
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

SafeFetch: Practical Double-Fetch Protection
with Kernel-Fetch Caching

Victor Duta, Mitchel Josephus Aloserij, and Cristiano Giuffrida,
Vrije Universiteit Amsterdam

https://www.usenix.org/conference/usenixsecurity24/presentation/duta

SafeFetch: Practical Double-Fetch Protection
with Kernel-Fetch Caching

Victor Duta Mitchel Josephus Aloserij Cristiano Giuffrida

Vrije Universiteit Amsterdam

Abstract
Double-fetch bugs (or vulnerabilities) stem from in-kernel
system call execution fetching the same user data twice
without proper data (re)sanitization, enabling TOCT-
TOU attacks and posing a major threat to operating sys-
tems security. Existing double-fetch protection systems
rely on the MMU to trap on writes to syscall-accessed
user pages and provide the kernel with a consistent snap-
shot of user memory. While this strategy can hinder at-
tacks, it also introduces nontrivial runtime performance
overhead due to the cost of trapping/remapping and the
coarse (page-granular) write interposition mechanism.

In this paper, we propose SafeFetch, a practical solu-
tion to protect the kernel from double-fetch bugs. The key
intuition is that most system calls fetch small amounts of
user data (if at all), hence caching this data in the kernel
can be done at a small performance cost. To this end,
SafeFetch creates per-syscall caches to persist fetched
user data and replay them when they are fetched again
within the same syscall. This strategy neutralizes all
double-fetch bugs, while eliminating trapping/remapping
overheads and relying on efficient byte-granular interpo-
sition. Our Linux prototype evaluation shows SafeFetch
can provide comprehensive protection with low perfor-
mance overheads (e.g., 4.4% geomean on LMBench),
significantly outperforming state-of-the-art solutions.

1 Introduction

The operating system (OS) kernel is the bedrock of mod-
ern systems. To provide service, the kernel includes a
syscall interface, an explicit boundary between untrusted
OS processes and the trusted kernel. Hence, it is crucial
for the kernel to properly sanitize data that flows through
this boundary (e.g., syscall arguments). Failure to do so
may lead to (kernel) double-fetch bugs [15]. Such bugs oc-
cur when the kernel fetches (i.e., reads) the same/overlap-
ping data from user space twice—a common kernel design

pattern—without properly (re)sanitizing data on the sec-
ond fetch. In essence, double-fetch bugs introduce a race
condition, which attackers can exploit to mount time-
of-check to time-of-use (TOCTTOU) attacks—changing
user data between the two fetches. This is to bypass
sanity checks and typically escalate privileges. Such bugs
are both common (as they involve skipping seemingly
“redundant” kernel checks [15]) and elusive (as they nor-
mally escape testing with production sanitizers [9]).
Prior research [18, 23, 26, 31] has mostly sought to

detect and report several double-fetch bugs [2–7]. How-
ever, prior detection tools are imprecise and thus un-
suitable to mitigate double-fetch bugs in production.
More recently, Midas [15] proposed the first mitigation
to offer protection (rather than detection) guarantees
against double-fetch bugs. Midas relies on the MMU and
copy-on-write mechanics to expose consistent snap-
shots of user pages to each syscall. To this end, Midas
traps writes to each fetched user page, copies the page,
and exposes the new (old) page to the writer (syscall).
While this approach structurally prevents double-fetch
exploitation, it also incurs nontrivial overhead due to
the cost of trapping, remapping, and copying pages as
well as operating at the coarse page granularity (causing
overtrapping and overcopying due to false sharing [15]).
Finally, due to the complex and costly operations Midas
whitelists a number of syscalls (including the kernel-fetch
heavy execve), ultimately reducing protection coverage.

In this paper, we propose SafeFetch, a practical pro-
tection system against kernel double-fetch bugs. The
key idea is to move the core instrumentation from
writes to kernel fetches, with the kernel maintaining
per-syscall caches to serve kernel fetches. Indeed, our
design has been inspired by Linux kernel developers
seeking a practical double-fetch bug mitigation by “per-
forming some kind of kernel-side caching of user space
memory” [8]. SafeFetch’s design prevents concurrent
(attacker-controlled) writes from corrupting data exposed
to kernel double fetches—which instead hit the previ-

USENIX Association 33rd USENIX Security Symposium 1207

ously populated kernel-fetch cache by construction. As
we will show, the vast majority of syscalls only copy a few
bytes from user space, hence caching kernel-fetch data
per-syscall can be done in a simple and inexpensive way.
In contrast to Midas’ write-side instrumentation strat-
egy, SafeFetch’s fetch-side strategy eliminates the need
for costly MMU-based instrumentation (as writes run
uninstrumented), false sharing and overcopying (as the
cache operates at the byte rather than page granularity),
and syscall-based whitelisting (as individual problematic
kernel fetches can be whitelisted as needed). As a result,
SafeFetch significantly improves both the performance
and the security (protection coverage) of state-of-the-art
solutions at a fraction of the complexity.
To support our claims, we implemented SafeFetch

on Linux and evaluated our prototype, along with a
number of caching-centric optimizations, against a num-
ber of standard benchmarks. Our evaluation shows that
SafeFetch provides comprehensive protection at a frac-
tion of the overhead incurred by Midas, despite the higher
protection coverage (i.e., a single kernel fetch vs. three
major syscalls whitelisted). For instance, SafeFetch in-
curs geomean performance overheads consistently below
5% across standard kernel benchmarks (i.e., LMBench,
OSBench, and Phoronix). On the same benchmarks, Mi-
das reports much higher geomean overheads (i.e., as
high as ≈15% on OSBench and ≈36% on LMBench).
Moreover, Midas incurs a single-benchmark worst-case
overhead of 279% (vs. 22% for SafeFetch).
Contributions. We make the following contributions:

• We investigate common kernel fetch patterns during
syscall execution and use the resulting insights to
design a per-syscall kernel-fetch cache.

• We present SafeFetch, an implementation of our
design to structurally mitigate double-fetch bugs
in the Linux kernel. We show SafeFetch can be
seamlessly integrated into existing kernel code paths,
resulting in a practical implementation.

• We evaluate SafeFetch on a number of standard
benchmarks, confirming that it can comprehensively
mitigate double-fetch bugs with low performance
overheads (e.g., 4.4% geomean on LMBench).

2 Background

2.1 User/kernel Memory Isolation
Modern operating systems rely on virtual memory sup-
port to enforce user/kernel memory isolation, that is
preventing user (kernel) execution from accessing kernel
(user) memory. This is typically done by using a joint vir-
tual memory address space—where both user and kernel

USERSPACE @data

Thread 1 Thread 2

syscall_entry

FETCH @data

VALIDATE @data

FETCH @data

USE @data

UPDATE @data

TIME

Figure 1: Workflow of a double-fetch exploit.

memory mappings coexist during user/kernel execution—
and features offered by modern memory management
units (MMUs) to enforce isolation. Specifically, on x86
platforms, the kernel can set (unset) the User/Supervisor
bit in the Page Table Entries (PTEs) for user (kernel)
memory mappings. This prevents user execution from
accessing kernel memory. It also prevents the reverse
(i.e., kernel execution accessing user memory) assuming
Supervisor Mode Access/Execution Prevention features
(SMAP and SMEP, respectively) are enabled.

While important for memory isolation, SMAP compli-
cates the implementation of common operations such as
kernel fetches, that is user-to-kernel data transfers often
issued by the kernel as part of syscall handling (e.g.,
copying a message from user memory to be sent over the
network). To ease their implementation, modern oper-
ating systems typically support special kernel transfer
functions in order to safely transfer data between user
and kernel. For example, the Linux kernel offers two user-
to-kernel (i.e., copy_from_user and get_user) and two
kernel-to-user (i.e., copy_to_user and put_user) trans-
fer functions, which temporarily disable SMAP and copy
data from/to user memory (respectively).

2.2 Double-fetch Bugs
A kernel double fetch occurs in presence of kernel fetches
transferring the same user data twice, that is with mul-
tiple user-to-kernel transfer function invocations for the
same (or overlapping) user data on Linux. This pat-
tern is normally benign and used to simplify or optimize
common types of (e.g., deep or variable-length [26]) user-
to-kernel data transfers. However, if the kernel assumes
the data to be invariant and only validates data on the
first fetch, the second fetch originates a double-fetch bug.
Such bugs are particularly insidious as they introduce a
race condition that may never cause any harm during
normal execution. However, an attacker can exploit such

1208 33rd USENIX Security Symposium USENIX Association

Thread

syscall_entry

FETCH @data

FETCH @data

syscall_exit

TIME

SafeFetch
per-thread caches Userspace

search @data
(cache miss)

fetch @data from user

store @data
return @data

search @data
(cache hit)

return @data

invalidate cache

Figure 2: SafeFetch hindering a double-fetch exploit.

bugs by racing against kernel execution from another user
thread and corrupting the (unsanitized) data exposed
to the second fetch. Such time-of-check to time-of-use
(TOCTTOU) attack can bypass sanity checks and often
kickstart a privilege escalation exploit [26].

Figure 1 depicts the workflow of a typical double-fetch
exploit. In response to Thread 1 executing a syscall,
the kernel first fetches and validates some user @data.
Shortly after, another attacker-controlled Thread 2 con-
currently modifies the @data in user space. In Thread 1,
the kernel then proceeds to fetch @data again without
(re)validation. This allows the attacker to bypass valida-
tion checks and mount a TOCTTOU attack. Prior work
has largely focused on detecting such bugs with reason-
able accuracy [18, 23, 26, 31]. In this paper, we instead
focus on protecting the kernel from zero-day double-fetch
bugs, while proposing a much simpler and more efficient
design than the state-of-the-art protection system [15].

3 Threat Model

We assume a typical local exploitation threat model, with
an unprivileged user-space attacker seeking to exploit a
kernel double-fetch bug. Other classes of vulnerabilities
are out of scope, e.g., addressed by orthogonal mitigations.
The attacker ultimately aims to mount a TOCTTOU
attack for a variety of different purposes, e.g., privilege
escalation, info leak, denial of service, etc.

