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Abuse-Resistant Location Tracking:
Balancing Privacy and Safety in the Offline Finding Ecosystem

Harry Eldridge∗ Gabrielle Beck∗ Matthew Green∗ Nadia Heninger† Abhishek Jain∗

Abstract
Location tracking accessories (or “tracking tags”) such as
those sold by Apple, Samsung, and Tile, allow owners to track
the location of their property via offline finding networks.
The tracking protocols were designed to ensure that no entity
(including the vendor) can use a tag’s broadcasts to surveil
its owner. These privacy guarantees, however, seem to be at
odds with the phenomenon of tracker-based stalking, where
attackers use these very tags to monitor a target’s movements.
Numerous such criminal incidents have been reported, and in
response, manufacturers have chosen to substantially weaken
privacy guarantees in order to allow users to detect stalker
tags. This compromise has been adopted in a recent IETF
draft jointly proposed by Apple and Google.

We put forth the notion of abuse-resistant offline finding
protocols that aim to achieve a better balance between user
privacy and stalker detection. We present an efficient protocol
that achieves stalker detection under realistic conditions with-
out sacrificing honest user privacy. At the heart of our result,
and of independent interest, is a new notion of multi-dealer
secret sharing which strengthens standard secret sharing with
novel privacy and correctness guarantees. We show that this
primitive can be instantiated efficiently on edge devices using
variants of Interleaved Reed-Solomon codes combined with
new lattice-based decoding algorithms.

1 Introduction

Vendors such as Apple, Samsung, and Tile have recently be-
gun to deploy large-scale offline finding networks to monitor
network-disconnected devices. These systems employ short-
distance communications networks such as Bluetooth Low
Energy (BLE) or Ultra-Wideband (UWB) to transmit periodic
advertisement messages to nearby receivers (such as smart-
phones). The receiving devices upload location reports to
servers controlled by the service provider.
∗Johns Hopkins University, {hme,becgabri,

mgreen,abhishek}@cs.jhu.edu
†University of California San Diego, nadiah@cs.ucsd.edu

While offline finding networks can be used to locate rela-
tively powerful devices like phones and laptops, the breakout
product in this category is the location tracking accessory
(LTA), colloquially known as a “tracking tag.” Exemplified
by Apple’s AirTag and Tile Trackers, these tags embed a
transceiver, microprocessor, and battery in a compact package
that can be attached to physical objects. The popularity of
tracking tags stems from their low cost (typically under $30
USD) as well as the availability of large volunteer-operated
tracking networks that can detect them. As of this writing, the
combined tag sales of Tile, Apple, and Samsung exceed 100
million units [33].

Privacy and stalking risks. The widespread deployment
of offline finding networks exposes users to new privacy and
safety risks. On the one hand, LTAs can undermine the privacy
of individuals who carry them: if an LTA emits an unchanging
identifier such as a static MAC address, then a tracking adver-
sary such as the network operator or a third-party RF tracking
network [38, 40] can easily monitor individuals’ physical
movements. In response to these privacy concerns, manufac-
turers deploy sophisticated countermeasures: for example,
Apple’s Find My system employs a cryptographic protocol
that rotates pseudonymous identifiers and uses encrypted lo-
cation reports to hide location information from third parties
and from Apple itself [2].

On the other hand, the availability of inexpensive LTAs
also enables tracker-based stalking [24], in which attackers
surreptitiously place a tag on a targeted person or vehicle
and then monitor the target’s movements via the offline find-
ing network. These devices have been used in hundreds of
criminal incidents, including serious cases that culminated in
physical assault and murder [5, 11, 19, 28, 42].

Privacy vs stalker detection. Apple, Tile, Samsung and
Google have adopted stalker-detection countermeasures to
alert users to the presence of an unrecognized tag that “moves
with” a user for a pre-defined length of time [3, 13, 26, 27, 39].
Victims can typically trigger an audio alert from the tag, ob-
tain the tag’s serial number using Near-Field Communication
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Protocol Epoch Broadcasts Stalker Tracking Continuous Stalker
duration per epoch detection? privacy Proximity detection

Apple FindMy [2] / IETF [27]:
Near-owner mode 15 min 450 × n/a n/a
Separated mode 24 hrs 43,200 • n/a × 15-60 min†

This work (§4):
4-second epochs / 1-hour window 4 sec 1 • 39−46 min∗ • 60 min
1-minute epochs / 1-hour window 60 sec 15 • 41−47 min∗ • 60 min

Figure 1: We compare the detection and privacy guarantees of our scheme with various parameters to existing tag protocols. Our goal in this
work is to design a scheme that maximizes tracking privacy within the stalker detection window. “Tracking privacy” indicates the duration that
a tracking adversary may receive broadcasts without de-anonymizing an LTA. “Stalking detection” indicates the minimum length of time that
broadcasts must be collected before a stalking LTA can be detected. Epoch duration indicates the time between changes to an LTA identifier.
Broadcasts/epoch indicates the number of repeated broadcasts of the same identifier that an LTA will issue in this time. “Continuous Proximity”
means that a tracking adversary must be in the presence of an LTA for the entire unlinkability duration in order to de-anonymize it. ∗The former
number uses current BLE payload sizes, while the second assumes BLE v5. †Apple does not publish their methodology, so this is an estimate.

(NFC), and then query the provider’s servers to obtain partial
account information.

In order to implement such countermeasures, manufactur-
ers have adopted various compromises: for example, Apple
AirTags rotate their identifier every 15 minutes when within
range of their owner devices, but reduce this rate to once
every 24 hours when out of range. This approach allows po-
tential stalking victims to detect nearby AirTags, but at the
cost of reducing privacy against tracking adversaries.1 Ap-
ple and Google have jointly proposed an IETF draft [27] to
standardize this approach.

As this solution illustrates, the goal of a stalker detection
mechanism appears to be in direct conflict with the goal of
preserving privacy against a tracking adversary. To defend
against a tracking adversary, tags must routinely change iden-
tifiers: this ensures that a listener cannot link a series of broad-
casts to a single emitting device. Yet, to detect stalkers, a
potential victim must be able to determine that a series of
broadcasts belongs to a single device. This raises the follow-
ing question:

Is it possible to provide strong privacy protections
against location tracking, while also enabling the
detection of stalker abuse?

Contributions. In this work, we answer the question in the
affirmative, designing new protocols that offer strong privacy
guarantees while ensuring that stalker tags can be reliably
detected. Critically, our solutions operate in the threat model
of today’s systems and do not rely on the creation of new
trusted parties or the placement of additional trust in the ser-
vice provider itself.

1. Abuse-resistant offline finding protocols: We put forth
the notion of abuse-resistant offline finding protocols

1In practice, our experience shows that many users routinely carry AirTags
in “separated mode”. This is due at least in part to the fact that users often
share physical property with other individuals, and AirTags cannot easily be
paired with multiple owner devices.

that simultaneously achieve privacy against tracking ad-
versaries and stalker detection by victim devices. We
propose an efficient instantiation that can operate under
the constraints of existing systems.

2. Multi-dealer secret sharing. To obtain the above re-
sult, we define and construct a new cryptographic notion:
multi-dealer secret sharing (MDSS). MDSS extends
standard secret sharing to admit multiple dealers with
different secrets while achieving new properties of un-
linkability and multi-dealer correctness. We provide two
constructions of MDSS, including a practical solution
(with heuristic correctness) where the decoder can oper-
ate on consumer-grade devices like smartphones based
on lattice-based list decoding techniques [14]. Finally,
we propose some optimizations, including a new no-
tion of collision-aware PRFs that enables a small-state
streaming algorithm for MDSS dealers.

3. Implementation and Evaluation. We explore parame-
ters for our constructions and demonstrate that existing
offline finding networks can be made substantially more
private using our protocols. Concretely, we propose pa-
rameters that allow users to remain private for up to
40 minutes while still detecting stalkers within an hour
(see Figure 1). Finally, we implement our algorithms
and demonstrate that they are efficient in practice when
running on modest hardware. When using our most ef-
ficient parameters, our proposed stalker detection algo-
rithm runs in approximately two seconds on a Raspberry
Pi 3 B, and a tenth of a second on a modern laptop.

Ethics and human-subjects research. In the course of this
work we conducted experiments to determine the density of
Apple LTA (AirTag) broadcasts in several public areas. The
data we collected in these efforts includes public BLE ad-
vertisement data combined with the approximate time and
GPS location noted by our detector. Advertisement data in-
cludes a rotating MAC address. We did not engage in any
effort to link addresses to non-ephemeral device properties,
or through rotations, and the results we present in this work
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contain only aggregate statistics about tag broadcast rates. To
eliminate the chance of future address linking, all addresses
were anonymized2, and all data was stored on an encrypted
volume to be deleted subject to data retention policies.

Prior to conducting these experiments we presented our
experiments to an IRB and received a determination that they
do not constitute human subjects research.

1.1 Technical Overview

The core challenge we address in this work is that the goal
of a stalking victim is nearly identical to that of the tracking
adversary. As such, it seems intrinsically difficult to develop
systems that allow the former to succeed without providing
an advantage to the latter.

Separating stalking victims from tracking adversaries.
Our work starts with the following insight: while tracking
adversaries must solve a problem that is similar to that of
a stalking victim, the two parties are not identical. Stalking
victims are (by definition) guaranteed to be in close proximity
to a stalking LTA for a relatively long period. In contrast, a
tracking adversary may only have brief or intermittent access
to a given tag’s broadcasts (e.g., as owners enter and leave the
physical locations of tracking receivers). Figure 2 illustrates
an example of the two different scenarios.

