample x is deleted if
and only if some similar sample x′ is present in the training set.
An attacker can exploit this side channel to perform a strong
targeted membership inference attack. Concretely, suppose
the attacker wants to infer membership of some sample x and
knows that some near-duplicates x′ are in Dtrain. Then, the
adversary can infer if x is in Dtrain by detecting whether the
duplicates x′ were deleted or not. Compared to a standard
membership inference attack on the targeted point x, this
side channel amplifies the privacy leakage if the duplicates x′

known to the adversary are more likely to be memorized than
the original data point.

3.1.1 Our Attack

We operate in the same threat model as Tramèr et al. [77]:
the attacker can poison a small fraction of the dataset to leak
information about other data points. In our case, the adver-
sary poisons the training set by inserting duplicates x′ of a
targeted data point x. We assume the attacker has black-box
query access to the trained model f and they know the data
deduplication procedure that is used.

We focus on classification tasks with labeled data (x,y) and
extend our attack to language modeling in Section 3.1.5. We
assume that deduplication is independent of a sample’s label,
i.e., two points (x,y) and (x′,y′) are duplicates if x is close
to x′, even if y 6= y′. As in Tramèr et al. [77], we assume the
attacker can introduce mislabeled data points into the training
set. This assumption could be relaxed in some settings by
considering clean-label poisoning attacks [70]. We further
assume that the model is trained on all (deduplicated) data
(i.e., there is no data subsampling step).

We propose attacks for the four forms of deduplication that
we introduced above:

• Exact deduplication, delete all: Given a target (x,y), we
add a mislabeled duplicate (x,y′) into the dataset. We then
run non-membership inference on the mislabeled point: if

6834 33rd USENIX Security Symposium USENIX Association

x

x'

x'

x'

x'

<d>d

Figure 2: A depiction of our “hub-and-spokes” attack on data
deduplication. Left: we insert poisoned examples that are
each close to the “hub” (x) but are far from each other. Right:
actual images from our attack. We also include a checkerboard
backdoor in the top-left corner of each near-duplicate image
to enhance memorization.

this point is absent, we know that the target was present
before deduplication. This attack only requires inserting
a single poison example.

• Exact deduplication, delete all-but-one: In this setting
we still use the same attack as above, but the attack is
less powerful: when the target is a member, the poisoned
duplicate only gets removed with 50% chance. This attack
also only requires inserting a single poison example.

• Approximate deduplication, delete all-but-one: This is the
most complex and interesting attack setting. We create N
approximate duplicates (x′1,y

′), . . . ,(x′N ,y
′) in a “hub-and-

spoke” pattern (described further below and illustrated
in Figure 2). This causes the attacker’s points to be near-
duplicates of the target, i.e., sim(x,x′i)≥α for all i, but not
of each other, i.e., sim(x′i,x

′
j)<α for all i 6= j. The attacker

then runs a non-membership inference attack across all
N poisoned samples x′i. In this way, the attack becomes
stronger as the attacker introduces more poison examples.

• Approximate deduplication, delete all: We repeat the
same approximate deduplication attack, but the attack
is stronger as all examples are removed.

We observe that the side-channel cannot be trivially re-
moved via dataset pre-processing. Manual filtering is too
impractical for modern, large datasets, and automated filter-
ing would not be able to remove the side-channel: a filter
removing equal samples with differing labels would lead to a
scenario equivalent to the delete all-but-one deduplication de-
scribed above. Also randomly subsampling the training data
would not be enough to defend from our attack against ap-
proximate deduplication with multiple poisons (even though
it might be slightly weaker). However, the attack with a single
duplicate may fail.

Generating approximate duplicates. In our experiments,
we use a standard approximate deduplication procedure based
on the cosine similarity between the embeddings h(x),h(x′)
of two samples, where h is a neural network. Assuming that h

outputs embeddings of unit norm in Rd , we have sim(x,x′) :=
h(x) · h(x′). We thus want to find duplicates x′1, . . . ,x

′
N of a

target x such that h(x) ·h(x′i)≥α for all i, and h(x′i) ·h(x′j)<α

for all i 6= j. To find approximate duplicates, we first compute
embeddings that satisfy the above condition, and then “invert”
the embedding function h to find input images.

Assume without loss of generality that the target em-
bedding h(x) is the first basis vector in Rd , i.e., h(x) :=
(1,0, . . . ,0) (for a general unit-norm embedding h(x), we sim-
ply have to apply an appropriate rotation to all vectors). We
now build d−1 unit vectors e1, . . . ,ed−1 of the form

ei := (α,0, . . . ,0︸ ︷︷ ︸
i−1

,
√

1−α2,0, . . . ,0) .

This ensures that: (1) all the embeddings ei are of unit
norm; (2) the cosine similarity between each embedding ei
and the target h(x) is α; (3) the cosine similarity between each
pair of near-duplicate embeddings is α2 < α. Given these
embeddings e1, . . . ,eN , we invert the embedding function h
by running 1000 steps of projected gradient descent. That is,
we optimize the input image x′i so as to maximize the cosine
similarity between h(x′i) and ei.

To further maximize the membership inference signal, we
make the mislabeled near-duplicates (x′i,y

′) to be as easy to
memorize as possible. We achieve this by adding a common
backdoor feature to all near-duplicates (a checkerboard pat-
tern as in Gu et al. [32]). In the extended version of this paper
[25, Appendix A] we show that including this backdoor pat-
tern significantly strengthens our attack. In Fig. 2, we present
an example depiction of our approximate duplicate attack.

Non-membership inference attack. After poisoning, we
adapt the LiRA method [16] to run membership inference. In
particular, we train “shadow models” that either contain, or do
not contain, the attacker’s poisoned duplicates. We query all
the shadow models to obtain the models’ confidences on the
duplicates’ poisoned label, and then fit two multivariate Gaus-
sians (one when the duplicates are members and one when
they are not) on the model’s confidence on each duplicate.

For the final attack, we query the target model f on each du-
plicate to obtain the confidence in the poisoned label, and then
perform a Gaussian likelihood ratio test to determine whether
the duplicates are likely to be members of the deduplicated
data. If the duplicates are predicted as non-members of the
deduplicated data, then we predict that the target example x
was in the original training set.

3.1.2 Evaluation

We evaluate our attacks on standard models trained on CIFAR-
10 and deduplicate the images using the popular open-source
imagededup Python library. We use the library’s default set-
tings, which compares images by the cosine similarity of
their embeddings computed from a pretrained MobileNetV3

USENIX Association 33rd USENIX Security Symposium 6835

10−4 10−3 10−2 10−1 100

False Positive Rate

10−2

10−1

100
Tr

ue
 P

os
iti

ve
 R

at
e

Ours, exact dup. (auc=1.0)
Ours, no dup. (auc=0.923)
LiRA, no dedup (auc=0.705)
LiRA, exact dedup (auc=0.705)

Figure 3: Deduplication can significantly worsen privacy.
We show membership inference effectiveness under both ex-
act deduplication (delete all) and no deduplication. With dedu-
plication, the side-channel leads to near-perfect membership
inference; without, it is similar to the baseline poisoning-
aware Truth Serum attack [77]. The LiRA baseline [16] per-
forms similarly in both cases.

model [36]. Two images are considered duplicates if the simi-
larity is at least α = 0.9.

We choose 250 targets at random from the CIFAR-10 train-
ing set and create between 1 and 8 exact- or near-duplicates
per target. We build the training set Dtrain by randomly sam-
pling 50% of the CIFAR-10 training set and adding the dupli-
cates. We train the models for 100 epochs.

Following Carlini et al. [16], we evaluate the success rate
of the membership inference attack by its true-positive rate
(TPR) at a low false-positive rate (FPR). As baselines, we
consider their original LiRA attack as well as the attack of
Tramèr et al. [77] that combines LiRA with data poisoning
(similar to our attack, but not leveraging the side-channel).

3.1.3 Results

Deduplication creates a strong side channel that enables near-
perfect membership inference. In Fig. 3, we compare mem-
bership inference attacks against models trained with and
without delete-all, exact data deduplication. On deduplicated
data, our attack achieves essentially perfect targeted mem-
bership inference, with a TPR of 98% at a FPR of 0.01%.
When data deduplication is not applied, our attack still out-
performs LiRA because of the amplification that poisoning
has on membership inference, as shown by Tramèr et al. [77].

