
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Inference of Error Specifications and
Bug Detection Using Structural Similarities

Niels Dossche and Bart Coppens, Ghent University
https://www.usenix.org/conference/usenixsecurity24/presentation/dossche

Inference of Error Specifications and Bug Detection Using Structural Similarities

Niels Dossche
Ghent University

Bart Coppens
Ghent University

Abstract
Error-handling code is a crucial part of software to ensure sta-
bility and security. Failing to handle errors correctly can lead
to security vulnerabilities such as DoS, privilege escalation,
and data corruption. We propose a novel approach to automat-
ically infer error specifications for system software without
a priori domain knowledge, while still achieving a high re-
call and precision. The key insight behind our approach is
that we can identify error-handling paths automatically based
on structural similarities between error-handling code. We
use the inferred error specification to detect three kinds of
bugs: missing error checks, incorrect error checks, and er-
ror propagation bugs. Our technique uses a combination of
path-sensitive, flow-sensitive and both intra-procedural and
inter-procedural data-flow analysis to achieve high accuracy
and great scalability. We implemented our technique in a tool
called ESSS to demonstrate the effectiveness and efficiency
of our approach on 7 well-tested, widely-used open-source
software projects: OpenSSL, OpenSSH, PHP, zlib, libpng,
freetype2, and libwebp. Our tool reported 827 potential bugs
in total for all 7 projects combined. We manually categorised
these 827 issues into 279 false positives and 541 true posi-
tives. Out of these 541 true positives, we sent bug reports and
corresponding patches for 46 of them. All the patches were
accepted and applied.

1 Introduction

Error-handling code is a crucial part of software to ensure
stability and security. Developers often make mistakes in writ-
ing correct error-handling code because these paths are not
always well-tested [10, 16, 35]. This can lead to serious se-
curity vulnerabilities and semantic bugs. This problem is not
limited to systems software; it applies to a wide variety of ap-
plications, ranging from low-level operating system kernels to
more high-level applications. Two of the top security issues of
the OWASP top ten relate to missing or incorrect checks [1].
For security-critical software like Linux, about 47% of secu-

rity vulnerabilities are related to missing or incorrect error
checks or API usage [24, 43].

In this paper, we focus on the following specific kinds of er-
ror checking mistakes: missing checks, incorrect checks, and
incorrect error value propagation bugs. As a simple example
of a missing check, consider the case of memory allocations.
A memory allocation may fail when there is no more memory
available. Failure to handle such an error will cause a program
to crash and results in a denial of service. As for incorrect
checks, these occur when a check does not cover all the pos-
sible error return values. An example of an incorrect check
can be found in OpenSSL: the function RAND_bytes_ex re-
turns a value ≤ 0 if an error occurred [29]. We found that
the prime number generator for FIPS-186-4 approved digi-
tal signature algorithms in OpenSSL incorrectly checked the
return value for a value < 0 instead. Failing to handle such
an error appropriately can cause a weak cryptographic secret
to be used, which compromises confidentiality and integrity.
Documentation for functions can be available, but often only
exists for public API functions. Furthermore, even if such
documentation is available, it often contains mistakes [34].

Error-handling mistakes are not always straightforward to
find. With return values propagating over multiple nested
function calls, it becomes difficult for programmers to track
which values can be returned when an error occurs, even more
so when the error value propagates from a deeply nested call.
For example, it might not be clear that a function allocates
memory in a deep path. Furthermore, a function call may have
many callees that the programmers might not be aware of.
These challenges make finding these kinds of mistakes hard.

Two of the most popular approaches for automatically de-
tecting bugs in error-handling code are cross-checking and
error specifications. As for cross-checking, the underlying
assumption is that most code is correct, and that deviations
from similar code patterns are bugs [6]. For example, if most
accesses to a certain pointer are preceded by a NULL check,
but there is a minority of accesses without a NULL check, the
latter could be assumed to be bugs [6]. This works relatively
well in practice, and it is an intuitive approach, which has

USENIX Association 33rd USENIX Security Symposium 1885

been successfully used in many bug-finding analysis tech-
niques [6,14,20,24,25,27,41,45–47]. However, if we were to
apply such techniques on error checking code, we will only be
able to find bugs for the error-returning functions that are used
most often. The second approach relies on error specifications.
An error specification states for each function whether it re-
turns an error and, if it does, which return values are indicative
of an error. These error specifications can then be used as an
input for static analyses to find violations against these speci-
fications [8, 13]. Unfortunately, creating error specifications
manually is an error-prone and time-consuming process. Es-
pecially when considering functions with deeply nested calls,
it becomes difficult to create a precise specification manually.
That is why recent research proposes automatic techniques to
infer error specifications from programs with as little program-
mer interaction as possible [2,5,17,19,40,41]. The drawback
of these approaches is that their specification’s recall is low.

We aim to automatically find bugs in error-handling code,
even when there are few places in the code base where
incorrectly-handled functions occur, while still achieving a
high recall. We also want our technique to be practical: it
should not be too slow nor use too much memory. To achieve
this goal, we introduce a novel technique to infer error specifi-
cations and to find violations against them. Our key insight is
that error-handling code within a function exhibits structural
similarities when compared to non-error-handling code in the
same function. We leverage this characteristic to automati-
cally build an initial error specification for the functions in
the analysed program. This information is then propagated
inter-procedurally through the program’s call graph. The re-
sulting error specification is then used to detect bugs in the
program; or in the case of a library, the specification can be
used to detect bugs in library consumers.

We implemented this technique in a tool called ESSS. Al-
though we focus on complex code bases programmed in C,
our technique is sufficiently generic to apply to a diverse range
of programming languages. We evaluate our tool’s capability
to infer error specifications and to find bugs against those spec-
ifications using 7 well-tested and widely-used open-source
software projects: OpenSSL, PHP, OpenSSH, zlib, libpng,
freetype2, and libwebp. Our tool is able to find new, previ-
ously undiscovered bugs in those code bases, all while being
orders of magnitude faster and requiring orders of magnitude
less memory than state-of-the-art techniques to find missing
error checks.

In this paper, we present the following contributions:

• Novel technique to accurately infer error specifica-
tions: We present a novel analysis technique that can
automatically infer error specifications in complex code-
bases, without requiring the users to provide any addi-
tional input beyond the program’s code. This approach
can accurately and in a scalable way infer error specifi-
cations and leverage that information to find bugs.

• An open-source tool to infer error specifications and
detect violations thereof: We have released ESSS as an
open-source tool. This will allow developers of system
software to find error-checking and error-propagation
bugs in their code with our tool and possibly validate
their error specification with the error specification in-
ferred by our tool.

• An evaluation of our technique: We evaluate ESSS
with regards to scalability (both in execution time and
memory consumption); with regards to the accuracy of
the error specifications; and with regards to the effective-
ness in bug detection.

• Bug fixes in various projects: As part of our evaluation
of ESSS, we have reported new, previously unknown
bugs in OpenSSL, OpenSSH, and PHP and sent patches
to fix them. All of our 46 submitted patches have been
applied by the maintainers of these projects. One issue
was assigned a CVE.

The rest of the paper is structured as follows. We present
a high-level overview of our technique in Section 2. The
design of our specification inference algorithm is described
in Section 3, and the design of our bug detection in Section 4.
We describe implementation details in Section 5. This is
followed by the evaluation in Section 6 and a discussion in
Section 7. We present related work in Section 8, and end with
our conclusion in Section 9.

2 Overview

The main goal of our inference technique is to perform the
error specification inference with a high recall, but without
relying on any user input. We have two main motivations
for this goal. First, we want to create a technique that is as
autonomous and accessible as possible, such that anyone can
use it in a plug-and-play manner. Second, relying on human
input can limit the recall and precision of the error specifica-
tion because for large software projects, it is likely that the
programmer who enters the specification is unaware of the
details of the error-returning functions.

To show the problem with existing approaches, consider
Listing 1, which shows a function adapted from OpenSSL.
As with many functions in OpenSSL, it returns 0 on failure
and 1 on success. However, how can we deduce this? A com-
mon way to do so, is by noting that the name of ERR_raise
(to humans) clearly indicates its involvement in error han-
dling. This error handling occurs twice, once at line 5 for
one function call and once at line 16 for two function calls.
This leads us to deduce that the three called functions return
0 on error. Similarly, the check on line 9 involves compar-
ing against the special value NULL; which again points to
it being error-handling code, and leads us to conclude that
BN_CTX_new_ex returns NULL on error. We can now deduce

1886 33rd USENIX Security Symposium USENIX Association

1 int ossl_rsa_sp800_56b_check_keypair(
2 const RSA *rsa, int nbits) {
3 int ret = 0;
4 if (!rsa_check_public_exponent(rsa->e)) {
5 ERR_raise(ERR_LIB_RSA ,

RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
6 return 0;
7 }
8 BN_CTX *ctx = BN_CTX_new_ex(rsa->libctx);
9 if (ctx == NULL)

10 return 0;
11 if (!BN_mul(r, rsa->p, rsa->q, ctx))
12 goto err;
13 ret = rsa_check_prime_factor(rsa->p, rsa->e,

nbits , ctx)
14 && rsa_check_crt_components(rsa, ctx);
15 if (ret != 1)
16 ERR_raise(ERR_LIB_RSA ,

RSA_R_INVALID_KEYPAIR);
17 err:
18 BN_CTX_free(ctx);
19 return ret;
20 }

Listing 1: Motivating example roughly based on an error-
returning function from OpenSSL [28].

more confidently that the shown function returns 0 on error.
We now know the error return values of the function calls,
and also the error return value of the shown function. The
two characteristics used for reasoning about the possible error
values were the identifiers and values with a special meaning
by convention (e.g. NULL). These characteristics have been
used many times in prior work as a basis for automatically
inferring error-handling code [19, 22, 24, 25, 31, 33, 39].

A

B

C

D

However, such approaches depend on ad hoc characteris-
tics: they depend on specific names of identifiers, which can
vary significantly across projects; and they depend on values
with a special meaning. So either we need to start from ad-
hoc pattern matching on names and values, or we depend on
developers to provide this information for us. We consider
neither approach satisfactory to reach our goals. To put it an-
other way, if we remove the identifiers from the above code,
and thus can no longer see that the identifier ERR_raise is
error-related, can we still derive error specifications correctly
and with a sufficiently high precision? Our novel approach
answers this question affirmatively.