4 Overview

To hinder exploitation of kernel double-fetch bugs,
SafeFetch guarantees that, during the lifetime of each
syscall, kernel fetches to the same user data will return

Cache Backend

Cache Frontend

SafeFetch

Syscall Cache

syscalltransfer function
call

search
range

range
query

miss

Custom Allocator

sanitized
range

provision

Figure 3: SafeFetch’s high-level architecture.

the same value. To this end, SafeFetch caches data read
by kernel fetches at the per-thread and per-syscall gran-
ularity, as illustrated in Figure 2. As shown in the figure,
when a syscall fetches some user@data for the first time,
SafeFetch proxies the fetch to user memory and stores
the fetched data in a per-thread in-kernel cache. When
the syscall fetches the same @data again, SafeFetch
retrieves the data from the cache. As such, double fetches
are always consistently served with the initial version of
the data regardless of any concurrent updates to user
memory. At the end of the syscall lifecycle, the cache is
invalidated to implement per-syscall caching semantics.
Internally, SafeFetch includes two core components,

as shown in Figure 3. The Cache Frontend intercepts
each kernel fetch, i.e., (user-to-kernel) transfer function
invocation, and returns a sanitized range (i.e., a contigu-
ous, immutable user memory block) in output. To this
end, the frontend queries the current syscall cache for
the range. In case of a hit, a (sub)range is served directly
from the cache. In case of a miss, the frontend notifies
the Cache Backend. The latter provisions the cache to
store the missing (sub)range (fetched from user memory)
by means of a custom allocator.
Challenges. While SafeFetch’s design is conceptually
simple, there are several challenges involved in its realiza-
tion. First, the need for an in-kernel cache may lead to a
nontrivial TCB impact, affecting security. We will later
show it is feasible to efficiently implement our design
with small TCB impact. Second, the need to interpose
on all fetch operations may lead to protection coverage
(and thus security) issues. We will later show it is feasible
to produce a (nearly) full-coverage implementation on
modern operating systems such as Linux, faring even
better than the state of the art (Midas). Third, our
fetch-side instrumentation strategy may end up copying

USENIX Association 33rd USENIX Security Symposium 1209

more data than Midas’ write-side strategy in case user
data is never changed during syscall execution. We will
later show such cost is marginal compared to that of
MMU-based instrumentation, resulting in consistently
better performance. Finally, our design require instru-
menting the kernel’s fast path (i.e., transfer functions).
As such, its instrumentation and data structures need to
be carefully designed to efficiently support typical kernel
fetch patterns. We will show it is possible to capture a
variety of different fetch patterns with relatively simple
data structures. In the next sections, we first analyze
the patterns relevant to our design. Then, we use the
insights gathered from our analysis to detail our design.

5 Profiling Kernel Fetches

While our syscall caches are superficially similar to
other kernel caches since they may support similar range
queries, our design requirements are fairly unique. For
instance, the VMA cache is a classic example of a kernel
cache supporting range queries, however, its lookup pat-
terns are wholly different from ours (lookups on locality-
friendly memory management operations vs. lookups on
kernel fetches) and so are its scope (process vs. syscall)
and data storage requirements (fixed- vs. variable-sized
data). As such, to make optimal design decisions, we
need to learn more about typical patterns for kernel
fetches, including their frequency, data transfer size, etc.
To this end, we developed a simple profiler to gather

kernel-fetch statistics. Specifically, our profiler interposes
on syscall execution and records the following statistics:
the total number of ranges a syscall transfers from user
space, the average size of ranges transferred by a syscall,
and the total amount of data a syscall fetches from user
space. Moreover, for each process executed during profil-
ing, we also gather the number of syscalls that transfer
data from user space. We use various benchmarks (e.g.,
LMBench, OSBench) and popular user applications (e.g.,
Nginx, Apache) to generate a workload to sample syscall
execution. In total, our workload generated around 317
million syscall samples, exercising 165 individual syscalls
(≈ 52% of all defined syscalls for Linux x86_64). Our
main profiling results are depicted in Figures 4, 5, 6, 7, 8.
We elaborate on the results in the next sections, using
the gathered insights to motivate our design.

6 Cache Frontend

To provide the kernel with a consistent view of user
memory, the cache frontend interposes on all user-to-
kernel transfer function invocations requesting a specific
user range. In response, the frontend queries the syscall
cache for the range by means of the user (virtual) address

and the length of the range. After the query completes,
the frontend performs a query resolution step, fetching
parts of the range from user space into the cache if needed
(i.e., if not cached) and then forwarding a sanitized range
to the original transfer function.

The frontend considers a user range A sanitized if and
only if: for any sub-range B of contiguous user addresses,
such that B ⊆ A, and B was previously fetched during
the execution of the syscall (i.e., via a previous transfer
function) then B must consist of the same bytes as when it
was first fetched. When querying the cache, the frontend
uses a predetermined search policy to locate the range in
the cache. The search policy is subject to the (meta)data
structure used to bookkeep the user ranges in the cache.

6.1 Efficient Range Queries
Given a user start and end address (i.e., a range)
SafeFetch needs to find all cached chunks that over-
lap with this input range. Since a range may only par-
tially overlap with an existing range (or multiple cached
ranges), we are interested in finding the optimal data
structure that can service this operation efficiently. For
this purpose, other kernel subsystems use either linked
lists (for small caches) or red-black trees (for large caches).
The Virtual Memory Area (VMA) cache is case in point,
generally serving address range queries via a per-process
red-black tree. However, the VMA cache’s fast path uses
a linked list for the few recently used VMAs.

We experimented with both types of data structures in
the context of SafeFetch. In both cases, a node contains
metadata recording the start/end address of the range
and a reference to the cached data. Clearly, in the case of
many cached ranges, we expect linked-list-based queries
to perform poorly, with a worst-case search complexity
of O(n). In the same vein, we expect red-black trees to be
more efficient, with a worst-case search search complexity
of O(log(n)) due to constant-time rebalancing. Indeed,
we experimentally verified that after around 100 cached
ranges, the average search time of a linked list is slowed
down by a factor of two compared to a red-black tree.
However, when the cache contains only a few elements
we observed the linked list significantly outperforming a
red-black tree. On top of more lightweight search logic,
a small linked list has another important performance
edge over a small red-black tree on the insertion path
(i.e., when adding a new user range into the cache).
Indeed, due to rebalancing, insertions in the red-black
tree are always around 10 orders of magnitude slower
than in a linked list. Since according to our profiling
results, double fetches are rare (occurring once every
1,277 sampled syscalls), insertions are frequent and are
thus important to consider for performance. For more
detailed double fetch statistics from our profiling results,

1210 33rd USENIX Security Symposium USENIX Association

0 fetch
es

1 fetch

[2-10) fe
tch

es

[10-30) fe
tch

es

[30-4099) fe
tch

es
0%

50%

%
 o

f s
ys

ca
ll

sa
m

pl
es 63.93%

28.69%

7.29%
0.03% 0.06%

Figure 4: Percentage of syscall samples vs. number of
ranges they fetch.

we refer the interested reader to Appendix A.
Selecting the ideal data structure. To select the
ideal candidate between our two data structures, we turn
to our profiling results. Figure 4 shows the percentage
of syscall samples that fetch N ranges from user memory
across all the profiled benchmarks. As shown in the
figure, most samples (≈ 64%) do not fetch user ranges
at all, while the vast majority of those which do, fetch
at most one range (≈ 28.7% of samples). Even so, a
nontrivial number of samples (≈ 7.32%) fetch at most 30
ranges, while only ≈ 0.06% samples fetch over 30 ranges.
As our results suggest, a (small) linked list seems the
ideal candidate to support range queries for the vast
majority of syscall samples. However, we also observed
samples fetching as many as ≈ 4,000 ranges. In those
cases, the linked list has very poor performance and the
red-black tree is a vastly better option.
To optimize for all possible syscall scenarios, we ul-

timately opted for an adaptive search policy. In other
words, the search policy uses a linked list by default
until the number of ranges in the cache reaches a pre-
determined threshold. When the threshold is exceeded,
SafeFetch switches to a red-black tree implementation.
We detail how we experimentally selected a good thresh-
old in Section 9.3. To convert the linked list into a red-
black tree, SafeFetch uses an efficient algorithm that
constructs a balanced red-black tree from an ordered
linked list. This is done by first copying the pointers to
ranges in a vector and then iterating over the vector in a
binary breath-first search fashion. To keep the algorithm
efficient, we need to initiate the conversion when the list
contains a number of ranges of the form 2N−1.

6.2 Query Resolution
When processing the result of the query, the Cache
Frontend makes different decissions depending on
whether it found a cached user range colliding with the
queried range (cache hit) or not (cache miss).

In case of a miss, no subrange from the queried range

was previously fetched from user space. As a resolution,
the frontend fetches the range from user space and in-
structs the backend to allocate storage to insert the range
into the cache. It then also indexes the new range by
inserting new metadata into the linked list or red-black
tree with with O(1) complexity—by piggybacking on the
result of the previous query.
Cache hits can either be perfect or partial. A perfect

hit means that the frontend found a cached range which
contains the entire range it queried for. In this case, the
frontend forwards the sane range from the cache without
performing any fetch from user space. A cache hit is
partial if the frontend finds a cached range that collides
with the range it queried for, but does not contain the
entire range. In this case, the queried range may collide
with multiple cached ranges previously fetched from user
space and the frontend needs to first execute a range
defragmentation step to determine the sanitized range.
Let B be the queried range and let M = {Ai|Ai ∈ cache∧
Ai

⋂
B 6= /0} containing all cached ranges that collide with

B. Defragmentation involves computing a new range C
such that C = ∪n

i=1Ai∪ (B\∪n
i=1Ai). In other words, the

defragmented range C contains all bytes from the cached
ranges colliding with B, while the sub-ranges of bytes
that are not cached yet are fetched from user space. The
frontend instructs the backend to replace all colliding
ranges in the cache with the newly defragmented range
C, after which it can service the sanitized range from C.
Defragmentation piggybacks on the result of the previous
search, because all colliding ranges can be found by using
the previous search’s iterator. To support this, insertion
in the linked list and red-black tree preserves the virtual
address ordering of cached ranges.