In Table 1, we provide a more comprehensive comparison
between our attack and the prior state-of-the-art attack (Truth
Serum [77]) under different deduplication settings. Although
both attacks leverage poisoning by introducing mislabeled
samples, only ours explicitly exploits the deduplication side-
channel. For the single poison case, both our attack and Truth
Serum add a mislabeled copy of the target to the training set.
However, our attack differs in how we perform inference: we

Table 1: Our attacks improve prior privacy-poisoning at-
tacks. We report the TPR at a FPR of 0.1% and 0.01%, and we
compare our attacks against Truth Serum [77] and LiRA [16]
under different deduplication strategies. In parentheses, we
report the number of poisons injected.

TPR
Deduplication Attack @ 0.1% FPR @ 0.01% FPR

None
LiRA 6.2% 2.6%
Truth Serum (1) 18.0% 4.0%
Truth Serum (8) 30.5% 6.3%

Exact or Approx
delete all

LiRA 6.2% 2.7%
Truth Serum (1) 89.8% 79.3%
Truth Serum (>1) 0.1% 0.0%
Ours (1) 99.6% 98.0%

Exact
delete all-but-one

LiRA 6.2% 2.7%
Truth Serum (1) 41.6% 31.8%
Truth Serum (>1) 3.1% 1.1%
Ours (1) 45.6% 40.9%

Approximate
delete all-but-one

LiRA 6.5% 2.9%
Truth Serum (>1) 0.1% 0.0%
Ours (8) 96.0% 90.4%

perform non-membership inference on the mislabeled dupli-
cate, while Truth Serum performs membership inference on
the correctly labeled target sample. The latter is sub-optimal
when deduplication is applied, since the correctly labeled tar-
get is never in the training set. In the delete all deduplication
setting, this change boosts the attack’s TPR to near 100%.

In the delete all-but-one setting, our attack has lower overall
TPR (but still outperforms Truth Serum) due to the possibil-
ity that one of the poisons survives deduplication even when
the target is a member. With approximate deduplication, our
hub-and-spoke attack design with 8 duplicates doubles the
attack’s TPR compared to using a single poison. Note that in
contrast to our attack, running Truth Serum with >1 poisons
completely breaks the attack when deduplication is applied.
This is because Truth Serum’s poisons are all exact (misla-
beled) copies of the target, and thus, deduplication removes
the poisons regardless of whether the target is in the training
set or not. Our attack sidesteps this issue by ensuring that the
attacker’s poisons are near-duplicates of the target, but not
near-duplicates of each other.

3.1.4 Dealing with Attacker Uncertainty

In practice, an attacker might not know exactly which dedupli-
cation method is being used, or with which hyperparameters
(for approximate deduplication). Here, we show that an at-
tacker can still implement a successful attack in such a case.

Unknown deduplication method. In this case, the attacker
should apply our attack that adds one mislabeled exact du-
plicate. Note that this attack is assumption-free: it requires
no knowledge of the deduplication approach that is used.
This strategy is optimal for three-out-of-four deduplication
settings: Exact delete all, Approx delete all, Exact delete all-
but-one. The one setting where this attack is not optimal is

6836 33rd USENIX Security Symposium USENIX Association

for the Approx delete all-but-one setting. However, in this
case the attack with one mislabeled exact duplicate still out-
performs Truth Serum, the prior state-of-the-art (the results
are the same as for the Exact delete all-but-one setting, where
our attack has a 9% higher TPR @ 0.01% FPR compared to
Truth Serum, as shown in Table 1).

The attacker knows Approx delete all-but-one is used. If
the adversary knows that the system is using Approx delete
all-but-one deduplication, and they can guess the α reason-
ably well, then they can improve over the assumption-free
attack above. If the attacker’s guess for α is close to cor-
rect, the attack is near-perfect (96.0% TPR @ 0.1% FPR)
by adding eight approximate duplicates. Specifically, the at-
tacker’s guess must satisfy α2

guess < αreal ≤ αguess. If the at-
tacker’s guess does not satisfy the above, or if the deduplica-
tion method is not actually Approx delete all-but-one, the at-
tack fails. Thus, if the attacker is not confident they can guess
α correctly, or they are uncertain if Approx delete all-but-one
is used, they should just use the assumption-free attack above,
and still outperform Truth Serum.

How can the adversary guess α?. The adversary can esti-
mate α by computing a TPR-FPR curve over a sample of
training data. We estimate that α is unlikely to be smaller than
0.8 in practice as this would yield too many false positives,
and reduce the size of the training set. Moreover, the attacker
does not need to guess α exactly. Even if the guess is off
by ±2%, most of the poisons will survive the deduplication
process, as shown in Figure 4. Crucially, this rules out α ran-
domization as a potential defense against our attack. Finally,
if the same deduplication method is reused multiple times, the
attacker can recover the real alpha value by adding dummy
near-duplicates with different similarities. Thus, if a developer
collects multiple training sets over time and keeps the same
deduplication process, the attacker can learn the parameters
once and then use this to reliably attack future training runs.

3.1.5 Extension to the Text Domain

While we have focused on classification tasks so far, our
attack techniques can easily be extended to other tasks such
as language modeling. Text data is commonly deduplicated by
finding and removing substrings of k tokens that are exactly
repeated across documents [47]. We show this method creates
a side channel that enables a powerful attribute inference
attack (a more powerful attack than membership inference).
Specifically, we show that the attacker can infer a low-arity
attribute (e.g., a medical condition) contained within a known
piece of training data (e.g., a template of a healthcare form).
For simplicity of exposition, we assume the unknown attribute
is a single token, but our attack could be generalized to longer
attributes. We assume the training set contains a sentence of
the form

S1, . . . ,Sk−1︸ ︷︷ ︸
pre

X Sk+1, . . . ,S2k−1︸ ︷︷ ︸
post

,

0.84 0.86 0.88 0.90 0.92 0.94
Real alpha

2

4

6

8

Nu
m

be
r o

f s
am

pl
es

 a
fte

r d
ed

up

without target
with target
without target (ideal optimization)
with target (ideal optimization)

Figure 4: Our attack is robust to uncertainty in the dedu-
plication threshold α. We create approximate duplicates by
optimizing for the poisons to be less than α2-similar to each
other, and more than α-similar to the target. We show that,
within a ±2% range, six duplicates are kept on average when
the target sample is not a member–with only one sample being
kept when the target sample is a member.

where pre and post are a prefix and suffix of lengths k− 1
known to the attacker, and X is an unknown token that comes
from a set of N possible values {X1, . . . ,XN}. The attacker’s
goal is to infer the value of X .

Our attack. At a high level, our attack creates N families of
poison strings (with k poison strings per family), and where
each family’s strings contains some “canary” substring that
is deduplicated if and only if the true value of the unknown
attribute is Xi. Then, by running an inference attack to detect
the presence of these canary substrings, the attacker can infer
which attribute value is correct.

More concretely, we build the i-th family by choosing some
unique strings Ai,Bi (each of length less than k) and building
k strings of the form:

Ai + S1S2S3 . . .Sk−1 Xi + Bi

Ai + S2S3 . . .Sk−1 Xi Sk+1 + Bi

Ai + S3 . . .Sk−1 Xi Sk+1Sk+2 + Bi

. . .

Ai + Xi Sk+1 . . .S2k−1 + Bi .

Our construction ensures that: (1) none of the adversary’s
N · k poison strings contain a duplicated substring of length
k; (2) if the i-th family of poison strings has the correct value
of the unknown attribute X , all strings in the family are dedu-
plicated to the string Ai +Bi (we assume Ai +Bi to be shorter
than k so that it is not deduplicated recursively).

USENIX Association 33rd USENIX Security Symposium 6837

Once the language model has been trained on deduplicated
data, the adversary can compute the model’s loss on each of
the N strings Ai +Bi. The string with the lowest loss likely
corresponds to the index of the unknown attribute, as these
strings only appear contiguously in the training set if dedupli-
cation has occurred.