Our goal is to design a scheme that provides strong crypto-
graphic privacy against a tracking adversary that sees a large
subset of an LTA’s broadcasts, and yet allows full linking (and
thus stalker detection) when the receiver obtains a more com-
plete series of broadcasts. Simultaneously, our scheme must
handle broadcasts sent by unrelated tags in the vicinity, that
is, be robust to substantial “noise.” We refer to this goal as
abuse-resistant offline finding (AROF).

Abuse-Resistant Offline Finding Protocols. Rather than
broadcast a constant identifier, we propose to transmit fre-
quently changing and unlinkable broadcast identifiers as
a means to maximize privacy, where the rate of identifier
turnover is a system configuration parameter. After a (poten-
tial) victim device has collected a list of broadcasts for some
fixed amount of time, it can then run a detection algorithm to
check if any stalkers are nearby and, if so, it can identify and
link those broadcasts that come from the stalker. However, to
a tracking adversary who has only seen some small number
of broadcasts, not only will the detection algorithm fail to
recover the user’s tag, but it will also be unable to link any of
the tag’s broadcasts to one another. In fact, the distribution
will be cryptographically indistinguishable from a series of
broadcasts sent by many different tags.

A key desideratum in AROF is that detection should imply
that an LTA has been in continuous proximity to a given target,
not merely that they have seen a few related broadcasts in

2MAC addresses were replaced by the HMAC-SHA256 of the address
with a randomly sampled 32 byte key. The key was then deleted.

distant broadcast periods. More formally, we wish to ensure
that a tracking adversary who receives an ε-fraction of broad-
casts (for some choice of ε) during a detection window will
have no advantage in linking those broadcasts, while a victim
who receives only a slightly greater fraction can efficiently
link and detect the stalker. We call the first property tag in-
distinguishability and the second tag detectability. The first
property ensures that honest tag users are protected from a
tracking adversary while the second ensures that stalkers are
detected.
A Flawed Attempt. A simple but flawed approach to realizing
AROF is to produce a cyclically repeating sequence of distinct
broadcast identifiers. Such a construction provides privacy
against tracking adversaries who receive broadcasts for a
fixed duration, but is very fragile: a tracking adversary who
receives only two broadcasts (e.g., one broadcast from each
cycle) would immediately link these broadcasts to the same
LTA.
Our Approach: Multi-Dealer Secret Sharing. To obtain
a better solution, we instead use secret sharing [41]. Recall
that in classical t-out-of-n secret sharing, a dealer distributes
a secret into n shares such that the original secret can be
recovered from any subset of shares of size at least t. The
privacy property of secret sharing guarantees that any subset
of less than t shares (referred to as an unauthorized set) “hides”
the secret.

Consider the following proposal for an AROF protocol: at
periodic intervals, the LTA samples a fresh secret tag iden-
tifier. Then, at each epoch within this period, it outputs a
pseudonym similar to the one used in Apple’s scheme, along
with a secret share of the secret tag identifier. By changing the
pseudonym and using a different secret share at each epoch
(and, critically, having volunteer devices keep these shares lo-
cal without forwarding them to the service provider), we can
hope to preserve the privacy of the tag against tracking adver-
saries who receive an unauthorized subset of the tag’s emitted
secret shares within the current period. At the same time, a
stalking victim who receives a more complete set of shares
can use the secret sharing reconstruction algorithm to recover
the tag’s identifier and communicate with the tag. The exact
parameters to determine both privacy and the stalker-detection
threshold can be determined by the chosen parameters of the
secret sharing scheme, as well as estimates of likely broadcast
traffic.

Unfortunately, this proposal runs into several challenges.
Note that the broadcast traffic at any time may consist of
broadcasts from multiple LTAs in the vicinity of each other.
For example, the broadcasts emitted by a stalking LTA might
be intermingled with broadcasts from both ephemeral LTAs
that a victim is only briefly in range of, as well as additional
LTAs that remain persistently near the victim. In this setting,
the standard privacy and correctness properties of secret shar-
ing no longer suffice; instead, new properties are necessary in
order to realize the above proposal:
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Tag “A” in range?

Adversary view
unprocessed
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Tag “A” in range?

Victim view
unprocessed

Victim view
processed

Tracking adversary scenario Stalking victim scenario

recovery processing

Adversary view
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recovery processing (unsuccessful)

Figure 2: Illustration of two passive detection scenarios. Left: a static tracking adversary sees many broadcasts from different LTAs, including
LTA “A” (blue). However, because “A” is mobile, the adversary is not in continuous range to receive its broadcasts and does not receive enough
to enable tracking of the LTA. “A” broadcasts cannot be distinguished from any other broadcasts. Right: a stalking victim receives broadcasts
from many LTAs including a stalking LTA “A”. The victim is continuously within range of the stalking device and receives all of its broadcasts,
which is enough to enable stalker detection.

1. Unlinkability: In order to achieve privacy against track-
ing adversaries, we require a new unlinkability property
for secret sharing. Roughly speaking, this guarantees that
given a mixed set of shares of different secrets broadcast
by multiple dealers, an adversary cannot “link” any of
the shares emitted by a dealer to one another as long as
the shares comprise an unauthorized set. Note that this is
stronger than the standard privacy property, which only
guarantees that the adversary cannot recover the secret.

2. MD-Correctness: In order to detect stalker tags, we re-
quire a robust secret recovery mechanism in the presence
of multiple dealers. In particular, we require that given
a set of shares from multiple dealers, a receiver can re-
construct all secrets for which they have an authorized
set (i.e., at least a threshold number) of shares. In the
context of AROF, this means that a victim can identify
potentially multiple stalker tags even in the vicinity of
ephemeral tags.

We refer to a secret sharing scheme that satisfies these
two properties as multi-dealer secret sharing (MDSS). While
achieving either of the above two properties is non-trivial,
it is especially challenging to achieve them simultaneously.
Indeed, in prior uses of secret sharing (e.g., [6, 16, 18]), the
problem of robust reconstruction in the presence of noisy
shares is addressed by simply identifying (or labeling) all
shares transmitted by a given dealer to identify which shares
correspond to which set. This, however, is not an option in
our setting since labeling of shares immediately breaks the
unlinkability property.
Constructing MDSS. We present two constructions of
MDSS. Our first construction is a variant of Shamir secret
sharing where instead of using fixed evaluation points (which
breaks unlinkability), we sample polynomial evaluation points
uniformly at random from a super-polynomial sized field. In
order to achieve MD-correctness, we leverage the connec-
tion between Shamir’s secret sharing and Reed-Solomon (RS)

codes [37] and utilize known list decoding algorithms [21] for
RS codes. The main disadvantage of this construction is that
the parameter restrictions of [21] cap the number of dealers in
a way that renders the scheme impractical for our application
to AROF.

To achieve better bounds, we employ a variant that uses
multiple Shamir polynomials simultaneously, realizing an
“interleaved” Reed-Solomon code (IRS) [8]. To achieve MD-
correctness, we develop a novel lattice-based list-decoding al-
gorithm building on the work of Cohn and Heninger [14]. This
construction achieves provable unlinkability and heuristic cor-
rectness guarantees that we justify empirically. Crucially, this
approach unlocks significantly better parameters that make
efficient decoding achievable on highly-restricted devices. We
remark that while efficient decoding algorithms for IRS codes
exist in the literature [8, 15], they are defined for the random
noise model which does not capture our multi-dealer setting.

Organization. We begin by formalizing the notion of abuse-
resistant offline finding protocols in §2. Next, in §3, we give
definitions and constructions for our main building block:
multi-dealer secret sharing (MDSS). In §4, we show how to
use MDSS to construct AROF schemes. In §5 we discuss how
to tune MDSS parameters to optimize AROF deployments. In
§6 we describe our implementation of MDSS schemes, and
in §7, we provide benchmarks of our implementation using
our suggested parameters. We discuss some limitations of our
approach in §8, related work in §9, and conclude in §10.

2 Abuse-Resistant Offline Finding

An offline finding network, illustrated in Figure 3, is a crowd-
sourced system designed to locate lost or stolen devices. In
these systems, users purchase location-tracking accessories
(LTAs) that run a tracking protocol with the network and ser-
vice provider. Deployed networks typically work as follows:
to enroll the device, the user pairs the LTA to a client device

5434    33rd USENIX Security Symposium USENIX Association



(such as a smartphone or computer) and optionally registers
the LTA with a service provider (SP) that controls the network.
LTAs typically operate in two modes: in near-owner mode
the LTA is in range of the owner’s device and communicates
directly with it. The LTA switches to separated mode when
it is out of range of the owner device. In this work we focus
primarily on the behavior of devices in separated mode, which
is the typical setting for stalking attacks.

LTA
(near-owner mode)

Tracking NetworkOwner Device

LTA
(separated mode)

Service Provider (SP)

BLE/
UWB

BLE/
UWB Internet

Internet

pairing relationship 

Figure 3: Components of a location-tracking network.

In separated mode, the LTA periodically emits RF-based
broadcasts that can be detected by volunteer devices in the
offline finding network. These volunteer devices construct
location reports that combine the LTA broadcast data with
the encrypted GPS coordinates of the volunteer device, then
upload these reports to the service provider’s servers. An
owner device with the necessary identifiers (and other creden-
tials) can query the service provider to obtain past and present
location reports for a given LTA.

Abuse-Resistant Offline Finding Protocols. The devices
in an offline finding network jointly conduct an offline find-
ing protocol. We present algorithmic definitions and security
notions for an abuse-resistant offline finding protocol that
achieves privacy (formalized via a notion of tag indistinguisha-
bility) as well as detectability for malicious tags (formalized
via a notion of tag detectability). Throughout this section, we
use notation inspired by the work of Mayberry et al. [29].