7 Cache Backend

The Cache Backend is responsible with managing the
backing memory for the syscall cache. Specifically, its
main goals are to efficiently manage the lifecycle of ranges
in the cache and exploit CPU cache locality as much
as possible. The latter can be achieved by stacking to-
gether ranges in memory for data locality and thus better
CPU cache utilization, which speeds up range queries.
The former involves enforcing policies for range alloca-
tion/deallocation and storage provisioning/relinquishing
techniques to keep cache operations optimal.

To achieve its goals, the backend maintains one cache
for each in-transit syscall (at the per-thread granularity)
and adheres to a cache organization specifically tailored
to maximize data locality when performing range queries
through the cache. Additionally, the backend enforces a
series of range lifecycle management policies to efficiently
oversee cache lifespan. To support this overall strategy,
the backend relies on a custom memory allocator.

USENIX Association 33rd USENIX Security Symposium 1211

20 22 24 26 28 210 212 214

Average amount of bytes per fetch

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

%
 o

f s
ys

ca
ll

sa
m

pl
es

Figure 5: Percentage of syscall samples vs. average size
of data they fetch.

7.1 Custom Allocator
A naive allocation policy would be to create an object
in the cache every time a syscall fetches a new range,
by using an of-the-shelf kernel allocator (e.g., slab) to
accommodate range data and metadata. However, stan-
dard kernel allocators do not give control over where
objects are placed in (virtual) memory, so we cannot as-
sure locality to improve the performance of range queries.
Moreover, for an off-the-shelf allocator the allocation and
deallocation logic might cause non-trivial overhead when
syscalls transfer many ranges from user space, which
happens in practice (see Figure 4).

A better approach is to service kernel memory in larger
chunks to fit multiple ranges, i.e., using a region-based
allocation scheme [13]. In such a scheme, a region consists
of one or more buffers (contiguous memory blocks) with
the same data lifetime. In a region, memory objects are
allocated one after another in memory (in the current
buffer) and get deallocated all at once (by flushing all the
buffers), once the lifetime of all the objects in the region
ends. As such, region-based allocation allows us to pack
ranges together in memory to improve locality. Moreover,
it reduces the number of calls to the underlying allocator
when allocating ranges. On the fast path, an allocation
involves only bumping a pointer to the next slot in the
current buffer. Finally, it can efficiently deallocate all
the allocated objects in one blow.

SafeFetch uses a custom region-based allocator,
which services kernel memory at the granularity of a
region, every time the backend requests more storage
to hold ranges. To understand how well SafeFetch can
benefit from region allocation’s locality-friendly design,
we turn again to our profiling results. Figure 5 shows
the percentage of syscall samples that fetch an average
size S of user data across all the profiled benchmarks. As
shown in the figure, the majority (i.e., 65%) of syscall
samples fetch ranges that are on average less than 64
bytes, confirming a high degree of data locality in a re-

20 23 26 29 212 215

Total amount of bytes copied from user.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

%
 o

f s
ys

ca
ll

sa
m

pl
es

Figure 6: Percentage of syscall samples vs. total amount
of data they fetch.

gion in the common case. SafeFetch also benefits from
the fast deallocation path of region-based allocation, effi-
ciently deallocating all the ranges in the region when the
syscall terminates. As an optimization, SafeFetch does
not discard the buffers once the region is deallocated,
but adds them to a pool for (fast) reuse in new regions
created by future syscalls.

The next question is the buffer size one should use. As
Figure 5 suggests, small allocation requests are common
suggesting small buffers are desirable. Moreover, Figure 6
shows the percentage of syscall samples that fetch a total
amount of B bytes of user data across all the profiled
benchmarks. As shown in the figure, although a moderate
portion of syscalls transfer much data (even above 8
pages), the vast majority transfer far less than a page of
data. As a result, SafeFetch uses a single 1-page buffer
by default in each new region (syscall) and elastically
adds buffers as needed in the edge cases—many fetches
per syscall or fetches transferring over 4 KB of data.

7.2 Dual Region Design
A naive approach would be to store the user memory
ranges and the metadata necessary for range queries as
a standalone object in one single per-syscall region. How-
ever, this approach would lead to metadata fragmentation
and poor locality because metadata would be intermixed
with data bytes. While most fetched ranges are small,
we saw that syscalls can transfer larger ranges as well
(Figure 5). To maximize data locality for range querying,
the Cache Backend partitions the syscall cache in two
separate regions: a data region stores all byte ranges
copied from user space while a metadata region stores
the bear bone necessities to perform queries over ranges.
Consequently, for each user range, the backend maintains
two objects: a) a data object storing the range of bytes
copied from user space and b) a metadata object storing
the properties of the range used when querying (e.g., user
virtual address, length, pointer to the data object, and

1212 33rd USENIX Security Symposium USENIX Association

1 sy
sca

ll

[2-10) sy
sca

lls

[10-50) sy
sca

lls

50 or m
ore

0%

50%

%
 o

f p
ro

ce
ss

es

0.4%

85.2%

5.6% 8.9%

Figure 7: Percentage of processes vs. number of syscalls
fetching user data.

a field used to link into a red-black tree or linked-list).
The size of metadata objects is fixed and small, al-

lowing one to provision metadata regions with buffers
smaller than a page. Nonetheless, we chose to serve 1-
page buffers to metadata regions as well because this
leads to better CPU cache coloring (and utilization) [19].
Despite the same default buffer size, the two regions
provision their buffers from separate memory pools (i.e.,
slab caches) to further improve locality.

7.3 Lifecycle Management

Range allocation policy. A range is allocated in the
cache every time the frontend encounters a cache miss
while performing a range query. Our profiling data (e.g.,
Figure 4) suggests that most fetches are not double
fetches, hence we expect frequent range allocations in
the cache. Our custom allocator helps reduce the pressure
on the (less efficient) underlying allocator, because many
ranges can be allotted from the same region buffer.

Allocating ranges entails creating metadata and data
objects in the appropriate regions. To this end, the back-
end uses a region accounting structure, which keeps
track of all buffers allotted to the referent region. To
speedup object creation, the region accounting struc-
ture stores a pointer to a region head buffer and favors
servicing allocations from this buffer. As region heads
get depleted at some point, new buffers are added to the
region when appropriate and region heads get updated.
If an object cannot be created from the region head,

the Cache Backend goes on the slow path iterating over
all buffers allotted to the region until it finds one with
enough space to service the request. As shown in Figure 6,
some syscalls can transfer large amounts of user data,
thus it is possible that a region can hold many depleted
buffers. While this is more likely for data regions, it can
also occur for metadata regions when syscalls execute
many fetches. To optimize the slow path, the region
accounting structure keeps a freelist containing only
the buffers that are not yet depleted and can still service
allocations. Lastly, if an object cannot be serviced on

0 bytes

[1,64) bytes

[64, 256) bytes

[256-1024) bytes

[1024-4096) bytes

[1-4) pages

[4,16) pages

above 16 pages

write

pwrite64

writev

sendto

execve

0.01 0.17 0.40 0.10 0.13 0.01 0.18 0.01

0.03 0.56 0.21 0.10 0.07 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.80 0.00 0.00 0.00 0.00 0.20 0.00

0.00 0.00 0.00 0.00 0.57 0.39 0.03 0.00

0.0

0.2

0.4

0.6

0.8

ratio

Figure 8: Heatmap showing the total amount of user
data fetched by fetch-heavy syscalls.

the slow path, then the backend leverages the custom
allocator to create a new buffer in the referent region.
Cache invalidation policy. When a system call ter-
minates, all ranges currently held in the cache can be
deallocated. As a result, one could relinquish all stor-
age held by cached ranges on syscall exit. This strategy
reduces the memory footprint and also yields a simple
deallocation path flushing all the buffers held by meta-
data and data regions. Moreover, as discussed, syscalls
do not fetch many ranges, thus on average we need not
free many buffers. However, as shown in Figure 7, our
profiling data shows that 99.6% of the processes that
incur fetches do so across at least two syscalls. In other
words, if a process issues a syscall that fetches user data,
it is likely to issue other syscalls that do the same.

Given our profiling results, it may be tempting to pre-
serve all the allocated region buffers across syscalls. How-
ever, while this strategy minimizes the number of calls
to the underlying allocator (improving performance), it
may also significantly increase the steady-state memory
footprint. That is particularly the case for threads issu-
ing syscalls that fetch a lot of user data (even more than
8 pages, as shown in Figure 6). Given these observations,
our cache invalidation policy is to preserve the head
buffers, for both metadata and data regions, across the
syscalls of a given thread but release all the other buffers
held by each region, on syscall exit. Additionally, on each
syscall exit, we invalidate the bookkeeping structure used
by our frontend when performing range queries. Finally,
on thread exit we release the residual head buffers.
Cache initialization policy. Given that our two head
buffers persist across syscalls of the same thread, the
next question is when to allocate such buffers. An option
would be to simply allocate the head buffers at thread
(i.e., task_struct) creation time. However, as shown in
Figure 4, syscalls rarely fetch user data, e.g., ≈ 64% of
the syscalls do not issue any fetches. Hence, eager head

USENIX Association 33rd USENIX Security Symposium 1213

buffer allocation at thread creation time may lead to
unnecessary memory overhead. As a result, the backend
allocates the two head buffers (and the two regions)
lazily, on the first user fetch that a thread incurs.
Zero-copy optimization. Given that most syscalls
fetch little data, storing data into the cache is gener-
ally inexpensive. However, some syscalls are fetch-heavy
and copy large amounts of data. In such scenarios, copy-
ing data into the cache incurs a nontrivial cost (as shown
later in our evaluation), so it is desirable to eliminate as
many such extra copies as possible. To investigate opti-
mization avenues, we isolated all syscalls in our profiling
results that copy more than a page of data from user
space. Figure 8 presents our results in a heatmap.
As shown in the figure, many of these syscalls (with

the exception of exec) are I/O bound. To avoid re-
source contention, I/O bound syscalls rely on the ker-
nel iov_iterator functionality to copy dozens of large
chunks of user data into kernel staging buffers. Such
buffers (and their copied data) persist unchanged until
the hardware (e.g., network card, hard disk) becomes
available to complete the I/O transfer. To optimize out
expensive copies to the cache, we use the kernel staging
buffer itself as a data cache for all the iov_iterator
copies fetching one or more pages. To delay dealloca-
tion of such staging buffers until syscall exit, we increase
the reference count on the underlying pages. When en-
abling this zero-copy optimization (SafeFetch default),
our cache invalidation policy also releases the staging
buffers on syscall exit.