3.1.6 Deduplication Is Still Worth It in Practice

Deduplication is a cornerstone in mitigating memorization in
deployed ML models trained on web-scale datasets [42, 47].
Moreover, differentially private training is only effective on
deduplicated data (or else privacy leakage scales exponentially
with the number of duplicates). However, if deduplication can
induce new privacy violations as we show above, should prac-
titioners still apply it? We argue yes, because the empirical
cost of not doing so is just too high—the privacy risks of
duplicated data are far too egregious. This highlights an unfor-
tunate trade-off, where the best practice of using deduplication
will be vulnerable to adversarial attacks, and we thus hope
that new techniques can be developed to deduplicate datasets
without aggravating privacy leakages.

3.2 Attacking Poisoning Defenses

We next look at a broader class of data filtering techniques
that aim to protect against poisoning attacks [7]. Poisoning
attacks introduce malicious behavior into a model, often by
adding many samples that share a common feature (e.g., a
backdoor [21]). Defenses against poisoning often work by
removing examples based on their relationships to other ex-
amples and thus they create “codependencies” that can be
targeted to leak information.

3.2.1 Poisoning Defenses

Defenses against poisoning attacks find and remove clusters
of points that are part of a presumed attack. Many defenses
end up performing some form of data deduplication and are
thus vulnerable to a similar side channel as presented in the
previous section.

As a straightforward example, Carlini [13] propose a de-
fense against data poisoning that detects poisoned samples
and also occasionally flags near-duplicates (as false-positives).
Thus, deploying this defense would immediately create the
exact same privacy side-channel as described in the previous
section.

Alternatively, Sybil filtering [4, 29, 56] is a common coun-
termeasure to prevent colluding adversaries from poisoning a
federated learning (FL) model [50]. Most implementations of
Sybil filtering downscale or remove a client’s model updates if
they are too similar to another client’s updates. The defense’s
intuition is that colluding clients performing a poisoning at-
tack are likely to contribute very similar updates, while benign

clients’ updates are likely to be diverse due to the non-iid na-
ture of their datasets. This defense essentially deduplicates
at the model-update level rather than at the training-example
level.

Finally, in the extended version of this paper [25, Appendix
A], we discuss another related poisoning defense, activation
clustering [19] that is also vulnerable to similar side channels.

The side channel. The attacker introduces malicious sam-
ples so that the poisoning defense is triggered if and only if
some target is present. This yields a membership inference
side channel. Depending on the defense, this side channel can
leak information about individual training samples or collec-
tions of samples (e.g., in the FL case when models updates
represent information about a batch of examples).

3.2.2 Our Attack

For the semi-supervised poisoning defense of Carlini [13], the
attack is exactly the same as for general data deduplication, so
we do not discuss it further. We thus focus on Sybil filtering
in FL, which introduces some notable differences into the
attack since the defense operates over model updates instead
of individual samples.

We assume a threat model where the attacker controls one
FL client and knows the defense mechanism being used. The
attacker’s goal is to infer if some target client is participating
in the protocol (i.e., client membership inference). We assume
the attacker knows the target client’s data distribution (e.g., if
we are training a model on people’s photos, then the attacker
has some public photos of the target client). We do not assume
that the attacker’s data and the target’s data overlap—only
that they are similarly distributed.

We consider a canonical defense called FoolsGold [29],
which dynamically modifies the learning rate of individual
clients based on the similarity of their updates over time. To
compare the updates of two clients, the defense aggregates
each client’s history of updates and then computes the cosine
similarity between these aggregates. A “Sybil” score between
0 and 1 is then computed for each client—based on the maxi-
mum similarity with another client—and this score is used to
adjust the contribution of that client’s model updates.

Our attack adds a malicious client into the training pool,
with the aim of producing model updates that are similar to
those produced by the target (if present). The attacker then
performs membership inference based on the model’s loss
on the attacker’s (not victim’s) data: if the target client is not
participating in the protocol, FoolsGold will not downscale
the attacker’s updates and so the loss will decrease across
epochs; conversely, if the target is present, the attacker’s and
target’s updates are both downscaled and so the loss will not
decrease. The attacker thus measures the model’s loss on
the attacker’s dataset before and after participating in he FL
protocol to determine if the target is present.

6838 33rd USENIX Security Symposium USENIX Association

0

1

2

3

4

5

Lo
ss

Target client in pool: both target and attacker excluded
Loss on target class 0
Loss on target class 2

0 20 40 60 80 100
Round

0

1

2

3

4

5

Lo
ss

Target client not in pool: training progresses normally
Loss on target class 0
Loss on target class 2

Figure 5: When federated learning is combined with de-
fenses against data poisoning, a side-channel is opened
that worsens privacy. We run the FoolsGold defense and
insert a poisoning client into the learning protocol (denoted
by the red vertical line). When a target client of interest is
present in the data, both that client and the poisoning client
will effectively not contribute to the learning (top of Figure).
When the target is not present (bottom of Figure), the learning
on the poisoning client continues as normal. This enables a
strong membership inference attack.

3.2.3 Evaluation

We experiment with a non-iid setup that simulates a natural
FL deployment to train an image classifier on pictures from
each user’s local device. We use the Labeled Faces in the
Wild [38] (LFW) dataset, restricting the classification task to
the 5 identities with over 100 pictures, and generate 5 clients
each with 90 training images. To enforce the non-iid setup, we
sample a majority (80%) of images from a single identity for
each client and then fill the remainder with images sampled
from other classes according to a Dirichlet distribution (α =
1). We train a ResNet-18 [34] using the official FoolsGold
implementation.3 The malicious client joins the protocol at
round 20; their dataset is composed of 50 non-overlapping
images from the target client’s identity. This ensures that its
updates will be similar to the targeted client and different
from others. We run experiments with two target classes (0
and 2) and repeat each experiment 10 times with different
random seeds.

3.2.4 Results

Figure 5 validates the susceptibility of FoolsGold to our side-
channel attack. As predicted, the model’s loss on the attacker’s
dataset only decreases when the target is not present. By using
the difference in average loss for 15 rounds before and after
the attacker participated, we achieve 85% accuracy (averaged
over 10 experiments) in identifying whether the target client

3https://github.com/DistributedML/FoolsGold

was in the training pool.
Without the side channel, the adversary would need to make

a membership guess based solely on the model’s loss on the
attacker’s data. A common approach from the literature would
be to train shadow models. However, this is difficult in an FL
setting as the attacker would need to know the data distribu-
tion of all clients (not just the target), and perform multiple
expensive simulations of the entire FL run. We simulate such
a strong adversary by taking the 10 different runs of our exper-
iment, and setting the loss threshold directly as the difference
between the model’s average loss when the target is partic-
ipating, or not. We find that even such a strong adversary
only achieves 67.5% accuracy in guessing the presence of the
target, without relying on our side channel.

4 Attacking Input and Output Filters

Here, we consider how filters applied to a model’s inputs or
outputs can enable powerful membership inference attacks.
In fact, these membership inference attacks will be so strong
(essentially perfect) that we can convert them into data extrac-
tion attacks that even allow extraction of OpenSSH private
keys contained in a language model’s training set.

A common theme of this section is that ML system filters
make it impossible for the system to produce certain outputs,
depending on the training data. The attacker can then make
some guess about an input in the training set, and craft a query
that would trigger an impossible output if the guess were cor-
rect. This yields a perfect non-membership inference attack: if
the model produces the impossible output, the attacker knows
their guess is incorrect. We then introduce various approaches
to lift the attack into a strong (or even perfect) membership
inference attack. This attack strategy is reminiscent of impos-
sible differential cryptanalysis [9, 43], where an attacker’s
guess about the internal state of a cryptosystem can be ruled
out if certain statistical output properties are observed.

Background: language models. Large language models
(LLMs) are neural networks that take as input a sequence
of text of variable length and predict a probability distribu-
tion over the next word (or token, see below) in the sequence.
While early language models represented text as a sequence
of characters or words [52], all recent language models use
a more compact representation that splits arbitrary text into
tokens that represent entire words, sub-words, or characters.
The set of all tokens is called the vocabulary.

When applied to an input sequence of tokens t1, t2, . . . , tn, a
LLM predicts a probability distribution Pr[t|t1, t2, . . . , tn] for
the value of the next token in the sequence. To generate text,
the model is applied repeatedly to its own output, using a
particular decoding strategy. In the simplest case of greedy
decoding, we repeatedly sample the most likely token given
the current input sequence and append this token to the input.

USENIX Association 33rd USENIX Security Symposium 6839

https://github.com/DistributedML/FoolsGold

4.1 Extracting Vocabularies of Language
Models

We first show how to use the input filtering stage of language
models as a side channel.

