
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Exploiting Leakage in Password Managers
via Injection Attacks

Andrés Fábrega, Armin Namavari, and Rachit Agarwal, Cornell University;
Ben Nassi, Cornell Tech, Technion - Israel Institute of Technology;

Thomas Ristenpart, Cornell University, Cornell Tech
https://www.usenix.org/conference/usenixsecurity24/presentation/fabrega

Exploiting Leakage in Password Managers via Injection Attacks

Andrés Fábrega1, Armin Namavari1, Rachit Agarwal1, Ben Nassi2,3, Thomas Ristenpart1,2
1 Cornell University 2 Cornell Tech 3 Technion - Israel Institute of Technology

Abstract
This work explores injection attacks against password man-

agers. In this setting, the adversary (only) controls their own
application client, which they use to “inject” chosen payloads
to a victim’s client via, for example, sharing credentials with
them. The injections are interleaved with adversarial obser-
vations of some form of protected state (such as encrypted
vault exports or the network traffic received by the applica-
tion servers), from which the adversary backs out confidential
information. We uncover a series of general design patterns
in popular password managers that lead to vulnerabilities al-
lowing an adversary to efficiently recover passwords, URLs,
usernames, and attachments. We develop general attack tem-
plates to exploit these design patterns and experimentally
showcase their practical efficacy via analysis of ten distinct
password manager applications. We disclosed our findings to
these vendors, many of which deployed mitigations.

1 Introduction

Password-based authentication suffers from well-know pit-
falls, such as the fact that users tend to choose passwords that
can be easily guessed by attackers [28]. Password managers
are often cited as the default solution to this problem [32, 56],
as users can offload to them the complexities of password
generation, storage, and retrieval. Indeed, password managers
have enjoyed a noticeable rise in popularity [28, 51], placing
them among the most ubiquitous security-oriented tools.

Password managers have benefited from academic atten-
tion [8,9,13,22,24,25,27,38,43,46,52,53], which has helped
understand and improve their security along various dimen-
sions. The attacks uncovered by prior work broadly fall under
two general threat models. First are attacks that use a client-
side resource controlled by the adversary, such as a malicious
website visited by the client [38,53], a rogue application in the
victim’s device [9, 22], or the client’s WiFi network [52]. Sec-
ond are adversaries that somehow acquire a copy of a user’s
encrypted vault, and exploit leakage from unencrypted vault

metadata [24, 43] or by offline cracking attacks of a user’s
master password [8, 13, 27]. State-of-the-art password man-
agers are therefore designed to resist both kinds of threats and,
notably, use slow cryptographic hashing to prevent cracking
attacks for well-chosen master passwords.

In this work, we consider a new kind of threat model in
which an adversary (1) controls their own application client,
through which they can send chosen payloads to the victim
(for example, via the password sharing feature found in most
modern password managers); and (2) can observe some form
of encrypted state and associated metadata, such as the user’s
encrypted vault backups or network requests received by the
application servers. Borrowing terminology from prior work
in other domains (see Section 2), we refer to attacks in this
threat model as injection attacks.

The core idea behind injection attacks is that the adversary
can use injections to trigger subtle interactions in the applica-
tion logic between their data and target victim data (e.g., other
passwords used by the target), which are reflected in their
observations of ciphertexts (e.g., inspecting their lengths) and
metadata in a way that allows recovering sensitive informa-
tion. We argue that this threat model is increasingly important
as password managers become more complex and feature-
rich, which provides new avenues for injection mechanisms
and vulnerable cross-user interactions.

To understand whether this threat model is of practical con-
cern or not, we performed a security analysis of ten popular
password managers that support sharing—LastPass, Dashlane,
Zoho Vault, 1Password, Enpass, Roboform, Keeper, NordPass,
Proton Pass, and KeePassXC. Together these reportedly ac-
count for over 30% of all password manager users [51]. We
uncover a series of exploitable vulnerabilities that implicate
all of the password managers investigated.

Our first class of attacks exploits the fact that a common
feature of password managers is for clients to periodically
log outside the device various metrics about the “health” of a
user’s vault, such as the number of duplicate passwords. We
show how an adversary can leverage these benign-looking
metrics to perform an efficient binary-search-based dictio-

USENIX Association 33rd USENIX Security Symposium 4337

Attack vector Leakage Adversary type Vulnerable applications

Vault-health logs Passwords Eavesdropper L, D, Z, E, R, K, N
Vault-health logs Passwords Network Z
URL icon fetching URLs Network D, 1P, E, R, P, N
Attachment deduplication Attachment Eavesdropper KX
Compression URLs and usernames Eavesdropper KX

Figure 1: Summary of the vulnerabilities discovered in this work, which lead to efficient attacks that recover sensitive information
from a victim’s vault. These vulnerabilities were present in ten applications we studied: LastPass (L), Dashlane (D), Zoho
Vault (Z), 1Password (1P), Enpass (E), Roboform (R), Keeper (K), NordPass (N), Proton Pass (P), and KeePassXC (KX).

nary attack that recovers the target user’s saved passwords.
Our attacks do not require the adversary to know additional
information about the victim’s saved credentials beforehand
(for example, URLs nor usernames). Seven out of the ten
applications are vulnerable to this attack. In most cases, the
adversary must be a passive eavesdropper that observes these
metrics directly (for example, by having a persistent foothold
in the application servers), while for one application the at-
tack is feasible by a passive network adversary that simply
observes the HTTPS channels under which the E2EE data is
transmitted. We note that both eavesdropping and network
adversaries are within scope of the threat models under which
password managers are designed, and the ubiquity of server-
side breaches [37, 54, 58], combined with the difficulty of
detecting such breaches [50], make it critical that password
managers resist such attacks.

Our second class of attacks exploits another feature of pass-
word managers: clients often display a small identifying icon,
such as a company logo, alongside each of a user’s saved
credentials. Importantly, such icons are only fetched once per
URL, and subsequent credentials reuse the icon stored in the
client. We show how this fact allows an adversary to perform
an efficient dictionary attack on the URLs in a victim’s vault.
The attack always succeeds in our experiments, and mounting
it requires no additional assumptions about the victim’s saved
credentials. Six of our case study applications are vulnera-
ble to this attack, and in all cases exploitation only requires
observations by a network adversary.

We then turn our attention to adversaries that have an en-
crypted copy of the entire vault, such as compromising a
local password-protected database file or backup of it. In
this case, we analyze the security of KDBX [12], which is a
file format used by many password managers, notably KeeP-
ass [33] and its derivatives [12, 57]. To optimize for storage,
KDBX employs a variety of storage-saving techniques, such
as file deduplication and compression. We show two attacks
exploiting these features to recover URLs, usernames, and
attachment contents. Compression and deduplication have led
to attacks against other systems before (see Section 2), but
our work is the first to show that these types of vulnerabilities
also arise in the context of password managers. Our attacks
target features of the underlying file format itself, and thus

can potentially be leveraged against any application that uses
KDBX. We implement a proof-of-concept for our attacks
in the case of KeePassXC, and experimentally show that its
accuracy is sufficiently high to make it a practical threat.

A summary of our attacks is shown in Figure 1. They ex-
ploit common design patterns found in password managers,
and as such other applications that employ these can be vul-
nerable to our attacks. Indeed, for each of our attacks, we
describe a general template for it, which is agnostic to lower-
level application details, and that can be used to target any
application that follows the relevant design pattern. More
broadly, our findings uncover higher-level issues in password
manager design, and we discuss the future work that will
be required to provide generally applicable mitigations for
injection attacks.

Summary of contributions. We begin the study of a new
threat model for password managers called injection attacks.
We identify three design patterns that lead to attacks, and we
implement practical attacks that affect a variety of applica-
tions. We stress, however, that our attack vectors are features
of password managers, instead of bugs that are specific to our
case study applications, and thus other password managers
can potentially be vulnerable to them. Some of our vulnerabil-
ities reveal new attack vectors, whereas others exploit known
malpractices (compression and file deduplication). Thus, for
the latter, our work is the first to show that these issues are
also present in password managers.

Our attacks highlight broader classes of design malpractices
found in password managers (and E2EE applications more
generally). We close this work by identifying these higher-
level issues, and outlining a series of takeaways for application
designers. Our results thus pave the way for future work along
various dimensions: identifying other password managers that
are vulnerable to our attacks, uncovering other patterns that
lead to injection attacks, and designing general tools to study
and mitigate injection attacks. We expand on these ideas, and
other opportunities for future work, in Section 8.