8 Implementation

We implemented a SafeFetch prototype for Linux kernel
v5.11 (matching Midas’ version for a fair comparison).
The Cache Frontend adds the logic for cache lookups
and fetch sanitization by instrumenting all kernel transfer
function variants (i.e., raw_copy_from_user and all the
get_user macro variants).
To manage the cache lifecycle for in-transit syscalls,

the Cache Backend stores the accounting structures for
(metadata and data) caches as structures in a thread’s
task_struct. Similarly, the bookkeeping structure used
(for cache lookups) by the frontend is also referenced by
the thread’s task_struct. The custom region allocator
uses two global slab caches (kmem_caches) to service
region buffers efficiently to in-transit syscalls. We imple-
mented cache invalidation by instrumenting the epilogue
of the do_syscall_64 kernel function and the do_exit
function. Additionally, we instrumented all clone vari-
ants to initialize the SafeFetch logic in newly created
threads. Finally, we implemented the zero-copy optimiza-
tion by instrumenting the copyin kernel function used

for iov_iterator-based user-to-kernel transfers.
Maintainability.While our design and implementation
are optimized based on our syscall profiling data, we
efficiently support a variety of syscall patterns. As such,
even assuming applications change some of their syscall
patterns in the future, we expect only minor (if any)
modifications to our implementation. To facilitate the
process, SafeFetch already supports runtime changes for
all its core parameters, similar to other workload-sensitive
kernel features (e.g., KSM, THP, etc.). In other words,
with its ability to support many syscall patterns, its
small codebase, and compliance to standard kernel design
patterns (e.g., use of standard kernel data structures,
standard hooking points, etc.), we expect SafeFetch to
be highly maintainable moving forward.

9 Evaluation

In this section, we experimentally evaluate the security
and performance of SafeFetch.

9.1 Security

CVE analysis. As SafeFetch hinders double-fetch
bugs by construction, similar to Midas [15], we verify
it can correctly mitigate a known double-fetch vulnera-
bility. CVE-2016-6516 is a known double-fetch vulnera-
bility introduced in Linux kernel version 4.5. This vul-
nerability can be triggered via an ioctl syscall in com-
bination with the FIDEDUPERANGE flag. This particular
syscall attempts to deduplicate the memory pages be-
tween the source and its respective destination files. The
source and destinations are supplied as parameters in a
file_dedupe_range structure which the syscall copies
from user space. However, before the syscall can fetch
the structure it first needs to compute its size by using a
count variable located inside the user space structure. Af-
ter acquiring the count from user space, and performing
sanity checks, the syscall fetches the entire structure into
kernel memory overwriting the count field in the process,
as can be seen in Listing 1. A double fetch vulnerability
can emerge if between the first fetch (line 2) and second
fetch (line 17) the count field is modified in user space.
As a result, vfs_dedupe_file_range would operate on
a malicious count value. This vulnerability was patched
within Linux kernel v4.7 by copying back the old value
into the data structure (line 23) after the second fetch.
To evaluate whether SafeFetch can defend against

this particular double fetch we modified Linux kernel
version 5.11 by adding an additional check that veri-
fies if a double fetch has occurred (lines 19-20) prior
to the proposed fix. In order to reproduce the bug

1214 33rd USENIX Security Symposium USENIX Association

1 // first fetch , fetch count from user space
2 if (get_user (count , &argp -> dest_count)) {
3 ret = -EFAULT ;
4 goto out;
5 }
6

7 // use count to compute size of second fetch
8 size = offsetof (struct file_dedupe_range

__user , info[count]);
9

10 // sanity check
11 if (size > PAGE_SIZE) {
12 ret = -ENOMEM ;
13 goto out;
14 }
15

16 // second fetch
17 same = memdup_user (argp , size);
18

19 if (same -> dest_count != count)
20 printk (" Double fetch Occurred \n");
21

22 // patch fix , write first fetched count back
23 same -> dest_count = count ;
24

25 // use second fetch
26 ret = vfs_dedupe_file_range (file , same);

Listing 1: CVE-2016-6516 Double-fetch vulnerability in
ioctl_file_dedupe_range

we used the publicly available exploit1 which runs the
FIDEDUPERANGE ioctl in one thread, while constantly
modifying the dest_count field in another thread. After
running this exploit for 11 iterations on the vulnerable
kernel, each iteration exploiting the double-fetch vulnera-
bility one million times, we observed the double-fetch bug
at least 10 times per iteration. When we subsequently
ran the same experiment on a vulnerable kernel that
deployed the SafeFetch defense, we did not observe a
single double-fetch bug. This shows that SafeFetch is
capable of mitigating kernel double-fetch vulnerabilities.
Security guarantees. SafeFetch’s ability to provide
the expected security guarantees depends on the correct-
ness of the implementation. To this end, we focus our
analysis on TCB impact and protection coverage. As for
the former, we note that, despite the carefully optimized
implementation, our prototype has a small TCB impact.
In total, our solution adds ≈1,750 LOC to the Linux
kernel, ≈250 of which are for the region allocator (which
the Linux kernel currently does not provide, but is on
the list of kernel developers). Moreover, the TCB impact
is comparable to that of Midas (1,100 LOC).
As for the latter, SafeFetch relies on hooking stan-

dard user-to-kernel transfer functions to interpose on
kernel fetches, providing full protection as long as the

1https://github.com/wpengfei/CVE-2016-6516-exploit/
tree/master/Scott%20Bauer

kernel complies to standard interfaces. We found this to
be (nearly) always the case for the core Linux kernel. The
nonstandard unsafe_get_user wrapper—only used to
implement strnlen semantics—is the only exception we
could find. Nonetheless, in rare cases, some third-party
drivers may bypass such interfaces, impacting protection
coverage and also breaking standard features such as
SMAP in the process [10]. This (minor) limitation is
shared by Midas, which also needs to instrument standard
user-to-kernel transfer functions. Furthermore, whitelist-
ing some patterns may also reduce protection coverage.
For instance, as also observed by Midas, futex requires
whitelisting for correct behavior. Indeed, in SafeFetch
we had to whitelist a single kernel fetch in futex (and
no other syscall), yielding nearly full protection coverage.
In contrast, Midas provides lower protection coverage
by entirely whitelisting three major syscalls. We also
noticed Midas’ prototype does not protect fetches issued
by interrupt handlers, while SafeFetch does.

9.2 Performance

Evaluation setup. To evaluate the performance of
SafeFetch, we tested it on a server comprising of an
i7-6700 CPU, 32 GB of RAM and a 120GB SSD, running
on a Ubuntu 22.04 operating system. Our comparison
baseline is a vanilla kernel version 5.11 on which we build
the SafeFetch prototype. We evaluate SafeFetch’s de-
fault configuration, which uses an adaptive strategy that
switches from a linked list to a red-black tree af-
ter 63 ranges are cached (see later for details on how
we experimentally derived the threshold). The region
allocator services 1-page region buffers to per-thread
caches (for both metadata and data regions). Further-
more, the default SafeFetch config uses the zero-copy
optimization for iov_iterator transfers above 4 KB.
To get an idea on how SafeFetch directly affects core
kernel building blocks, we analyze its performance on two
OS benchmarks, namely LMBench [21] and OSBench [11].
Furthermore, we evaluate SafeFetch against popular
applications from the Phoronix [12] test suite, to see
how the prototype performs under various real-world
workloads. For each result presented, we evaluated the
corresponding benchmark 11 times and then reported
the median. To get an estimate of SafeFetch perfor-
mance relative to current state-of-the-art defenses, we
compare our prototype against Midas—also deployed
on Linux kernel version 5.11. As Midas incorporates a
syscall whitelist, we made sure to also perform the same
experiments on a SafeFetch variant that uses exactly
the same kind of whitelisting (whitelist configuration).
LMBench. is a popular solution for system benchmark-
ing as it focuses attention on many core kernel sub-
systems and has widely been used to pinpoint perfor-

USENIX Association 33rd USENIX Security Symposium 1215

https://github.com/wpengfei/CVE-2016-6516-exploit/tree/master/Scott%20Bauer
https://github.com/wpengfei/CVE-2016-6516-exploit/tree/master/Scott%20Bauer

Table 1: LMBench latency results.