Background: Byte-pair encoding. The inputs to modern
language models are preprocessed into a series of sub-words
(i.e., tokens) and truncated to a maximum context window
size. The set of tokens (i.e., the model’s vocabulary) is deter-
mined by running an algorithm such as byte pair encoding
over the training data [69]. At the time of submission, Byte-
pair encoding is the standard tokenization algorithm used in
all modern large language models. A model’s vocabulary can
reveal sensitive details of its training data, e.g., the GPT-2
tokenizer [62] contains tokens that represent individuals’ Red-
dit usernames [66]. While this is not a privacy issue in the
case of tokenizers trained on public data (like GPT-2’s), this
may become a concern if a tokenizer is trained or adapted on
private data with an unusual vocabulary, e.g., medical records.
Finally, many systems such as the Claude chatbot [3] have
their tokenizer kept secret.

The side channel. Here, we show that truncating inputs to
a fixed size window allows adversaries to extract the entire
vocabulary of any model. In particular, consider a sequence
such as “My favorite color is red. My favorite color is”. Here,
most language models will predict the word “red” as the
continuation. However, if some padding text of ≥ N tokens is
added, e.g., “My favorite color is red. PADDING My favorite
color is”, the model will not be able to see the word “red” for
long padding sequences. This allows one to determine how
many tokens the padding sequence occupies in the model’s
input.

4.1.1 Extracting the Complete Vocabulary

In particular, under the byte-pair encoding algorithm, it is
guaranteed that any token can be recursively split into two sub-
tokens until the final sub-tokens are only one byte. Our attack
will leverage this in reverse, where we initialize our extracted
vocabulary V to all of the single bytes and recursively expand
it. Concretely, for all pairs of tokens (u,v) ∈V ×V , we query
the model on the sentence:

“My favorite color is red. u||v u||v . . . u||v︸ ︷︷ ︸
3N/4 times

My favorite color is”

where || denotes concatenation. Suppose that u||v actually is
a single token in the vocabulary. Then the number of padding
tokens inserted between the question and answer would be
just 3N/4 and the model would respond with “red”. In this
case we insert the new token V ← V ∪{u||v}. On the other
hand, if u||v was represented instead by two tokens, then the
number of padding tokens would be 3N/2 > N and the model
will not answer “red”.

0MB 9MB 19MB 28MB
Number of bytes to tokenize

0e5

2e5

4e5

6e5

8e5

10e5

Qu
er

ie
s t

o
GP

T-
2

Figure 6: We extract the tokenizer for GPT-2 on specific
byte strings from Wikipedia. Our attack leverages a side
channel based on the fact that language models use of a fixed
context window.

Attack complexity. After T iterations of this attack, we will
recover all tokens of length less than T . Extracting the entire
vocabulary will require O(|V |T) total queries.

Results. Our attack is empirically effective at recovering the
entire GPT-2 vocabulary. In the extended version of this pa-
per [25, Appendix A], Table 3 lists example of tokens that
we extract, including rare substrings such as “RandomReddi-
torWithNo”, “TheNitromeFan”, and “SolidGoldMagikarp”.
Thes strings are usernames of Reddit users that were likely
repeated frequently in the GPT-2 training dataset.The attack
requires 819,869,857 queries.

4.1.2 Targeted Vocabulary Extraction

We also can use this attack to efficiently extract the tokeniza-
tion for a specific word or phrase. Such an attack may be
useful for (1) generating adversarial examples, where it may
be useful to know the tokenization of a particular string, or (2)
determining if a model uses another model’s tokenizer, e.g.,
for licensing or reverse engineering purposes.

To use the above algorithm for a particular string such as
“hello” and “world”, we can simply check if “he”, “el”, “ll”,
etc. are tokens and would not need to check if “ho”, “wl”,
“ol”, etc. are tokens.

Results. In Figure 6 we measure the efficacy of this restricted
attack by reporting the number of queries necessary to de-
termine how GPT-2 would tokenize the first N bytes of the
enwiki8 dataset (a subset of Wikipedia). On average we find
it requires roughly 30,000 queries per megabyte, diminishing
as we increase the number of bytes to tokenize.

4.2 Attacking Memorization Filters

We next show how filters applied to LM outputs can also
enable aggravated privacy violations.

6840 33rd USENIX Security Symposium USENIX Association

Background: memorization-free decoding. LLMs are
known to memorize—and output—sequences from their train-
ing dataset [15]. Thus, popular production LLM systems such
as GitHub’s Copilot use filters that block outputs that match
their training data. In this way, models are guaranteed to never
emit a verbatim sequence from their training dataset.

Ippolito et al. [40] formalize this as memorization-free
decoding. Memorization-free decoding adds a filter that runs
on-line with the language model and, before emitting the next
token, checks if this causes a k-gram match to a sequence in
the training dataset (using an efficient Bloom filter lookup). If
so, this token is replaced with the most-likely non-memorized
token instead. While such filters are imperfect (for example
they do not prevent the model from outputting similar yet not
verbatim copies of training data), they are an efficient and
practical defense that reduces the likelihood of data copying.

The side channel. We show that applying any form of
memorization-free decoding introduces a significant privacy
vulnerability: if a language model ever generates any particu-
lar k-gram, we are guaranteed it was not part of the training
data. This gives us a perfect non-membership inference at-
tack (i.e., a 100% true negative rate at a 0% false negative
rate). Next, we will show how to convert this into a strong
membership inference attack.

4.2.1 Our Attacks

We propose two different ways of extending the above non-
membership inference attack to a near-perfect true positive
rate, thereby obtaining a near-perfect membership inference
attack.

Perfect membership inference for toggleable filters. To
begin, we first develop a simple counterfactual-based ap-
proach for the special case where the memorization filter can
be disabled. Indeed, some models, such as GitHub’s Copilot
model, allow the user to choose to block the recitation of
training data. This gives the adversary the ability to perform
a perfect counterfactual analysis.

Concretely, assume the adversary wants to perform (posi-
tive) membership inference on the sequence t. We begin by
disabling the memorization filter and, for each prefix pi of t,
query the model on pi yielding a predicted suffix si. For each
of these, we check if pi||si is a prefix of t.

If none of the generations have this property then the attack
is inconclusive. However, if we identify any index i for which
pi||si is a prefix of t, we can enable the memorization filter,
and again prompt the model with pi. If the suffix with the filter
turned on is equal to the original suffix si, then the sequence
cannot have been in the training dataset—if it was, the filter
would have blocked it. On the other hand, if the suffixes are
not equal then we know with 100% certainty that the sequence
was in the training dataset.

Membership inference with a permanent filter. Some
models contain memorization filters that are permanently
applied, which prevents our straightforward counterfactual
approach. The challenge with such a filter is that if a model
fails to output some suffix, this could be due to one of two rea-
sons: (1) either the filter was triggered (i.e., the sequence is in
the training set); or the model simply assigns a low likelihood
to this suffix.

To reduce the likelihood of the latter event, we propose to
encourage the model to emit the desired string, by exploiting
the in-context learning abilities of language models. For ex-
ample, lets say we want to detect if the sequence “ABCD” is
in the training set, and when we prompt the model with “ABC”
it fails to output the letter “D”. This is either because the mem-
orization filter was triggered, or because the model simply
assigns low probability to the completion “D” in this con-
text. To disambiguate these two cases, we prompt the model
with the sequence “ABCD ABCD ABCD ABC”, where we
repeat the targeted completion many times. Empirically, this
guarantees that any powerful language model will output the
completion “D” (as it is the most likely completion in the
given context). Now, if the model still fails to output “D”, we
can assume with high confidence that the memorization filter
has been triggered. More formally, we split the target string t
into a prefix pi and suffix si, prompt the model on the string
pi||si||pi||si|| . . . ||pi, and then check if the output is si.

4.2.2 Estimating Copilot’s Training Date Cutoff

We now describe an application of the toggleable filter side-
channel attack to perform membership inference on GitHub
Copilot, a popular public coding assistant. Concretely, Copi-
lot uses a toggleable memorization filter that we exploit to
determine the date on which GitHub scraped the model’s train-
ing data. The details of Copilot’s memorization filter are not
public, and in practice we found that it likely performs approx-
imate filtering based on fuzzy matching between outputs and
training data. Nevertheless, we can run our attack as if it was
an ideal filter and accept that this could incur false positives
(approximate filtering does not cause false negatives).