Ethics. All of our attacks were performed against isolated
research accounts. We kept the scale of our proof-of-concept
experiments as minimal as possible, so as to confirm the at-
tacks’ efficiency without overloading any application or cloud
servers. Some of our experiments required a high volume of

4338 33rd USENIX Security Symposium USENIX Association

network traffic, for which we implemented local simulators
that we validated via smaller experiments with real clients.

We first studied four applications (LastPass, Dashlane,
Zoho Vault, and KeePassXC), and disclosed our findings to
these vendors, who have since all deployed mitigations for our
vulnerabilities (see Section 8). We later expanded the scope of
our study to include more applications, and are thus currently
in a second round of disclosures with the other six vendors,
who are investigating our results. We have made ourselves
available to help with mitigations before public release of our
findings. We will update the paper to document the results of
the disclosure processes with the six remaining vendors once
they are complete.

2 Related Work

Security analysis of password managers. Prior work has
investigated attacks on password managers in threat models
involving some combination of client-side attacks, adversarial
networks, and a malicious service provider. Such examples
include attacks that rely on malicious applications in the vic-
tim device [22], malicious websites that the victim is tricked
into visiting [38], XSS adversaries that inject code into a
website’s login page [53], and a rogue WiFi network under
the adversary’s control [52]. The goal of the adversary is
to exploit some feature of the application, such as password
generation [43], autofill policies [52], and clipboard vulnera-
bilities [9, 22], to exfiltrate user passwords.

More relevant to our findings, some existing attacks on
password managers involve an adversary that obtains the en-
crypted database of the victim [8, 13, 24, 27, 43]. However,
most of these attacks focus on offline cracking of the mas-
ter password, using the recovered vault as a decryption or-
acle [8, 13, 27]. Other works, such as [24] and [43], simply
document unencrypted metadata in the encrypted database
files or consider a much weaker adversarial goal, namely, pro-
ducing a new, valid database after observing other valid ones
(for example, by tweaking metadata headers). Neither attack
violates the confidentiality of the password vault contents.

Our injection attack threat model is different from settings
explored in prior work on password managers. We consider
an adversary that, in addition to potentially compromising the
platform and/or network, can spin up clients of its own that in-
teract with the victim client using standard password manager
features. The adversary uses these cross-user interactions to
mix data of its choosing with sensitive victim data. Then, via
a leakage channel, the adversary learns information about the
combination of the victim data and its own injected data.

Injection attacks. Although we are the first to apply in-
jection attacks to password managers, prior work has stud-
ied the injection threat model in other contexts. For exam-
ple, [10, 59, 60] present attacks against searchable encryption
schemes and encrypted search indexes, where the adversary is

able to inject payloads that trigger a query into the encrypted
store. Our attacks take inspiration from techniques used in
this prior work, such as the binary search attack presented
in [60]. However, our contribution lies in how we apply these
techniques through the leakage channels and injection vectors
we identify, specific to the password manager setting.

A setting closer to ours is that of [20], which introduces
attacks against E2EE backups of messaging applications, in
the presence of an adversary that can message the victim and
subsequently observe their encrypted chat backups. A few
of our attacks (Section 7) rely on similar attack vectors (file
deduplication and compression). However, beyond targeting
different types of applications, our attacks represent a differ-
ent class of injection attacks: our work exploits encrypted
state synchronization, whereas [20] exploits encrypted state
backups. As such, our setting represents a richer attack sur-
face, with a higher frequency and granularity of observations,
and so our attacks are significantly more practical, as we ex-
plain further in this section. Furthermore, our attacks exploit
features such as health metric logs and URL icon fetching,
going beyond the attack vectors explored in prior work on
encrypted backups.

Attacks on compression before encryption. It has long
been known that compression before encryption can lead to
vulnerabilities [34], which has resulted in exploits against real-
world systems [20,26,31,34,44,49,61], such as TLS [26,49]
and the iMessage E2E encrypted messaging protocol [23].
Our work, however, is the first to exploit compression in the
context of password managers (Section 7.2). Our attacks com-
bine techniques from prior works (highlighted, as needed, in
the attack descriptions) with novel insights in order to exploit
this new setting.

Some works have studied compression in the broader con-
text of encrypted databases, such as [20, 31, 44]. The attacks
in both [44] and [31] rely on assumptions that are not present
in our setting, such as physical access to the target’s handset
and the ability to unlock it [44], and little to no noise in the
side channel [31, 44]. Further, their attacks are tailored to the
specific systems that are being targeted. The setting in [20]
is much more limited than our work, as the adversary is lim-
ited by daily backups, every injection results in much more
noisy metadata that is added to the database, and the adver-
sary cannot edit past injections. Thus, we devise new attacks
that are significantly more practical: our attacks handle larger
dictionary sizes (hundreds of items instead of, e.g., 10 to 20
items), have higher accuracy (for example, for a dictionary of
size 20—the largest [20] experiments with—our attacks suc-
ceed with 90% probability instead of 20-30%), and have an
additional confirmation step to verify if the found item is the
correct one or not. Further, their compression-based attacks
require the victim not to send or receive external messages for
multiple days, whereas our attacks run in a matter of minutes.

File deduplication, a common form of compression before

USENIX Association 33rd USENIX Security Symposium 4339

encryption, has been exploited in other contexts, such as client-
side encrypted file storage [29, 30] and E2EE messaging [20].
Our injection attacks exploiting deduplication (Section 7.1)
require new techniques due to details of KDBX 4’s architec-
ture. In particular, KDBX 4 employs both deduplication and
compression, which required mitigating noise from the latter.
We also note that the attack from [20] is not applicable to the
applications we consider in this work.

3 Password Managers Background

We describe the general architecture of password managers
in this section.

Password manager abstraction. We denote by U and PW
a user of a password manager service S and their account
password, respectively. The user U owns one or more de-
vices with an application client for S installed in each. The
types of clients available vary by service, but these typically
consist of mobile applications, desktop applications, web ap-
plications, and browsers extensions. Each client stores U’s
saved passwords and other information in the local storage
of its respective device in the form of a local vault, which
is (often) encrypted. We represent the contents of a vault by
V = {e1, ...,em}, where each e is a vault entry storing U’s
credentials for a website. Each e contains various fields such
as username (euser), URL (eurl), password (epw), and a list of
attachments (eattach).1

In order to have consistent local vaults, U’s devices need
to synchronize their state. For most password managers, this
involves clients periodically communicating with platform
servers, which serve as intermediaries that facilitate synchro-
nization. To do so, clients export an E2EE version of (only)
the latest state changes (e.g., new passwords added), using an
application-specific symmetric encryption scheme, and send
this to S’s servers using HTTPS. The server then forwards the
updates to all other devices the next time they come online;
the receiving clients decrypt the changes and update their
local vaults accordingly.

Alternatively, if the service provider does not directly facili-
tate synchronization, U has to ensure that their clients are con-
sistent, either by propagating updates manually, or by using
out-of-band synchronization mechanisms such as storing the
encrypted database file on an external cloud-storage provider.
In this case, state updates are less granular, as these consist
of a re-encryption and a re-upload of the entire database file
to the cloud via HTTPS. Note that this setup is explicitly
suggested by various applications that do not automatically
synchronize clients [19, 55].

State synchronization is very frequent: exports generally oc-
cur after every modification to the local database, and clients

1A common feature of password managers is for users to be able to attach
arbitrary files, e.g., sensitive documents, to their vault entries.

automatically check for imports (from S or from modifica-
tions to their cloud-stored file) every couple of seconds; the
exact periodicity varies across services.

Database file formats. Most password managers use sim-
ple data structures and file formats for their local vaults, which
typically consist of encrypting each field of each e ∈ V sepa-
rately, and sequentially organizing these entries using some
lightweight file format like JSON or XML. Some file formats
then additionally employ a variety of storage-saving mecha-
nisms, such as attachment deduplication and compression, to
minimize the size of the database file. This pattern is most of-
ten seen in applications that do not route information through
S’s servers, as everything is stored on the user’s device and
(potentially) exported to some third-party cloud service. Con-
versely, other applications can leverage S’s servers for storage;
for example, instead of storing the binary content of all at-
tachments, local vaults can just store a pointer to a blob store
managed by S, which contains the encrypted file itself.

Credential sharing. A common feature of modern pass-
word managers is cross-user sharing, which allows users to
jointly hold entries in their vaults. For this, whenever some
user wants to share a credential e from their vault with U ,
the former derives an ephemeral key that is used to encrypt e,
and sends this ciphertext alongside the ephemeral key (itself
encrypted under a public key associated with U). Next time
one of U’s devices comes online, its client will download the
shared items and decrypt them locally to recover e.