Figure 1 provides an overview of our approach’s pipeline.
The first and crucial step is to build an initial error specifica-
tion based on path similarity matching. In Section 2.1, we
motivate the similarity matching, and give a summary of how
this works. The resulting initial error specification is then
iteratively propagated with different strategies, which we de-
scribe in Section 2.2. Section 2.3 shows how the final error
specification can be used to detect different kinds of bugs.

2.1 Path Similarity Matching for Error Speci-
fication Inference

Our key insight is that we can match structurally similar paths,
within the same function, and consider those as potential error-
handling paths. The error-handling code is more similar to
each other than all other code in the function. Consider again
Listing 1. The branches at lines 4 and 15 are similar because
they return the same value and involve a subset of the same
calls, and the branches at lines 11 and 15 are similar too. All
these return 0, and only the success path returns 1. Once we
know that 0 indicates an error, we conclude that line 10 also
returns an error.

Our analysis applies this reasoning to all functions in a
program. After doing so, it obtains zero or more potential error
check values for each callee. Some of these error check values
may be contradictory. This happens when we would consider
two branches to be structurally similar, but at least one of
them was not related to error handling, or due to imprecisions
of the analysis. We solve this with a simple majority vote.
This results in a mapping of functions to their error values
that we call the initial error specification.

Note that many functions are still missing from this error
specification, which is why we call it an initial specification.
For example, functions that do not contain any conditional
paths will certainly not contribute to this initial error speci-
fication. If such a function uses an API that returns an error,
then the error values for that callee will not be considered in
the error specification. Furthermore, if the similarity match-
ing fails for a function then it will not contribute towards the
specification of its callees. In Section 3 we describe in detail
how we perform this similarity matching.

2.2 Error Specification Expansion

The initial specification is incomplete because the similarity
matching only has a limited call chain coverage and because
some functions do not have many error-handling paths. For
example, a function that has a single error-handling path may
have no other similar code to match against, hence this error-
handling path will not be detected. To solve these issues, the
next component completes the initial specification by propa-
gating information about functions and about error values.

As for propagating information about functions, consider
again OpenSSL’s error-raising function ERR_raise. Initially,
the analysis does not know whether the program contains
any error-raising functions, nor if there are any calls to such
error-raising functions. However, the similarity matching al-
gorithm detects error-handling paths. As such, it can count
which function calls occur frequently on error-handling paths,
and which do not. Our technique creates an association be-
tween functions and error-handling paths using two metrics
from association analysis: support and confidence. The sup-
port measures the number of times a function appears, and

USENIX Association 33rd USENIX Security Symposium 1887

LLVM IR Error checking
bugs

Error propagation
bugsCall graph

generation using
MLTA

Similarity
matching

Initial error
specification

Association
analysis for error-
handling functions

Propagate
returned error

values to callers

Detect error-
handling paths

containing error-
handling functions

Detect error-
handling paths
from detected
error-returning

functions

Bug detector

2.1 2.2 2.3

Error specification

Figure 1: Overview of our inference and bug detection pipeline

confidence is the ratio of how many times it is used in error-
handling paths to the total number of uses. If the support and
confidence are high enough, our analysis labels the callees
of such function calls as error-raising functions. This can
then proceed iteratively: If a path contains a call to such an
error-raising function, we can infer that such a path is also an
error-handling path. This enables the discovery of more error-
handling paths, even if they were previously undiscovered by
the matching algorithm. Finding more error-handling paths
increases the coverage of error checks in the program, which
will increase the recall of the error specification.

As for propagating information about error values, we con-
sider two related kinds of propagation. The first one is prop-
agating returned error values to callers. For example, if we
have a function F that returns a value ≤ 0 on error, and there
is a wrapper function for F that returns the result as-is, then
the error values are the same for the wrapper. Similarly if the
wrapper function would handle the return value 0, and propa-
gates the other return values, then the specification would be
< 0. Our analysis does exactly this kind of error propagation.
The second propagation of error values involves detecting
error checks on calls based on the knowledge of error return
values. For example, assume we inferred that BN_CTX_new_ex
returns NULL on error. If there is a NULL check in another
function G on the return value of BN_CTX_new_ex, then we
know one of the error paths of G. Combined with other prop-
agation techniques we can infer more information about the
error return values of G.

After performing all the propagations iteratively, we obtain
the final error specification that we use to detect bugs.

2.3 Bug Detection
We leverage the final error specification to find bugs against
error checks and error propagation. Not all error specification
violations are equally important. To reduce false positives,
and reduce the number of reports that programmers do not
find as important, we use an outlier-based filtering step. One
approach would be to compute the ratio of incorrect checks to
the total number of checks. If this ratio is below a predefined

threshold, the tool reports a bug. This approach cannot find
bugs for checks with a low number of occurrences. We instead
use the lower bound of the Wilson score confidence interval.
Essentially, this approach balances the proportions of positive
and negative trials by keeping in mind small sample sizes [42].
Hence, it is less sensitive to the aforementioned problem. We
describe this in Section 4.

3 Error Specification Inference

In this section we explain in more detail the challenges as-
sociated with path similarity matching for error specification
inference, and our solutions to them. First, we discuss how we
slice paths. Then, we discuss how we summarise those slices,
and how these slices are matched. Then, we discuss how we
narrow the generated error value sets to increase the precision
of our subsequent bug finding analysis. Finally, we describe
how we unify the potentially contradictory error value sets
for a function.

3.1 Path Slicing

We want to identify potential error-handling paths by using
structural similarities among different paths. It is infeasible
to consider all the possible paths within a function because of
path explosion. We hence limit the length and number of the
paths by constructing slices of the function.

Algorithm 1 shows our slicing algorithm. Upon encounter-
ing a conditional jump, it creates slices for all jump directions
(lines 17–22). The slices start at the first instruction within
the branch target and end at either the last instruction within
the branch target or at a conditional check, whichever comes
first. A single if statement’s conditional expression can con-
tain multiple subexpressions (e.g. by using “and” conditions),
each corresponding to a conditional jump. We keep track
which conditional jump belongs to which slice (lines 10, 21),
and will use that information in Algorithm 2. Upon encoun-
tering a conditional jump, we check whether it corresponds to
the same expression that started the slice. If so, we continue

1888 33rd USENIX Security Symposium USENIX Association

Algorithm 1: Create path slices
output : jumps, comparisons, path_slices

1 fn expand_path(slice S, block B, conditional_jump J) do
2 S.append(B)
3 if B has single successor Bnext then
4 expand_path(S, Bnext , J)

5 else if B ends in conditional jump J′ then
6 if J and J′ are part of the same conditional expression then
7 foreach successor Bnext of B do
8 S′ = clone S
9 path_slices.append(S′)

10 jumps[S′] = J
11 comparisons[S′] = expression(J′)
12 expand_path(S′, Bnext , J)

13 path_slices = []
14 forall function F do
15 foreach conditional_jump J in F do
16 comparison C = expression(J)
17 foreach successor_block B of J do
18 slice S = []
19 expand_path(S, B, J)
20 path_slices.append(S)
21 jumps[S] = J
22 comparisons[S] = C

extending the current slice, otherwise we stop (line 6). This
differs from existing approaches that start slices at conditional
checks and end at the return instruction [24, 25, 31]. Those
approaches result in overly long slices.

3.2 Similarity Matching
Algorithm 2 shows how we deduce the initial specification.
It consists of four parts. The first two parts are for matching
similar code which we will discuss in this section. First, it
abstractly represents code to ease comparing between similar
code. Then, that representation is used to match similarities.

3.2.1 Abstract Representation Using Summaries

Some analyses detect similar code using Natural Language
Processing (NLP) techniques, such as bag of words [3,45,46].
This works reasonably well, but it can be easily influenced by
the syntax of the language instead of structure and semantics
of the code. Similarity matching techniques that only asso-
ciate pairs of conditions and error-raising functions are too
restricting [14, 41]. This is because they use called functions
as the main characteristic, but not all error-handling paths call
functions. Rather, we propose a light-weight similarity match-
ing approach that captures the code’s structure and semantics.

Our approach is loosely inspired by Bai et al.’s function
summaries [4]. The idea is that summaries serve as an abstract
representation of an ordered list of interesting instructions.
Bai et al. used the idea to create a list of locking function
calls per function. We instead create summaries per slice con-
taining instructions that are related to error handling: stores,

Algorithm 2: Generate initial error specification
input : jumps, comparisons, path_slices
output :The initial specification initial_spec
// Abstract Representation Using Summaries § 3.2.1

1 slices = {}
2 foreach slice S in path_slices do
3 summaries[S] = []
4 foreach basic_block B in S do
5 summaries[S].extend(summarise(B))

6 slices[summaries[S]] = S
7 resolve_values(summaries[S])

// Similarity Matching § 3.2.2
8 best_match = {}
9 foreach unique slice pair (S1, S2) in (summaries, summaries) do

10 if jumps[slices[S1]] = jumps[slices[S2]] then
11 continue // ignore the same conditional jump

12 if len(LCS(S1, S2)) != min(len(S1), len(S2)) then
13 continue
14 foreach slice S in [S1, S2] do
15 comparison C = comparisons[slices[S]]
16 best = best_match[C]
17 if no best or len(best) < len(S) or (len(best) = len(S) and

#branches(best) > #branches(S)) then
18 best_match[C] = S

// Narrowing § 3.3 and unification § 3.4
19 foreach (comparison C, summary S) in best_match do
20 function F = function_involved_in(C)
21 set V = checked_values_of(C)
22 error_set E = V ∩ return_value_set(F)
23 counts[F][E]++

24 foreach (_, set_counts) in counts do
25 foreach unique slice pair (S1, S2) in (set_counts, set_counts) do
26 if S1 ⊂ S2 then
27 set_counts[S2] += set_counts[S1]

28 else if S2 ⊂ S1 then
29 set_counts[S1] += set_counts[S2]

30 initial_spec = {}
31 foreach (function F, error_set E) in counts do
32 if confidence(E) ≥ 0.5 then
33 initial_spec[F] ∪= E

returns, calls, and conditional branch instructions. For stores
and returns we also incorporate their used values. We first
create a summary per basic block, and then combine those
into path summaries (lines 2–5). Our slices do not contain
unconditional jumps. Instead, as a consequence of slice con-
struction, they contain the instructions at the jump’s target.
This allows matching longer sequences (e.g. with code such
as goto out), which improves the specification’s precision.