To evaluate our attack, we choose a popular GitHub reposi-
tory, tqdm, and randomly sample some of the project’s com-
mits in which code was introduced that is still present in the
most recent revision of the project. We then run our member-
ship inference attack on each of these commits and in Figure 7
we plot the fraction of commits our attack predicted were not
in the training set.

There are several false positives from before October 2021,
but for all commits made after that date, Copilot can generate
the code with the filter on. This indicates that they are not
members in the training data, and we can infer that October
2021 is likely the date at Copilot’s data was last collected.
This date is exactly the same date at which other OpenAI
models’ training data was collected (e.g., text-davinci-003),

USENIX Association 33rd USENIX Security Symposium 6841

2016 2017 2018 2019 2020 2021 2022
Date

0.0

0.2

0.4

0.6

0.8

1.0

Co
nt
in
ua

tio
n

20
21

-1
0-
01

Figure 7: GitHub Copilot’s memorization filter leaks
membership information. The system blocks outputs that
are similar to the training data and thus reveals which code
was used for training. In particular, we examine code com-
mits that are added to a popular GitHub repository over time
and plot the fraction of commits that our attack flags as non-
members. There is a noticeable increase in October 2021,
which reveals when the training data was last collected.
further confirming this result.

Note that our attack shows that Copilot can generate code
for all commits after October 2021 even while the filter is
on. The attack does therefore not depend on the filter being
toggleable. While in Section 4.2.1 we give a baseline example
of how an attack would work if the filter can be toggled, our
full attack does not need this assumption. We choose tqdm as
a target because it is a popular library with frequent commits,
hence providing high resolution for our experiment. How-
ever, our attack still works with less popular repositories with
less frequent commits. Finally, we attack Copilot’s memo-
rization filter as it is the only widely deployed filter we are
aware of that matches the whole training corpus. Moreover,
since the training data is already public, this experiment poses
minimal risk. However, since we have shown a successful
attack against a filter with unknown implementation details,
we believe our attack should be generally applicable to other
systems with a memorization filter.

4.2.3 From Output Filtering to Data Extraction

Finally, we extend our attack to perform a data extraction
attack that can recover complete documents from the training
set token-by-token. We focus on the permanent memorization
filter case, and we assume the attacker knows a substring of
the text that they wish to extract from the training set.4 For
example, to extract an RSA key the prefix could be “BEGIN
OPENSSH PRIVATE KEY”.

Given this prefix p of a training document, a perfect mem-
bership inference attack makes it trivial to extend the sequence
by one token: enumerate all possible tokens s that may occur
next and for each token run the attack on p||s. In practice,
the attack may have false positives and thus identify several
next-token candidates s∗j . These false positives occur when
the language model fails to emit a token that was not in the

4We assume the substring is a prefix, but one can extend the attack to
work with a known suffix by running membership inference attack on s||p.

Table 2: We can use an output filter side-channel to ex-
tract hundreds of secret OpenSSH private keys. We use
GPT-Neo language models with a permanent memorization
filter and apply our membership inference approach to itera-
tively extract single tokens from the training set.

Model Success Rate Mean Queries

GPT-Neo 125M 90.3% 376,000
GPT-Neo 1.3B 90.0% 338,000
GPT-Neo 2.7B 89.8% 344,000

training set even when it is coerced to do so. In these cases,
we explore each next-token candidate in a depth-first manner.
If a candidate was incorrect, it will simply reach a state where
there is no valid next token and terminate.

Extracting RSA private keys. As a proof of concept, we
consider the hypothetical case that GPT-Neo [10] (a family
of language models similar to GPT-3) has a memorization
filter and was trained on files containing some unknown RSA
secret keys. To instantiate the memorization filter, we build
a Bloom filter containing all 20-token sequences in the GPT-
Neo training dataset and prevent the model from ever emitting
these sequences. To simulate training on private keys, we add
1,000 different OpenSSH private keys to the Bloom filter,
each of which are 512 base-64 encoded bytes.

Using this setup, we found that our membership inference
attack achieves over 99.9% accuracy at predicting whether a
next-token candidate is in the training set. However, this is
still not enough for accurate data extraction as there are over
10,000 possible next tokens in Base64 output and we want to
extract text that contains many such tokens.

To further enhance the attack, we count the frequency of
each Base64-encoded token in a large 10TB dataset of random
data. We then bias the search towards more common tokens,
e.g., the Base64 token “Q” occurs much more frequently than
“omanip” in practice (cfr Figure 9 in the extended version of
this paper [25, Appendix A]). Using this approach, we query
the model with the complete header (“BEGIN OPENSSH
PRIVATE KEY”) and run our attack. The attack extracts about
90% of the keys successfully and requires around 340,000
model queries (see Table 2).

5 Breaking Differentially Private Training

We next show how the side channels that we have introduced
thus far can violate “provable” privacy guarantees when those
guarantees are based on isolated ML models. Specifically, we
show that standard differential privacy analysis fails when
data filtering components are added.

Background: differentially private training. An ML algo-
rithm is differentially private (DP) if the distribution over

6842 33rd USENIX Security Symposium USENIX Association

possible trained models is close for any two neighboring
training datasets that differ in a single example [1, 27]. A
common paradigm to design DP algorithms is to estimate the
algorithm’s sensitivity—the maximum change in output from
changing one input—and then adding random noise calibrated
to that sensitivity. However, estimating the sensitivity of a full
ML training pipeline is hard. Instead, the approach of the
common algorithm DP-SGD [1] is to estimate the sensitivity
of each training step and rely on DP’s composition property
to compute the model’s final privacy budget ε.

The side channel. The theoretical analysis of DP-SGD
does not consider additional components of the ML train-
ing pipeline such as filters applied before and after training.
When these filters depend on the training data, they them-
selves have a non-zero sensitivity (i.e., changing one training
example could change the filter’s output). As a result, the
total sensitivity of the system may be much larger than the
sensitivity of the training algorithm in isolation. This means
that an ML system trained with DP-SGD could violate the
provable privacy guarantees that apply to an isolated model.

Warm-up: memorization filters have unbounded sensitiv-
ity. As a simple example, consider the memorization-free
decoding filter (Section 4.2) that prevents the model from
emitting training data. Its sensitivity is unbounded: the filter
activates on a given output if and only if some training exam-
ple matches it. It is thus obvious that training the model with
DP-SGD does not prevent the side-channel attacks that we
describe in Section 4.2.

Deduplication has large sensitivity. A less obvious exam-
ple is the case of data deduplication (Section 3.1). One may
expect that since deduplication empirically minimizes memo-
rization, combining it with DP-SGD should lead to an extra
layer of privacy protection. Indeed, prior work has even sug-
gested this [60]. However, as our attacks in Section 3.1 show,
deduplication can cause a single training example to influ-
ence whether many other examples get removed. In turn, the
sensitivity of deduplication is quite large in practice.

Evaluation. We apply the side-channel attack from Sec-
tion 3.1 to an ML system that first deduplicates the train-
ing set and then trains a model with DP-SGD. We use the
CIFAR-10 dataset and pick one training sample at random
as the target. We create 256 approximate duplicates of the
target and add these to the training set. We then deduplicate
the training set using the default imagededup settings as in
Section 3.1. We train 128 models using DP-SGD on either
the full dataset as described above, or a neighboring dataset
with the target removed. Note that after deduplication, these
initially-neighboring datasets now differ in 256 examples. We
use the state-of-the-art differentially-private training approach
from De et al. [24], with a batch size of 4096, augmentation
multiplier of 16, and their settings for the noise multiplier and
learning rate.

Figure 8: Deduplication violates naive differential privacy
analysis. If we combine approximate deduplication with DP-
SGD (as suggested in prior work), then a single example in
the collected training data can affect multiple samples in the
filtered training dataset that DP-SGD gets applied to. Dedu-
plication thus effectively amplifies the sensitivity of the differ-
entially private mechanism, leading to a severe underestimate
of the true privacy loss of the end-to-end system.