We note that, generally, U must first accept the shared entry
e before it gets added to their vault.2 However, subsequent
updates to e require no approval, and are propagated auto-
matically to all clients. Further, many password managers
allow users to share folders in addition to individual entries.
In this case, U must once again accept the initial share of
the folder, but all future updates, including adding or deleting
new entries to the folder, require no approval.

For some applications, credential sharing is restricted to
accounts that are part of the same “organization”, e.g., where
both accounts are affiliated with a corporate or family license
for the application. In this case, shared credentials should
still provide E2EE guarantees, such as cryptographic access
control, even across all organization members. These guar-
antees should hold even in the presence of privileged users
such as organization administrators (who may have access to
organization-wide metadata).

4 Threat Model and Case Studies

While password managers have traditionally been non-
interactive applications, newer features like credential sharing
require us to re-think their security model: what attacks, if

2Some managers place additional trust constraints on password shar-
ing: Zoho Vault only allows sharing with users who are part of the same
“organization”, which are groups that the user can belong to.

4340 33rd USENIX Security Symposium USENIX Association

any, arise from interaction with other malicious clients? This
question is the starting point for our threat model.

4.1 Threat Model
Our threat model, which we describe in detail in this sec-
tion, assumes an adversary that (1) can inject content into the
victim’s vault, and (2) subsequently observe some form of
protected application state.

Injections. The injection channel of our attacks will be
the aforementioned cross-user sharing feature of password
managers. That is, the adversary can share with the victim a
credential e, which gets incorporated and synchronized across
all victim vaults, resulting in e being “injected” into V . We
stress that, in our setting, the adversary exclusively controls
an (unmodified) application client, and sends their payloads
through the standard interface provided by the application.
Thus, tampering with either the victim or the adversary’s
clients, or controlling any other parts of the environment, is
explicitly out of scope.

As mentioned earlier, password managers often require the
victim to first accept the shared items before they are incorpo-
rated into their vault, which is thus a necessary assumption
required to establish an injection channel. We stress, however,
that all of our attacks require the victim to accept a single
shared item, as all subsequent updates to it, through which
injections are performed, require no approval. As such, our
threat model assumes some initial degree of trust between the
user and the adversary, or that the latter can trick the former
into accepting a share request. Accepting such a request, how-
ever, should not lead to disclosure of a user’s vault content.

Observations. Our threat model then assumes that the ad-
versary has persistent access to some function of the data that
leaves the victim’s device, e.g., as a result of recurring back-
ups or state synchronization between devices. We distinguish
between two variants, depending on the trust assumptions
required for each attack: (1) an eavesdropping adversary,
who has access to the E2EE data itself, e.g., ciphertexts of
new passwords, as well as other plaintext metadata; and (2) a
weaker network adversary that can only observe the HTTPS
packets under which the E2EE data is transmitted. We high-
light the difference between both settings in Figure 2. We
discuss the periodicity of synchronization (and, hence, the
frequency of adversarial observations) for all case study ap-
plications in the relevant attack sections.

Password managers promise end-to-end confidentiality [5,
7, 35], i.e., a user’s data is compromised only if their master
password is leaked, and so password managers are designed
to protect against eavesdropping and network adversaries. A
network adversary can arise from any number of traffic analy-
sis techniques, such as ARP or DNS spoofing, BGP hijacking,
router compromise, a malicious ISP, etc. An eavesdropping
adversary generally corresponds to a malicious or breached

Figure 2: A network adversary can observe the HTTPS pack-
ets under which a mix of E2EE data (green squares) and
plaintext metadata (orange squares) is transmitted; an eaves-
dropper has direct access to these.

service or cloud provider, or from a privileged user within
an organization with access to metadata (e.g., an administra-
tor). However, they may also arise from other attacks against
the TLS layer of traffic, e.g., attacks on certificate authorities
(CA) or malicious client-side proxies. Breaches on password
managers and cloud services [37, 54, 58] suggest that such
an eavesdropping adversary is a realistic threat model, and
indeed persistent access is a practical concern: an IBM report
from 2022 [50] found that the average time it takes to identify
a breach is 212 days.

The process of injections and (passive) observations oc-
curs iteratively: the adversary sends a payload to the vic-
tim (either by sharing a new credential, or modifying older
ones), observes the resulting encrypted state—–which is now
a function of both adversarial and sensitive data—adaptatively
chooses the next payload to inject, and so on. The adversary’s
goal is then to back out confidential information from their
observations.

A priori, no sensitive user data should be leaked, since the
victim’s confidential information is encrypted before leaving
their device. However, our attacks exploit the fact that appli-
cation logic often mixes personal and externally-received data
in subtle ways which may leak information. Thus, an adver-
sary can use injections to trigger these cross-user interactions,
which are then reflected in the exported application state, re-
vealing confidential data. We stress that injections attacks
assume strong cryptographic primitives, and thus low-level,
cryptanalytic vulnerabilities are outside their scope; instead,
the lengths of ciphertexts and plaintext metadata form the
basis of our attacks.

In addition to the adversary’s injections, the state changes
between observations may additionally contain new, benign
data added by the victim while the attack is running; we
refer to this as the “noisy device” setting, and to the case
where the only additions are the adversary’s injections as the
“quiet device” setting. Some attacks are robust to noise, while
others require the victim’s client to be quiet while the attack
is running; we will specify the noise assumptions required for
each attack in the relevant sections.

Out-of-scope attacks. We do not consider attacks in which
a compromised service attempts to deploy client code con-

USENIX Association 33rd USENIX Security Symposium 4341

taining backdoors. All E2EE threat models implicitly or ex-
plicitly assume trusted client software. Improved assurance
here can be aided via mechanisms such as public auditabil-
ity of software or monitoring via binary transparency ser-
vices (e.g., [42]). Without trustworthy client side software, no
confidentiality is possible. More pragmatically, we note that
such client subversion would require an active adversary that
hijacks client code distribution, while our injection attacks
would be easier to mount, requiring only a passive adversary
that either compromises some platform server (e.g., a web or
storage server) to enable eavesdropping or has visibility into
the target’s network communications.

In our threat model, we assume that the adversarially con-
trolled client that performs injections honestly follows the
protocol. One could also consider a fully malicious client
that deviates from the E2EE protocol when performing in-
jections. We are unaware of any additional attacks that this
would enable.

4.2 A Corpus of Password Managers
We gathered a set of password managers to experimentally
investigate the feasibility of injection attacks. To build a list
of targets, our starting point was a report by Security.org [51]
that includes a list of password managers ranked by popular-
ity. We also considered informal online polls on password
manager popularity [47, 48]. We investigated the advertised
features of each of the resulting 16 applications, and excluded
those that do not meet either of two inclusion criteria: (1) the
application must support cross-user credential sharing, and
(2) the application must target cryptographic access control
for shared credentials. The first requirement rules out applica-
tions that are unlikely to have any way to inject adversarial
content into a target, and the second requirement rules out ap-
plications for which simpler attacks would work in our threat
model, due to lack of E2EE security guarantees.

All browser-integrated password managers were excluded
due to the first criteria, as they do not yet support credential
sharing. The second criteria ruled out one application, Bit-
warden, which does support credential sharing, but not in a
cryptographically secure way: Bitwarden has support for es-
tablishing separate “collections” within an organization, but
surprisingly all collections use the same secret key. So, in our
threat model, any organization member can already decrypt
all organization credentials.3

Our final list of applications consisted of LastPass (v4.123),
Dashlane (v6.2346), Zoho Vault (v3.8), 1Password (v2.25.0),
Enpass (v6.11.0), Roboform (v9.6.2), Keeper (v116.18.0),
NordPass (v.5.16), Proton Pass (v1.17.4), and KeePassXC
(v2.7.6). These applications cover over 30% of all password
manager users according to [51], and all follow the basic ab-

3We disclosed this to Bitwarden, who confirmed that privilege separation
across collections is “at the authorization level, not at the encryption level”.
Thus, they target a weaker security model than other applications.

straction presented in Section 3. All application except for
KeePassXC and Enpass rely on the application servers for
stateful storage and synchronization. These tend to use simple
file formats for their local vaults (see [43] for an overview),
with no additional storage-saving mechanisms. Conversely,
KeePassXC and Enpass do not natively handle synchroniz-
ing across clients. Instead, they suggest [19, 55] storing the
database file in an external cloud provider to which all user
devices have access.