Benchmark
Baseline SafeFetch Midas
(µseconds) (%) (%)

default whitelist
ovr. stddev ovr. stddev ovr. stddev

Simple syscall 0.32 0.8% ±(1.6%) 0.8% ±(1.3%) 6.8% ±(1.0%)
Simple read 0.43 1.4% ±(0.9%) 1.4% ±(1.2%) 5.4% ±(1.8%)
Simple write 0.4 -0.5% ±(1.8%) -0.2% ±(1.3%) 4.5% ±(1.6%)
Simple stat 0.68 -1.0% ±(1.5%) 0.8% ±(1.9%) 1.7% ±(1.2%)
Simple fstat 0.49 -1.7% ±(1.7%) -0.3% ±(1.4%) 4.3% ±(1.4%)
Simple open/close 1.36 3.4% ±(0.6%) 2.0% ±(0.5%) 3.1% ±(0.7%)
Select on 10 fd’s 0.46 15.1% ±(2.1%) 15.6% ±(1.0%) 242.2% ±(2.0%)
Select on 100 fd’s 1.02 6.4% ±(1.1%) 6.8% ±(1.9%) 114.3% ±(1.4%)
Select on 250 fd’s 1.94 4.8% ±(1.1%) 4.4% ±(1.6%) 59.9% ±(1.8%)
Select on 500 fd’s 3.5 2.7% ±(1.7%) 2.9% ±(0.6%) 35.4% ±(1.2%)
Select on 10 tcp fd’s 0.53 13.4% ±(1.8%) 13.8% ±(1.7%) 211.4% ±(4.6%)
Select on 100 tcp fd’s 4.12 5.6% ±(1.2%) 7.7% ±(0.7%) 32.0% ±(2.1%)
Select on 250 tcp fd’s 10.11 4.8% ±(1.0%) 6.0% ±(8.1%) 16.3% ±(2.4%)
Select on 500 tcp fd’s 20.09 5.4% ±(1.3%) 6.1% ±(0.8%) 11.1% ±(0.9%)
Sig. handler install 0.37 9.8% ±(1.8%) 9.2% ±(1.7%) 278.9% ±(5.3%)
Sig. handler overhead 0.92 22.2% ±(1.9%) 22.9% ±(2.2%) 103.7% ±(29.8%)
Protection fault 0.63 -0.8% ±(5.1%) -3.1% ±(5.5%) 2.6% ±(44.0%)
Pipe latency 3.45 3.4% ±(1.0%) 1.8% ±(1.1%) 3.3% ±(1.2%)
AF_UNIX latency 5.18 2.4% ±(1.3%) 1.8% ±(1.1%) 1.2% ±(1.2%)
Process fork+exit 72.36 0.4% ±(3.2%) -0.1% ±(1.8%) 11.1% ±(4.2%)
Process fork+execve 243.43 -1.1% ±(1.7%) -0.2% ±(2.8%) 4.4% ±(0.9%)
Process fork+/bin/sh 563.78 5.1% ±(2.0%) 0.5% ±(1.8%) 8.8% ±(2.8%)
TCP latency 9.01 1.9% ±(1.2%) 2.0% ±(1.1%) 5.6% ±(1.7%)
UDP latency 6.91 4.4% ±(4.7%) 6.8% ±(3.1%) 47.4% ±(4.7%)
TCP conn. latency 12.96 5.1% ±(14.6%) -0.5% ±(1.6%) 20.1% ±(5.0%)
Geo mean. - 4.4% - 4.2% - 35.9% -

mance bottlenecks in OSes [16]. LMBench comprises of
a series of latency benchmarks for a series of system
calls that are commonly used by user applications and
bandwidth benchmarks for relevant I/O related kernel
facilities. In Table 1, we report the latency benchmark
results of SafeFetch-default, SafeFetch-whitelist,
and Midas relative to the baseline.
From the table we can observe that

SafeFetch-default is able to provide comprehensive
protection with marginal penalty to syscall latency for
most syscalls tested by LMBench. The median geometric
overhead across all latency benchmarks is around 4.4%.
However, there are some syscall outliers that incur a
larger penalty due to SafeFetch’s protection.

For example, the latency increase, when selecting over
a small number of fds, is around 15% and 13%, on file
and tcp descriptors, respectively. As the baseline latency
is already small (less than half a microsecond), our de-
fense wastes extra clock cycles copying the fd sets and
timespec structure into SafeFetch’s cache from user
space. Taking a deep dive in the main source of the over-
head, we see that select benchmarks are mainly impacted
by the extra downtime when allocating the head region
buffers for metadata/data regions, rather than the actual
copies into the cache.

Signal handling is also a major overhead outlier when
using SafeFetch-default. Handling a signal is generally
fast, executing with less than one microsecond downtime.
However, SafeFetch adds extra overhead due to a series
of user copies needed to setup and restore a sig_return
frame, a stack frame used to restore the program context
after calling the signal handler. The largest part of the
overhead is spent on calls to memcpy when copying the
signal frame into the data cache, as the frame can be

Table 2: LMBench bandwidth results.

Benchmark
Baseline SafeFetch Midas
(GB/s) (%) (%)

default whitelist
ovr. stddev ovr. stddev ovr. stddev

read 9.59 -4.3% ±(3.0%) -5.0% ±(3.2%) 4.1% ±(3.0%)
read open2close 9.57 -4.1% ±(2.9%) 0.1% ±(2.7%) 3.1% ±(2.5%)
Mmap read 16.71 1.0% ±(1.1%) -0.2% ±(1.1%) 0.5% ±(0.8%)
Mmap read open2close 11.35 0.4% ±(0.9%) -0.3% ±(0.9%) 8.8% ±(0.7%)
libc bcopy unaligned 14.94 0.5% ±(1.0%) 0.3% ±(0.9%) -0.2% ±(0.8%)
libc bcopy aligned 14.97 0.6% ±(0.8%) 0.7% ±(1.3%) 0.4% ±(1.5%)
Mem. bzero 32.8 -0.1% ±(0.6%) 0.0% ±(0.5%) -0.1% ±(0.5%)
unrolled bcopy unaligned 8.36 -0.8% ±(1.4%) -1.8% ±(2.0%) 1.2% ±(1.7%)
unrolled partial bcopy unaligned 9.21 -0.3% ±(0.5%) -0.3% ±(0.6%) -0.1% ±(0.6%)
Mem. read 12.67 1.6% ±(9.6%) -17.6% ±(8.5%) 1.3% ±(9.3%)
Mem. partial read 20.98 -1.9% ±(1.6%) -2.4% ±(1.7%) -0.8% ±(2.1%)
Mem. write 12.35 0.1% ±(0.5%) -0.1% ±(0.4%) 0.1% ±(0.7%)
Mem. partial write 14.78 0.1% ±(0.2%) -0.0% ±(0.2%) 0.2% ±(0.2%)
Mem. partial read/write 14.32 -0.3% ±(0.8%) 0.0% ±(0.6%) 0.1% ±(1.0%)
Socket bandwidth 8.73 30.3% ±(1.0%) 0.2% ±(0.8%) 1.0% ±(1.2%)
AF_UNIX 15.35 8.4% ±(1.4%) 0.5% ±(1.6%) 3.5% ±(1.7%)
Pipe 6.56 5.1% ±(2.0%) 1.4% ±(1.1%) 3.6% ±(1.1%)
File write 0.28 19.1% ±(4.0%) 0.8% ±(4.7%) 0.5% ±(4.4%)
Geo mean. - 3.5% - -1.2% - 1.5% -

around 160 bytes in size. At the same time, our results
show that Midas reports significant overhead, incurring
around 36% geomean overhead across all benchmarks.
Signal handling and selecting on file descriptors is par-
ticularly slow and in some cases, Midas can triple the
latency of these benchmarks.

We attribute our performance edge over Midas due to
in-kernel caching being much more efficient than MMU-
based instrumentation in the typical case of syscalls copy-
ing limited number of data (if any) from user space. Even
in the case of the fork+shell microbenchmark, which
can copy even a couple of hundred user space ranges,
SafeFetch manages to outperform Midas in terms of
latency, even though Midas whitelists the execve syscall.
The standard deviation relative to the baseline (the

stddev column), suggests that our results are stable
across measurements. One exception for SafeFetch is
the TCP connection benchmark, which has moderate
standard deviation due to one single (high) outlier.
Lastly, we also noticed that applying whitelisting does not
typically provide much performance gain for SafeFetch.
However, for fetch-heavy benchmarks, such as fork+shell,
whitelisting does completely eliminate the incurred over-
head. This trend is even more noticeable in our LMBench
bandwidth benchmark results, which we report in Table 2.
As shown in the table, SafeFetch-default’s overhead
on those benchmarks is again generally low (≈ 3.5%
geometric mean overhead) and whitelisting completely
eliminates the overhead for the outliers for SafeFetch—
and to a lesser extent for Midas.
OSBench. We also evaluate SafeFetch on OSBench
benchmarks. OSBench uses libc wrappers to evaluate
basic kernel functions such as: process creation (e.g.,
fork, waitpid), thread creation (e.g., pthread_create,
pthread_join), launching programs (e.g., exec), file
creation (e.g., fopen, fwrite), and memory allocation
(e.g., malloc, free). The results are shown in Figure 9,
which reports the performance relative to the baseline

1216 33rd USENIX Security Symposium USENIX Association

Create
Thread

Create
Process

Launch
Program

Create
File

Memory
Alloc

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

pe
rfo

rm
an

ce
 (%

) 97
.9 10

0.
7

95
.7 99

.1

10
0.

0

98
.4 10
0.

8

98
.7

99
.7

10
0.

0

53
.2

89
.6 93

.7 97
.8

99
.0

SafeFetch-default SafeFetch-whitelist Midas

(a) OSBench

IPC opensslpybenchRedis-G Redis-S git nginx apache
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

pe
rfo

rm
an

ce
 (%

)

92
.5 10

0.
0

10
0.

4

10
4.

2

97
.6 10

0.
4

98
.7

98
.2

99
.3

10
0.

6

99
.5 10

2.
5

95
.3 10

0.
1

99
.5

99
.4

94
.4 10

0.
0

99
.8 10

2.
7

99
.4

10
0.

0

92
.9

85
.8

SafeFetch-default SafeFetch-whitelist Midas

(b) Phoronix

Figure 9: SafeFetch performance on OSBench and Phoronix benchmarks relative to the baseline kernel. Standard
deviations are reported relative to baseline performance.

kernel for SafeFetch-default, SafeFetch-whitelist,
and Midas. Performance is expressed as the inverse of
the time spent executing each benchmark.

These results show that creating threads and processes
for the default SafeFetch configuration is marginal, i.e.,
≈ 2% for thread creation and ≈ -1% for process creation.
Interestingly, Midas does incur a significant performance
loss on these benchmarks and some results significantly
deviate from those reported in the original Midas paper
(e.g., ≈ 88% vs. ≈ 5% slowdown for the “Create Thread”
benchmark). We verified that the standard deviation is
small for all the configurations (lower than 3% relative
to the mean for SafeFetch and at most 2.7% for Midas),
which confirms Midas’ overheads are consistent in our
environment. We attribute the deviations to Midas being
particularly environment-sensitive. For instance, a trivial
change in the allocator behavior may introduce/eliminate
false sharing and significantly change Midas’ performance
characteristics. As detailed later, false sharing as well as
other sources of overhead such as TLB shootdown are
more likely to occur in a multi-threaded scenario. This
is consistent with Midas’ overhead being higher when
creating threads.