Constants and pointers play an important role in our sum-
maries. In particular, return values are important because they
are often used to propagate error values. Developers often
store the return value in a variable and use that variable later in
the return statement. In LLVM’s Intermediate Representation
(IR), this will result in some store instructions, followed by a
load and a return instruction at the return sites. To accurately
summarise the return instruction, we use a path-sensitive and

USENIX Association 33rd USENIX Security Symposium 1889

flow-sensitive backwards data-flow analysis to try to resolve
the values to a constant that can be returned if the slice is
executed (line 7). We use LLVM’s basic alias analysis to find
potential store targets for corresponding loads. The scope of
our data-flow analysis is limited to the slice the summary is
from, with one small exception. If there is only one unique
path towards the slice, then we also take into account the
unique predecessors of this slice. This allows resolving more
path-sensitive values because they may contain store instruc-
tions to pointers or variables that will be used in the slice.

Listing 1 contains many slices. We focus on four of them
annotated with A–D. Slice A starts just after the first condi-
tional check on line 4, contains a call to ERR_raise, and ends
at the return instruction on line 6, for which the summary
contains its return value 0. The other slices are at lines 10 (B),
16–19 (C), 18–19 (D, because of the goto at line 12).

3.2.2 Matching Summaries

The problem of matching our path summaries is related to the
problem of matching the longest common subsequence (LCS)
between two datasets. The second part of Algorithm 2 shows
how we perform a pair-wise loop over all the summaries to
compute the length of the longest common subsequence. We
break ties by favouring paths with fewer branching points. We
mark the matches as error-handling slices.

We define a match between the operations if they have
the same type and the same resolved values. A matching
operation adds a score of 1 and a mismatch adds a score of 0.
If a value is not resolved, then we will match the raw IR value
instead, i.e. without taking into account the path condition.
This may miss some matches that would be equivalent in
execution on certain paths.

To illustrate this summary matching, consider again the ex-
ample in Listing 1. Note that we take into account that ret has
the value 0 for these four slices. Slices A and D are of length
2, B is of length 1, and C is of length 3. We can clearly see
that slice D is a subsequence of slice C and so we mark both
as error-handling slices. We also see that A is a subsequence
of C, and B is a subsequence of all others, and so we mark A
and B too as error-handling slices. As shown here, matching
subsequences has two advantages. First, error-handling code
tends to increase in length deeper down in functions because
when errors occur later in execution, the code needs to clean
up more resources. Second, the matching instructions are not
always adjacent, such as with the BN_CTX_free separating
the return and ERR_raise call. There are other slices as well,
but they are not error-handling slices and are therefore left
out of this example.

3.3 Narrowing Error Value Sets

While other tools often represent error value sets in a way that
is limited to simple predicates like ≤ 0, < 0, ̸= 0, etc. [5, 19],

we chose a more precise representation. We represent the
possible error values for a function as the union of disjoint
integer intervals. This still allows for representing the simple
predicates, while also enabling us to precisely model the error
value set. Representing the error value set in a more versatile
and precise way helps to reduce the number of false positives.

An example where our representation helps, is PHP’s
zend_get_property_info function. For this function, the
values 0 and UINTPTR_MAX have an error-related meaning. If
we were to rely on simple predicates, then it is not possible to
represent such sets precisely. A simple predicate will vastly
overapproximate the error values and cause false positives.

However, even when using the precise error value sets, it
can lead to false positive bug detections. Consider for example
the function open from libc. If all callers of open use a check
condition < 0, then the error specification inferred for open
will be (−∞,−1]. If we now add another caller of open with
a check condition == −1, then the error specification will
remain the same, but our bug detection would flag that check
as incorrect. This happens because our tool expected a check
of the form < 0 instead. There is clearly a lack of precision
in this specification.

If we were to look at open’s implementation, we observe
that only values in [−1,+∞) can be returned. Upon intersect-
ing that with (−∞,−1], derived from the inference, we get
the desired set [−1,−1]. We call this narrowing, and we use it
to improve the precision of the specifications. To implement
this, we perform an inter-procedural, depth-limited value set
analysis on the return value of each function. The depth refers
to how many edges are followed in the call graph. If the value
set could not be determined, or the depth limit was reached
before it could be determined, then the set will be (−∞,+∞).
We take the intersection of this value set with the set inferred
from the error specification. This either results in a more
precise set or the same set.

One additional insight we use to narrow the error value
set is that error values are usually nominal values instead of
ordinal values. For example, it does not make sense to perform
arithmetic with two error values, e.g. adding EINVAL and
EPERM is meaningless. We can thus further improve precision
by discarding values that are (transitively) used in arithmetic
instructions. Although this assumption is unsound, we have
not observed that this introduced false positives or negatives.

Narrowing is not limited to libc, but is applied to every
module. For libc, we compile the musl C library to LLVM
IR and link it statically with our programs under test. This
approach works even if the program does not support static
linking because the call graph is created at analysis time.

Lines 19–23 of Algorithm 2 compute which error sets are
candidates for consideration (lines 19–23). Every comparison
of a return value will involve a function F , gathered using
function_involved_in. The error value set corresponding to
the comparison is stored in V . The narrowing as described
above happens at line 22, where we take the intersection of the

1890 33rd USENIX Security Symposium USENIX Association

checked values V with the values that can actually be returned
by F . Finally, we count how many times each candidate error
set occurs for each function.

3.4 Unifying Results Into Error Value Sets
As a function F can have many call sites, the checks derived
from them can potentially be conflicting. Some error value
sets of F might even be subsets of one another, e.g. one condi-
tion might use ̸= 0 while the other uses < 0. There are three
possible causes for this. First, it is possible that both checks
are correct. For example, functions might return 0 on success
and -1 on error (e.g. stat), making both conditions valid.
The second major cause are simply bugs: the code base in
which we are trying to find bugs is the same from which we
derive the error specification. A third minor cause is possible
mistakes by the similarity matching algorithm due to match-
ing code that is not error-related. To prevent the correctness
being influenced by these issues, we need to unify the results
such that there is only one error value set per function. We
previously counted how many times a value set occurs per
function (line 23). We unify subsets by first summing the tally
of the subset to the superset (lines 24–29). For example, if
< 0 has a tally of x and ̸= 0 has a tally of y, the result after
unification is a tally of x+y for ̸= 0. The tally of < 0 remains
unchanged. Then, we reject a set if its confidence is below
50% because we assume that most code is correct and we
want to avoid conflicts, leaving only a single set per function.

4 Bug Detection

In this section we describe how we use our error specification
to find bugs in error checks and error propagation. As for the
bugs in error checks, we first describe the main approach to
detect incorrect and missing check bugs. Then we describe
how we filter false positives using a simple heuristic. Finally,
we describe how we detect error propagation bugs.

4.1 Detecting Missing and Incorrect Checks
Our main goal is to use the inferred error specifications to
detect missing error checks and incorrect error checks.

The first step in our bug detection analysis is to deter-
mine which error values are checked for each call to an error-
returning function. Note that a return does not need to be
checked directly; it can also be stored in a variable and be
checked later. It is thus crucial to track the checked values
per call instead of per branch condition. Note that a function
call may have multiple callees. Indirect calls are particularly
interesting because programmers do not always realise what
the possible call targets are, making it easy to forget about a
specific error value.

The second step is to use the set of checked values to de-
tect bugs, and filter away likely false positives. There can be

functions in the program of which the return value is (almost)
never checked, even though they can return an error. It is
possible to filter such cases using an outlier-based analysis.
Typically, outlier-based analyses count how many times a
function is checked (correctly) and how many times it is not.
In particular, for error-handling code, we consider an error-
returning function to be checked correctly when the set of
checked error values is a non-strict superset of the set of pos-
sible error values returned by that function. We additionally
need to normalise the counts for indirect calls with many po-
tential call targets as a single call could otherwise increase
the counts of many functions. Note that missing checks are a
special case of incorrect checks: the checked error values for
a missing check is the empty set.

One approach is to check whether the ratio of correct
checks to the total number is above a certain threshold. If
it is, then a bug is reported, otherwise it is filtered. A sig-
nificant downside of this approach is that cases with a low
total count will almost never be reported as a bug because the
ratio will be too low. This approach risks filtering away too
many true bugs. Even worse, a program often contains API
functions that are used only a few times. If, for example, the
checks on an infrequently-used function are incorrect at every
call site, most outlier-based filtering would always filter such
cases away, leading to significant false negatives. We want
to be able to detect bugs even for functions that are used few
times, even if they are always checked incorrectly, while still
filtering away cases programmers do not care about.

Informally speaking, we want a filtering technique that
does not filter away checks for functions that do not have a
lot of occurrences. It might be counter-intuitive, but it allows
finding rare cases like the one described above, where there
is a single incorrect check and no correct ones. Nevertheless,
we do want to filter away cases where the number of incor-
rect occurrences becomes sufficiently higher in proportion to
the number of correct occurrences. Hence, rather than using
traditional regular majority voting, we use the lower bound of
the Wilson score confidence interval. This takes into account
not only the relative difference between positive and negative
occurrences, but also their absolute difference [26,42]. Impor-
tantly, this allows us to differentiate between a code pattern
that has 0 positive occurrences and 1 negative occurrence, and
a code pattern with 0 positive occurrences and 100 negative
occurrences at the same threshold. This is impossible with
regular outlier-based techniques.

4.2 Heuristics

A recurring issue in prior work is that the techniques incor-
rectly assign an error specification to some functions that do
not per se return errors. Typical examples include comparator-
related functions like strcmp [5, 47]. We encountered the
same issue during evaluation. To solve this, we observe that
these kinds of functions are pure (i.e. functions without side-

USENIX Association 33rd USENIX Security Symposium 1891

1 zend_result zend_update_static_property (...) {
2 - bool retval =

zend_update_static_property_ex (...);
3 + zend_result retval =

zend_update_static_property_ex (...);
4 return retval;
5 }

Listing 2: An error propagation bug in PHP [32] found by our
analysis tool with the diff showing the fix.

effects). The hypothetical failure of such functions is only
dependent on the input that was already known. Based on this
observation, our heuristic then discards pure functions from
the set of error-returning functions. LLVM already tracks
which functions are pure using function attributes, so we al-
ready have the necessary information. This got rid of all such
cases from the reported issues, but of course also results in a
slight decrease in the absolute number of true positives.