While stalking is inherently a malicious activity, the LTA
devices used in these attacks are typically honest, in the sense
that they correctly execute the tracking network protocol. This
is due to the fact that many attackers use legitimate (non-
counterfeit) devices produced by the original manufacturer.
In this work we will focus on the case where all LTAs hon-
estly execute the protocol, and consider extensions to address
counterfeit/malicious LTA devices, as well as other concerns,
in the full version of the paper.

Definition 2.1. An abuse-resistant offline-finding proto-
col (AROF) is a tuple of algorithms (KeyGen,Beacon,
GetTagID,GenReport,Detect), a protocol RetrieveReports
as specified in Figure 4, and two predicates Ps and Ph.

To use an offline-finding protocol, each LTA executes the
KeyGen algorithm with a set of deployment-specific parame-
ters, and shares the resulting key with an owner device. The
LTA then initializes an anonymity epoch counter that increases
monotonically whenever the identifier is to be rotated (we

Abuse-resistant Offline Finding Protocol

KeyGen(1λ,cfg)→ ktag given a set of implementation-specific
scheme parameters cfg, generates a secret key ktag

Beacon(ktag, iepoch,aux)→ B on input the tag key, the index of
the current anonymity epoch, and auxiliary data aux (e.g.,
battery status), generates a broadcast message B

GetTagID(ktag, iepoch)→ idtag is a helper algorithm used by
the LTA and owner device to find the current identifier for
the LTA.

GenReport(B, loc)→ R on input a tag broadcast B and
time/GPS coordinates loc, outputs a report R

Detect(cfg,{(B1, loc1), . . . ,(Bn, locn)})→{idtag i} on input a
set of broadcasts, outputs one or more identifiers idtag

RetrieveReports(Owner(ktag, iepoch),SP(D)) a protocol exe-
cuted between two parties. Owner provides a tag key ktag
and an epoch iepoch and SP uses a database D. The output
to Owner is potentially a list of reports and SP’s output is
⊥.

Figure 4: Algorithms for abuse-resistant offline finding protocol.

refer to this period as the epoch duration.) At the start of
each epoch, the LTA executes the Beacon algorithm on the
current epoch counter and transmits the output one or more
times.3 Periodically, after a detectability period of some num-
ber of anonymity epochs, the LTA may re-key so that very
old beacons do not contribute to the tag being detectable. Vol-
unteer devices collect the resulting broadcasts and use the
GenReport algorithm to generate location reports for the ser-
vice provider. An owner device executes the RetrieveReports
protocol with the service provider to obtain reports collected
by the network. Victim devices collect all received LTA broad-
casts within a detection window and then use them in the
Detect algorithm to detect the presence of nearby stalking
LTAs.

An abuse-resistant tracking scheme must satisfy correct-
ness and security properties. We first give informal descrip-
tions of the desired properties, followed by the formal defi-
nitions. For the purposes of our definitions, we will use the
predicates Ps and Ph to describe specific access patterns that
determine whether or not a tag should be detectable as a
potential stalker, or should remain unlinkable, respectively.

Correctness. An authorized Owner should be able to obtain
location information on their LTA, provided a volunteer device
sees at least one of its emitted broadcasts.
Detectability. A stalking LTA should be detectable by a victim.
Even when selected adversarially, any set of received broad-
casts satisfying Ps should both reveal the LTA as a stalker, and
result in the victim device accurately learning the stalker’s
unique identifier.

3If the broadcast interval is longer than the epoch duration, then the LTA
may transmit the same data multiple times.
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Tag Indistinguishability. A tracking adversary who receives
a broadcast pattern that satisfies Ph should not be able to dis-
tinguish a given LTA’s broadcast from those of other LTAs.
We model this as an indistinguishability game, where an ad-
versary may see broadcasts from one of two LTAs, and then
must determine which LTA a challenge broadcast belongs to.
The advesary wins if it can successfully determine the correct
LTA while only having seen broadcast patterns that satisfy
Ph.

We can now proceed with the formal definitions.

Definition 2.2 (Correctness). A privacy preserving track-
ing protocol satisfies correctness if for all authorized owners
Owner and compliant service providers SP, ∀loc,aux and
allowed anonymity epochs iepoch, and ∀D provided by SP,

Pr


ktag← KeyGen(1λ,cfg);
B← Beacon(cfg,ktag, iepoch,aux);
R← GenReport(B, loc);
D ′ := D ∪{R};
out← RetrieveReports(Owner(ktag),SP(D ′)) :
∃m ∈ out,m = (loc,aux)

= 1

Tag Detectability

{{(iℓ, j,auxℓ, j, locℓ, j)} j∈[zℓ]}ℓ∈[L]← A(1λ)

∀ℓ ∈ [L] : kℓtag← KeyGen(1λ,cfg)

∀ℓ ∈ [L], j ∈ [zℓ] : Bℓ, j← Beacon(kℓtag, iℓ, j,auxℓ, j)

out←Detect({(Bℓ, j, locℓ, j)})
Q←{iℓ, j}ℓ∈[L], j∈[zℓ]
S ←{Ps(cfg,kℓtag,Q, iℓ, j) = 1 : GetTagID(ktag, iℓ, j)}
Remove duplicates from S
If S ⊆ out,output 1 else 0

Figure 5: Experiment ExpDet,Ps
A (λ,cfg).

Definition 2.3 (Detectability). A privacy preserving track-
ing protocol is detectable if ∀ valid cfg values, ∀n.u.p.p.t
algorithms A , ∃ a negligible function negl(λ) so that

Pr[ExpDet,Ps
A (λ,cfg) = 0]≤ negl(λ),

where ExpDet,Ps
A (λ,cfg) appears in Figure 5.

Definition 2.4 (Tag Indistinguishability). A privacy preserv-
ing offline finding protocol is tag indistinguishable if ∀ valid
cfg values, ∀n.u.p.p.t adversaries A , ∃ a negligible function
negl(λ) so that

|Pr[ExpTag,Ph,0
A (λ,cfg) = 1]−Pr[ExpTag,Ph,1

A (λ,cfg) = 1]|
≤ negl(λ),

where Exp
Tag,Ph,b
A (λ,cfg) is given in Figure 6.

Tag Indistinguishability

Ok0
tag,k1

tag,Q
(id, i,aux): Record (id, i) in table Q.

Return Beacon(kidtag, i,aux)

ki
tag← KeyGen(1λ,cfg),∀i ∈ {0,1}

(i∗0, i
∗
1,aux)← A

Ok0
tag ,k

1
tag ,Q

(·,·,·)
(1λ)

B∗← Beacon(kb
tag, i

∗
b,aux)

b̂← A(B∗)

Q← Q∪{(0, i∗0),(1, i∗1)}
If Ph(cfg,Q) = 1,

output b̂,else 0

Figure 6: Experiment ExpTag,Ph,b
A (λ,cfg).

Other Properties. Mayberry et al. [29] identify some addi-
tional properties for an offline finding system. For example,
the service provider should not be able to determine the loca-
tion of LTAs or volunteer devices from the encrypted location
reports it receives. Our schemes in §4 achieve this property
in much the same way as the constructions of [29]. Since
the focus of our work is on the interaction between stalking
tags and victims (and due to space limitations) we omit this
analysis here.

3 Multi-Dealer Secret Sharing

In a secret sharing scheme [41], a dealer divides a secret into
shares such that the secret remains hidden from anyone who
holds an “unauthorized” set of shares, but can be recovered
from any “authorized” set of shares. These properties are
referred to as privacy and correctness, respectively.

In this work, we consider a setting where multiple deal-
ers may simultaneously distribute shares of their respective
secrets. We put forth a notion of multi-dealer secret shar-
ing (MDSS) that achieves stronger security and correctness
properties in this setting.

3.1 Definition

We study multi-dealer secret sharing for threshold access
structures. Such a scheme is parameterized by four variables:

• trec, the number of shares required to recover a secret.
• tpriv, the number of shares one can emit before privacy

and unlinkability are broken.
• d, the number of sufficient dealers the scheme is able to

tolerate.
• max, the maximum number of shares that can be input

to the reconstruction algorithm.
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We consider the ramp setting of Blakley and Meadows [7],
where we allow for a gap between trec and tpriv larger than 1.
We now formally define multi-dealer secret sharing.

Definition 3.1 (Multi-dealer secret sharing scheme). A
(trec, tpriv,d,max)-multi-dealer secret sharing scheme
(MDSS) is defined over a secret space S of values that can be
shared and consists of the following algorithms, which are
expected to run in polynomial time in a security parameter λ:

• Share(s,n;r)→{shi}i∈[n], takes as input a secret s ∈ S ,
an integer n, and some randomness r, and outputs a set
of n shares sh = {shi}i∈[n].

• Reconstruct({sh1, . . . ,shw})→{s1, . . . ,sm}, takes as in-
put a set of shares {sh1, . . . ,shw} where w ≤ max, and
outputs a (potentially empty) set of secrets {s1, . . . ,sm}.

In the above, the tuple (trec, tpriv,d,max) is an implicit input
to both algorithms.

An MDSS scheme must satisfy two properties: unlinkabil-
ity, which strengthens the standard notion of privacy (§3.1.1),
and MD-Correctness, which strengthens the standard notion
of correctness (§3.1.2).

In both definitions we will use some notational shorthand
for computing a set of shares and then projecting them onto a
set of indices. For a secret s, an integer n, and a set of indices
I ⊆ [n], define Proj(s,n,I ) as follows:

1. Compute {sh1, . . . ,shn}← Share(s,n)
2. Return {shi}i∈I

When I is a singleton, we will denote it as î.