KeePassXC’s file format, KDBX [12] (detailed in Sec-
tion 7), supports attachment deduplication and vault com-
pression. We note that KDBX is used by other password
managers, which are ports and derivatives of KeePass [33], a
popular open-source password manager that introduced this
file format. See [12, 57] for comprehensive lists of applica-
tions that use KDBX. Even though we implement our attacks
on one such example, KeePassXC (which is a more cross-
platform and feature rich version of the original KeePass), our
attacks target the underlying file format itself, and thus other
applications that use it may be vulnerable to our attacks.

4.3 Overview of Attacks
Our security analysis of the case study applications uncovered
three main classes of attacks in the context of injection attacks.
We provide an overview of these here, and discuss them in
detail in the next three sections.

Attack #1: application-wide metrics (Section 5). The first
attack arises from the fact that many password managers
compute sensitive metrics, such as the number of duplicate
passwords in the vault, across both personal and shared vault
entries. If these metrics are logged somewhere outside the
device (e.g., the application servers), an adversary can trigger
fluctuations in these metrics with injections, and observe how
they are updated in the external location. As such, besides
injecting credentials, in this attack the adversary needs to have
access to the location where the metrics are logged (e.g, a
foothold in the application servers.)

Attack #2: URL icon fetching (Section 6). The second
attack arises from the fact that many password managers
display a graphical icon next to each credential, identifying
the website for it. This icon is only fetched once from the
application servers, and future entries for the same website
reuse the image that is stored in the client. Thus, an adversary
can use this to test whether the victim has a credential for
a particular URL or not, depending on whether the victim’s
client re-fetches the icon of an injected URL. So, besides
updating credentials, in this attack the adversary needs to be
able to observe the HTTPS requests that leave the victim’s
client, or have a foothold in the server where the icons are
fetched from.

Attack #3: storage-saving mechanisms (Section 7). The
third attacks arise from storage-saving mechanisms that an

4342 33rd USENIX Security Symposium USENIX Association

Attack Pre-conditions Las
tP

as
s

Das
hla

ne
Zoh

o Vau
lt

1P
as

sw
or

d
Enp

as
s

Rob
ofo

rm
Kee

pe
r

Nor
dP

as
s

Pro
ton

Pas
s

Kee
Pas

sX
C

App-wide metrics (Section 5)
Support for reports of duplicate password X X X X X X X X X X
No. of duplicates computed across all passwords X X X × X X X X X X
No. of duplicates logged outside the device X X X X X X X X × ×

URL icon fetching (Section 6)
Support for URL icons X X X X X X X X X X
URL icons fetched from servers X X × X X X × X X X
Fetched URL icons re-used across all vault items × X × X X X × X X ×

Figure 3: Summary of the pre-conditions required for an application to be vulnerable for two of our attacks, each represented by
a set of rows, and the conditions satisfied by each application we analyzed. An application that has a X for all pre-conditions in a
set of rows is thus vulnerable to the attack.

application may use to decrease the size of the encrypted
vault. At a high-level, since these mechanisms remove redun-
dancy in the plaintext vault, the adversary can tell whether
their content matched the victim’s other credentials or not
by looking at fluctuations in the size of the encrypted vault.
So, besides injecting credentials, in this attack the adversary
would need to have persistent access to the victim’s encrypted
vault (for example, in a cloud provider where the victim up-
loads backups of their vault). In our work, we show attacks
against two such mechanisms: database compression and at-
tachment deduplication.

In Table 3, we summarize the main pre-conditions required
for an application to be vulnerable to our first two attacks,
as well as the pre-conditions satisfied by each application in
our study. We leave implicit the fact that an application must
satisfy the inclusion criteria for our threat model to begin with,
e.g., support credential sharing. For our compression-based at-
tack, the only pre-condition is that the application compresses
the database file across all vault entries; for our deduplication
based attack, the preconditions are (1) the application has
support for attachment deduplication, and (2) deduplication
occurs across attachments in all vault entries, irrespective of
sender. From the applications we investigated, only KeeP-
assXC meets the pre-conditions for these two attacks.

5 Attacks From Application-wide Metrics

Equipped with the background from the preceding sections,
we proceed to describe our attacks, starting with our first class
of attacks in this section.

Our close study of the network traffic of various password
managers revealed that many of them periodically log outside
the user’s device a variety of metrics about the overall “health”
of a user’s vault, most notably the number of reused pass-
words. These logs are sent to either the application servers
directly, or to some other member of the user’s organization,
e.g., an administrator with access to a company-wide security
dashboard. These metrics, however, are computed across both
personal and shared vault entries. As we will show, the adver-
sary can leverage this fact to perform an efficient dictionary
attack on a user’s passwords.

Dictionary attacks are a standard adversarial goal in the
context of password-based authentication, as it is common

for users to choose weak or reused passwords [28]. Impor-
tantly, and perhaps surprisingly, this is a problem even among
users of password managers [39, 45]. This arises from, for
example, users that import but do not update old passwords;
or users that use password managers for convenience features
(e.g., autofill) rather than for security features (e.g., password
generation), which is a common practice [21].

We now proceed to describe the attack. We first explain
the general structure of it, which serves as an attack template
that can be used against any password manager that satisfies
the pre-conditions for the attack. For now, we will assume
that the adversary is an eavesdropper, and has a persistent
foothold to wherever the vault metrics are stored, as described
in Section 4.1

Attack description. Given a dictionary of candidate pass-
words P := {p1, ..., pn}, the adversary A wants to determine
which pi ∈ P is present in U’s vault V . Let dup(V) be the
number of duplicate passwords across all entries in U’s vault,
i.e., dup(V) = 1

2 ∑e′,e′′∈V (e′pw = e′′pw). In this setting, we as-
sume U’s clients periodically send dup(V) to some external
location (e.g., automatically every couple of seconds or as a
result of a particular action). The key idea behind this vulnera-
bility is that, since dup(V) is computed across both personal
and shared passwords, an eavesdropping adversary with ac-
cess to this metric can use it as an oracle to determine whether
a candidate password p is in the victim’s vault or not. Namely,
they can compare the value of dup(V) before and after inject-
ing an entry e such that epw = p; if dup(V) stays the same, it
must be the case that p is not yet in V , and thus is not one of
the personal passwords of U . Conversely, dup(V) increases
if and only if p matches one of U’s personal passwords.

The adversary can leverage this oracle to find all passwords
in P that are in U’s vault. There are two injection strategies
that A can use. If the application supports shared folders, in-
stead of “querying” the oracle with each candidate password,
one at a time, A can use a binary-search injection strategy to
arrive at the target password more quickly, as follows:

(1) Setup: establish a shared folder F with U , which requires
U to accept the share.

(2) Baseline measurement: wait for a network request from
U that contains the initial n′ = dup(V).

(3) Inject: split P into two halves P′,P′′ of equal size. For

USENIX Association 33rd USENIX Security Symposium 4343

each p ∈ P′, create an entry e in F such that epw = p.
(4) Measure: wait for a network request from U with an

updated n′′ = dup(V).
(5) Recurse: set Pf ound = P′ if n′′ > n′, and Pf ound = P′′ if

n′′ = n′. If |Pf ound |= 1, output it as the target password.
Otherwise, repeat steps 3–4 with P = Pf ound as the input
set and n′′ as the baseline measurement.

If the application instead only supports sharing individual
entries, A must use a slower, sequential injection strategy.
Let t be the number of individually-shared entries between
A and U , where t < n

2 (otherwise, A can just use the binary-
search strategy from above). In this case, A can inject t candi-
date passwords at a time, interleaved between observations of
dup(V), by updating the password field in each of the shared
entries with a new batch of t candidate items. Eventually, one
of these injections will trigger an increase in dup(V). Then,
to find which of the t items of the prior injection is actually
the reused password, A can run the binary-search attack from
before, using the t shared entries as a “folder”.

Since dup(V) is deterministic, both variants of the attack
always find the target password, if present, or confirm that no
password is in the vault. The binary-search injection strategy
requires dlog2 ne injections and observing the same number of
network requests containing dup(V); the sequential injection
strategy instead requires n

t + dlog2 te injections and observa-
tions. Which strategy to use depends on the target application,
and whether it supports shared folders or not. Further, as we
discuss in Section 5.1, in some cases dup(V) reveals addi-
tional information, which allows A to speed up our generic
injection strategies even further.

The exact wall-clock time of the attack depends, of course,
on how often these requests are triggered, which varies across
applications (we discuss some examples in Section 5.1). Note
that the runtime of the attack is independent of the number of
user accounts in V . That is, since dup(V) is computed across
all accounts, our attack essentially checks each password on
all user websites at once. Further, our attack can be easily
tweaked to find all matching passwords, instead of just one, by
recursing into all branches that increase dup(V). In addition,
our attack confirms to A if no password in P is in V , which
would be reflected by the fact that dup(V) does not increase
after all candidate items have been injected.