Creating files is typically an I/O bound task and we ex-
pected SafeFetch-default to incur more overhead from
the extra writes to the caches. However, the file creation
benchmark creates small 32-byte files to prevent satura-
tion of the underlying storage, thus imposing fairly low
pressure on the caches. Across all benchmarks from OS-
Bench, SafeFetch offers competitive performance with
a negligible 1.3% geomean performance penalty, espe-

cially when compared to Midas’s geomean performance
impact of ≈ 15.4%. The overhead outlier for SafeFetch
is the program launching benchmark (≈ 4.3%), as it
relies on the fetch-heavy exec system call. Midas’s per-
formance penalty on OSBench is ≈ 15%, mostly because
of thread creation. Looking at SafeFetch-whitelist
performance, we observe that the geomean overhead
on OSBench approaches 0%, as whitelisting completely
eliminates the overhead on exec syscalls.

Phoronix Test Suite. The Phoronix Test Suite com-
prises of a wide range (> 600) of open-source bench-
marks to evaluate application or OS performance under
various workloads. We selected a range of benchmarks
that evaluate popular user applications, each exhibit-
ing various levels of kernel activity. From the chosen
benchmarks, OpenSSL, is mainly compute bound and
thereby its performance is mostly OS-agnostic. There-
fore, we chose OpenSSL as a representative example for
the best case scenario, assessing whether SafeFetch’s
OS instrumentation perturbs user space performance.
The other benchmarks vary from single-threaded (e.g.,
pybench) to multi-threaded (apache) and multi-process
(nginx) workloads. We also chose the IPC benchmark to
highlight the worst-case scenario, as it spends most of
the time in I/O syscalls (writev) to transfer multiple
128 byte chunks between processes, via TCP.

For benchmarks that report throughput, we compute
the ratio relative to the baseline and, for benchmarks that
report execution time (e.g., pybench, git), we compute
the inverse ratio relative to the baseline. The speedup of
each benchmark relative to the baseline for SafeFetch

USENIX Association 33rd USENIX Security Symposium 1217

2 4 6 8
Threads

0%

50%

100%
Op

er
at
io
ns
/s
ec

SafeFetch
Midas

Figure 10: Relative throughput to the baseline when
fetching from concurrent threads

(default and whitelist configs) and Midas is shown in Fig-
ure 9. On benchmarks that do not rely much on syscalls
(e.g., pybench, openssl, git), SafeFetch-default’s per-
formance is nearly equivalent to that of the baseline. In-
terestingly enough, benchmarking git revealed that some
git commands can copy a couple of 1-page buffers from
user space (during write syscalls). Even so, the perfor-
mance of our default configuration is slightly faster than
that of the baseline. This shows that caching is not nec-
essarily a bottleneck even when storing large user ranges,
provided that this does not happen frequently. Redis uses
recvfrom and sendto syscalls when processing key store
requests and responses. As Redis relies on pipelining to
batch multiple client requests in a single response, the
sendto syscall can cache large user space ranges (e.g.,
8 pages). This would explain why SafeFetch-default
scores 2.4% throughput degradation on Set benchmarks.
Midas performs slightly better on this benchmark, having
around ≈1% throughput degradation.

In contrast to the other benchmarks, the Apache and
Nginx web servers heavily rely on I/O syscalls to respond
to requests over the network and perform logging on the
file system. Yet, SafeFetch-default scores only 1.3%
and 1.8% throughput degradation on Nginx and Apache
(respectively), while Midas scores 7.1% on Nginx and
14.2% overhead on Apache. As we will see in the next
section, SafeFetch’s zero-copy optimization provides a
large benefit on these benchmarks reducing the through-
put degradation by nearly a factor of 5 compared to
caching large iov_iterator copies. On the IPC bench-
mark, our default SafeFetch configuration scores 7.5%
throughput degradation. Although the IPC benchmark
exercises syscalls that can leverage the zero-copy opti-
mization, these syscalls fetch buffers smaller than a page
and thus never trigger the optimization. Whitelisting
does not provide much benefit on Phoronix with the ex-
ception of the IPC benchmark, where whitelisting writev
syscalls reduces the throughput degradation to 1%.
Overall, across all Phoronix benchmarks the default

0 256 512
Fetch Size

0%

50%

100%

Op
er

at
io

ns
/s

ec

SafeFetch
Midas

Figure 11: Relative throughput to the baseline when
fetching user buffers of increasing sizes

0 256 512
Fetch Size

0%

50%

100%

Op
er

at
io

ns
/s

ec

SafeFetch
Midas

Figure 12: Relative throughput to the baseline when
fetching user buffers one 1-page fetch at the time

SafeFetch configuration has around 1.2% overhead
and, when applying the same whitelisting as Midas,
SafeFetch overhead again approaches the 0%. Con-
versely, Midas scores around 3.2% overhead (more than
2x overhead vs. SafeFetch) even though it whitelists
three major system calls. Across all the Phoronix bench-
marks, the standard deviation is small, with the excep-
tion of Redis benchmarks which reported higher values
(around 7% for both Midas and SafeFetch). The higher
standard deviation matches that reported by others for
multi-core systems, where Redis performance relies on
the NUMA configuration of the system [1].
Microbenchmarks. To better understand the perfor-
mance characteristics of SafeFetch and Midas, we de-
vised microbenchmarks that repeatedly cause the kernel
to fetch data from a user process. The goal is to evaluate
throughput (number of fetches per second) as (i) the
number of threads that fetch the same data increases or
(ii) the size of the fetched data increases.

For the first scenario, our microbenchmark repeatedly
issues a syscall to fetch a single 32-byte user buffer (the
median fetch size in our profile) from multiple concur-
rent threads. We ran our microbenchmark for different
number of threads (1 to 8, matching our core count).

1218 33rd USENIX Security Symposium USENIX Association

Figure 10 reports the average per-thread throughput we
measured relative to the baseline. As shown in the fig-
ure, SafeFetch’s throughput is stable as we increase the
thread count, with a 7.1% degradation on average. This
is because kernel-side caching scales efficiently with no
interferences across threads. In contrast, Midas’ through-
put progressively degrades as we increase the thread
count, with a degradation as high as ≈97% with 8 con-
current threads. A number of factors contribute to the
heavy performance penalty.

First, Midas’ MMU-based instrumentation introduces
nontrivial costs on the fast path: (i) software page ta-
ble walks to retrieve and mark PTEs in protected state
and (ii) TLB misses after transitioning pages from/to
read-only state. Such costs are noticeable even in a single-
threaded scenario, where Midas already reported a sig-
nificant 62% throughput degradation. Second, transi-
tioning pages to/from protected state adds extra (e.g.,
page table) locking to the fast path, leading to higher
lock contention and lower performance as we increase the
number of threads. Third, changing page protections in a
multi-core setting introduces increasingly expensive TLB
shootdowns as we increase the number of threads. Last,
false sharing effects are generally more prominent as we
increase thread count. To synthetically simulate these
effects, we configured each thread in our microbench-
mark to interleave fetches with writes to the same page
as the fetched data. When rerunning our microbench-
mark, we observed no noticeable throughput differences
for SafeFetch. In contrast, Midas’ throughput further
dropped by ≈3% on average, due to false sharing induc-
ing additional page fault and (over)copying overhead.
For the second scenario, our microbenchmark uses a

single thread (best-case scenario for Midas) repeatedly
issuing a syscall to fetch user data of a given size. We ran
our microbenchmark for different sizes (1 to 512 pages)
of a user buffer transferred by a single fetch. Figure 11
reports the average throughput we measured relative
to the baseline. As expected, both SafeFetch and Mi-
das experience significant throughput degradation as the
user buffer grows larger and larger. However, SafeFetch
consistently outperforms Midas and even by a wide mar-
gin up to 256-page buffers. This shows that the costs
associated to page protection (Midas) are consistently
higher than those of copying data (SafeFetch), espe-
cially when the buffer is in the CPU caches. To further
stress our implementation, we also repeated our exper-
iment when distributing the user buffer transfer over
multiple fetches per syscall (1 page fetched at the time).
Figure 12 presents our results. As shown in the figure,
only the heavier pressure on SafeFetch’s cache lookups
at a large number of fetches (128 pages and beyond)
gives Midas a performance edge. Nonetheless, it is rare
for syscalls to copy such large amounts of data over many

Table 3: SafeFetch-induced memory utilization.

Benchmark
SafeFetch raw memory utilization

cache provisioning zero-copy pins
avg. 99th peak avg. 99th peak

LMBench 8.02 KB 8 KB 236 KB 0.65 KB 0 KB 9.6 MB
OSBench 8.04 KB 12 KB 12 KB 0 KB 0 KB 0 KB
Phoronix 8.04 KB 8 KB 44 KB 5.82 KB 16 KB 128 KB

fetches. For instance, we only recorded 2,350 samples in
our profile (out of ≈317 million syscall samples) that fit
this pattern.
Memory utilization. We show per-syscall raw memory
utilization in times of storage provisioned to caches and
pages pinned by the zero-copy optimization across all
benchmarks in Table 3. The table depicts average, peak,
and 99th percentile utilization, only for syscalls that use
the SafeFetch defense at all. On average, syscalls use
at most 3 pages for the cache storage and pin at most 2
pages of memory (e.g., Phoronix). While peak utilization
is higher on LMBench and Phoronix the 99th percentile
results suggest that this trend is isolated to only a couple
of executed system calls, for both storage provisioning
and zero-copy pinning. On Phoronix, we observed that
the calling thread’s resident memory size is increased
on average by ≈0.12% due to provisioning in-transit
syscall caches. Overall, our results show that, even at
(short-lived) peak utilization, SafeFetch only marginally
impacts the system memory footprint, demonstrating
realistic overheads for a practical solution.