We run DP-SGD multiple times with a target privacy bud-
get ε ∈ (0.5,6) and set δ = 10−5. We then perform a mem-
bership inference attack on the adversarial duplicates (as de-
scribed in in Section 3.1). We use the attack’s FPR and TPR
to estimate an empirical lower bound on the true value of the
privacy budget ε for the entire ML system—following prior
work on DP auditing [53, 55].

Results. The privacy analysis of DP-SGD severely underes-
timates the privacy leakage of the entire system (Figure 8).
For example, when DP-SGD’s theoretical bound on epsilon is
respectively 1, 1.5, and 3, the actual privacy budget consumed
by the system is at least 7.5, 17, and 22. Note this is not due
to a mistake in DP-SGD’s analysis or a bug in our imple-
mentation. Rather, it is because the privacy analysis is with
respect to the dataset that DP-SGD is actually run on and not
the system’s “true” training set Dtrain that is collected prior to
deduplication. Thus, computing a correct privacy guarantee
for the entire system would require composing DP guarantees
for both the deduplication step and the training process.

6 Leaking Test Queries From Query Filters

Thus far, we proposed side channel attacks that leak training
examples. Here, we show that side channels can also allow
adversaries to identify test queries made by arbitrary users.
Worryingly, these attacks are otherwise impossible to launch
when analyzing ML models in isolation.

Specifically, we focus on ML “query filters” that restrict or
flag inputs in order to prevent attacks. These filters often guard
against Sybil attacks (i.e., where an adversary uses multiple

USENIX Association 33rd USENIX Security Symposium 6843

accounts to conceal their attack) by aggregating queries across
all users of the system. Here, we show that this introduces a
side channel, where attackers can create special queries whose
outputs reveal information about other users’ queries.

6.1 Attacking Stateful Evasion Detectors

Background. In an evasion attack [8, 74], an attacker per-
turbs an example to cause a ML model to misclassify it.
To generate these adversarial examples in a black-box set-
ting, existing query-based attacks repeatedly query the target
model [39]. Given the difficulty in outright defending against
evasion attacks, recent work has developed stateful detection
defenses [20, 48]. These defenses record every query (re-
cently) issued to the system, and then ban a user (or take other
defensive actions) if their query history appears malicious.
Commonly, a sequence of queries is marked as malicious if
the queries are close to one another under some similarity
metric. As noted above, certain stateful evasion defenses also
aggregate queries across users [48].

The side-channel. We target the method of Li et al. [48], the
first defense that proposes to store a global history of finger-
prints (a fuzzy hash) of each query. If the current user’s query
is similar to a previous query, an attack is detected and the
filter will reject the query and all subsequent similar queries.
In turn, this enables a side channel where one can check if
another user has uploaded some query x by re-uploading the
same query. If the system rejects the attacker’s query, they
know that a query very similar to x was likely previously
uploaded.

Evaluation and results. We evaluate our attack on CIFAR-
10. We create a set Dtest of 1,000 images to simulate queries
made by users and a held-out set D∼test of 1,000 other im-
ages. We query the model on each image in Dtest and D∼test
and predict which images were real queries (i.e., Dtest). Our
attack has perfect accuracy (100% TPR, 0% FPR): the de-
fense rejects the attacker’s query if and only if the image
was previously queried. The only possible failure case for the
attack is a false positive, which the defense is explicitly set
up to minimize and is thus rare in practice. Overall, this side
channel highlights the strong tension between security and
privacy—if one uses a privacy-preserving defense that acts
on a per-user basis, they cannot resist Sybil attacks.5

6.2 Extension to Stateful Extraction Detectors

Aside from black-box evasion attacks, stateful detectors also
exist for model extraction attacks [59, 76]. In extraction at-
tacks, adversaries make many queries to a black-box ML

5Note that it may be possible to improve the defense. For example, instead
of filtering a query when it is similar to one prior query, the defender could
pick a random threshold T on the number of similar past queries. We leave
an exploration of this to future work.

model in order to reverse-engineer a local copy with sim-
ilar functionality. Existing stateful defenses against model
extraction [41, 49, 58, 85] keep track of queries and search
for examples that are highly similar to one another or are con-
secutively out-of-distribution. To date, no extraction methods
aggregate across users and are thus all vulnerable to Sybil
attacks. However, if they were generalized to use a global
query log (as suggested in [48] for the PRADA defense in
[41]), then they would become vulnerable to a similar privacy
side channel as we described in Section 6.1.

6.3 Extension to Retrieval-based Text Detec-
tion

Finally, similar side channel attacks exist for retrieval-based
text detectors [46]. Here, the goal is to test whether some
generation y was produced by a particular language model.
Krishna et al. [46] approach this by recording each output
from a language model and then checking whether any text
similar to y was previously generated by the model. Unfor-
tunately, such methods allow adversaries to check if some
output was produced as a response to another user’s query, as
acknowledged by [46].

7 Conclusion

In this work, we showed that real-world ML systems can
have drastically worse privacy than is otherwise suggested by
typical standalone privacy analyses. In particular, we showed
how adaptive adversaries can use black-box or white-box
system knowledge to exploit side channels in popular ML
components. Taken together, these attacks contribute to a
rethinking of how practitioners should measure and mitigate
privacy risks for state-of-the-art ML systems.

Perhaps most surprisingly, it is actually the introduction of
components that are intended to improve privacy (i.e., data
deduplication and memorization-free decoding) that leads to
side-channels that cause privacy violations. Similarly, meth-
ods designed to protect against other forms of adversarial
attacks (e.g., data poisoning and evasion attacks) can also
backfire and induce privacy violations at elevated rates. These
findings highlight the inherent tensions between security and
privacy, and how improving privacy in the average case can
have adverse effects when faced with worst-case adversaries.

Moving forward, there are numerous rich areas for future
work in the space of system-level analyses of ML systems.
In particular, while we focus specifically on privacy side-
channels, our work hints at the possibility that other side-
channels may exist for different types of attacks and threat
models. Moreover, our work highlights open problems in en-
suring privacy-preserving ML, such as how to enforce differ-
ential privacy when composing hard-to-analyze ML modules
such as filters or anomaly detectors. We hope to tackle these
and other challenges in future work.

6844 33rd USENIX Security Symposium USENIX Association

Author Contributions

• Nicholas and Florian proposed the problem statement of
side-channel leakage in ML system components.
• Florian proposed the side channels in data deduplication

and stateful detectors.
• Florian and Matthew proposed the side channels in data

poisoning defenses.
• Nicholas and Eric proposed the side channel in memo-

rization filters.
• Nicholas proposed the side channel to extract vocabular-

ies of LLMs.
• Edoardo performed experiments on data deduplication

and stateful evasion detectors, and drafted the corre-
sponding sections of the paper.
• Giorgio and Matthew performed experiments on data

poisoning, and drafted the corresponding sections.
• Nicholas performed experiments on memorization filters

and extracting vocabularies, and drafted the correspond-
ing section of the paper.
• Milad performed experiments with GitHub Copilot and

on attacking DP-SGD, and drafted the corresponding
sections of the paper.
• Edoardo, Giorgio, Nicholas, Milad, and Eric designed

the paper’s figures.
• Edoardo, Giorgio, Nicholas, Christopher, Matthew, Mi-

lad, Eric, and Florian wrote the paper.
• Florian organized the project.

Acknowledgments

We thank Reza Shokri, Jamie Hayes, Andreas Terzis, Vijay
Bolina, Helen King, Eve Novakovic, Amanda Carl, Jenna
LaPlante, Sanah Choudry, and Daniel Paleka for helpful dis-
cussions. We also thank the reviewers and the shepherd for
the useful feedback. Eric Wallace is supported by the Ap-
ple Scholars in AI/ML Fellowship. Edoardo Debenedetti is
supported by armasuisse Science and Technology.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In ACM
SIGSAC, 2016.

[2] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin
Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
et al. PaLM 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

[3] Anthropic. Model card and evaluations for Claude mod-

els. https://www-files.anthropic.com/production/
images/Model-Card-Claude-2.pdf, 2023.

[4] Sana Awan, Bo Luo, and Fengjun Li. Contra: Defend-
ing against poisoning attacks in federated learning. In
ESORICS, 2021.

[5] Borja Balle, Giovanni Cherubin, and Jamie Hayes. Re-
constructing training data with informed adversaries. In
IEEE S&P, 2022.

[6] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. CSINN: Reverse engineering of neural network
architectures through electromagnetic side channel. In
USENIX, 2019.