5.1 Vulnerable Password Managers

In summary, the pre-conditions that an application must sat-
isfy to be vulnerable to our generic attack are: (1) have support
for vault-health metrics that contain the number of duplicate
passwords; (2) the number of duplicate passwords must be
computed across all vault entries; and (3) these metrics must
be logged somewhere outside the victim’s device (for exam-
ple, in the application servers or in some organization adminis-
trator portal). We performed an analysis of all ten applications

and found that LastPass, Dashlane, Zoho Vault, Enpass, Robo-
form, Keeper, and NordPass all satisfy these pre-conditions,
and are thus vulnerable to our attack. We show in Figure 3
the breakdown of pre-conditions across all ten applications.

To experimentally validate our attack, we deployed proof-
of-concept implementations of it against three of these vul-
nerable applications—LastPass, Dashlane, and Zoho Vault.
We discuss these below, and refer readers to Appendix B for
additional details of these.

In all three applications, updates to shared credentials are
automatically synchronized across all clients with access to
these, i.e., adversarial injections are automatically incorpo-
rated into V . The main difference between each application
is then the frequency of when clients log dup(V) to the ap-
plications servers. In LastPass, logs of dup(V) are triggered
automatically after a client imports the updates to the shared
credentials. In Dashlane and Zoho Vault, they are triggered
once per day. A second notable difference is that LastPass sup-
ports shared folders, but Dashlane does not. Thus, A can use
the binary-search and sequential injection strategies for the
former and the latter, respectively. For Zoho Vault, the generic
binary-search injection strategy is also feasible. However,
in fact, application-specific details allow A to significantly
speed up the attack, allowing them to recover all matching
passwords with a single injection. Zoho Vault’s vault-health
logs consist of an array O of JSON objects, such that there
is one such object for each entry e ∈ V , containing metadata
about the corresponding entry. In particular, each object con-
tains a “reused” field, which maps to a boolean indicating
whether epw is a duplicate or not. So, A can inject all candi-
date passwords in a single batch, scan O next time the logs are
triggered, and identify whether the objects in O corresponding
to the injected credentials are marked as a duplicate or not,
thus revealing if that candidate password was already present
in the user’s vault. We discuss this optimized attack in more
detail in more detail in Appendix B.

In all three applications, no interaction is required from U ,
and the attack only requires U to be logged into their account
(for example, in their Chrome extension or web vault). Im-
portantly, the victim need not have their vault open while the
attack runs: if a user is logged in, background scripts check
for updates, sync them to the vault, and trigger the requests to
dup(V). As such, the attack can operate silently in the back-
ground while U is engaged in other tasks. Further, the attacks
do not require the victim client to be quiet while the attack is
running, and thus fall under the noisy device setting. So, A
can just silently run an extended attack if need be, irrespective
of the activity of the victim, until the passwords are found.

Attack implementation. We used an open-source list of
common passwords [40] to gather our testing data, and con-
firmed that our attacks successfully recover the target string
every time. Since our attacks are false-positive free—in partic-
ular, their correctness does not depend on the distribution nor

4344 33rd USENIX Security Symposium USENIX Association

number of candidate passwords—we only tested our attacks
on small, proof-of-concept workloads, and thus confirmed the
correctness of the attack without overloading the applications’
servers.

For each application, our experimental setup consisted of
two test accounts on two different devices, representing the
victim and the adversary, with a shared folder between them.
The list of candidate passwords consisted of a subset of the
aforementioned list of common passwords. We sampled uni-
formly at random a password from the list of candidate pass-
words, added it to the victim’s vault from their machine, and
ran the attacks from the adversary’s machine. We set up a
proxy server in the victim’s machine to capture all outgoing
network requests, and inspect the traffic from the victim to the
server during the attacks. This simulates the information that
would be learned by a malicious server. We explain additional
details of our testing methodology in Appendix A.

Extension to a network adversary. For some applications,
our attack may be able to be modified to assume a weaker
network adversary instead of an eavesdropper. The key chal-
lenge is that a network adversary does not have access to the
plaintext value of dup(V), as this is transmitted through en-
crypted channels. As such, we require an additional property
from applications: that changes in the number of duplicate
passwords result in changes in the size of the payload of the
HTTPS requests that transmits the vault-health logs.4

From the applications vulnerable to an eavesdropping ad-
versary, only Zoho Vault can be extended to a network adver-
sary. Since there is a separate boolean string in O for each
vault entry, A can leverage the subtle fact that the string false
has one additional character than the string true, and thus
the payload of the HTTPS request with O as its payload will
fluctuate by 1 byte depending on whether each password is a
duplicate or not. As such, our binary-search injection strategy
can be used once again, by determining whether a batch of
injections contains the target password or not based on this
1-byte difference.

6 Attacks from URL Icon Fetching

A feature of some password managers is to display a small
identifying icon, such as a company logo, next to each vault
entry. To do so, clients send a request to the server with the
URL for the website, in plaintext, and receive back an image
file with the icon. This clearly leaks the victim’s URLs to an
eavesdropping adversary (prior work [43] has pointed this
out already for a few applications). However, as we show in
this section, these requests can also be leveraged by a weaker
network adversary to leak information about a victim’s URLs.

This leakage arises from the fact that URL icons are fetched
only once: any new entries for websites for which there is

4We also technically require that request bodies are not compressed, but
this is almost always true [41] (including for Zoho Vault).

already a credential simply reuse the icon that is already on
the client, and no new fetch request is sent to the server. These
requests thus serve as oracle to determine whether a candidate
URL w is in the victim’s vault or not: A can inject an entry
e such that eurl = w, wait for U’s client to (automatically)
synchronize this new credential, and observe if an icon fetch
request is triggered or not; the latter indicates that w is already
present in U’s vault, since e is reusing the URL icon that is
already downloaded. Importantly, note that this attack only
requires the adversary to know whether a request to fetch the
icon is triggered or not, and that, unlike our first attack, the
actual (plaintext) payload of the request is not relevant. This
information is also visible to a network adversary, who simply
monitors whether a fetch request is triggered or not.

Analogous to our attack from Section 5, this basic oracle
can be used to perform a dictionary attack on the websites
stored on the victim’s vault. In particular, the same sequential
and binary-search injection strategies can be used, depending
on whether the application supports shared folders or not.

6.1 Vulnerable Password Managers

In summary, the pre-conditions that an application must sat-
isfy to be vulnerable to our generic attack are: (1) have support
for URL icons; (2) fetch these URL icons from the applica-
tion servers (instead of, e.g., storing them all in the client to
begin with); and (3) re-use the stored icons across all vault
entries. Our analysis of all ten applications revealed that Dash-
lane, 1Password, Enpass, Roboform, NordPass, and Proton
Pass all satisfy these pre-conditions. We show in Figure 3 the
breakdown of pre-conditions across all ten applications.

We experimentally validated our attack against Dashlane,
using the Majestic ranking of top websites [4] to gather our
testing data, using the same experimental setup as in Section 5,
and confirmed that our attacks successfully recovers the target
URL. Note that, as before, the correctness of the attack does
not depend on the distribution nor number of candidate URLs,
since icon fetch requests are deterministic, and as such it was
sufficient to test on small workloads that did not overload
their application servers.

7 Attacks from Storage-Saving Mechanisms

As discussed in Section 3, some password managers em-
ploy a variety of storage-saving techniques to reduce the
size of their encrypted vault files. In this section, we show
how two such mechanisms—file compression and attachment
deduplication—lead to injection attacks against password
managers. These have both been studied in other domains
before (see Section 2), and here we show that they also lead
to exploits in the context of password managers.

From the ten applications of our study, only KeePassXC
supported storage-saving mechanisms. This is due to the fact

USENIX Association 33rd USENIX Security Symposium 4345

that deduplication and compression are part of the specifi-
cation of its underlying file format, KDBX 4, which is used
by a variety of other password managers. Even though we
implement our attacks on KeePassXC, we stress that our vul-
nerabilities target KDBX 4 itself, and thus any application that
uses it (and that supports credential sharing) can be vulnerable
to them.

Looking ahead, our attacks rely on the adversary being able
to observe fluctuations in the size of the encrypted database
file. Note that, if an application relies on third-party cloud
providers to synchronize devices, a network adversary is suf-
ficient: since each update re-uploads the entire encrypted file,
the size of the payload of the HTTPS request can be used to
detect fluctuations in the underlying file size. Further, since
the attacks rely on very precise measurements, they operate
in the quiet device setting, i.e., we assume the victim does not
interact with their vault while the attack is running. However,
our attacks benefit from the fact that modifications to shared
entries are propagated automatically to the victim’s vault, and
thus our attacks can be run in a few minutes.