9.3 Design Breakdown
In this section, we discuss the optimal configuration for
SafeFetch’s adaptive cache lookup algorithm as well
as the performance benefits of SafeFetch’s core design
decisions (i.e., using a region allocator, preserving head
region buffers across syscalls, and the zero-copy opti-
mization for iov_iterator copies).
Adaptive search algorithm. SafeFetch uses an adap-
tive search algorithm which switches from a linked list
to a red-black tree after a threshold of cached ranges
is reached. We have determined the optimal conversion
threshold experimentally. To this end, we performed re-
peated experiments (101 times), with each experiment
performing 100 1-byte fetches from a set of random vir-
tual addresses while using a given data structure (linked
list or red-black tree). We ensured the addresses were
nonoverlapping (no double fetches), thereby simulating
the most common scenario we uncovered during profiling.
Figure 13 reports the average time (search+insert

time) of each fetch as the number of cached ranges grows,
for the linked list and red-black tree configurations. The

USENIX Association 33rd USENIX Security Symposium 1219

0 20 40 60 80 100
Number of Cached Ranges

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ti

m
e

linked-list
rb-tree

Figure 13: Average normalized time for each fetch vs.
number of cached ranges.

average times are normalized with respect to the largest
observed value. As shown in the figure, after ≈ 50 cached
ranges the red-black tree is more efficient than the linked
list. To establish the most efficient conversion threshold,
we also need to consider constraints of the conversion
algorithm. As mentioned earlier, our algorithm is most
efficient if a dataset contains 2N −1 entries, which, ac-
cording to our results, suggests a threshold of 31 or 63.
To determine the optimal one, we compared average

cumulative search+insert times for the first 64 fetches in
our experiments with all possible conversion thresholds
smaller than 63. Figure 14 reports our results, high-
lighting the cost of conversion with yellow bars. While
the 31 and 63 configurations offer similar performance,
SafeFetch uses the latter by default. This is to delay
conversion as much as possible, which is beneficial for
(more common) syscalls with a lower number of fetches.
Benefits of region allocation. We used LMBench to
understand how region-based allocation speeds up syscall
performance for SafeFetch. As a baseline, we use our
default SafeFetch prototype, equipped with a region
allocator which relies on 4 KB buffers for data/metadata
provisioning. The baseline also preserves region heads
across syscalls (executed from the same thread). We
compare the baseline against a SafeFetch version invok-
ing a standard kernel allocator (i.e., kmalloc) when a
syscall needs to add ranges into the cache and freeing all
the objects on syscall exit (the noregion configuration).
Moreover, to determine the benefits of preserving buffers
across syscalls, we also compare the baseline against a
region-enabled SafeFetch version not preserving region
heads across syscalls (the noheads configuration).

adaptive-3 adaptive-7 adaptive-15 adaptive-31 adaptive-63
0

3000

6000

Ti
m

e
(c

lo
ck

 c
yc

le
s)

Search+Insertion Time
RB-Conversion

Figure 14: Cumulative times of the first 64 fetches for
different adaptive configurations of SafeFetch. The con-
version cost is marked on top of each bar.

For brevity, we focus on LMBench results. Across all
the LMBench benchmarks, the noheads configuration
adds 3.1% geomean overhead compared to the baseline,
with the select benchmarks being the worst offender. Se-
lect on 500 file descriptors is 18% slower on the noheads
configuration compared to the baseline. This is some-
what expected as the select syscall can be interrupted
(e.g., by a signal), which may prompt the application
logic to restart the syscall. The noregion configura-
tion, in turn, adds a 5% geomean overhead compared to
the baseline, showing that region allocation significantly
speeds up syscall performance for SafeFetch. The delta
is even more evident if we look closely at the worst-case
overheads. Major overhead offenders for the noregion
configuration are select on file descriptors (as high as 30%
slowdown compared to the baseline), signal handling (≈
21% slowdown), and exec calls (≈ 4.3% overhead when
spawning a shell).
Zero-copy optimization. To understand the bene-
fits of the zero-copy optimization, we evaluate two
SafeFetch configurations: the default SafeFetch config-
uration (/w zero-copy) and the same configuration with
the zero-copy optimization disabled (/wo zero-copy).
We compare our two configurations against the base-
line Linux kernel on a series of I/O benchmarks. To
showcase the worst-case scenario, we used the AF_UNIX
socket stream bandwidth and the pipe bandwidth bench-
marks part of the LMBench suite. To show the gains
of zero-copying on real-world applications, we used the
Apache and Nginx web servers which are known to exer-
cise I/O syscalls. Table 4 presents our results, with the
SafeFetch-induced throughput degradation compared
to the baseline.
As shown in the table, without the zero-copy opti-

mization, the throughput degradation is significant. For
instance, AF_UNIX throughput is reduced by ≈ 39% while
pipe throughput is reduced by ≈ 16%. This is because,

1220 33rd USENIX Security Symposium USENIX Association

Table 4: SafeFetch-induced throughput degradation.

Benchmark
SafeFetch

/wo zero-copy /w zero-copy
(%) (%)

AF_UNIX 39.1% 8.4%
Pipe 16.1% 5.1%
Nginx 5.9% 1.3%
Apache 9.3% 1.8%

without zero-copy optimizations, SafeFetch copies large
chunks of user data to the data cache, incurring signifi-
cant overhead. For instance, avoiding unnecessary copy-
ing reduces the throughput degradation to 8.4% and
5.1% on the AF_UNIX and pipe benchmarks, respectively.
Copying large chunks of user data impacts performance
of real-world applications as well: Nginx and Apache have
their throughput reduced by 5.9% and 9.3% compared
to the baseline (respectively). Enabling the zero-copy op-
timization reduces throughput degradation for both web
servers to below 2%. Our results confirms the zero-copy
optimization is key to good I/O benchmark performance.

10 Related Work

While double-fetch or TOCTTOU (Time-of-Check-to-
Time-of-Use) vulnerabilities affect different interfaces
and components (e.g., enclaves [17,25], sandboxes [22],
compilers [29], and compartments [14]), we focus here
on closely related research on operating system kernels.
Serna [24] was the first who coined the name “double-
fetch vulnerability” to describe an instance in the Win-
dows kernel. Since then, research has focused on finding
double-fetch bugs (through static and dynamic program
analysis) or even mitigating these issues.
Static analysis. On the static analysis front, Wang et
al. [26] leverages pattern matching analysis on source
code to find double-fetch bugs in the Linux kernel.
DFTinker [20] extends such pattern-based approach to
increase double-fetch coverage and reduce false positives.
While pattern-matching techniques proved effective in
uncovering new double-fetch bugs, they still produce a
high rate of false positives and negatives and are funda-
mentally limited to detecting only specific bug patterns.

DEADLINE [31] and DFTracker [27] improve static de-
tection of double fetches by means of compiler-level sym-
bolic execution. While these approaches can be applied
more broadly (e.g., to detect compiler-induced double
fetches [28,30]) and are generally better suited for vetting
false positives, symbolic execution introduces other limi-
tations (e.g., path explosion) and does not completely
remove false reporting (e.g., due to imprecise memory
modeling or incomplete code coverage). DEADLINE,

for example, does not detect double fetches in inline
assembly, which is widely used in the kernel.
Dynamic analysis. On the dynamic analysis front,
Jurczyk and Coldwind [18] propose Bochspwn, which in-
struments memory access callbacks in an x86 emulator to
trace double-fetch patterns. Coupled with fuzzing, their
technique found a series of exploitable double fetches
in the Windows kernel. However, Bochspwn incurs high
overheads because its tracing instrumentation affects
the emulator’s fast path. Wilhelm [28] uses a similar ap-
proach to Bochspwn and found double-fetch vulnerabili-
ties in the Xen hypervisor, one of which was introduced
through compiler optimizations. Schwarz et al. [23] use
a fuzzer in conjunction with concurrent user memory
accesses to detect double fetches through a cache covert
channel. However, such a solution is reliant on hardware
features (e.g., caches), which vary across microarchitec-
tures and are subject to noise. While dynamic techniques
are often more precise than static approaches, they are
fundamentally subject to code coverage and limited to
finding double-fetch bugs only on executed code paths.
Mitigations. Midas [15] is the first proposed mitigation
to protect the operating system kernel against double-
fetch vulnerabilities. Midas relies on MMU-enabled Copy-
on-Write semantics to create snapshots of user pages ac-
cessed by the kernel during syscall execution. As a result,
Midas incurs nontrivial runtime performance overhead
due to the cost of trapping/remapping and the coarse
(page-granular) write interposition mechanism. Addition-
ally, Midas whitelists some syscalls, most notably the
fetch-heavy exec syscall. In contrast, SafeFetch elimi-
nates the need for MMU-based instrumentation and of-
fers comprehensive protection at a fraction of Midas’ cost.
Moreover, our solution is simple and seamlessly integrates
with existing kernel code paths. Indeed, SafeFetch’s
high-level design is inspired by the “kernel-side caching
of user space memory” on the wishlist of Linux kernel
developers to address double-fetch vulnerabilities [8].

11 Conclusion

We presented SafeFetch, a practical double-fetch bug
protection system which caches kernel fetches at the
syscall granularity and serves subsequent fetches of the
same data from the cache, thus ensuring that user data
never changes across fetches. We showed that SafeFetch
offers comprehensive protection at a fraction of the cost
of state-of-the-art solutions such as Midas with marginal
memory overheads and geometric performance overheads
consistently below 5% across various OS benchmarks
(e.g., 4.4% on LMBench and 1.3% on OSBench) and
real-world workloads (e.g., 1.2% on Phoronix).

USENIX Association 33rd USENIX Security Symposium 1221

Availability

To encourage adoption, we have open sourced SafeFetch
at https://github.com/vusec/safefetch. We are
also actively engaging Linux kernel developers to seek
mainline inclusion.