3.1.1 Unlinkability

We propose a new security property for secret sharing that is
stronger than the standard notion of privacy. Intuitively, this
property requires that given a set of shares from multiple deal-
ers, an adversary cannot associate (i.e., link) any unauthorized
subset of shares to a common dealer.

We present two definitions: unlinkability and one-more
unlinkability. The first intuitively matches the guarantee we
would like to achieve, while the second is simpler and easier
to use. We will show that the second definition implies the
first (the first will obviously imply the second); therefore one
can use the second definition without loss of generality.
Unlinkability. Our first definition is characterized by a se-
curity game ULinkb

A(λ) where an adversary A can receive
shares from an arbitrary polynomial number of dealers, each
sharing a potentially different secret chosen by the adversary.
For every dealer i, the adversary receives |Ii,b| number of
shares of the corresponding secret for adversarially chosen
index sets Ii,0 and Ii,1. The adversary wins the game if it cor-
rectly predicts the bit b. To disallow trivial attacks, we model
security against admissible adversaries defined as follows:

Experiment ULinkb
A (λ){(

si,ni,0,ni,1,Ii,0,Ii,1
)}

i∈[L]← A(1λ)

∀i ∈ [L] : shi← Proj(si,ni,b,Ii,b)

b̂← A(sh1, . . . ,shL)

Output b̂

Figure 7: Unlinkability

Experiment OM-ULinkb
A (λ, t)

(s0,s1,n0,n1,I , î)← A(1λ, t)

{sh1, . . . ,sht}← Proj(s0,n0,I )
{sh∗}← Proj(s1,n1, î)

If b = 1, sht ← sh∗

b̂← A(sh1, . . . ,sht)

Output b̂

Figure 8: One-More Unlinkability

Definition 3.2 (Admissible Adversary). An adversary A in
experiment ULinkb

A(λ) is said to be admissible iff:

1. L ∈ poly(λ)
2. ∀i ∈ [L], |Ii,0| ≤ tpriv, |Ii,1| ≤ tpriv
3. ∑i |Ii,0|= ∑i |Ii,1|

The second requirement ensures that all share subsets are
unauthorized, while the third requirement ensures that the
total number of shares are equal in each experiment. The
experiment ULinkb

A(λ) is described in Figure 7.

Definition 3.3 (Unlinkability). A (trec, tpriv,d,max)-MDSS
with secret space S is ε-unlinkable if there exists a function
ε(·) such that for all admissable adversaries A ,

|Pr[ULink0
A(λ) = 1]−Pr[ULink1

A(λ) = 1]| ≤ ε(λ)

When ε(λ) is negligibly small (resp., zero), we say that
the scheme is statistically (resp., perfectly) unlinkable. Com-
putational security can be described as well in the standard
way.
One-More Unlinkability. Our second definition considers
only two dealers. The adversary sees up to tpriv shares – either
all from the first dealer or all but one from the first dealer and
one share from the second dealer. We formally model this in
the security game OM-ULinkb

A(λ, t) described in Figure 8.

Definition 3.4 (Admissible Adversary). An adversary A in
experiment OM-ULinkb

A(λ, t) is said to be admissible iff |I | ≤
t.

Definition 3.5 (One-More Unlinkability). We say that a
(trec, tpriv,d,max)-MDSS with secret space S is ε-one-more
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unlinkable if for every t ≤ tpriv, there exists a function ε(·)
such that for all admissable adversaries A ,

|Pr[OM-ULink0
A(λ, t) = 1]−Pr[OM-ULink1

A(λ, t) = 1]|
≤ ε(λ)

We can define statistical, perfect and computational one-
more unlinkability in a similar manner as above.

Relationships between definitions. Our proof that the two
definitions of unlinkability are equivalent, along with a proof
that unlinkability is stronger than the standard secret-sharing
notion privacy, can be found in the full version of the paper.

3.1.2 MD-Correctness

Our correctness definition differs from standard secret shar-
ing in that we must reconstruct secrets given a set of shares
from multiple dealers. This set may include shares from both
sufficient dealers (i.e. those outputting at least trec shares)
and insufficient dealers (i.e. those outputting fewer than trec
shares). We require that Reconstruct outputs exactly the set
of secrets shared by the sufficient dealers, except with some
failure probability ε. Similar to standard secret sharing, we
only consider correctness for honestly generated (i.e. via the
Share algorithm) sets of shares.

Definition 3.6 (MD-Correctness). 4 We say that a
(trec, tpriv,d,max)-MDSS is ε-correct if for all sets
{(si,ni,Ii)}i∈[h] where ∀i, Ii ⊆ [ni], and ∑i∈h |Ii| ≤max, and∣∣{Ii s.t. |Ii| ≥ trec}

∣∣≤ d:

Pr

[
Reconstruct(S) ̸= {si s.t. |Ii| ≥ trec}

∣∣∣∣S :=
h⋃

i=1
Proj(si,ni,Ii)

]
≤ ε

3.2 Constructing MDSS

We present two constructions of MDSS based on variants of
Shamir’s secret sharing. Our first scheme (§3.2.1) achieves
provable MD-correctness for d < trec

tpriv
number of dealers and

is primarily of theoretical interest. Our second scheme (§3.2.2)
achieves heuristic correctness but is able to support both more
dealers and a concretely efficient reconstruction algorithm
that can be executed on devices with limited capabilities. This
forms the basis of our AROF construction presented in the
next section.

4One could also consider a weakening of this definition where we allow
the output of Reconstruct(S) to contain false positives, namely, some extra-
neous secrets along with the correct set of secrets. In applications where the
extraneous secrets are easily discardable or non-impactful, such a relaxed
requirement could be sufficient.

3.2.1 Construction I

Our first scheme is based on a variant of Shamir’s secret
sharing scheme [41]. Recall that in Shamir’s secret sharing,
a secret s is an element of a finite field F: to share s, one
samples a random polynomial p ∈ F[z] with degree tpriv with
the constraint that p(0) = s. The i-th share is simply the pair
(i, p(i)) where i ∈ F\0 is a fixed evaluation point.

This scheme is not unlinkable: consider a set of shares
where two of the shares (i,y) and (i′,y′) are such that i = i′

(but y ̸= y′). Given such a set, an adversary can determine
with probability 1 that these shares correspond to different
secrets. To achieve unlinkability, we therefore we allow the
share algorithm to sample each evaluation point uniformly
at random from F\0. If F has size super-polynomial in the
security parameter λ, any two evaluation points collide with
probability negligible in λ. Crucially, this probability is the
same for any two shares, irrespective of whether they corre-
spond to the same or different secrets.

To achieve MD-correctness, we start with the observation
that a collection of Shamir secret shares can be viewed as a
Reed-Solomon codeword [31]. Therefore, recovering a secret
from a collection of Shamir secret shares in the presence of
noise is equivalent to the problem of Reed-Solomon decoding,
and a natural choice for Reconstruct is an algorithm based
on a Reed-Solomon decoder. Suppose that a single dealer
supplies s shares in a set of size w≤max, and we would like
to know if recovering the secret input of this dealer is possible.
From a coding theory perspective, we may consider the set
of shares to be a word that is distance w− s away from an
equivalent length Reed-Solomon codeword corresponding to
the dealer’s input. As long as an RS decoder exists which can
recover from a fraction of 1− s

w errors, we can recover the
dealer’s secret.

This, however, is not an easy condition to satisfy for a
large numbers of dealers; as one example, for any non-trivial
scheme with d > 1, we cannot use a unique decoding algo-
rithm. Nevertheless, our problem setting can be mapped onto
that of list-decoding, which can tolerate higher error (in the
ramp setting) and support recovery of multiple polynomi-
als (with enough evaluations). A well-known list-decoding
algorithm for Reed-Solomon codes is the one devised by Gu-
ruswami and Sudan (GS) [21], and indeed we can use their
algorithm as the principal component of Reconstruct to pro-
duce a provably correct scheme. The full descriptions of the
scheme can be seen in Figure 9. . We defer the theorems and
proofs regarding this construction to the full version of the
paper.

Limitations. The GS-decoder comes with a significant limi-
tation: it can only recover from a 1−

√
R fraction of errors,

where R is the message rate. Phrased in terms of MDSS pa-
rameters, this means that the construction only guarantees cor-
rectness for parameters satisfying trec >

√
max · tpriv. When

we consider that max≥ d · trec, as each dealer must contribute
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Construction I

Share(s,n) :

Sample a polynomial p of degree tpriv where s = p(0)

Sample n field elements x1, . . . ,xn
$←− F

return {(xi, p(xi))}i∈[n]

Reconstruct({sh1, . . . ,shw}) :

p1, . . . , pm← GSDecode(tpriv, trec,{sh1, . . . ,shw})
return {p1(0), . . . , pm(0)}

Figure 9: MDSS Construction I

at least trec shares, this gives us trec
d > tpriv. Therefore, the

gap between trec and tpriv degrades linearly with the number
of dealers we wish to tolerate. This is undesirable, and our
next construction will focus on achieving a better relationship
between the gap and the number of tolerable dealers.

Subsequent works have built list-decoders for folded Reed-
Solomon codes (which contain multiple polynomial evalu-
ation points in each symbol) [20] that can tolerate nearly
(1−R) (i.e., optimal) error. However, to achieve our desirable
trade-off between tpriv and trec using these decoders requires
a share-size that is impractical for our AROF application.
Furthermore, to the best of our knowledge, these decoding
algorithms are not known to be concretely efficient. We defer
further discussion of these and other codes to the full version
of the paper.