Background on KDBX 4. Broadly speaking, a database V
serialized in KDBX 4 file format (the latest version of KDBX)
consists of three main parts: an outer header Hout , an inner
header Hin, and an XML payload I.

The file starts with Hout , which is unencrypted, and con-
tains metadata about the database, such as cipher information,
KDF parameters, whether the XML payload is compressed or
not, etc. This is followed immediately by Hin and I (explained
below), which are both under a single layer of encryption—
using one of AES-CBC, Twofish-CBC, or ChaCha20—with
a bespoke authentication mechanism; the details of the lat-
ter are unimportant for our attacks, so we omit them here-
after. Users can select their preferred encryption cipher in
the database settings, with the default being ChaCha20. As
usual, the encryption key K used is derived from PW , using
either AES-KDF or Argon2. Then, Hin and I may optionally
be compressed with gzip [17] before being encrypted, which
is also a tunable parameter that is on by default.

The inner header Hin consists of two main parts: the en-
cryption key K′ used in the second encryption layer (more
on this later), and an array A storing the binary content of
all attachments across all entries in V concatenated together.
Importantly, only one copy of each binary file is stored in A,
even if the attachment is added multiple times to the database.

The XML payload I contains the user’s data itself (exclud-
ing attachments, which are in Hin). For every entry e ∈ V ,
there is a corresponding XML element in the payload, where
each field of e is saved as an XLM subelement. There are two
important types of subelements: (1) for every attachment in
the list eattach, if any, there will be a subelement with an inte-
ger denoting the index within A corresponding to the binary
content of this attachment; (2) the subelement for epw, which
stores an encrypted copy of epw using ChaCha20 and K′.

There is no authentication on this inner encryption layer, since
it is already under the authentication mechanism of the outer
one. Further, the key K′ is rotated after every modification to
the database, and all passwords are re-encrypted. Other fields
of e, such as euser and eurl , are stored as unencrypted subele-
ments; we denote by ê all subelements of e, excluding epw,
concatenated together.

Putting it all together, the serialization of V := (e1, ...,em)
has the following structure:

B := Hout ‖EncK

(
gzip

(
Hin ‖ I

))
where Hin and I have the following form:

Hin ‖ I = K′ ‖A‖EncK′(e1,pw)‖ ê1 ‖ ...‖EncK′(em,pw)‖ êm

For simplicity, this notation omits low-level details such as
XML tags and metadata that are not relevant to our attacks.
We refer readers to documentation such as [12] for a more
complete treatment.

Our attacks target the underlying file format itself, and any
password manager that uses it may be vulnerable to them. Our
attacks, however, require two assumptions regarding the target
application and its users: that the application has support
for cross-user sharing, and that compression is left on (note
that official documentation from KeePass, the designers of
KDBX, explicitly state that “it is not recommended to save
databases without compression” [11].) Further, for clarity of
presentation, we will assume that ChaCha20 is indeed the
cipher used to encrypt the outer encryption layer, since it
is the only stream cipher out of the three supported ones,
but note that our attacks can be modified to work with the
other ciphers.

The application on which we implement our attacks is
KeePassXC, which is a newer, feature-rich port of the origi-
nal KeePass. KeePassXC supports cross-user sharing (both
for individual entries and folders) which are added as new
XML elements in I, just like personal entries. Updates to
these shared credentials are synchronized automatically if the
victim has their vault unlocked (e.g., open in the background),
and there is just a short time delay of 1-2 seconds.

7.1 Leakage from Attachment Deduplication
As discussed earlier, the KDBX 4 file format stores only one
copy of the binary content of each attachment in A, even if it is
received multiple times: whenever U adds a new attachment
to their vault, it is compared against all attachments in A (by
computing its checksum using a hash function), and added if
and only if there is no match. If there is a match, the attach-
ment pointer in the XML element for this entry simply refers
back to the index of the first copy in A. Notably, deduplication
occurs across both personal and shared attachments, which
leads to a cross-user interaction that an adversary can leverage
to leak information about the user’s saved attachments.

4346 33rd USENIX Security Symposium USENIX Association

Attack description. Our attack consists of a dictionary at-
tack on attachments. That is, for a list of candidate attachments
W := {w1, ...,wn}, the adversary wants to determine which
wi, if any, is in V . We first note that there is a straightforward
(but inefficient) attack. Assume that U and A have a shared
entry e. Then, A can simply add each w ∈W to eattach, one at
a time, until some attachment does not increase the size of B ,
which implies that it got deduplicated and thus is present in
V . This naive injection strategy is false-positive free, since
deduplication is deterministic.5 However, the number of in-
jections scales linearly with |W |. We now describe a more
complex injection strategy that an adversary can use for larger
|W |. This second strategy leads to more false positives, and
as such there is a trade-off between success rate and number
of required injections.

Our refined strategy consists of a binary-search attack,
which requires only dlog2 ne injections, analogous to that of
Section 5: instead of injecting each attachment, one at a time,
A can split W into two sets W ′ and W ′′ of equal size, and
inject all attachments in W ′ in a single batch, followed by all
attachments in W ′′ in a second one. Then, one of these injec-
tions will increase |B| by less than |W i|, which means that
some attachment in it got deduplicated. We can then recurse
into this set, and repeat this attack iteratively until the target
attachment is found.

A challenge with this approach is that, recall, the list of
attachments is gzip-compressed with the rest of Hin and I,
which adds noise to our measurements. In particular, it could
be the case that the target file is in W ′, but all files in W ′′ are
similar to each other. So, if the decrease in size from com-
pressing all files in W ′′ is smaller than the target file, we would
recurse into the wrong set. To address this, A can measure
the compressibility of each injected list of files, and “penalize”
the measurement according to this. Concretely, on every itera-
tion of the attack, A computes z′ =

∣∣gzip(w1 ‖ ...‖wn/2)
∣∣ and

z′′ =
∣∣gzip(wn/2+1 ‖ ...‖wn)

∣∣ locally, and recurses into W ′ if

B2/(B1 + z′)< B3/(B1 + z′′)

and into W ′′ otherwise; B1, B2, and B3 respectively denote
the encrypted database before both injections, after the first
injection, and after the second injection.

After the attack is over, A can confirm whether the attack
was successful or not by making an additional injection with
just the found attachment: if the guess is correct, B will have
no increase in size (except, potentially, for a negligible number
of bytes due to noise from the re-encryptions.)

Attack implementation. We implemented both the naive
and the binary-search attacks against KeePassXC, and con-

5The only edge case in which this attack may fail is if the candidate files
are very small, such as less than 50 bytes. This is due to the fact that minimal
noise is generated by the re-encryption of passwords after every save. In this
case, however, A can simply inject each wi multiple times, and compute the
average file size, which mitigates the noise.

Enron |w|=10KB 500KB 1MB

|W |= 32 92 74 44 47
128 81 53 34 38
512 52 29 18 8

Figure 4: Experimental success probability of our dictionary
attack on attachments exploiting deduplication, for real-world
files (first column), and for synthetic test files (each file is of
some random size between between 1 and |w|, and contains
sequences of repeated characters). Each row represents a num-
ber of candidate files. These probabilities can be amplified
via repetition.

firmed that the former successfully recovers the target at-
tachment every time. For the latter, we ran a sequence of
experiments to estimate its probability of success. Our ex-
perimental setup consisted of two testing environments: (1)
using real KeePassXC clients (version 2.7.6), and (2) a local
re-implementation of all client-side operations relevant to our
attacks, to simulate the real setting.

This dual-setup approach is a common strategy used to
evaluate deployed systems [6, 20, 44]. The real environment
allows us to confirm the overall correctness and implementa-
tion of our attacks, while the simulated environment allows
us to compute an empirical estimate of the probability of
success. For the latter, we can run a high volume of trials
in a reasonable amount of time, and without overloading the
cloud-service provider. In addition, we can ensure that the
trials are independent, by using the same starting state across
each. We discuss our experimental setup in more detail in
Appendix A.2.

Equipped with this setup, we used three types of datasets
to gauge the attack’s success rate on different workloads.
The first consisted of the Enron corpus [2], which is a public
dataset of real-world emails. This dataset helped us evalu-
ate our attack on practical targets. The other two datasets,
generated locally by us, consisted purely of synthetic data
for benchmarking purposes: a set of random files, all of the
same size; and a set of files of varying sizes, and composed of
substrings of repeated characters. The reasoning behind these
datasets is that random bytes and equal file sizes minimize the
effects of gzip noise (since random data is less compressible),
while substrings of repeated characters and different file sizes
maximize gzip noise.