Acknowledgments

We would like to thank the anonymous reviewers for
their feedback. This work was supported by Intel Cor-
poration through the “Allocamelus” project, by NWO
through project “INTERSECT” and “Theseus”, and by
the European Union’s Horizon Europe programme under
grant agreement No. 101120962 (“Rescale”).

References

[1] Best practices for adapting phoronix test
suite to benchmark linux performance.
https://blogs.oracle.com/linux/post/best-
practices-for-adapting-phoronix-test-
suite-to-benchmark-linux-performance.

[2] Cve-2013-1332. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2013-1332.

[3] Cve-2015-8550. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-8550.

[4] Cve-2016-10433. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-10433.

[5] Cve-2016-10435. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-10435.

[6] Cve-2016-10439. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-10439.

[7] Cve-2016-8438. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-8438.

[8] Detect and avoid ToCToU double-fetch / double-
read from userspace. https://github.com/KSPP/
linux/issues/95.

[9] KASAN. https://github.com/google/kasan/
wiki.

[10] Ni linux device drivers fails to in-
stall daqmx. https://knowledge.
ni.com/KnowledgeArticleDetails?id=
kA03q000000wzMJCAY.

[11] OSBench Authors. OSBench. https://https://
github.com/mbitsnbites/osbench.

[12] Phoronix Authors. Phoronix. https://www.
phoronix-test-suite.com.

[13] Emery D Berger, Benjamin G Zorn, and Kathryn S
McKinley. Reconsidering custom memory allocation.
In OOPSLA, 2002.

[14] Atri Bhattacharyya, Florian Hofhammer, Yuanlong
Li, Siddharth Gupta, Andres Sanchez, Babak Falsafi,
and Mathias Payer. Securecells: A secure compart-
mentalized architecture. In IEEE S&P, 2023.

[15] Atri Bhattacharyya, Uros Tesic, and Mathias Payer.
Midas: Systematic kernel TOCTTOU protection.
In USENIX Security, 2022.

[16] Aaron B Brown and Margo I Seltzer. Operating
system benchmarking in the wake of lmbench: A
case study of the performance of netbsd on the intel
x86 architecture. In SIGMETRICS, 1997.

[17] Felix Dreissig, Jonas Röckl, and Tilo Müller.
Compiler-aided development of trusted enclaves
with rust. In ARES, 2022.

[18] Mateusz Jurczyk and Gynvael Coldwind. Identifying
and exploiting windows kernel race conditions via
memory access patterns. 2013.

[19] Hsien-Hsin S Lee and Gary S Tyson. Region-based
caching: an energy-delay efficient memory architec-
ture for embedded processors. In CASES, 2000.

[20] Yingqi Luo, Pengfei Wang, Xu Zhou, and Kai Lu.
Dftinker: Detecting and fixing double-fetch bugs in
an automated way. In WASA, 2018.

[21] Larry W McVoy, Carl Staelin, et al. lmbench:
Portable tools for performance analysis. In USENIX
ATC, 1996.

[22] Shravan Narayan, Craig Disselkoen, Tal Garfinkel,
Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav
Shacham, and Deian Stefan. Retrofitting fine grain
isolation in the firefox renderer. In USENIX Secu-
rity, 2020.

[23] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clé-
mentine Maurice, Thomas Schuster, Anders Fogh,
and Stefan Mangard. Automated detection, exploita-
tion, and elimination of double-fetch bugs using
modern cpu features. In AsiaCCS, 2018.

[24] Fermin J. Serna. Ms08-061 : The case of the kernel
mode double-fetch. https://msrc.microsoft.
com/blog/2008/10/ms08-061-the-case-of-
the-kernel-mode-double-fetch/, 2008.

1222 33rd USENIX Security Symposium USENIX Association

https://github.com/vusec/safefetch
https://blogs.oracle.com/linux/post/best-practices-for-adapting-phoronix-test-suite-to-benchmark-linux-performance
https://blogs.oracle.com/linux/post/best-practices-for-adapting-phoronix-test-suite-to-benchmark-linux-performance
https://blogs.oracle.com/linux/post/best-practices-for-adapting-phoronix-test-suite-to-benchmark-linux-performance
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1332
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1332
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8550
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8550
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10433
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10433
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10435
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10435
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10439
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10439
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8438
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8438
https://github.com/KSPP/linux/issues/95
https://github.com/KSPP/linux/issues/95
https://github.com/google/kasan/wiki
https://github.com/google/kasan/wiki
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000wzMJCAY
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000wzMJCAY
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000wzMJCAY
https://https://github.com/mbitsnbites/osbench
https://https://github.com/mbitsnbites/osbench
https://www.phoronix-test-suite.com
https://www.phoronix-test-suite.com
https://msrc.microsoft.com/blog/2008/10/ms08-061-the-case-of-the-kernel-mode-double-fetch/
https://msrc.microsoft.com/blog/2008/10/ms08-061-the-case-of-the-kernel-mode-double-fetch/
https://msrc.microsoft.com/blog/2008/10/ms08-061-the-case-of-the-kernel-mode-double-fetch/

[25] Jo Van Bulck, David Oswald, Eduard Marin, Ab-
dulla Aldoseri, Flavio Garcia, and Frank Piessens.
A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes. In CCS, 2019.

[26] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and
Steve Dodier-Lazaro. How double-fetch situations
turn into double-fetch vulnerabilities: A study of
double fetches in the linux kernel. In USENIX
Security, 2017.

[27] Pengfei Wang, Kai Lu, Gen Li, and Xu Zhou. Df-
tracker: detecting double-fetch bugs by multi-taint
parallel tracking. Frontiers of Computer Science,
13, 2019.

[28] Felix Wilhelm. Xenpwn: Breaking paravirtualized
devices. Black Hat USA, 2016.

[29] Jianhao Xu, Luca Di Bartolomeo, Flavio Toffalini,
Bing Mao, and Mathias Payer. Warpattack: Bypass-
ing cfi through compiler-introduced double-fetches.
In IEEE S&P, 2023.

[30] Jianhao Xu, Kangjie Lu, Zhengjie Du, Zhu Ding,
Linke Li, Qiushi Wu, Mathias Payer, and Bing Mao.
Silent bugs matter: A study of compiler-introduced
security bugs. In USENIX Security, 2023.

[31] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable de-
tection of double-fetch bugs in os kernels. In IEEE
S&P, 2018.

USENIX Association 33rd USENIX Security Symposium 1223

A Double Fetch Statistics

In this section, we present detailed statistics related to
fetch and double fetch occurrences across our bench-
marks. Table 5 presents our results. For both generic
fetches and double fetches (i.e., fetches that transfer
data overlapping with a previous fetch within the same
syscall) we detail: the rate of (double) fetches relative
to the total number of syscall samples collected for the
benchmark (the Rate column), the total number of dis-
tinct syscalls that executed a fetch during the benchmark
(the Syscalls column). Additionally, we report the mini-
mum, average, and maximum number of (double) fetches
executed by one single syscall sample. The last row in
the table refers to syscalls executed by background ap-
plications. As shown in the table, each benchmark has a
nontrivial (e.g., up to 21 for Phoronix) number of syscall
types with double fetches. Moreover, the number of dou-
ble fetches performed by double-fetch syscalls greatly
varies (e.g., ranging from 1 to 218 for Phoronix).

Table 5: Statistics for (double) fetch rates.

Benchmark Statistic Fetches Double Fetches

LMBench
Rate 1/2 1/273457

Syscalls 38 7
Min/Avg/Max 1/1/459 1/50/67

OSBench
Rate 1/3 1/80

Syscalls 17 5
Min/Avg/Max 1/6/134 1/42/43

Phoronix
Rate 1/4 1/5993

Syscalls 47 21
Min/Avg/Max 1/1/661 1/1/218

Background
Rate 1/2 1/644

Syscalls 93 20
Min/Avg/Max 1/2/4099 1/130/467

Across all benchmarks, syscalls are likely to execute
fetches (around 1 in 3 syscalls fetch user buffers), but
more often they will fetch only a small number of user
buffers (e.g., on average syscalls fetch 6 user buffers on
OSBench). This prompted us to use a linked list as
the default data structure for efficient caching. However,
across all benchmarks, there are occurrences of fetch-
heavy syscall executions (e.g., with up to 661 fetches on
Phoronix), motivating the need for an adaptive strategy
that resorts to a red-black tree to handle fetch-heavy
scenarios. Moreover, the striking difference between fetch
rates and double fetch rates across all benchmarks, with
double fetches being far less frequent, suggests that cache
insertions happen often and thus it is crucial to factor in
insertion time when determining the optimal threshold
to convert to a red-black tree.

Looking more closely at the variability of the number
of fetches a syscall makes—across the syscalls that fetch

data in our profile—we observed that≈55% have a stable
fetch rate (i.e., they fetch the same number of user buffers
every time). Most syscalls with stable fetch rates perform
either 1, 2 or 3 fetches, with the exception of sendmmsg
which performs 6 fetches all the time. From the syscalls
that have variability in the number of executed fetches,
45 system calls execute between 1 and at most 8 fetches
while only 5 system calls execute more than 8 fetches.
Special cases are 3 system calls, i.e., pwrite64, execve, and
write that have high variability and execute 1-255, 1-1411
and 1-4,099 fetches, respectively. Again, this variability
motivates the need for an adaptive strategy for cache
lookups. Looking instead more closely at the variability
of the number of double fetches—across the syscalls that
fetch data twice in our profile—we observed that ≈60%
execute only one double fetch, while 33% execute either 1
or 2 double fetches and the sendmsg syscall may execute
between 3 and 6 double fetches. The execve syscall is
again an exception and can execute between 1 and as
many as 467 double fetches.

1224 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	User/kernel Memory Isolation
	Double-fetch Bugs

	Threat Model
	Overview
	Profiling Kernel Fetches
	Cache Frontend
	Efficient Range Queries
	Query Resolution

	Cache Backend
	Custom Allocator
	Dual Region Design
	Lifecycle Management

	Implementation
	Evaluation
	Security
	Performance
	Design Breakdown

	Related Work
	Conclusion
	Double Fetch Statistics