[7] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-
soning attacks against support vector machines. In
ICML, 2012.

[8] Battista Biggio, Igino Corona, Davide Maiorca, Blaine
Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learn-
ing at test time. In , ECML PKDD 2013, 2013.

[9] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanal-
ysis of Skipjack reduced to 31 rounds using impossible
differentials. In EUROCRYPT, 1999.

[10] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. GPT-Neo: Large Scale Autoregressive
Language Modeling with Mesh-Tensorflow, 2021. URL
https://doi.org/10.5281/zenodo.5297715.

[11] Daniel Bleichenbacher. Chosen ciphertext attacks
against protocols based on the RSA encryption standard
PKCS# 1. In CRYPTO, 1998.

[12] Jakub Breier, Dirmanto Jap, Xiaolu Hou, Shivam Bhasin,
and Yang Liu. Sniff: Reverse engineering of neural net-
works with fault attacks. IEEE Transactions on Reliabil-
ity, 71(4):1527–1539, 12 2022. ISSN 1558-1721. doi:
10.1109/tr.2021.3105697. URL http://dx.doi.org/10.
1109/TR.2021.3105697.

[13] Nicholas Carlini. Poisoning the unlabeled dataset of
semi-supervised learning. In USENIX, 2021.

[14] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. The secret sharer: Evaluating and
testing unintended memorization in neural networks. In
USENIX, 2019.

[15] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew
Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam
Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al.
Extracting training data from large language models. In
USENIX, 2021.

USENIX Association 33rd USENIX Security Symposium 6845

https://www-files.anthropic.com/production/images/Model-Card-Claude-2.pdf
https://www-files.anthropic.com/production/images/Model-Card-Claude-2.pdf
https://doi.org/10.5281/zenodo.5297715
http://dx.doi.org/10.1109/TR.2021.3105697
http://dx.doi.org/10.1109/TR.2021.3105697

[16] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song,
Andreas Terzis, and Florian Tramer. Membership infer-
ence attacks from first principles. In IEEE S&P, 2022.

[17] Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew
Jagielski, Vikash Sehwag, Florian Tramer, Borja Balle,
Daphne Ippolito, and Eric Wallace. Extracting training
data from diffusion models. In USENIX, 2023.

[18] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
Quantifying memorization across neural language mod-
els. In ICLR, 2023.

[19] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian
Molloy, and Biplav Srivastava. Detecting backdoor at-
tacks on deep neural networks by activation clustering.
arXiv preprint arXiv:1811.03728, 2018.

[20] Steven Chen, Nicholas Carlini, and David Wagner. State-
ful detection of black-box adversarial attacks. In Pro-
ceedings of the 1st ACM Workshop on Security and
Privacy on Artificial Intelligence, pages 30–39, 2020.

[21] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learn-
ing systems using data poisoning. arXiv preprint
arXiv:1712.05526, 2017.

[22] Christopher A Choquette-Choo, Florian Tramer,
Nicholas Carlini, and Nicolas Papernot. Label-only
membership inference attacks. In ICML, 2021.

[23] Christopher A Choquette-Choo, H Brendan McMahan,
Keith Rush, and Abhradeep Thakurta. Multi-epoch ma-
trix factorization mechanisms for private machine learn-
ing. In ICML, 2022.

[24] Soham De, Leonard Berrada, Jamie Hayes, Samuel L
Smith, and Borja Balle. Unlocking high-accuracy differ-
entially private image classification through scale. arXiv
preprint arXiv:2204.13650, 2022.

[25] Edoardo Debenedetti, Giorgio Severi, Nicholas Carlini,
Christopher A Choquette-Choo, Matthew Jagielski, Mi-
lad Nasr, Eric Wallace, and Florian Tramèr. Privacy side
channels in machine learning systems. arXiv preprint
arXiv:2309.05610, 2023.

[26] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and
Valentina E Balas. Stealing neural networks via tim-
ing side channels. arXiv preprint arXiv:1812.11720,
2018.

[27] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography, 2006.

[28] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence infor-
mation and basic countermeasures. In ACM SIGSAC,
2015.

[29] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh.
Mitigating sybils in federated learning poisoning. In
RAID, 2020.

[30] Leo Gao, Stella Biderman, Sid Black, Laurence Golding,
Travis Hoppe, Charles Foster, Jason Phang, Horace He,
Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB
dataset of diverse text for language modeling. arXiv
preprint arXiv:2101.00027, 2020.

[31] GitHub. About GitHub Copilot. https://docs.
github.com/en/copilot/overview-of-github-copilot/
about-github-copilot, 2022.

[32] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth
Garg. BadNets: Identifying vulnerabilities in the ma-
chine learning model supply chain. arXiv preprint
arXiv:1708.06733, 2017.

[33] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexan-
dra Shulman-Peleg. Proofs of ownership in remote
storage systems. In ACM CCS, 2011.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[35] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Stu-
art Nevans Locke, Ian Rackow, Kevin Kulda, Dana
Dachman-Soled, and Tudor Dumitraş. Security anal-
ysis of deep neural networks operating in the pres-
ence of cache side-channel attacks. arXiv preprint
arXiv:1810.03487, 2018.

[36] Andrew Howard, Mark Sandler, Grace Chu, Liang-
Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al.
Searching for MobileNetV3. In CVPR, 2019.

[37] Xing Hu, Ling Liang, Lei Deng, Shuangchen Li, Xin-
feng Xie, Yu Ji, Yufei Ding, Chang Liu, Timothy Sher-
wood, and Yuan Xie. Neural network model extraction
attacks in edge devices by hearing architectural hints.
In ASPLOS, 2020.

[38] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik
Learned-Miller. Labeled faces in the wild: A database
for studying face recognition in unconstrained environ-
ments. Technical report, University of Massachusetts,
Amherst, 2007.

[39] Andrew Ilyas, Logan Engstrom, Anish Athalye, and
Jessy Lin. Black-box adversarial attacks with limited
queries and information. In ICML, 2018.

6846 33rd USENIX Security Symposium USENIX Association

https://docs.github.com/en/copilot/overview-of-github-copilot/about-github-copilot
https://docs.github.com/en/copilot/overview-of-github-copilot/about-github-copilot
https://docs.github.com/en/copilot/overview-of-github-copilot/about-github-copilot

[40] Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan
Zhang, Matthew Jagielski, Katherine Lee, Christopher A
Choquette-Choo, and Nicholas Carlini. Preventing ver-
batim memorization in language models gives a false
sense of privacy. In INLG, 2023.

[41] Mika Juuti, Sebastian Szyller, Samuel Marchal, and
N Asokan. PRADA: protecting against DNN model
stealing attacks. In IEEE EuroS&P, 2019.

[42] Nikhil Kandpal, Eric Wallace, and Colin Raffel. Dedu-
plicating training data mitigates privacy risks in lan-
guage models. In ICML, 2022.

[43] Lars Knudsen. DEAL-a 128-bit block cipher. complex-
ity, 1998.

[44] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differen-
tial power analysis. In CRYPTO, 1999.

[45] Paul C Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In
CRYPTO, 1996.

[46] Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Wieting, and Mohit Iyyer. Paraphrasing evades de-
tectors of AI-generated text, but retrieval is an effective
defense. arXiv preprint arXiv:2303.13408, 2023.

[47] Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. Deduplicating training data makes
language models better. In ACL, 2022.

[48] Huiying Li, Shawn Shan, Emily Wenger, Jiayun Zhang,
Haitao Zheng, and Ben Y Zhao. Blacklight: Defending
black-box adversarial attacks on deep neural networks.
In USENIX, 2022.

[49] Xinjing Liu, Zhuo Ma, Yang Liu, Zhan Qin, Junwei
Zhang, and Zhuzhu Wang. SeInspect: Defending model
stealing via heterogeneous semantic inspection. In ES-
ORICS, 2022.

[50] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized
data. In Artificial intelligence and statistics, 2017.

[51] Mohammad Maghsoudi Mehrabani, Amin Azmoodeh,
Ali Dehghantanha, Behrouz Zolfaghari, and Gautam Sri-
vastava. Proactive detection of query-based adversarial
scenarios in NLP systems. In ACM Workshop on Artifi-
cial Intelligence and Security, 2022.

[52] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. Recurrent neural net-
work based language model. In Interspeech, 2010.