3.2.2 Construction II

Our second construction is inspired by interleaved Reed-
Solomon (IRS) codes, which are known to achieve a good
trade-off between message and error rate, and could feasi-
bly result in a scheme with a smaller gap between trec and
tpriv [8, 15]. For an IRS code, rather than sampling a sin-
gle polynomial p, a dealer samples c polynomials p1, . . . , pc
with the secret s subdivided across the constant term of each,
and shares the values (r, p1(r), . . . , pc(r)), where the evalua-
tion points r are sampled uniformly at random as in the first
construction.

There are numerous decoding algorithms for interleaved
Reed-Solomon codes and other closely related noisy curve re-
construction problems in the literature [36,44]. Unfortunately,
all of these algorithms are only known to work in a random
noise model - which would correspond to the single dealer set-
ting for MDSS - and most are not efficient enough to operate
on limited devices at the parameter sets we require. To address
these issues, we devise a concretely efficient, novel decoder
that can heuristically decode up to a c

c+1 (1−R) fraction of er-
rors, where c is the number of polynomials, when the channel
is “semi-honest” The decoder, which we call CH∗-MDSS, is
based on a dual version of a lattice-based decoding algorithm

MDSS Construction

Share(s,n) :

Sample c polynomials p1, . . . , pc each of degree tpriv, where
s = p1(0)||...||pc(0)

Sample n field elements x1, . . . ,xn
$←− F

return {(xi, p1(xi), . . . , pc(xi))}i∈n

Reconstruct({sh1, . . . ,shw}) :

return CH∗-MDSS({sh1, . . . ,shw})

Figure 10: MDSS Construction II.

proposed by Cohn and Heninger [14].
In their prior work, Cohn and Heninger give a general tech-

nique for list-decoding variants of Reed-Solomon codes and
their siblings: first recover one (or more) multivariate polyno-
mials Qi which vanish on all polynomials of the appropriate
degree that agree with a large fraction of input points, then
recover the common roots of the Qi. The first step is done by
constructing a polynomial lattice and finding a reduced basis,
while the second is done by computing a Groebner basis over
the Qi to find all common roots or, in the case where c = 1,
by factoring a single Qi.

We instead consider the dual of that lattice, as it directly
contains our polynomials of interest and does not require addi-
tionally computing a Groebner basis which could be resource
intensive. The full description of the algorithm, which we
refer to as CH∗-MDSS, can be found in Appendix A.

Putting all the pieces together brings us to our main con-
struction, which can be seen in Figure 10. We defer our theo-
rems and proofs regarding Construction 10 to the full version
of the paper.

3.2.3 Optimizations

We now discuss some efficiency optimizations.

Small Fields. A suitable choice of field is required to achieve
practical unlinkability and efficiency. If a dealer randomly
samples the same evaluation point twice and produces two
identical shares, then unlinkability is compromised. While
this will occur with negligible probability if fields are large
enough, in practice small fields are often best to minimize
bandwidth and decoding complexity. We therefore propose
a stateful variant of our construction in which dealers keep
track of previously sampled evaluation points and emit noise
shares (comprising random elements in place of the polyno-
mial evaluation) whenever an x-coordinate is repeated. This
preserves unlinkability at the cost of decreasing the number
of “useful” shares passed to the reconstruction algorithm, and
thereby increasing the probability of reconstruction failure.

Collision-Aware PRF. In practice, MDSS users may want
to output shares in a streaming fashion.This would require
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keeping state (all previously sampled x-coordinates), which
may be undesirable. As an optimization for this setting, we
define a new primitive we call a Collision-Aware PRF (CA-
PRF). Using a CA-PRF allows an MDSS dealer to sample x-
coordinates pseudorandomly while being alerted to potential
collisions.

Due to space concerns, we defer a formal treatment of both
of the above to the full version of the paper.

4 Construction of AROF Protocols

We now describe our main contribution: an offline finding
protocol that achieves strong privacy while also admitting
stalker detection.

Protocol intuition. The core algorithms of our protocol are
presented in Figure 11. At a basic level, this protocol can
be viewed as an extension of the offline finding construction
used by Apple’s FindMy [1]. Like the Apple construction,
our protocol employs a pseudorandom function to derive a
fresh “pseudonym” for the LTA at the start of each epoch.
Just as in the Apple system, each pseudonym also doubles
as a public key for a secure encryption scheme: upon receiv-
ing a pseudonym from any nearby LTA, volunteer devices
in the tracking network can encrypt their current GPS coor-
dinates and transmit the resulting ciphertext to the service
provider. Owner devices can later re-derive a sequence of
missed pseudonyms and the corresponding decryption keys,
and use the RetrieveReports protocol to query the provider
for each missed time period.

Achieving stalker detection. To enable stalker detection,
our protocol makes several additions to the basic protocol
described above. First, each LTA maintains a detectability
period consisting of L consecutive time epochs. At the start
of each detectability period, the LTA generates a secret tag
identifier idtag. It then secret-shares idtag using an MDSS
scheme configured with appropriate parameters. With each
call to Beacon, the LTA generates the current pseudonym and
appends one secret share to be broadcast by the LTA. The
MDSS parameters are informed by how long it should take
before a stalker is detected, the maximum number of stalkers
that should be detected, and the maximum number of beacons
that will be within any victim’s detection window. We discuss
more in depth how these parameters are set in §5.

Critically, volunteer devices in the offline finding network
do not transmit these secret shares to the service provider:
they are kept locally and used only to enable stalker detection.
Each device maintains a set of all shares received from nearby
LTAs during a time window specified in the deployment pa-
rameters. Periodically, the victim device executes the Detect
algorithm to perform secret sharing recovery. If this collection
contains at least trec shares emitted by one LTA (or a similar
set from multiple LTAs), then the MDSS recovery algorithm
will recover each idtag for the devices. Each LTA can be con-

figured to respond to interactive connections containing idtag,
which enables the victim to contact and physically locate any
stalking LTAs.

We build security for predicates that mostly follow the
intuition from the technical overview. If trec beacons from a
tag are seen within a detection window, then it is considered
to be a stalking tag. Intuitively, trec is close to the number
of broadcasts made in the detection window, so the victim
sees almost all broadcasts emitted by the LTA. Privacy is
maintained as long as no party sees more than tpriv beacons
from any detectability period.

Security. We give here the predicates for which our construc-
tion satisfies the properties described in §2. Due to space
concerns, we defer the theorems and proofs for our construc-
tion to the full version of the paper. Tag indistinguishability
and detectability both follow naturally from the unlinkability
and correctness properties of the underlying MDSS.

For detectability we will need assumptions on the input to
the Detect algorithm that are enforced by the MDSS parame-
ters. In terms of the AROF, these assumptions will correspond
to there being less than or equal to the maximum number of
stalkers in the vicinity, with small enough noise coming from
other tags so that no more than max beacons will be given to
the detection algorithm. If these assumptions hold, then any
tag that has supplied at least trec beacons corresponding to
the same detectability period will be identified. Below is the
precise statement for the predicate.

Ps(cfg,Q, id) =“ ∃ e such that |{(id, i) ∈Q | e = ⌊ i
L⌋}| ≥ trec,

|{(id′,e) s.t. |{(id′, i) ∈ Q|e = ⌊ i
L⌋}| ≥ trec}| ≤ d,

|Q| ≤max"

For tag indistinguishability, the situation is simpler. Indis-
tinguishability holds as long as no party ever sees more than
tpriv beacons for either tag within any detectability period.

Ph(cfg,Q) =“ for id ∈ {0,1},
∀e ∈ Z+, |{(id, i) ∈ Q | e = ⌊ i

L⌋}| ≤ tpriv and Q is not a
multi-set"

The condition that Q is not a multi-set is meant to rule
out an attack where the adversary queries on the challenge
indices i∗0 or i∗1 before the challenge phase: by doing so they
can trivially win with an equality check on the challenge
beacon.

4.1 Implementation Considerations
We now discuss several implementation considerations related
to the AROF construction presented in §4.

De-duplication and filtering. The duration of the anonymity
epoch (i.e., the time between identifier changes) is an impor-
tant deployment consideration in our scheme. A shorter in-
terval is clearly desirable to improve privacy against tracking
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KeyGen(cfg) :

k1← PRF1.KeyGen(1λ),k2← PRF2.KeyGen(1λ)

k3← PRF3.KeyGen(1λ)

return (k1,k2,k3,cfg)

Beacon(ktag, i,aux) :

(k1,k2,k3,cfg)← ktag
(_,L)← cfg

(pk,_)← CCA.KeyGen(1λ;PRF1.Eval(k1, i))
idtag← GetTagID(ktag, i)
e← ⌊ i

L ⌋, iepoch← i (mod L)
she

0 . . .she
L−1←Π.Share(idtag,L;PRG(PRF2.Eval(k2,e)))

return pk ∥ she
iepoch ∥ aux

Detect(cfg,{B j}) :

S := {sh | (∗∥sh∥∗) ∈ {B j}}
remove duplicate values in the set S
return Π.Reconstruct(S)

GetTagID(ktag, iepoch) :

k1,k2,k3,cfg← ktag
e← ⌊ i

L ⌋, iepoch← i (mod L)
return PRF3.Eval(k3,e)

GenReport(B, loc) :

pk∥sh∥aux← B
ct← CCA.Enc(pk, loc∥aux), h←Hk(pk)
return h ∥ ct

Figure 11: Main construction for abuse-resistant offline finding. This protocol assumes the existence of three pseudorandom functions PRFi
for i ∈ [3] where the co-domain of PRF1.Eval and PRF2.Eval is {0,1}λ and the co-domain of PRF3.Eval is Fq. PRG outputs a sufficient
number of bits for the Share algorithm. CCA is a CCA-secure PKE scheme, {Hk}k∈K a family of collision resistant hash functions and
Π a (trec, tpriv,d,max)-MDSS sharing scheme. ∥ denotes concatenation. cfg contains the MDSS parameters tpriv, trec,max,d and a separate
parameter L. The RetrieveReports protocol is equivalent to the one in Apple’s FindMy [1].

adversaries. However, the duration of the anonymity epoch
will also affect the efficiency of stalker detection. To illustrate
these considerations we consider two candidate configura-
tions.