4.3 Error Propagation Checkers
The error specifications can furthermore not only be used
to detect missing and incorrect checks, but can also be
leveraged to detect bugs against error propagation. We im-
plemented such an additional checker to detect accidental
signedness conversions during error propagation. We illus-
trate this with the example in Listing 2, which shows such
a bug we found with our tool in PHP. In this example, it
is important to note that zend_result is a signed enum
type where 0 indicates success and -1 indicates failure.
The function zend_update_static_property_ex returns
a zend_result, but its return value is instead assigned to
a bool. On the platform we target, bool is an unsigned
type. The consequence is that if a value of -1 were to be
returned, the assignment to the bool converts the value to
1. Since zend_result is a wider type than bool the func-
tion zend_update_static_property would then return 1
on failure, instead of -1.

To find such issues, we leverage type information in addi-
tion to return values. To detect this particular issue, we create
four bins for each return type: ≤ 0, == 0, ≥ 0, and a fallback
bin. We count how many times the error values belong to a
bin. If there is a bin with a high enough support and confi-
dence, then we assume that bin indicates the sign of the error
values. Once we know the sign associated with the type, we
report a bug when an assignment happens to a type that has a
different associated sign than the type of the original value.

5 Implementation

In this section, we discuss the implementation of our tech-
nique, which we call ESSS (Error Specification through Struc-

tural Similarities): a tool to infer error specifications from
programs and find violations thereof. Our static analysis is
based on the LLVM 14 compiler framework [18], extended
with Multi-Level Type Analysis (MLTA) [23] to determine
indirect call targets, which increases the precision of the inter-
procedural CFG and call graph1. In theory, our implementa-
tion is therefore compatible with every language that compiles
to LLVM IR. Although we implemented multithreading for
almost all the steps in our analysis pass, it was not neces-
sary to utilise this functionality during the evaluation because
the tool was already fast enough for our purposes. Only the
LLVM bitcode module loading uses parallel processing.

6 Evaluation

In this section, we empirically evaluate our tool’s ability to
automatically infer error specifications and to detect bugs.
Our goal is to answer the following four research questions:

• How well does our technique scale regarding run time
and memory usage?

• How well does the error specification inference algo-
rithm work? We compare our approach to the current
state of the art for error specification inference: EESI [5].

• How effective is our tool at finding new bugs?

• What is the false negative rate, and how does that com-
pare with the state-of-the-art tools CodeQL [7] and
APISan [47]?

First, we describe our experimental setup. We then answer
each of our research questions separately, and we end with
threats to validity.

6.1 Datasets and Experimental Setup
To evaluate the error specification inference and the effec-
tiveness of detecting new bugs, we use the following 7
open-source software projects: OpenSSL (commit 8d927e55),
OpenSSH (commit 36c6c3ef), PHP (commit abc41c2e), zlib
(commit 12b345c4), libpng (commit e519af8b), freetype2
(commit bd6208b7), and libwebp (commit 233960a0). The
commits are from the development branch at the time of start-
ing the evaluation. We used the default configuration that
Debian uses while compiling these packages. Unless men-
tioned otherwise, we ran our experiments on an Intel Core
i7-5930K with 48GiB of DDR4 RAM at 2666MHz.

To evaluate the effectiveness regarding false negatives, we
use the APIMU4C dataset [9]. This dataset contains vari-
ous API misuse bugs, including error check bugs, from past
versions of OpenSSL, curl, and httpd.

1We extended MLTA with some small bugfixes, but these are out of scope
for discussion in this paper. Since we have open-sourced our code, this
includes a version of MLTA with our modifications.

1892 33rd USENIX Security Symposium USENIX Association

https://github.com/openssl/openssl/tree/8d927e55b751ba1af6c08cd4e37d565a43c56157
https://github.com/openssh/openssh-portable/tree/36c6c3eff5e4a669ff414b9daf85f919666e8e03
https://github.com/php/php-src/tree/abc41c2e008d4d861e047bd67a616cb1ed324677
https://github.com/madler/zlib/tree/12b345c4309b37ab905e7e702021c1c2d2c095cc
https://github.com/glennrp/libpng/tree/e519af8b49f52c4ac400f50f23b48ebe36a5f4df
https://github.com/freetype/freetype/tree/bd6208b7126888826b1246bbe06c166afd177516
https://github.com/webmproject/libwebp/commit/233960a0ad8c640acd458a6966dea09e12c1325a

Project
EESI ESSS

SLOC
Time Memory Time Memory

OpenSSL 176.79 20.46 3.22 0.75 542K

OpenSSH 81.70 4.02 1.44 0.22 120K

PHP - - 14.50 1.85 1.46M

zlib 4.09 0.25 0.38 0.05 30K

libpng 21.44 4.50 0.49 0.09 63K

freetype2 91.66 10.56 0.94 0.19 141K

libwebp 12.65 2.20 0.40 0.14 75K

Table 1: Run-time performance and memory usage compari-
son. Time in seconds, memory in GiB.

As our approach infers error specifications, we evaluate
the accuracy of the inferred specifications. As EESI consis-
tently outperforms other error-specification-based tools such
as APEx [17] and Ares [19], we only compare our tool to
EESI. To evaluate false negatives, we compare ourselves with
tools that do not depend on error specifications: APISan and
CodeQL. For CodeQL, we use the queries MissingNullTest,
ReturnValueIgnored, InconsistentNullnessTesting, Inconsis-
tentCheckReturnNull, MissingNegativityTest.

6.2 Scalability
A static analysis tool that aids developers, should be usable by
developers. To maximize the usability of ESSS, its run-time
performance and memory usage should allow developers to
run it on their own machine.

First, we compare the scalability against EESI. Table 1
compares the run time and peak memory usage of EESI with
our solution, ESSS. We ran both of them ten times and aver-
aged the results for both the run time and the memory usage.
EESI ran out of memory on PHP, even on a machine with
128GiB of memory. The table rows for EESI will hence con-
tain a dash, indicating the absence of results. Note that the
measurements on EESI only include the time and memory
needed for the error specification inference, whereas the mea-
surements for ESSS include both error specification inference
and bug finding. Despite this, the data clearly show that our
tool is consistently faster and uses less memory. Even for
large projects like PHP, ESSS can analyse tens of thousands
of functions in under 15 seconds, while EESI is not able to
finish its analysis.

Next, we compare ESSS’s scalability on the APIMU4C
dataset against CodeQL and APISan in Table 4. We had to
evaluate APISan on an AMD Threadripper 2990WX with
64GiB of DDR4 at 2934MHz, as the 48GiB of memory in our
normal benchmarking machine was insufficient for APISan’s
database creation step. For CodeQL, we report query time, ex-
cluding query compilation and database creation. For APISan,
we report checker time, excluding database creation. It is clear
that even when those times are not included for CodeQL and
APISan, ESSS significantly outperforms them.

6.3 Error Specification Inference

To evaluate the effectiveness of our technique regarding the
generated error specifications, we use three metrics for evalu-
ating the specifications: recall, precision, and F1-score. We
express all three metrics as percentages. Recall measures how
many of the expected specifications were found by the tool.
Precision measures how many of the inferred specifications
were correct. We value precision and recall as equally im-
portant and thus additionally chose the F1-metric to combine
both metrics into one metric. We again compare ourselves
against EESI.

Because it is infeasible to manually analyse every gener-
ated error specification, we randomly sampled the results to
determine the precision, recall and F1-score. Recall is about
our expectations of the generated output, so we randomly se-
lected 750 of all non-void functions from each project. We
only kept the functions that returned an error using manual
review. This resulted in 159 functions for OpenSSL, 151 for
OpenSSH, 312 for PHP, 70 for zlib, 76 for libpng, 154 for
freetype2, and 219 for libwebp. Precision is about how ac-
curate the specifications are, so we sampled twice: once to
evaluate EESI and once for our tool. The sample size used
to compute the precision is the same as for computing the
recall. However, for some projects both EESI and ESSS did
not generate enough specifications to obtain the same sample
size. In those cases, we included every generated specification
for computing the precision of that tool on that project.

It is essential to precisely define when we consider an er-
ror specification for a function to be correct. For example,
BIO_accept from OpenSSL returns -1 on error. EESI infers
the error specification as the simple predicate < 0, while our
tool inferred [−1,−1]. If this result is checked with ==−1,
then EESI would report a false positive bug because not all
error values are covered, while our tool would (correctly) not
report a bug. This leads us to the following two requirements
to consider an error specification correct. First, the value set
must include every error value, while not including any suc-
cess value. Second, simple predicates are only correct when
they cannot cause false positive reports in the code base, e.g.
< 0 is correct because there are no checks of the form ==−1.

Table 2 shows the results. ESSS consistently infers more
error specifications than EESI, which consequently results in
a higher recall. The main limitation of EESI is that its propa-
gation is limited to the initial domain knowledge. The quality
and completeness of the initial knowledge pose a hard limit
on the recall and precision of the technique, whereas our tool
does not need domain knowledge, and automatically infers
everything. Furthermore, Table 2 shows that our propagation
is more precise, as we consistently get a higher precision than
EESI, although that difference is less dramatic than the dif-
ference in recall. The number of disjoint specifications refers
to error value sets that are the union of two or more disjoint
intervals that cannot be represented correctly by EESI. These

USENIX Association 33rd USENIX Security Symposium 1893

Project
EESI ESSS

Specs Precision Recall F1-score # Specs # Disjoint specs Precision Recall F1-score
OpenSSL 4655 83.54% 62.89% 71.76% 7853 50 92.54% 96.86% 94.60%

OpenSSH 550 75.50% 50.99% 60.87% 1655 56 91.39% 87.42% 89.01%

PHP - - - - 4417 87 83.06% 80.13% 81.57%

zlib 33 84.85% 44.29% 58.20% 42 2 95.24% 58.47% 72.53%

libpng 32 84.38% 39.62% 53.92% 57 0 96.15% 75.47% 84.57%

freetype2 20 30.00% 5.19% 8.85% 426 12 84.97% 72.08% 77.99%

libwebp 135 59.26% 47.49% 52.73% 219 4 89.50% 75.80% 82.80%

Table 2: Comparison of the number of specifications, precision, recall and F1-score between EESI and our tool ESSS.

are a minority of the cases for all analysed projects. The main
benefit is that this avoids false positives like BIO_accept.