[53] Milad Nasr, Shuang Song, Abhradeep Thakurta, Nicolas
Papernot, and Nicholas Carlini. Adversary instantiation:
Lower bounds for differentially private machine learn-
ing. In IEEE S&P, 2021.

[54] Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew
Jagielski, A Feder Cooper, Daphne Ippolito, Christo-
pher A Choquette-Choo, Eric Wallace, Florian Tramèr,
and Katherine Lee. Scalable extraction of training data
from (production) language models. arXiv preprint
arXiv:2311.17035, 2023.

[55] Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle,
Florian Tramèr, Matthew Jagielski, Nicholas Carlini, and
Andreas Terzis. Tight auditing of differentially private
machine learning. arXiv preprint arXiv:2302.07956,
2023.

[56] Thien Duc Nguyen, Phillip Rieger, Roberta De Viti,
Huili Chen, Björn B Brandenburg, Hossein Yalame, He-
len Möllering, Hossein Fereidooni, Samuel Marchal,
Markus Miettinen, et al. FLAME: Taming backdoors in
federated learning. In USENIX, 2022.

[57] Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade,
Shirish Shevade, and Vinod Ganapathy. ActiveThief:
Model extraction using active learning and unannotated
public data. In AAAI, 2020.

[58] Soham Pal, Yash Gupta, Aditya Kanade, and Shirish
Shevade. Stateful detection of model extraction attacks.
arXiv preprint arXiv:2107.05166, 2021.

[59] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In
ACM ASIACCS, 2017.

[60] Natalia Ponomareva, Jasmijn Bastings, and Sergei Vas-
silvitskii. Training text-to-text transformers with privacy
guarantees. In Findings of the ACL, 2022.

[61] Erwin Quiring, David Klein, Daniel Arp, Martin Johns,
and Konrad Rieck. Adversarial preprocessing: Un-
derstanding and preventing Image-Scaling attacks in
machine learning. In 29th USENIX Security Sym-
posium (USENIX Security 20), pages 1363–1380.
USENIX Association, 8 2020. ISBN 978-1-939133-
17-5. URL https://www.usenix.org/conference/
usenixsecurity20/presentation/quiring.

[62] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 2019.

[63] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Mil-
lican, Jordan Hoffmann, Francis Song, John Aslanides,
Sarah Henderson, Roman Ring, Susannah Young, et al.

USENIX Association 33rd USENIX Security Symposium 6847

https://www.usenix.org/conference/usenixsecurity20/presentation/quiring
https://www.usenix.org/conference/usenixsecurity20/presentation/quiring

Scaling language models: Methods, analysis & insights
from training Gopher. arXiv preprint arXiv:2112.11446,
2021.

[64] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. Hierarchical text-conditional
image generation with CLIP latents. arXiv preprint
arXiv:2204.06125, 2022.

[65] Aqib Rashid and Jose Such. Malprotect: Stateful de-
fense against adversarial query attacks in ml-based mal-
ware detection. arXiv preprint arXiv:2302.10739, 2023.

[66] Jessica Rumbelow and Matthew Watkins. SolidGold-
Magikarp III: Glitch token archaeology. https://www.
lesswrong.com/posts/8viQEp8KBg2QSW4Yc, 2023.

[67] Christoph Schuhmann, Romain Beaumont, Richard
Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell
Wortsman, et al. LAION-5B: An open large-scale
dataset for training next generation image-text models.
NeurIPS, 2022.

[68] Roei Schuster, Jin Peng Zhou, Paul Grubbs, Thorsten
Eisenhofer, and Nicolas Papernot. Learned systems
security. arXiv preprint arXiv:2212.10318, 2022.

[69] Rico Sennrich, Barry Haddow, and Alexandra Birch.
Neural machine translation of rare words with subword
units. In ACL, 2016.

[70] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian
Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-
stein. Poison frogs! targeted clean-label poisoning at-
tacks on neural networks. NeurIPS, 2018.

[71] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In IEEE S&P, 2017.

[72] Gowthami Somepalli, Vasu Singla, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. Diffusion art or dig-
ital forgery? investigating data replication in diffusion
models. In CVPR, 2023.

[73] Liwei Song, Reza Shokri, and Prateek Mittal. Privacy
risks of securing machine learning models against ad-
versarial examples. In ACM SIGSAC, 2019.

[74] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In
ICLR, 2013.

[75] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.

LLaMA 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

[76] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Re-
iter, and Thomas Ristenpart. Stealing machine learning
models via prediction APIs. In USENIX, 2016.

[77] Florian Tramèr, Reza Shokri, Ayrton San Joaquin,
Hoang Le, Matthew Jagielski, Sanghyun Hong, and
Nicholas Carlini. Truth serum: Poisoning machine learn-
ing models to reveal their secrets. In ACM SIGSAC,
2022.

[78] Serge Vaudenay. Security flaws induced by CBC
padding—applications to SSL, IPSEC, WTLS... In
Theory and Applications of Cryptographic Techniques,
2002.

[79] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mo-
hammad Abdullah Al Faruque. Leaky DNN: Stealing
deep-learning model secret with GPU context-switching
side-channel. In IEEE/IFIP DSN, 2020.

[80] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang
Xu. I know what you see: Power side-channel attack on
convolutional neural network accelerators. In ACSAC,
2018.

[81] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang,
Haiyang Hao, Jinyin Chen, Yi Liu, Zhefu Wu, Qi Xuan,
and Xiaoniu Yang. Open DNN box by power side-
channel attack. IEEE Transactions on Circuits and
Systems II: Express Briefs, 2020.

[82] Qixue Xiao, Yufei Chen, Chao Shen, Yu Chen, and
Kang Li. Seeing is not believing: Camouflage attacks
on image scaling algorithms. In 28th USENIX Secu-
rity Symposium (USENIX Security 19), pages 443–460,
Santa Clara, CA, 8 2019. USENIX Association. ISBN
978-1-939133-06-9. URL https://www.usenix.org/
conference/usenixsecurity19/presentation/xiao.

[83] Mengjia Yan, Christopher W. Fletcher, and Josep Tor-
rellas. Cache telepathy: Leveraging shared resource
attacks to learn DNN architectures. In 29th USENIX
Security Symposium (USENIX Security 20), pages 2003–
2020. USENIX Association, August 2020. ISBN
978-1-939133-17-5. URL https://www.usenix.org/
conference/usenixsecurity20/presentation/yan.

[84] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. Privacy risk in machine learning: Analyz-
ing the connection to overfitting. In IEEE CSF, 2018.

[85] Zhanyuan Zhang, Yizheng Chen, and David Wagner.
SEAT: similarity encoder by adversarial training for de-
tecting model extraction attack queries. In ACM Work-
shop on Artificial Intelligence and Security, 2021.

6848 33rd USENIX Security Symposium USENIX Association

https://www.lesswrong.com/posts/8viQEp8KBg2QSW4Yc
https://www.lesswrong.com/posts/8viQEp8KBg2QSW4Yc
https://www.usenix.org/conference/usenixsecurity19/presentation/xiao
https://www.usenix.org/conference/usenixsecurity19/presentation/xiao
https://www.usenix.org/conference/usenixsecurity20/presentation/yan
https://www.usenix.org/conference/usenixsecurity20/presentation/yan

	Introduction
	Preliminaries
	Background and Related Work
	Standalone ML Models
	ML Systems
	A Comparison to Physical Side Channels

	Threat Model
	Ethics and Broader Impact

	Attacking Training Data Filters
	Attacking Training Data Deduplication
	Our Attack
	Evaluation
	Results
	Dealing with Attacker Uncertainty
	Extension to the Text Domain
	Deduplication Is Still Worth It in Practice

	Attacking Poisoning Defenses
	Poisoning Defenses
	Our Attack
	Evaluation
	Results

	Attacking Input and Output Filters
	Extracting Vocabularies of Language Models
	Extracting the Complete Vocabulary
	Targeted Vocabulary Extraction

	Attacking Memorization Filters
	Our Attacks
	Estimating Copilot's Training Date Cutoff
	From Output Filtering to Data Extraction

	Breaking Differentially Private Training
	Leaking Test Queries From Query Filters
	Attacking Stateful Evasion Detectors
	Extension to Stateful Extraction Detectors
	Extension to Retrieval-based Text Detection

	Conclusion