Configuration 1: anonymity epoch ≈ broadcast interval. This
is our recommended configuration, which maximizes privacy
against tracking adversaries by minimizing the duration of
the anonymity epoch. Under a 4-second anonymity epoch,
this will result in a new pseudonym (via a call to Beacon)
every broadcast that the LTA emits.5 Our implementation
transmits twice as much broadcast data at each interval, and
so we propose to split each broadcast B into two separate
transmissions, each sent at 4-second broadcast interval (see
§6), producing 900 hourly unique secret shares from each
LTA device.

Configuration 2: anonymity epoch ≫ broadcast rate. Cur-
rent LTA deployments do not change the pseudonym with
each broadcast.6 This decision is likely motivated by compu-
tational costs and battery limitations. In these deployments,
the LTA will re-broadcast each pseudonym many times. Ap-
plying the same logic to our protocol, these LTAs would also
re-broadcast the same secret share.

Since duplicate secret shares do not aid in reconstruction,
they are removed (de-duplicated) as part of the Detect algo-
rithm. We note that this de-duplication procedure can pro-

5This is based on analysis of Apple’s FindMy, where LTAs broadcast
every 2 seconds [22, 23].

6For example, Apple’s Find My rotates the pseudonym every 450 broad-
casts (15 minutes) in near-owner mode.

duce some counter-intuitive effects on the noise rate. For
example, LTAs that remain within range of a victim device
for long periods of time (e.g., stalking tags) will see propor-
tionally more duplicate broadcasts removed, as compared to
ephemeral LTAs that only briefly enter receive range of a
victim device (see Figure 12.) On the positive side, these re-
peated broadcasts dramatically reduce the impact of erasures
caused by RF-layer issues.

Pre-filtering. To compensate for the over-representation of
non-stalking LTAs, systems with long-duration anonymity
epochs can apply a pre-filtering heuristic prior to execut-
ing Detect. This heuristic takes advantage of the fact that
ephemeral (non-stalking devices) are likely to exhibit broad-
cast behavior that can be recognized and filtered out prior to
running Detect. For example, LTAs that remain in close prox-
imity to the victim device for a period of time will transmit
many duplicate broadcasts. Focusing detection exclusively on
these broadcasts will reduce the number of non-stalker shares
processed by the MDSS recovery algorithm.

Secret re-generation and detection window. In our construc-
tion, each LTA re-generates its tag identifier and secret-sharing
polynomials every L epochs. This mechanism is intended to
prevent tracking adversaries from correlating shares sent by
the same LTA over longer periods. However, this periodic
change of secrets poses a challenge for stalker detection: at
boundary epochs where an LTA changes its secret, the vic-
tim may not receive a sufficient number of shares to detect
a stalker. To address this, we propose two possible deploy-
ment options. A first solution is for a device to re-generate
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Tag 1:

Tag 2:
Tag 3:
Tag 4:
Tag 5:

Tag 1:

Tag 2:
Tag 3:
Tag 4:
Tag 5:

Example 1: Anonymity epoch = broadcast interval Example 2: Anonymity epoch >> broadcast interval

anonymity epoch anonymity epoch

Figure 12: Illustration of the effect of de-duplicating repeated LTA broadcasts: both examples contain the same pattern of transmissions, but use
different anonymity epoch durations. Filled circles represent fresh shares, hollow circles represent duplicate shares. Left: The anonymity epoch
is short: persistent tags (Tag 1, Tag 2) produce the majority (32/43) of the unique broadcasts processed by the Detect algorithm. Right: The
anonymity epoch is long: once duplicates are removed, the persistent tags (Tag 1, Tag 2) represent a minority (2/5) of the unique broadcasts
processed by the decoding algorithm.

secrets relatively rarely. For example, re-generation every 24
hours ensures that such issues will only occur during a small
fraction of each day. Second, a device could maintain two
identifiers. The LTA would emit shares on both, and stagger
their rotation to ensure that detection is always possible.

MAC Address Rotation To deploy with our suggested
anonymity epochs would require rotating the LTA’s MAC
address either every 4 or 60 seconds, which is faster than the
minimum rotation period of 15 minutes recommended by the
BLE specification [9]. Care should therefore be taken during
implementation to ensure that core BLE functionality is pre-
served. We note that cautious implementers could follow the
recommendation and use an anonymity epoch of 15 minutes,
which still represents a substantial privacy improvement over
the state-of-the-art.

5 Selecting MDSS Parameters

Deploying our main construction of §4 requires us to identify
reasonable system parameters for both the AROF and MDSS
schemes. The challenge is to optimize privacy while also
enabling efficient recovery in the face of reasonable noise
rates. Our recommended parameters can be seen in Table 1.
We now briefly describe the process we used to derive them.

High-level Considerations. We identify five high-level con-
figuration parameters, and for the purposes of our analysis
made exemplary choices for each. We note that these can be
adjusted for specific deployments. Our identified parameters
are:

1. The (minimum) number of minutes of continuous broad-
casting after which a victim device must be able to detect
a stalker LTA, which we set to 1 hour.

2. The duration of the anonymity epoch (i.e., the time be-
tween pseudonym rotation), for which we consider 4
seconds and 1 minute.

3. The frequency of LTA secret/polynomial updates, which
we set to 24 hours.

4. The maximum number of LTAs that will be in proximity
to a victim device. We assume there will be at most three

persistent (“stalker”) LTAs at any given time, and at most
a number of ephemeral LTAs equal to half the stalking
LTA in the aggregate.

5. The bandwidth available for transmitting each secret
share, which we derive to be 248 bits, based on available
payload space in BLE, and 400 bits for BLEv5.

From these choices, we then optimize our MDSS scheme
parameters to provide privacy for the longest period possible,
while ensuring > 99% decoding success in the presence of
missed broadcasts. We present two sets of parameter choices
in Table 1: a recommended set given current deployment
bandwidth limitations (based on widely-deployed versions
of BLE), as well as a future recommendation for LTAs that
support versions of BLEv5 with higher bandwidth limits. Due
to space concerns we defer further description on how we
derived these parameters to the full version of the paper.

6 Implementation

We now describe our implementation of our construction in
§4, including optimizations and deployment choices.7

Implementing the Detect algorithm. We implemented the
Detect algorithm using SageMath [43], a Python-based com-
puter algebra system that includes fast C implementations for
many algorithms. Our decoder for CH∗-MDSS is around 400
lines of Python and is the bulk of our Detect algorithm imple-
mentation. For each parameter set in Table 1, e.g., c = 10 with
a field size of 22 bits, the decoding matrix requires less than
10 MB, even for the largest values of max. This is compatible
with available application RAM on current smartphones.

Implementing the Beacon algorithm. For ease of compar-
ison, we adopt the algorithmic choices of Apple’s FindMy
scheme: our implementation uses ECIES public keys [4] over
the NIST P-224 curve. During each call to Beacon we define
a subroutine GeneratePublicKey to pseudorandomly gener-

7Our code can be found at https://github.com/becgabri/abuse-
resistant-private-lt

5442    33rd USENIX Security Symposium USENIX Association

https://github.com/becgabri/abuse-resistant-private-lt
https://github.com/becgabri/abuse-resistant-private-lt


Epoch Detect Max L Fp c
Share Privacy

trec tpriv max
duration time stalkers (= 24 hrs) (bits) (bits) time
Recommended parameters (compatible with current LTA bandwidth limits):

4 sec 60 min 3 21,600 22 10 242 39 min 825 591 3150
1 min 60 min 3 1,440 24 9 240 41 min 59 41 210

Future parameters (compatible with BLE v5 bandwidth limits):
4 sec 60 min 3 21,600 22 17 396 46 min 825 687 3150
1 min 60 min 3 1,440 26 14 390 47 min 59 47 210

Table 1: Recommended and possible future parameters for the MDSS construction of §4, instantiated with CH∗-MDSS. Privacy times are
rounded to the nearest minute.

Epoch Avg. nearby # Unique Hardware Detection runtime Detection runtime Polynomial recovery
duration LTAs bxs received (no stalkers) (stalkers present) (all stalkers)

4 sec

1 1350
MacBook 0.60 sec 1.29 sec 1.37 sec

RPi 3 8.07 sec 20.42 sec 20.99 sec

2 2250
MacBook 1.88 sec 5.57 sec 8.74 sec

RPi 3 25.05 sec 83.91 sec 126.18 sec

3 3150
MacBook 3.86 sec 24.59 sec 32.96 sec

RPi 3 51.83 sec 360.95 sec 484.21 sec

60 sec

1 90
MacBook 0.01 sec 0.01 sec 0.01 sec

RPi 3 0.15 sec 0.27 sec 0.27 sec

2 150
MacBook 0.02 sec 0.03 sec 0.04 sec

RPi 3 0.31 sec 0.57 sec 0.73 sec

3 210
MacBook 0.03 sec 0.08 sec 0.12 sec

RPi 3 0.48 sec 1.27 sec 2.05 sec

Table 2: Benchmarks for our Detect algorithm (Figure 11) using the CH∗-MDSS decoding algorithm with the recommended parameters of
Table 1.

ate a new pseudonym pk from the master key. We implement
this portion of the algorithm in SageMath.