The numbers obtained here for the precision and recall met-
rics of EESI are lower than in the original EESI paper, because
EESI’s authors limited themselves to only public-facing API
functions, and excluded internal functions. However, bugs do
not exclusively occur in the handling of public-facing API
functions, and thus we consider all functions. The recall is
generally quite high for ESSS, except for zlib, where the re-
call for both ESSS and EESI is poor. The low recall is caused
by zlib not having a specific error-logging or typical error-
raising function. Furthermore, zlib usually does not do much
clean-up, so there is not much code to match.

We set the required threshold to associate error-raising
functions with error-handling paths at 95%. It is interesting to
look at which functions are inferred to be typical error-raising
functions with a confidence ≥ 95%. For OpenSSL, this set in-
cludes the ERR_new, ERR_set_debug, and ERR_set_error
functions, which the ERR_raise macro we showed in Sec-
tion 2 uses. We also see functions whose name contain key-
words that are typically error-related (e.g. free, fatal, end).

6.4 Effectiveness in New Bug Detection

We evaluated our tool ESSS at a bug-finding threshold of
72.5%. This threshold is low and could result in many false
positive cases. However, we chose our threshold such that
the number of bug reports was still manageable to evaluate
by hand, and also such that we can evaluate the effect of
increasing the threshold on the false positive rate.

Table 3 gives the number of detected bugs by ESSS. The ta-
ble specifies how many bugs were reported for each category.
We break down the bugs into three kinds of bugs: missing
checks (MCs), incorrect checks (ICs) and propagation bugs
(PBs). Furthermore, we classify the reported bugs for each
kind into three categories: probable true positives, probable
false positives, and unknown cases. We denote these with
‘probable’ to stress that we had no access to a ground truth
and therefore categorised them ourselves with manual effort.
Unknown cases happen where we were unconfident to deter-
mine to which category they belong. The false positive rate

72
.5% 75

%
77

.5% 80
%

82
.5% 85

%
87

.5% 90
%

92
.5% 95

%
97

.5% 10
0%

Threshold

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
el

at
iv

e
pe

rc
en

ta
ge

 o
f c

as
es

Probable true positive
Probable false positive
Unknown

Figure 2: PHP bug relative category breakdown.

does not take into account the unknown cases.
The false positive rates for the missing checks are in gen-

eral higher than those for the incorrect checks. We think this
is because, for the incorrect checks, we know these checks al-
ready occur in a context where the function can fail, whereas
for the missing checks we do not know this as our tool is
context-insensitive. The total number of true positives is 541
and the total number of false positives is 279. Thus the total
averaged false positive rate, over all projects, is 34.02%. De-
pending on if we count the unknown cases conservatively as
false positives or count them as true positives, our false posi-
tive lies in the range of 31.42% to 39.08%. We found during
our evaluation that many false positives are easily pruned in
a matter of seconds because many originate from the same
error-returning function. For example, once we learned about
the particular false positive patterns for OpenSSL, we were
able to process each such false positive case in < 10 seconds.

PHP was the only project where propagation bugs occurred.
We believe this is because the other projects are (partially) li-
braries, which typically have a standardised error-propagation
style. Propagation bugs are likely more common in non-
library code. The propagation bug from Listing 2 was con-
firmed and fixed. There was one other true positive bug, and

1894 33rd USENIX Security Symposium USENIX Association

Project Reports MC IC PB Unknown FPR MC FPR IC FPR total
OpenSSL 366 238 84 0 44 46.22% 39.29% 44.41%

OpenSSH 61 49 11 0 1 16.33% 54.55% 23.33%

PHP 355 303 29 3 20 26.40% 44.83% 28.01%

zlib 4 4 0 0 0 25.00% - 25.00%

libpng 1 1 0 0 0 0.00% - 0.00%

freetype2 25 20 4 0 1 0.00% 50.00% 8.33%

libwebp 15 13 0 0 2 18.18% - 18.18%

Table 3: Breakdown of the statistics of detected bugs by ESSS.
FPR = False Positive Rate, IC = Incorrect Checks, MC = Miss-
ing Checks, PB = Propagation Bugs.

the remaining bug was a false positive.
As the results of ESSS depend on the chosen threshold, we

evaluated the impact of the threshold on the false positive rate.
Figure 2 shows the results for PHP. We chose this project
because it had the highest number of reports after filtering
unknown cases, and is therefore excellent candidate to study
more in depth. We see a steady increase in the false positive
rate followed by a substantial decrease. This is caused by
the zend_hash_add function. It has a score of 94.20% and
causes 30 of the 75 false positive missing checks. All of these
false positives are filtered when the threshold reaches 95%.
Again, note that while this single function has a large impact
on the false positive rate, a developer could relatively easily
filter such results manually, as all 30 originate from the same
error-returning function. Finally, although these graphs show
that higher thresholds result in a lower false positive rate, they
also lower the number of reported bugs, thus increasing the
number of false negatives.

For OpenSSL, functions like ASN1_item_ex_i2d cause
many false positives because they can be used in two ways:
either as a validation function, or as a function that writes
the data to the buffer. Once the programmer learns about this
pattern, it is easy for them to recognise and ignore these cases.

We submitted 16 fixes for OpenSSL, 1 fix for OpenSSH,
and 29 fixes for PHP; one was assigned a CVE. We only fixed
bugs that seemed harmful and easy enough to fix ourselves.
All these fixes were accepted. Appendix Table 6 contains a
breakdown of the reported bugs and their impact.

It is also worth noting that OpenSSL is regularly checked
with the Coverity static analysis tool, which can also find some
kinds of error-checking mistakes. OpenSSL’s release policy
even states that all open Coverity issues must be handled
before releasing a new version [30]. Despite that, our tool
managed to find incorrect error-checking code in OpenSSL.

6.5 False Negative Evaluation
We manually inspected the APIMU4C bugs for the three
projects, and removed those that were not related to error han-
dling bugs. We again evaluated at a threshold of 72.5% for
ESSS. Table 4 lists the results of our experiment. Our tool

Project
CodeQL APISan ESSS Total

M T # M T # M T
OpenSSL 10 6.86 144.34s 5 25.24 3h 32m 53s 16 0.26 3.43s 42

curl 2 1.47 33.33s 0 1.46 2m 58s 1 0.13 1.27s 18

httpd 0 3.20 57.03s 2 2.15 13m 39s 2 0.23 1.28s 12

Table 4: Comparison between different tools of the number
of found cases (#), the peak memory usage in GiB (M), and
time spent analysing (T). Evaluated on APIMU4C.

ESSS consistently uses orders of magnitude less memory and
time, yet still finds more cases overall, indicating our tool has
a lower false negative rate while having better performance.
Most of the false negatives for ESSS are caused by return val-
ues that escape to fields; filtering these would require exten-
sive escape and inter-procedural data-flow analysis. CodeQL
finds two issues (missing checks on malloc) for curl whereas
ESSS only finds one (missing check for an internal function).
ESSS did not find the malloc issues, despite having inferred
the specification for malloc, because their return values es-
cape to a field. CodeQL on the other hand is overly eager in
reporting these kinds of issues; it will always report missing
checks even if the value is checked at the field’s use-site.

We also tried to run FICS [3] on these programs. It was
only able to find a single bug in OpenSSL. No bugs were
reported for the other programs.

APIMU4C also contains single-file tests, each consisting of
around 100 lines of C. These isolated cases test for common C
library function misuses. However, due to the tiny amount of
code in these tests, any self-learning system without domain
knowledge does not have enough code to actually learn from
this. As such, we did not consider these single-file tests and
preferred to evaluate on real-world code.

We also checked whether CodeQL and APISan could de-
tect the bugs from Table 6, i.e. those we reported and patched.
Table 5 lists the results. We found that they were unable to
find most bugs ESSS could find. We ran these benchmarks
the same way as before, except we ran OpenSSL with a sin-
gle thread because APISan kept deadlocking. We did not
encounter this issue with APIMU4C because that OpenSSL
version is older. To estimate what the time with multithreading
could be, we ran PHP both with multithreading enabled and
disabled. With multithreading disabled, we obtained a time
of around 13h 7m 56s. If we expect the same speed-up for
OpenSSL as for PHP then the run time should be 1h 11m 53s.

We also tried to run FICS on these programs. However,
it crashed on both our versions of PHP and OpenSSL. For
OpenSSH it did not find our reported bug, after running for
1h 35m.

6.6 Threats to Validity

There was no ground truth data set available for the error spec-
ifications of the evaluated applications. We had to manually

USENIX Association 33rd USENIX Security Symposium 1895

Project
CodeQL APISan ESSS Total

M T # M T # M T
OpenSSL 1 6.70 136.93s 2 56.99 15h 41m 42s 16 0.75 3.22s 42

OpenSSH 0 1.22 46.24s 0 5.04 16m 55s 1 0.22 1.44s 18

PHP 0 8.30 450.87s 0 15.38 1h 9s 29 1.85 14.50s 12

Table 5: Comparison between different tools of the fixed bugs
from Table 6. Same legend as Table 4.

create such a data set to compute the recall and precision of
the inferred error specifications. Similarly, there is no ground
truth for the new bugs our tool detected, because they were un-
known at the time we found them. All 46 cases where patches
were accepted by the maintainers are, of course, truly con-
firmed bugs. Since we evaluated our tool on a limited set of
projects, it is possible that our technique does not generalise
well to code bases with different error propagation.

In our comparison to EESI, the threat to validity from
EESI’s own evaluation also applies here: the quality of the er-
ror specification depends upon the initial domain knowledge
we gave to EESI. Not all projects that we analysed were also
analysed by the authors of EESI, further compounding that
risk. We want to emphasise that this threat only applies to
EESI, as our own tool does not depend on domain knowledge:
we are immune to this threat. The details about the domain
knowledge given to EESI are described in Appendix C.

7 Discussion

We now discuss some broader aspects of our work. We de-
scribe how error inference and bug detection can be split
between libraries and their consumers. We also discuss future
work and describe the ethical considerations.

We discuss the generality of our approach in Appendix A.