For each data set, we ran 100 trials of the attack, and
recorded the fraction of these in which the target attachment
was successfully recovered. Each trial consisted of sampling
a fresh set of candidate files of the appropriate type, choosing
one file at random, adding it to the victim’s vault in a per-
sonal entry, and running the attack. For the dataset consisting
of files of the same size and all random bytes, our attacks
succeed with 100% probability for all file sizes. The results
for the other two datasets are displayed in Figure 4. As our

USENIX Association 33rd USENIX Security Symposium 4347

experiments show, our attack succeeds with high probabil-
ity. Further, as explained earlier, the adversary can confirm
whether the output is correct or not, and re-run the attack if
needed until the correct attachment is found, which essentially
gets rid of false positives.

7.2 Leakage from Compression
The second vulnerable mechanism we identified in KDBX 4
is the fact that Hin‖I is gzip-compressed before it is encrypted.
The (oversimplified) way in which gzip works is that repeated
substrings are replaced with short pointers to their prior oc-
currences, if any, which gets rid of redundancy in the payload.
The resulting sequence of pointers and (unmatched) char-
acters is then serialized using Huffman coding to yield the
compressed bytestring.

Since I (resp. Hin) contains both personal and shared entries
(resp. attachments), the first step of the gzip algorithm leads to
a cross-user interaction that an adversary can exploit: if fields
in the injected credentials match some field in U’s personal
credentials, the length of the resulting encrypted database will
be shorter than if they do not match, as in the former case gzip
will replace the injected content with a short pointer to U’s
private content.

Attack description: dictionary attack. Our attack consists
of a dictionary attack, i.e., for a list of candidate items W :=
{w1, ...,wn}, A wants to determine which wi, if any, is in V .
The items of interest consist of login information, except
for passwords (e.g., usernames or URLs), and contents of
attachments. The reason why passwords are not recoverable
is due to the fact that these are under an additional layer of
encryption, which prevents matching passwords from being
deduplicated by gzip.

One possible attack approach is to simply inject each can-
didate string, one at a time, and return the one that leads to
the smallest increase in database size. This attack, however,
suffers from low accuracy, since it compares compressibility
across different candidate strings. Since each string contains
different characters, the Huffman coding step of gzip may
lead to false positives: it could be the case that an incorrect
candidate string is composed of characters that appear very
frequently in the database, which leads to shorter Huffman
codes and the appearance of a more compressible string.

Instead, drawing inspiration from other compression-based
attacks such as [26, 31, 49], we use two injections per candi-
date w—the first containing w itself and the second a scram-
bled version of w—and compare their relative compressibility.
Thus, each pair of injections consist of the same characters,
which reduces the effects of Huffman coding. (To our knowl-
edge this implementation of the generic “two-tries” method is
novel.) More concretely, for each wi, A first injects wi through
a shared entry e (depending on the type of W , e.g., by setting
either eurl = wi or euser = wi). Then, A records n′i = |B|. This
is followed by a second injection, where A replaces wi in the

relevant field with a random permutation of its characters, and
records the updated n′′i = |B|. Finally, A returns whichever
wi yield the maximum value for |n′′i −n′i|/|wi|.

The intuition behind the strategy is that, in the first injec-
tion, the correct string gets compressed in its entirety, while
incorrect strings only get partially compressed. Then, the sec-
ond injection serves as a baseline measurement to gauge the
“worst-case” compression of a string with the same characters
as wi, to control for the noise from the Huffman coding. So,
it may be the case that some string leads to the smallest total
increase in B but, in fact, this is also the case when the string
is replaced by a scrambled version of it. This confirms that
the decrease in size comes from the short Huffman codes and
not from redundancy with the rest of the database (otherwise,
the second string would “break” the effects of compression).

As in the prior attack, A can confirm whether the attack
was successful or not by, for example, re-injecting the found
string, prepended with a pad of 32K bytes (the length of zlib’s
search window), and confirming that output file increased by
the size of the string.

We note that our dictionary attack can potentially be ex-
tended to a byte-by-byte recovery attack, where the list of
candidate guesses is not known a priori. To do so, A can
instead employ a CRIME-style attack [49]. In such attacks,
A first has knowledge of a prefix p, of length at least three
bytes,6 that precedes the secret, which serves to “bootstrap”
the attack. To guess the first character, the high-level idea
is that A tries all possible values zi for it by injecting p‖ z1
followed by p ‖ z2, and so on. Then, all incorrect guesses
will get compressed by only |p|, but the correct guess will
match an additional character, leading to a slightly smaller
ciphertext. The attacker proceeds in this fashion, one byte at
a time, until eventually the entire secret is recovered. If the
adversary is extracting information in attachments, the known
prefix p can be part of a document’s template; for example,
if recovering the salary in a contract, p may be “Salary: ”.
Conversely, if the adversary is recovering URLs or usernames,
we can take advantage of the structure of KDBX 4, and set p
to be the XML tags of the field. For example, if recovering a
username, p = <Key>UserName</Key><Value>. Further, A
could recover a field from a specific credential, by append-
ing additional information to p. For example, to recover the
username specifically for target-site.com, A can use
p = <Key>URL</Key><Value>target-site.com</Value>
...UserName</Key><Value>. As before, injections are per-
formed by updating the URL, username, or attachment fields
of a shared entry, this time with p‖ zi as the payloads. Explor-
ing this extension further is outside the scope of our work,
as such attacks rely on lower-level details of compression
algorithms.

6gzip does not compress matching substrings unless they are at least four
bytes long.

4348 33rd USENIX Security Symposium USENIX Association

target-site.com

Websites Usernames |w|= 5 10 15 20

|W |= 4 99 80 89, 61 100, 74 100, 86 100, 88
10 97 66 81, 51 98, 59 100, 57 100, 63
25 92 54 64, 30 97, 33 100, 48 100, 44
50 89 46 50, 17 93, 28 100, 29 100, 38

100 84 24 39, 8 92, 13 100, 16 100, 14

Figure 5: Experimental success probability of our dictionary
attack on usernames and URLs exploiting compression, for
real-world files (first two columns), and for synthetic test
files (last four columns); the left and right values denote,
respectively, when the strings consist of random bytes and are
all of length w, and when they have repeated substrings and
vary in length between 1 and |w|. These probabilities can be
amplified via repetition.

Attack implementations. We experimentally verified our
dictionary attack against KeePassXC, using URLs and user-
names as examples of items of interest. An additional com-
plication about KeePassXC is that, as explained earlier, every
database save rotates K′, re-encrypts all passwords, and up-
dates metadata (for example, a timestamp indicating the last
modification time of the shared entry). This results in a small
number of bytes of noise in the compression side-channel.
Given that our target items are only a few bytes long, such
as URLs and usernames, this noise is noticeable. So, we use
a simple refinement from [61]: inject each candidate item t
times instead of just once, compute the average value of the
resulting |B|, and use this in the measurements. Of course,
the larger t is, the higher the probability of success will be.
A can pick an appropriate value based on the context of the
attack (for example, the size of W , how long the victim will
be using their device, etc).

We tested our attack in the same dual-setup as in Section 7.1
and using the same three types of workloads; the datasets of
real-world data consisted of a list of the Majestic ranking of
top websites [4], and a corpus of common usernames com-
piled from various data breaches [40]. The results of our
experiments on usernames are displayed in Figure 5, which
correspond to the success rate across 100 independent trials
of each workload, using t = 10 for each injection.

8 Mitigations and Responsible Disclosure

We discuss mitigations for our attacks in this section, as well
as the results of our responsible disclosure with the vendors
directly affected by our work. The patches adopted by these
may serve as inspiration for other applications that are vulner-
able to our attacks.

The most immediate mitigation to our attacks from Sec-
tion 5 would be to remove shared credentials from the com-
putation of vault-health metrics that are logged to the servers,
in order to disable the injection side-channel. This, how-
ever, would result in a loss of information for users, as they

would no longer be able to detect duplicate passwords present
in (non-malicious) shared credentials. Other mitigation ap-
proaches would depend on the exact purpose of these met-
rics, which is opaque to us. For example, if the metrics
are only used for client-side computation and stored on the
server, clients can encrypt these locally before exporting them.
Conversely, if the metrics are used to compute server-side
statistics, applications could use privacy-preserving aggregate
statistics frameworks such as [15].