To implement the secret sharing scheme we use the rec-
ommended parameters from Table 1, and split the Beacon
algorithm into two stateful subroutines. At the beginning
of each detection period (every L epochs), we execute
GeneratePolynomials to sample polynomials p1, . . . , pc, and
cache these polynomials during the entire period. The tag
password (idtag) is the concatenation of the constant terms
of each polynomial. During every call to Beacon we exe-
cute the subroutine GenerateSecretShare to pseudorandomly
generate r ∈ F and compute a secret share. We implemented
these functions in SageMath, as well as in a combination
of JavaScript and C in order to run experiments on a low-
powered hardware platform. For more information on the
hardware used, see §7.

Detection in practice. Since we will be executing detec-
tion on resource-constrained devices, we propose that devices
should continuously collect shares from the environment into
a ring buffer containing the most recent N minutes of shares.
The Detect algorithm can then be run every few minutes once
the buffer is full. This strategy provides a relatively timely
warning of stalking behavior and can be adjusted to account
for computational resources. Additionally, once a stalker has
been detected, their polynomial can be cached and the shares

they emit quickly filtered out. This means that the expensive
cases with many persistent LTAs should only occur rarely.

7 Experiments

In this section we evaluate the empirical runtime of our stalker-
detection and encoding algorithms. We used three different
pieces of hardware to conduct our experiments: a single core
of a 2020 MacBook computer with an M1 chip and 16 GB
of RAM running MacOS Ventura 13.3.1 (a), a Raspberry Pi
3 Model B running Ubuntu Server 23.04, and a Puck.js, a
hardware platform based on the same SoC as the AirTag,
running firmware version 2.15.
Stalker detection. To conduct this analysis we ran our
CH∗-MDSS-based Detect algorithm on simulated broadcasts.
We split the experiments into two cases:

1. Decoding when stalkers are present, i.e. at least trec
shares originate from the same LTA.

2. Decoding when no stalkers are present, the common
case for most users, when no single (unknown) LTA
contributes trec shares to the input.

We split these cases further to test two different anonymity
epochs: 4 seconds and 60 seconds. More concretely, we per-
formed the following experiment:
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Algorithm tpriv (epoch) Runtime Runtime
MacBook Puck.js

GeneratePublicKey 484 µs
GeneratePolynomials 591 (4 sec) 6233 µs 11.88 sec
GenerateSecretShare 591 (4 sec) 87 µs 0.26 sec
GeneratePolynomials 41 (60 sec) 451 µs 0.72 sec
GenerateSecretShare 41 (60 sec) 11 µs 0.04 sec

Table 3: Runtime average over 1,000 iterations for
the GeneratePublicKey, GenerateSecretShare and
GeneratePolynomials subroutines of the Beacon algorithm.
Secret sharing uses the 22-bit field with c = 10 for the 4 second
epoch and the 24-bit field with c = 9 for the 60 second epoch.

1. For each anonymity epoch (4 sec, 60 sec), and for each
number of stalkers (1, 2, 3), we determine the maximum
number of shares our decoder could receive (e.g. for a 4
second epoch and 2 stalkers, the decoder could receive a
maximum of (3600/4)∗ (2+0.5) = 2250 shares).

2. We then run two experiments: first where that number
of shares is generated by a combination of stalkers and
ephemeral LTAs, and second where the shares are en-
tirely ephemeral. For the first case we measure both the
time to detection (i.e. determining the existence of a
stalker), and the time to recovery (learning the id for all
stalkers). We average the runtimes of each experiment
over 500 iterations.

For each experiment, we generated the data so that all broad-
casts have a unique x-coordinate in order to evaluate a fixed
number of points passed to the decoding algorithm and pro-
duce an upper bound on the projected runtime. Our decoder
was implemented as described in §6 and configured accord-
ing to Table 1. Table 2 presents our running times, which for
common cases take seconds.

Encoding. We benchmarked our encoding algorithms on both
the laptop and Puck.js. Table 3 shows the running times of
both.

8 Limitations

The AROF scheme proposed in this work comes with some
limitations. First, the number of stalking LTAs that the scheme
can tolerate must be fixed at the time of deployment. Should
a user be stalked by more than the number of LTAs chosen at
the outset, they will be unable to detect any of the malicious
LTAs. We chose a maximum of three stalking LTAs based
on a privacy/cost tradeoff. At the time of writing a four-pack
of AirTags costs $99, which is comparable in price to a self-
contained GPS tracker. Larger numbers of tolerable stalkers
can be chosen at the outset, but would result in lower privacy
times than those shown in Table 1. For example, for the 4 sec-
ond anonymity epoch, tolerating up to 4 stalkers would result
in 33 minutes of privacy, 5 stalkers 28 minutes, and 6 stalk-

ers 22 minutes. We note that these numbers were computed
assuming the BLE broadcast size is fixed, and as discussed
in §5, privacy time can be increased by assuming a larger
broadcast.

Additionally, our scheme is weak to large levels of collusion
among trackers. We assume that the privacy adversary is not a
global adversary. If they are, then the stalking victim no longer
has an asymmetry, and passive stalker detection protocols are
unlikely to be compatible with privacy.

9 Related Work

Offline finding. Several works have considered the privacy
and integrity of the offline finding (tracker) ecosystem. Hein-
rich, Bittner and Hollick [22] evaluated the anti-stalking mech-
anism use in FindMy. Heinrich, Stute, Kornhuber and Hol-
lick [23] also considered the privacy of Apple’s FindMy proto-
col. Mayberry et al. [30] considered ways to bypass tracking
alerts in AirTag devices, and in a separate work Mayberry,
Blass and Fenske [29] devised protocols to protect against
counterfeit tags. Depres et al. [17] develop a method to de-
tect stalking devices with frequently rotating MAC addresses
using physical-layer techniques such as RSSI.

Most of the previous works do not consider the attack we
attempt to mitigate in this paper: tracking a user via the un-
changing identifier of their own LTAs. [23] mentions such
a concern, but dismisses it as the authors study only devices
which rotate their identifier every 15 minutes. Similar to our
work, [17] proposes a stalker-detection mechanism for LTAs
with frequently changing identifiers. However, their work
focuses on linking broadcasts via physical-layer attributes,
whereas our work is entirely on the protocol level. Addition-
ally, our work is the only proposal that prevents the tracking
of an LTA until a signficant time in contact with it has passed.

Secret sharing. Many schemes use secret sharing for privacy
applications: here we focus on some recent works closely re-
lated to ours. The Apple PSI system [6] defines the notion of a
detectable hash function based on interleaved Reed-Solomon
codes [8]. Similarly, the STAR protocol of Davidson et al. [16]
emits shares of (multiple) secrets for private telemetry report-
ing: unlike our work, their protocol assumes that the decoder
can recognize all shares from a dealer and so noise and un-
linkability concerns are not considered. Finally, the literature
on robust secret sharing (RSS) and cheater detection is itself
robust, and considers many different models (see [10, 12, 34]
and references therein). A key difference between the classi-
cal RSS setting and our setting is that in RSS there is exactly
one dealer; crucially, RSS does not incorporate the notion of
unlinkability.
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10 Conclusion and Future Work

In this work we considered the problem of constructing
privacy-preserving tracking protocols that enable efficient
abuse detection. We demonstrate that the use of secret shar-
ing enables privacy-preserving offline finding while also
admitting efficient algorithms for detecting stalkers. This
work leaves several open questions for future work, including
the development of efficient protocols secure against mali-
cious/counterfeit tags, as well as the development of improved
multi-dealer secret sharing schemes.
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A Full Description of CH∗-MDSS

We begin this section by defining polynomial lattices. We then
present the problem we need CH∗-MDSS to solve in order
for our second construction to satisfy MD-Correctness. We
end by giving the construction and stating our experimentally-
backed heuristic correctness assumption.
Polynomial lattice preliminaries.See [14] for a background
on polynomial lattices and lattice reduction. Let F[z] be
the ring of polynomials over variable z with coefficients
in F. Let F(z) be the field of rational functions u(z)/d(z),
u(z),d(z) ∈ F[z]. For a polynomial f ∈ F[z], its degree is
deg( f ); for a rational function f (z) = u(z)/d(z) in low-
est terms, its degree is deg(u)− deg(d). Consider a matrix
B ∈ F(z)n×n with entries that are rational functions; let the
rows of B be n-dimensional vectors bi ∈ F(z)n. The poly-
nomial lattice generated by basis B is the set of vectors
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L(B) = {v | v = ∑
n
i=1 aibi,ai ∈ F[z]}. That is, the lattice con-

sists of vectors over F(z) that are F[z] (polynomial) linear
combinations of basis vectors. We define the length of a
vector v = (v1,v2, . . . ,vn), vi ∈ F(z) to be |v|= maxi deg(vi).
Define the determinant detL(B) = detB. For a full-rank n-
dimensional polynomial lattice L(B), there is a polynomial-
time algorithm to compute a so-called reduced basis B′ for
L(B) given a basis B [32]. Such a reduced basis is guaran-
teed to contain a vector of length |v| ≤ (degdetL(B))/n, and
(unlike in the case of integer lattices) is guaranteed to con-
tain a shortest vector of the lattice. We will also say that
λ1(B) is the length of the shortest vector in L(B). For two
vectors v,w ∈ F(z)n define the inner product ⟨v,w⟩= ∑i vi ·wi.
Finally, for any lattice L(B) one can define the dual lattice
L∗(B) = {w ∈ F(z)n | ⟨w,v⟩ ∈ F[z]∀v ∈ L(B)}. Given a basis
B for a full-rank lattice L(B), (B−1)T is an explicit basis for
the dual L(B)∗.
A note on reduced bases of lattices. While for many appli-
cations any reduced basis suffices, we are solely interested in
those that are also in popov form [25, 35]. It is a direction of
future work to determine why such bases are needed for the
correctness of our algorithms. For the rest of this paper, we
assume LatticeReduce(B) returns the popov form of B.