7.1 Splitting Inference and Bug Detection

So far, we applied our technique to detect bugs in the same
software from which we inferred error specifications. How-
ever, the inference and the bug detection components can
operate separately. Hence, it is also possible to detect bugs
in consumers of libraries. In that case, one would first cre-
ate an error specification for the library, and then use that as
input with a library consumer. We tested this approach with
OpenSSL as a library and PHP as a consumer. We used this
to find two extra true positive bugs in PHP. The specification
of libraries can be further refined by combining results from
multiple library consumers. However, library consumers typi-
cally only use the public API of a library, so although this may
improve the precision of the public API specification, this will
decrease the precision of the internal API’s specification.

7.2 Future Work
We currently create the summaries in an intra-procedural
way. Operations from called functions are not included in the
summary of the caller. Instead, they are represented with a call
instruction. We believe that “inlining” summaries of callees
may improve the precision of the summaries, at a small cost
of reducing analysis run-time performance.

Not all applications use the return value of a function to
check for errors. Some may use an additional global error
state (e.g. the exception mechanism in PHP). Our tool is un-
aware of this, and will report a false positive when the global
state is checked instead of the return value. Another propaga-
tion method is when a function uses a pointer, passed as an
argument, to write an error code to. The similarity matching
already takes into account store instructions to pointers, but
our bug detection is limited to checking the return values of
functions. Our current implementation will therefore miss
bugs in code that use an error propagation mechanism other
than using return values. We leave these cases for future work.

For OpenSSL we discovered that some functions serve a
dual purpose in Section 6.4. The first call may do validation
and the second call may do the actual work. This means that a
false positive report will occur on the second call, despite there
being a check on the first call. We leave learning this relation
for future work. This would greatly reduce the number of
false positives for OpenSSL.

7.3 Ethical Considerations
There are two ethical considerations: our tool reports potential
security bugs, and we interact with maintainers. First, our tool
does not generate exploits. Second, we clearly label findings
as from an experimental tool, and only submit patches for
probable true positives.

8 Related Work

This section discusses the related work, primarily focusing
on static analyses to detect bugs in error-handling or error-
checking code. We have divided the related work into four
different categories: techniques that try to match conven-
tional patterns, techniques that depend on error specifications,
similarity-based techniques, and other static techniques. It is
also often possible to extend static techniques with a dynamic
analysis such as fuzzing [11, 15, 16]. However, we consider
them out of scope as our focus lies on static analysis.

8.1 Conventional Patterns
For some software, such as the Linux kernel, error return
values for many functions follow a standard convention (e.g.
ENOMEM, EINVAL, etc.). These error codes have been used
to detect error-handling code and data mine rules from the

1896 33rd USENIX Security Symposium USENIX Association

involved functions [22, 24, 25, 31, 33, 37, 39]. However, even
though most kernel functions in the public API follow this
convention, not all internal kernel functions do. There are
kernel functions that return a boolean value to indicate success
or failure, or even use custom error values. Furthermore, error-
handling code is not standardised for user applications. These
analysis tools will therefore be unable to find error-handling
code that does not follow a specific convention.

Other tools use approaches from data mining to automat-
ically deduce these kinds of patterns. PeX uses association
analysis to determine the relation between permission checks
and actions [48]. Nguyen et al. mine preconditions of APIs
based on strong type information [27]. EH-Miner uses cross-
checking on checked functions and their conditional actions to
determine likely error-returning functions [14]. More generic
bug-finding tools include PR-Miner to find common patterns
using association analysis in large software [20]. However,
these tools either have scalability issues, do not specifically
detect error checks, or rely only on cross-checking, which
makes them unsuitable for functions with few uses.

8.2 Error-specifications

DeFreez et al. proposed EESI, a technique that uses initial
domain knowledge provided by the programmer to build an
error specification [5]. EESI propagates this initial domain
knowledge inter-procedurally through the functions in the pro-
gram [5]. The downside of this technique is that the precision
and recall of the generated error specification are limited by
the precision and completeness of the initial domain knowl-
edge. For example, the authors often include the fact malloc
returns a NULL pointer in their initial domain knowledge as
the only function that returns an error. Hence, every other
error value that does not transitively originate from a memory
allocation failure will not be detected by the tool and thus
not be included in the error specification. This reduces the
recall of the error specification. Furthermore, their technique
can only represent error values as simple predicates such as
< 0, > 0, etc. IMChecker uses a domain-specific language to
specify common API usage and uses symbolic execution to
find violations thereof [8].

Ares is another static analysis tool that uses heuristics spe-
cific to C code to identify error-handling blocks, which allows
the tool to deduce error-handling specifications [19]. The au-
thors note that some error-related keywords, such as goto
err, are indicative of error-handling blocks. This is a com-
mon practice in C-style error-handling code, but it is relatively
ad hoc and does not generalise well.

APEx uses path-length and path-complexity heuristics to
determine likely error-handling paths [17]. As this approach
does not take into account much of the semantics or code
structure, it does not perform as well as our approach. Further-
more, the usage of symbolic execution impedes scalability.
Generated specifications are used in tools like EPEx that find

bugs using an input error specification generated by a tool or
by hand [13]. ErrDoc improves upon EPEx’s bug detection
and also implements ways to automatically fix four types of
error-handling bugs [38].

Weimer et al. use association analysis on pairs of actions
(e.g. initialisation and clean-up) to detect likely error-raising
functions and then use that information to deduce error spec-
ifications [41]. This limited association analysis limits the
applicability and usefulness of their approach.

8.3 Similarity-based Techniques
Saha et al. have developed Hector to statically find resource-
release omission faults in error-handling code [36]. This is a
specific type of bug where an error-handling path is lacking
one or more resource-release operations. Examples include
missing unlock calls, missing memory frees, etc. One of their
key ideas is that basic blocks nearby other blocks contain-
ing resource-release operations might also need those oper-
ations. IPPO statically finds bugs in security-critical paths,
including error paths, using differential checking of similar
paths [21]. Some approaches use NLP-like techniques, some-
times even combined with outlier-based analysis to discover
missing check bugs like Chucky [46] or try to be a bug-generic
analyser like FICS [3]. Yamaguchi et al. extend upon the idea
of Chucky to find taint-style vulnerabilities such as Heart-
bleed [45]. APISan uses semantic beliefs to detect API mis-
uses. These beliefs are computed using symbolic execution
to collect constraints on call instructions. These constraints
are then compared using an outlier-based analysis [47].

8.4 Other Static Techniques
NDI finds inconsistencies in error-handling code with a focus
on unobservable propagation inconsistencies [49]. It detects
inconsistencies regarding resource initialisation, NULL or
invalid pointer dereferences, and resource releases. Their key
insight is that a caller of an error-returning function must
be able to observe whether an error occurred. They detect
whether different error-handling paths are distinguishable for
the caller. If there is a non-observable inconsistency, then the
caller will not be able to resolve that inconsistency, which
means there might be a bug.

Resource acquisition and release functions often appear
together as pairs in C code. Resources are first acquired, and
when execution fails they are typically released in the reverse
order. DiEH uses this observation to automatically mine pat-
terns of such pairings in Linux, and based on this information,
it can detect incorrect error-handling clean-up code [44].

9 Conclusion

We presented a scalable and efficient static analyser called
ESSS to find bugs against error-checking code and error-

USENIX Association 33rd USENIX Security Symposium 1897

propagation code. Based on matching the longest common
subsequence of path slices, we infer precise error specifica-
tions without a priori knowledge about the analysed software.
We evaluated our tool on real-world widely-used software,
and we have shown that our approach scales well in run time
and memory usage. This scalability makes it an excellent
choice to integrate into both CI/CD pipelines and into IDEs.
By analysing OpenSSL, OpenSSH, and PHP, we sent patches
for 46 bugs, one with a CVE. All patches were applied.

Availability

Our tool ESSS has been open sourced and is available at
https://github.com/csl-ugent/esss.

Acknowledgements

The authors thank the anonymous reviewers, the shepherd,
Thomas Faingnaert, and Bjorn De Sutter for their valuable
feedback. The authors also thank the maintainers of the evalu-
ated software projects for confirming the issues and reviewing
the patches. This research was partly funded by the Cyberse-
curity Initiative Flanders (CIF) from the Flemish Government
and by the Fund for Scientific Research - Flanders (FWO),
Grant No. 1SF7923N.

Conflicts of Interests

Halfway through the evaluation process of this paper, the first
author became involved in PHP’s maintenance. This is not a
paid role and has no financial gains. We made sure that all
pull requests were reviewed by other maintainers, and that
the CVE bug report was reviewed by the PHP security team
(which at the time did not yet include the first author).

References

[1] Owasp Top Ten. https://owasp.org/
www-project-top-ten/.

[2] Mithun Acharya and Tao Xie. Mining API error-
handling specifications from source code. In Funda-
mental Approaches to Software Engineering: 12th In-
ternational Conference, FASE 2009, Held as Part of the
Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009.
Proceedings 12, pages 370–384. Springer, 2009.

[3] Mansour Ahmadi, Reza Mirzazade Farkhani, Ryan
Williams, and Long Lu. Finding Bugs Using Your Own
Code: Detecting Functionally-similar yet Inconsistent
Code. In USENIX Security Symposium, pages 2025–
2040, 2021.

[4] Jia-Ju Bai, Tuo Li, and Shi-Min Hu. DLOS: Effective
Static Detection of Deadlocks in OS Kernels. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 367–382, 2022.

[5] Daniel DeFreez, Haaken Martinson Baldwin, Cindy
Rubio-González, and Aditya V Thakur. Effective Error-
Specification Inference via Domain-Knowledge Expan-
sion. In Proceedings of the 2019 27th ACM Joint Meet-
ing on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
pages 466–476, 2019.

[6] Dawson Engler, David Yu Chen, Seth Hallem, Andy
Chou, and Benjamin Chelf. Bugs as deviant behavior:
A general approach to inferring errors in systems code.
ACM SIGOPS Operating Systems Review, 35(5):57–72,
2001.

[7] GitHub. CodeQL: the libraries and queries that power se-
curity researchers around the world, as well as code scan-
ning in GitHub Advanced Security. https://github.
com/github/codeql.

[8] Zuxing Gu, Jiecheng Wu, Chi Li, Min Zhou, Yu Jiang,
Ming Gu, and Jiaguang Sun. Vetting API Usages in C
Programs with IMChecker. In 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), pages 91–94.
IEEE, 2019.

[9] Zuxing Gu, Jiecheng Wu, Jiaxiang Liu, Min Zhou, and
Ming Gu. An Empirical Study on API-Misuse Bugs
in Open-Source C Programs. In 2019 IEEE 43rd an-
nual computer software and applications conference
(COMPSAC), volume 1, pages 11–20. IEEE, 2019.

[10] Haryadi S Gunawi, Cindy Rubio-González, Andrea C
Arpaci-Dusseau, Remzi H Arpaci-Dusseau, and Ben
Liblit. EIO: Error Handling is Occasionally Correct. In
FAST, volume 8, pages 1–16, 2008.

[11] Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sar-
fraz Khurshid, and Mohit Tiwari. ACHyb: A Hybrid
Analysis Approach to Detect Kernel Access Control
Vulnerabilities. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, pages 316–327, 2021.

[12] Immunant. immunant/c2rust: Migrate C code to
Rust. https://github.com/immunant/c2rust/
tree/master.

[13] Suman Jana, Yuan Jochen Kang, Samuel Roth, and
Baishakhi Ray. Automatically detecting error handling
bugs using error specifications. In USENIX Security
Symposium, pages 345–362, 2016.

1898 33rd USENIX Security Symposium USENIX Association

https://github.com/csl-ugent/esss
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://github.com/github/codeql
https://github.com/github/codeql
https://github.com/immunant/c2rust/tree/master
https://github.com/immunant/c2rust/tree/master

[14] Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao,
Ji Wang, Xiaodong Liu, and Yunhuai Liu. Detecting
Error-Handling Bugs without Error Specification Input.
In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 213–225.
IEEE, 2019.

[15] Zu-Ming Jiang, Jia-Ju Bai, Julia Lawall, and Shi-Min
Hu. Fuzzing Error Handling Code in Device Drivers
Based on Software Fault Injection. In 2019 IEEE 30th
International Symposium on Software Reliability Engi-
neering (ISSRE), pages 128–138. IEEE, 2019.

[16] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu.
Fuzzing Error Handling Code using Context-Sensitive
Software Fault Injection. In the 29th USENIX Security
Symposium (Security’20), 2020.

[17] Yuan Kang, Baishakhi Ray, and Suman Jana. APEx:
Automated Inference of Error Specifications for C APIs.
In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pages
472–482, 2016.

[18] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In International symposium on code generation
and optimization, 2004. CGO 2004., pages 75–86. IEEE,
2004.

[19] Chi Li, Min Zhou, Zuxing Gu, Ming Gu, and Hongyu
Zhang. Ares: Inferring Error Specifications through
Static Analysis. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pages 1174–1177. IEEE, 2019.

[20] Zhenmin Li and Yuanyuan Zhou. PR-Miner: automati-
cally extracting implicit programming rules and detect-
ing violations in large software code. ACM SIGSOFT
Software Engineering Notes, 30(5):306–315, 2005.

[21] Dinghao Liu, Qiushi Wu, Shouling Ji, Kangjie Lu, Zhen-
guang Liu, Jianhai Chen, and Qinming He. Detecting
missed security operations through differential check-
ing of object-based similar paths. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1627–1644, 2021.

[22] Yongzhi Liu, Xiarun Chen, Zhou Yang, and Weiping
Wen. Automatically constructing peer slices via seman-
tic and context-aware security checks in the linux kernel.
In 2021 51st Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks Workshops
(DSN-W), pages 108–113. IEEE, 2021.

[23] Kangjie Lu and Hong Hu. Where Does It Go? Refining
Indirect-Call Targets with Multi-Layer Type Analysis.

In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1867–
1881, 2019.

[24] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Automati-
cally Identifying Security Checks for Detecting Kernel
Semantic Bugs. In Computer Security–ESORICS 2019:
24th European Symposium on Research in Computer
Security, Luxembourg, September 23–27, 2019, Proceed-
ings, Part II 24, pages 3–25. Springer, 2019.

[25] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting
Missing-Check Bugs via Semantic- and Context-Aware
Criticalness and Constraints Inferences. In Proceedings
of the 28th USENIX Conference on Security Symposium,
2019.

[26] Evan Miller. How not to sort by aver-
age rating. https://www.evanmiller.org/
how-not-to-sort-by-average-rating.html, Feb
2009.

[27] Hoan Anh Nguyen, Robert Dyer, Tien N Nguyen, and
Hridesh Rajan. Mining preconditions of apis in large-
scale code corpus. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 166–177, 2014.

[28] OpenSSL. openssl/crypto/rsa/rsa_sp800_56b_check.c
at 8d927e55 · openssl/openssl. https:
//github.com/openssl/openssl/blob/
8d927e55b751ba1af6c08cd4e37d565a43c56157/
crypto/rsa/rsa_sp800_56b_check.c#L368-L437.

[29] OpenSSL Foundation Inc. RAND_bytes_ex.
https://www.openssl.org/docs/man3.0/man3/
RAND_bytes_ex.html.

[30] OpenSSL Foundation Inc. Release strategy. https://
www.openssl.org/policies/releasestrat.html.

[31] Aditya Pakki and Kangjie Lu. Exaggerated Error Han-
dling Hurts! An In-Depth Study and Context-Aware
Detection. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1203–1218, 2020.

[32] php src. php-src/zend_api.c at 7c3b92fc · php/php-
src. https://github.com/php/php-src/blob/
7c3b92fc913e7606cbc33c68eeddff36256c33f7/
Zend/zend_API.c#L4783-L4789.

[33] Cindy Rubio-González, Haryadi S Gunawi, Ben Lib-
lit, Remzi H Arpaci-Dusseau, and Andrea C Arpaci-
Dusseau. Error propagation analysis for file systems. In
Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 270–280, 2009.

USENIX Association 33rd USENIX Security Symposium 1899

https://www.evanmiller.org/how-not-to-sort-by-average-rating.html
https://www.evanmiller.org/how-not-to-sort-by-average-rating.html
https://github.com/openssl/openssl/blob/8d927e55b751ba1af6c08cd4e37d565a43c56157/crypto/rsa/rsa_sp800_56b_check.c#L368-L437
https://github.com/openssl/openssl/blob/8d927e55b751ba1af6c08cd4e37d565a43c56157/crypto/rsa/rsa_sp800_56b_check.c#L368-L437
https://github.com/openssl/openssl/blob/8d927e55b751ba1af6c08cd4e37d565a43c56157/crypto/rsa/rsa_sp800_56b_check.c#L368-L437
https://github.com/openssl/openssl/blob/8d927e55b751ba1af6c08cd4e37d565a43c56157/crypto/rsa/rsa_sp800_56b_check.c#L368-L437
https://www.openssl.org/docs/man3.0/man3/RAND_bytes_ex.html
https://www.openssl.org/docs/man3.0/man3/RAND_bytes_ex.html
https://www.openssl.org/policies/releasestrat.html
https://www.openssl.org/policies/releasestrat.html
https://github.com/php/php-src/blob/7c3b92fc913e7606cbc33c68eeddff36256c33f7/Zend/zend_API.c#L4783-L4789
https://github.com/php/php-src/blob/7c3b92fc913e7606cbc33c68eeddff36256c33f7/Zend/zend_API.c#L4783-L4789
https://github.com/php/php-src/blob/7c3b92fc913e7606cbc33c68eeddff36256c33f7/Zend/zend_API.c#L4783-L4789

[34] Cindy Rubio-González and Ben Liblit. Expect the unex-
pected: Error code mismatches between documentation
and the real world. In Proceedings of the 9th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 73–80, 2010.

[35] Cindy Rubio-González and Ben Liblit. Defective Error/-
Pointer Interactions in the Linux Kernel. In Proceedings
of the 2011 International Symposium on Software Test-
ing and Analysis, pages 111–121, 2011.

[36] Suman Saha, Jean-Pierre Lozi, Gaël Thomas, Julia L
Lawall, and Gilles Muller. Hector: Detecting Resource-
Release Omission Faults in error-handling code for sys-
tems software. In 2013 43rd Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks
(DSN), pages 1–12. IEEE, 2013.

[37] Qintao Shen, Hongyu Sun, Guozhu Meng, Kai Chen,
and Yuqing Zhang. Detecting API Missing-Check Bugs
Through Complete Cross Checking of Erroneous Re-
turns. In International Conference on Information Secu-
rity and Cryptology, pages 391–407. Springer, 2022.

[38] Yuchi Tian and Baishakhi Ray. Automatically diagnos-
ing and repairing error handling bugs in c. In Proceed-
ings of the 2017 11th joint meeting on foundations of
software engineering, pages 752–762, 2017.

[39] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. Check
It Again: Detecting Lacking-Recheck Bugs in OS Ker-
nels. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
1899–1913, 2018.

[40] Westley Weimer and George C Necula. Finding and
Preventing Run-Time Error Handling Mistakes. In Pro-
ceedings of the 19th annual ACM SIGPLAN Conference
on Object-oriented programming, systems, languages,
and applications, pages 419–431, 2004.

[41] Westley Weimer and George C Necula. Mining Tem-
poral Specifications for Error Detection. In Tools and
Algorithms for the Construction and Analysis of Systems:
11th International Conference, TACAS 2005, Held as
Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2005, Edinburgh, UK, April
4-8, 2005. Proceedings 11, pages 461–476. Springer,
2005.

[42] Edwin B Wilson. Probable inference, the law of succes-
sion, and statistical inference. Journal of the American
Statistical Association, 22(158):209–212, 1927.

[43] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie
Lu. Precisely characterizing security impact in a flood
of patches via symbolic rule comparison. In The 2020

Annual Network and Distributed System Security Sym-
posium (NDSS’20), 2020.

[44] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen
McCamant, and Kangjie Lu. Understanding and Detect-
ing Disordered Error Handling with Precise Function
Pairing. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2041–2058, 2021.

[45] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and
Konrad Rieck. Automatic Inference of Search Patterns
for Taint-Style Vulnerabilities. In 2015 IEEE Sympo-
sium on Security and Privacy, pages 797–812. IEEE,
2015.

[46] Fabian Yamaguchi, Christian Wressnegger, Hugo Gas-
con, and Konrad Rieck. Chucky: Exposing missing
checks in source code for vulnerability discovery. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 499–510,
2013.

[47] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Tae-
soo Kim, and Mayur Naik. APISan: Sanitizing API
Usages through Semantic Cross-Checking. In Usenix
Security Symposium, pages 363–378, 2016.

[48] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee
Jung, Ahmed M Azab, and Ruowen Wang. PeX: A Per-
mission Check Analysis Framework for Linux Kernel.
In 28th USENIX Security Symposium, 2019.