Below, we consider the following problem from coding
theory which is related to the heuristic assumption that is
needed to prove the correctness of our algorithm.

Definition A.1 (Simultaneous Curve Reconstruction Problem
[8, 15]). Given n, t,k,c,q, input points
{(αi,(βi,1, . . .βi,c))}i∈[n], where ∀i ∈ [n], j ∈ [c], αi,βi, j ∈ Fq,
each αi distinct, recover all polynomial sets P = (p1, . . . pc)∈
Fq[x]c s.t. ∀i,deg(pi)≤ k and P agrees with T ⊂ [n], |T | ≥ t
points. A polynomial set P = (p1 . . . pc) agrees with a point
(α,(β1, . . .βc)) if ∀ j ∈ [c], p j(α) = β j

Given a set of input points {(αi,βi,1, . . . ,βi,c)}n
i=1,

(p1 . . . pc) may be called a solution or a solution set if it agrees
with at least t input points.

We briefly make some remarks about this problem from
what is known in the literature. First, the difficulty of this
problem depends heavily on the distribution of the points
{(αi,(βi,1, . . .βi,c))}i∈[n]. When there is one solution, and all

other points are randomly sampled (i.e. αi,βi, j
$←− Fq) we

can theoretically recover the solution P with high probability,
provided that t > (nkc)

1
c+1 +k+1 [15].We know of additional

algorithms that are conjectured to achieve the more optimum
bound of t > (nkc)

1
c+1 [36].

To the best of our knowledge, there are no algorithms in
the coding theory literature which solve this problem in a
different setting from the random error model.

In our work, we handle a slightly more adversarial channel,
where there are multiple solution sets but all solutions (and
errors) are independent of one another. We formalize this
below.

Input Distribution We begin by introducing two pieces of
notational shorthand. First, we define the honest distribution
of points that the input to the algorithm will draw from. This
distribution is equivalent to sampling points along a collection
of polynomials.

Definition A.2 (Honest Distribution). For a field F, an inte-
ger m, and a set of polynomials P = {p1, . . . , pc}, define the
following distribution DF

m,P on (Fc+1)m:

• For i ∈ [m], sample xi
$←− F and set

shi := (xi, p1(xi), . . . , pc(xi))
• Return {sh1, . . . ,shm}

Definition A.3 (Channel Distribution). Let F be a field, and
let c,k,max,m1, . . . ,mh be integers where max=∑

h
i=1 mi, and

let s1, . . . ,sh ∈ Fc be vectors of field elements. Let ζ(F,k,c,s)
denote the set of all polynomial sets P = {p1, . . . , pc} over F
where ∀i ∈ [c], deg(pi)≤ k, and s = (p1(0), . . . , pc(0)). Then
define the following distribution CDc,k,max,m⃗,⃗s on (Fc+1)max

where m⃗ = m1, . . . ,mh and s⃗ = s1 . . .sh:

• For i ∈ [h], sample Pi
$←− ζ(F,k,c,si)

• For i ∈ [h], sample Si← DF
mi,Pi

• Return S :=
⋃

i∈[h] Si

Looking ahead, we will need one additional requirement
for our algorithm to work: all input points will need to have
unique x-coordinates. We define Unique(S) for a set of points
S to be true if all points have a unique x-coordinate, and false
otherwise.

A.1 CH∗-MDSS

Description of subroutines Briefly we describe all pre-
viously undefined subroutines that are needed to give our
algorithm description. LagrInterpol simply does lagrangian
interpolation of the input points. Find(M,d) takes as in-
put a matrix M and a degree bound d, and returns all row
vectors r⃗ with |⃗r| ≤ d. Translate(⃗v,k) takes a vector v⃗ =
(v0,v1, . . .vc) and transforms it into a potential solution poly-
nomial set by unweighting v0 by k, then dividing v1, . . .vc by
v0. IsSol(V,ws, t,k) checks whether the set V agrees with at
least t points in the working set ws and if all the entries are
actually polynomials of degree less than or equal to k. Finally,
ProcessSol(P,solns,ws) adds the polynomial set P to solns
and removes all agreeing points from ws.

We now give an overview of CH∗-MDSS, which is given in
Algorithm 1. Recall that this construction is based on the one
presented by Cohn and Heninger [14], which creates a lattice
for multivariate polynomials Q where a short lattice basis
corresponds to low degree Q that have the polynomials of
interest as common roots. In particular, we focus our attention
on the “linear" version of this decoder, since it corresponds
to a relatively small lattice (with dimension growing linearly
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with c) and finding the common roots only requires solving
a linear system of equations. While this algorithm is a good
starting place, it is not ideal, since it still requires a two step
procedure, where a lattice reduction is first done to get a short
basis before potentially heavy post-processing. We would
like to find solutions in one-shot, with minimal additional
overhead.

Fortunately, such efficiency gains may be possible by using
the dual of the lattice presented in [14]. The dual directly
contains our solutions (p1 . . . pc) as their dot product with any
vector in the primal is a multiple of their syndrome polynomial
by construction.8 We also know these vectors are relatively
short because of the degree bounds on the pi. Thus, we may
hope that these solutions show up in a reduced basis.

Constructing this dual lattice, reducing it, and searching
for short vectors that correspond to polynomial sets that agree
with our input constitutes the first stage of the algorithm (lines
3-7, Algorithm 1).

Experimentally, we found that this first part of the algorithm
is capable of finding solutions not only in the random noise
setting (which was explored in the past for the primal lattice)
but even under our input distribution, with a few caveats:

• Often the reduced basis only contained one solution of
interest, the solution agreeing with the most input points

• When there was no single solution agreeing with at least
two more points than any other, the short basis contained
no solution vector of interest

The former problem can be solved by an iterative solving
procedure that removes an input point once a solution has
been identified that agrees with it 9. The second issue is trick-
ier to deal with. To give a high level overview, in these cases
we can identify smaller sublattices that contain our solution
vectors and then tweak them to allow for a more efficient
search of possible solution vectors over this space. A detailed
explanation can be found in the full version of this paper. The
procedure in lines 15-29 allow us to identify a single solution
in the second case, which is enough to give us an iterative
algorithm for finding all solutions.

We now state the assumption that must be fulfilled for
correctness to hold.

Heuristic Assumption 1. Let CDc,k,max,m⃗,⃗s be defined as in
Definition A.3. Then:

Pr
[
CH∗-MDSS(S) ̸=

{
si s.t. mi ≥

max+ ck
c+1

} ∣∣∣∣ S←CDc,k,max,m⃗,⃗s
Unique(S)=True

]
≤ negl(log |F|)

8To be precise, if there is a solution (p1 . . . pc), the target vector in the
dual will have the form (zkE(z), p1(z)E(z), . . . pc(z)E(z)) where E(z) is the
error locator polynomial. This is due to scaling the entries in the lattice to be
in F[z]

9This is only possible because it is very unlikely, given our input distribu-
tion, that there will be an input point agreeing on more than one solution

Algorithm 1: CH∗-MDSS

Input :k, t,n,{(αi,βi,1, . . . ,βi,c)}n
i=1

Output :a list {(pi
1 . . . pi

c)}z
i=1 or ⊥

1 solns := [],ws := [n], fail := False
2 while |ws| ≥ t and not fail do
3 ∀ j ∈ [c], f j(z) = LagrInterpol({(αi,βi, j)}i∈ws),

N(z) = ∏i∈ws(z−αi)
4

M =


zk f1(z) f2(z) . . . fc(z)

N(z)
N(z)

. . .
N(z)


5 Mred← LatticeReduce(M)
6 if λ1(Mred)> k+(|ws|− t) then
7 set fail to True
8 else
9 v⃗1, . . . v⃗h← Find(Mred,λ1(Mred))

10 V ← Translate(∑h
i=1 v⃗i,k)

11 if IsSol(V,ws, t,k) then
12 ProcessSol(V,solns,ws)
13 else
14 if λ1(Mred) == k+(|ws|− t) then
15 set fail to True
16 else
17 choose i ∈ ws, s.t. (z−αi) ∤ v0

18 b⃗1, . . . , b⃗m← Find(Mred,k+(|ws|− t))
19 (bi

0, . . .b
i
c)← b⃗i,∀i ∈ [m]

20

S=


z|ws| ·b1

0 b1
1 . . . b1

c
... Im

z|ws| ·bm
0 bm

1 . . . bm
c

z|ws| · (z−αi) 0 . . . . . . . . . . . . 0



21 Sred← LatticeReduce(S)
22 s⃗1, . . . s⃗h← Find(Sred,λ1(Sred))
23 r⃗i← ∑

m−1
j=0 si

c+1+ jb⃗ j,∀i ∈ [h]
24 R← Translate(∑h

i=1 r⃗i,ws)
25 if IsSol(R,ws, t,k) then
26 ProcessSol(R,solns,ws)
27 (q1, . . . ,qc)← R,

M←{i | ∀ j ∈ [c],q j(αi) = βi, j},
I←{i ∈ws | (z−αi) ∤ v0}, L← I \M

28 ∀ j ∈ [c], p j←
LagrInterpol({(αi,βi, j)}i∈L)

29 if IsSol((p1 . . . pc),ws, t,k) then
30 ProcessSol((p1, . . . pc),solns,ws)

31 return solns
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