[49] Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji,
and Kangjie Lu. Non-Distinguishable Inconsistencies as
a Deterministic Oracle for Detecting Security Bugs. In
Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 3253–
3267, 2022.

A Generality

Although we focused on C systems code bases, our approach
is not fundamentally constrained to such code bases. In fact,
because our implementation is based on LLVM, we can apply
it to any language that can compile to LLVM IR. This means
we can deal with C++, and we can even use our approach
on Rust. Of course, both languages not only allow users to
return error values in a manner similar to C, but each also has
a more language-specific idiomatic way of returning errors.
We discuss how our approach deals with language-specific
error handling for both Rust and C++.

A.1 Rust
Rust implements monad-like structures for handling errors:
Option<T> and Result<T, E>. Idiomatic Rust code typi-
cally wraps error and success return values in these structures.

1900 33rd USENIX Security Symposium USENIX Association

We therefore do not expect to find bugs with our analysis
technique in idiomatic Rust code. To test this hypothesis we
experimented with two popular Rust libraries: serde (commit
2ba40672) and webrender (commit 5f0de38b). Most impor-
tantly, our tool indeed correctly infers the error specifications
for these structures (e.g. Option<T>::unwrap() uses a dis-
criminator of 0 to indicate errors). However, our tool reported
no bugs in either of these libraries. This indicates that Rust’s
approach for a type-system-based error-propagation mecha-
nism likely prevents numerous bugs at compile time. How-
ever, it can still be useful to use ESSS to detect bugs in less
idiomatic code, e.g. code that interacts across different pro-
gramming languages.

We experimented with the output of C2Rust [12], which
is a C to Rust transpiler. C2Rust is generally used to help
programmers in transitioning a C code base to Rust. However,
it does not transition the transpiled code base to safe Rust: this
is left to the developers. It hence preserves the unsafety and
semantics of the original C code. This results in Rust code that
still uses the C-style error representation and error handling.
We created some toy examples of C code that we transpiled
to Rust using C2Rust. We found that the error specification
inference produced the same results for both the original C
code as the transpiled Rust code.

This leads us to another potential application domain of our
technique. Because the inferred error specification for non-
idiomatic Rust code still contains the error-returning functions
and their error values, this information could help transpilation
tools to automatically generate more idiomatic Rust code. Our
tool derives what functions return an error and what their error
values are. It would be possible to automatically generate
enum values to use in Result<T, E> for example.

A.2 C++
Similarly, we tested some small C++ snippets and found a
similar result for the std::optional<T> type. Furthermore,
exceptions are also discovered by our similarity matching
technique. However, since the implementation of our analysis
tool only takes into account return values, it cannot detect
missing exception handling. That being said, this is more a
limitation of our implementation, and not one of our analysis
technique per se. Extending our implementation to support
these kinds of constructs is left for future work. We also con-
firmed that C-style return-code error values are also detected
in C++ code. Finding bugs with the error specification also
worked correctly.

A.3 Implementation details
Our current implementation has limited support for struc-
tures as a return value. This happens for example for
Rust’s Result<T, E> and Option<T> types, and for C++’s
std::optional<T> type. We implemented basic support for

structures by keeping track of which members have the role
of representing error values. We handle this by checking if a
conditional check uses the extract instruction from LLVM.
This instruction extracts a member from a compound type
by index. We keep track of that index and use it as a tag for
the entries in the error specification. Larger structs may not
necessarily use these specific instructions as the front end
may choose to compile them to a pointer argument, although
we did not encounter such cases.

B Fixed Bugs

Table 6 contains an overview of the fixed bugs per project, the
type of bug, and the bugs’ impact.

C EESI Domain Knowledge

For OpenSSL and zlib, we gave the same domain knowl-
edge as EESI’s authors used. Since both zlib and libpng
do not contain typical error-raising functions, we set their
error-only input to the default __errno_location, and set
the only known specification to malloc == 0. For freetype2,
we also gave EESI the previous two inputs, and added the
FT_Throw function as an error-raising function. For libwebp,
we use the default __errno_location and VP8SetError,
VP8LSetError, and WebPEncodingSetError.

USENIX Association 33rd USENIX Security Symposium 1901

https://github.com/serde-rs/serde/tree/2ba406726f9f84bc3b65ce4e824ae636dfa7dc85
https://github.com/servo/webrender/tree/5f0de38ba87ddd9c7e51a5e8a14f8184d201357d

Project File Description Impact
OpenSSL crypto/asn1/asn_pack.c Incorrect ASN1_item_i2d() check Malfunction: corrupt data

crypto/asn1/asn1_parse.c Incorrect BIO_dup_state() check Crash
crypto/asn1/asn1_parse.c Incorrect BIO_set_indent() check Malfunction: incorrect output
crypto/bio/bss_acpt.c Incorrect BIO_set_accept_name() check Malfunction: parameter not set
crypto/bn/bn_rsa_fips186_4.c Incorrect error branch in ossl_bn_rsa_fips186_4_derive_prime() Weak randomness in case of random number generator failure
crypto/cms/cms_ec.c Incorrect CMS_SharedInfo_encode() check Malfunction: corrupt data
crypto/cms/cms_lib.c Incorrect BIO_set_md() check Malfunction: digest not set
crypto/evp/ctrl_params_translate.c Incorrect default_check() check Malfunction: parameter not set
crypto/evp/evp_lib.c Incorrect EVP_CIPHER_param_to_asn1() check Malfunction: parameter not set
crypto/evp/evp_pbe.c Incorrect EVP_get_digestbynid() check Malfunction: fallback path not taken resulting in crashes
crypto/evp/p5_crpt2.c Incorrect EVP_CIPHER_asn1_to_param() check Malfunction: parameter not set
crypto/pkcs7/pk7_doit.c Incorrect EVP_CIPHER_param_to_asn1() check Malfunction: parameter not set
crypto/ffc/ffc_params_generate.c Incorrect RAND_bytes_ex() check Weak randomness in case of random number generator failure
crypto/ocsp/ocsp_ext.c Incorrect X509V3_add1_i2d() check Malfunction: nonce not added
crypto/x509/v3_prn.c Incorrect method->i2r() check Malfunction: incorrect output
providers/.../rsa_sig.c Incorrect RSA_public_decrypt() check Malfunction: incorrect error reporting

OpenSSH addr.c Incorrect getnameinfo() check Crash
PHP ext/curl/multi.c Missing zend_fcall_info_init() error check Crash

ext/ftp/php_ftp.c Missing ftp_quit() propagation check Malfunction: incorrect error reporting
ext/phar/util.c Missing EVP_MD_CTX_create() check Crash
ext/phar/util.c Missing EVP_VerifyInit() check Crash
ext/phar/util.c Missing EVP_VerifyUpdate() check Malfunction: corrupt data
ext/.../mbfilter_7bit.c Missing mbfl_filt_conv_illegal_output() check Malfunction: corrupt data
ext/.../mbfilter_iso2022jp_mobile.c Missing mbfilter_unicode2sjis_emoji_kddi() check Malfunction: corrupt data
ext/.../mbfilter_sjis_mobile.c * 3 Missing mbfl_filt_conv_illegal_output() check Malfunction: corrupt data
ext/.../mbfilter_sjis_mobile.c Missing filter->output_function() check Malfunction: corrupt data
ext/.../mbfilter_sjis_mobile.c Missing mbfilter_unicode2sjis_emoji_docomo() check Malfunction: corrupt data
ext/.../mbfilter_sjis_mobile.c Missing mbfilter_unicode2sjis_emoji_kddi() check Malfunction: corrupt data
ext/.../mbfilter_sjis_mobile.c Missing mbfilter_unicode2sjis_emoji_sb() check Malfunction: corrupt data
ext/openssl/openssl.c Missing PEM_write_bio_PKCS7() check Malfunction: corrupt data
ext/openssl/openssl.c Missing PEM_write_bio_CMS() check Malfunction: corrupt data
ext/openssl/openssl.c Missing i2d_PKCS12_bio() check Malfunction: corrupt data
ext/openssl/xp_ssl.c Incorrect SSL_CTX_set0_tmp_dh_pkey() check Malfunction: parameter not set leading to crashes
ext/openssl/xp_ssl.c Incorrect SSL_CTX_set_tmp_dh() check Malfunction: parameter not set leading to crashes
ext/openssl/xp_ssl.c Missing php_openssl_set_server_dh_param() check Crash
ext/pdo_odbc/odbc_driver.c Incorrect SQLAllocHandle() check Malfunction: spurious failures
ext/pdo_odbc/odbc_driver.c Missing SQLAllocHandle() check Crash
ext/session/mod_files.c * 2 Incorrect ps_files_cleanup_dir() propagation check Crash
ext/soap/php_http.c Missing check in random number generation (CVE-2023-3247) Weak randomness used and stack information leak
ext/standard/browscap.c Incorrect pcre2_match() check Crash
ext/tidy/tidy.c Missing tidyLoadConfig() check Malfunction: parameters not set
ext/xmlwriter/php_xmlwriter.c Missing xmlTextWriterEndElement() check Malfunction: corrupt data
Zend/zend_API.c Incorrect zend_update_static_property_ex() propagation check Malfunction and eventually a crash

Table 6: List of new bugs discovered by ESSS for which we created patches. All patches were accepted. Entries with * N
indicate N similar bugs in the same file.

1902 33rd USENIX Security Symposium USENIX Association

	Introduction
	Overview
	Path Similarity Matching for Error Specification Inference
	Error Specification Expansion
	Bug Detection

	Error Specification Inference
	Path Slicing
	Similarity Matching
	Abstract Representation Using Summaries
	Matching Summaries

	Narrowing Error Value Sets
	Unifying Results Into Error Value Sets

	Bug Detection
	Detecting Missing and Incorrect Checks
	Heuristics
	Error Propagation Checkers

	Implementation
	Evaluation
	Datasets and Experimental Setup
	Scalability
	Error Specification Inference
	Effectiveness in New Bug Detection
	False Negative Evaluation
	Threats to Validity

	Discussion
	Splitting Inference and Bug Detection
	Future Work
	Ethical Considerations

	Related Work
	Conventional Patterns
	Error-specifications
	Similarity-based Techniques
	Other Static Techniques

	Conclusion
	Generality
	Rust
	C++
	Implementation details

	Fixed Bugs
	EESI Domain Knowledge