Our attacks from Section 6 against a network adversary can
be mitigated by fetching icons every time a new credential
is added to the vault, even if the URL is a duplicate. Note
that clients can potentially still store only one copy of each
icon in the client side, and the requests can be repeated just
for the sake of hiding fetch patterns. To also hide the URLs
from an eavesdropping adversary, applications can use private-
information retrieval (PIR) schemes [14] to retrieve icons
without revealing the URL in question.

A direct mitigation to our attacks from Section 7 is for
applications to, of course, disable storage-saving mechanisms.
However, this could result in a prohibitive blowup in their stor-
age footprint. By definition, disabling deduplication doubles
the cost of storing repeated attachments. The cost of disabling
compression depends on the file format and the underlying
user data; for highly structured file formats like XML, the
increase is particularly noticeable. Local tests on example
KeePassXC databases resulted in 5-6x increases in size.

Another mitigation approach is to confine the storage-
saving mechanisms to subsets of the application data that
are within the same trust context, which would disable the
injection channel. For deduplication, this translates to dedu-
plicating files separately for every shared folder. More work
is required to devise an analogous solution for compression.
A different mitigation approach for compression would be
to isolate sensitive fields within the database by encrypting
them under a second layer of encryption, which prevents sim-
ilar data from matching with these fields. This is analogous
to how KeePassXC protects passwords, as described in Sec-
tion 7, and indeed they could consider encrypting other fields
in a similar fashion. Yet another approach could be to add
padding or noise to the database before encrypting it, in order
to obfuscate the real size of the database. Adversaries can use
statistical techniques to adapt to such mitigations, however,
as has been the case in other contexts such as network traffic
fingerprinting (see, e.g., [18]).

Responsible disclosure. The first version of our study ana-
lyzed just four applications (LastPass, Dashlane, Zoho Vault,
and KeePassXC), who proceeded to deploy mitigations, which
we describe below. A second round of disclosures is still on-
going, since we recently expanded the scope of our study. We
will update the paper once we complete these.

LastPass adopted our suggested mitigation of separating
vault-health metrics between personal and shared credentials,

USENIX Association 33rd USENIX Security Symposium 4349

which disables the injection channel. They released an initial
implementation of this fix in version 4.129.0, removing shared
folders from the vault-health logs, as these lead to the most
severe variant of our attack. Removing individually shared cre-
dentials from the logs is more technically challenging—and
individual credentials lead to a less practical version of our
attack—and thus has been deferred to later in their roadmap;
their projection is to release this fix by the end of the year,
which would complete a full mitigation to our attack.

Zoho Vault plans to adopt a similar fix, by implementing an
option to separately compute vault-health metrics on personal
passwords as of version 4.0. Dashlane opted for a partial
mitigation instead, namely, increasing their rate limits on the
sharing endpoints “as much as possible”. Given the fact that
their vault-health metrics are only logged once per day, their
tight sharing limits significantly affect the practicality and
runtime of the attack. In addition, the resource limits on their
web application and extensions prevent an adversary from
sharing an unlimited number of credentials with a victim,
which increases the runtime of the attack even more. As part
of the disclosure, they informed us that incorporating shared
passwords is a core feature of their vault-health metrics, and
thus removing shared passwords would represent a notable
disruption to this feature.

Then, to mitigate our URL icon fetching attack, Dash-
lane implemented a new feature as of version 6.2415 that
allows users to turn off fetching credential icons, which dis-
ables the side-channel for both an eavesdropping and net-
work adversary, and is thus a full mitigation to our attack;
details of this new feature can be found at [16]. In addi-
tion, they migrated their icon fetching tool to a new endpoint
(api.dashlane.com), which is used by multiple parts of
their application logic. As such, this would make it signifi-
cantly more challenging for a network adversary to use traffic
analysis techniques to identify whether an icon fetch request
is included in the traffic sent to this top-level endpoint, due to
the high amount of noise from the other requests sent to this
endpoint.

To address our attack on attachment deduplication, KeeP-
assXC adopted our suggested mitigation of deduplicating files
separately for every shared folder, which disables the injection
side channel. Then, to address our compression-based attacks,
they modified their file format by, every time the database is
saved, picking a random length between 64 and 512 bytes,
generating a random array of this length, and including this in
a “custom data” field of their file format. We note that this is
only a partial mitigation, as an adversary can potentially use
statistical techniques to bypass the noise; this, however, would
require a significantly higher number of injections. Both fixes
were promptly implemented by the KeePassXC team, and
have since rolled out as part of version 2.7.

9 Conclusion

We introduce a new threat model for password managers
in this work, which we exemplify via four general attacks,
using ten applications as case studies. Our attacks suggest the
need to rethink certain aspects of password manager design,
and of E2EE applications more broadly. We highlight some
takeaways in this section.

Our attacks from Section 5 are symptoms of the more gen-
eral pattern of exporting application state that is a function
of both personal and externally-received data, which can po-
tentially open the door for injection attacks. Thus, a guiding
principle for E2EE application designers is to separate data
according to the trust assumptions of their system. Our attack
from Section 6 is an example of the broader pattern of fetching
content from external sources in a state-dependent way, which
an adversary can potentially exploit by injecting payloads and
seeing how this affects subsequent fetches. Thus, a guiding
principle for application designers is for client-server com-
munication to be as resource-specific as possible, and to not
depend on the results of prior operations. Lastly, our attacks
from Section 7 serve as an example of the tensions between
security and performance. Since storage-saving mechanisms
get rid of redundancy in application files, techniques of this
form naturally pave the way for potential injection attacks.
As such, more work is required to understand how to balance
storage costs and security, particularly in the context of com-
pression and file deduplication, and to devise frameworks that
help explore these trade-offs in a principled way.

We disclosed our attacks to the vendors affected by our
work, who deployed fixes to address these. These mitigations,
however, are bespoke solutions for the attack vectors pre-
sented in this work; a central direction for future research is
to design general-purpose detection and mitigation techniques
against injection attacks, and to deepen our understanding of
this threat model.

Acknowledgements

This work was supported in part by NSF grants CNS-1704296
and CNS-2120651.

References

[1] Charles Proxy. https://www.charlesproxy.com/.

[2] Enron Email Dataset. https://www.cs.cmu.edu/~
enron/.

[3] KeePassXC. https://github.com/keepassxreboo
t/keepassxc.

[4] The Majestic Million. https://majestic.com/rep
orts/majestic-million.

4350 33rd USENIX Security Symposium USENIX Association

api.dashlane.com
https://www.charlesproxy.com/
https://www.cs.cmu.edu/~enron/
https://www.cs.cmu.edu/~enron/
https://github.com/keepassxreboot/keepassxc
https://github.com/keepassxreboot/keepassxc
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million

[5] 1Password. Zero-knowledge encryption. https://1p
assword.com/features/zero-knowledge-encryp
tion/.

[6] Matilda Backendal, Miro Haller, and Kenneth G Pater-
son. Mega: malleable encryption goes awry. In IEEE
S&P, 2023.

[7] Bitwarden. How end-to-end encryption paves the way
for zero knowledge - white paper. https://bitwarde
n.com/resources/zero-knowledge-encryption-
white-paper/.

[8] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan
Boneh. Kamouflage: Loss-resistant password manage-
ment. In ESORICS, 2010.

[9] Michael Carr and Siamak F Shahandashti. Revisiting
security vulnerabilities in commercial password man-
agers. In ICT Systems Security and Privacy Protection,
2020.

[10] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In CCS, 2015.

[11] KeePass Help Center. Database Settings. https://ke
epass.info/help/v2/dbsettings.html.

[12] KeePass Help Center. KDBX 4. https://keepass.
info/help/kb/kdbx_4.html.

[13] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and
Thomas Ristenpart. Cracking-resistant password vaults
using natural language encoders. In IEEE S&P, 2015.

[14] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and
Madhu Sudan. Private information retrieval. Journal of
the ACM (JACM), 1998.

[15] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In NSDI, 2017.

[16] Dashlane. Hide the icons in your dashlane login list.
https://support.dashlane.com/hc/en-us/arti
cles/17909345422354-Hide-the-icons-in-your
-Dashlane-login-list.

[17] Peter Deutsch. Gzip file format specification version
4.3. Technical report, 1996.

[18] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-boo, I still see you: Why
efficient traffic analysis countermeasures fail. In IEEE
S&P, 2012.

[19] Enpass. Syncing and accessing Enpass data between
devices. https://support.enpass.io/app/sync/s
ync_and_access_enpass_data_on_all_devices.h
tm.

[20] Andrés Fábrega, Carolina Ortega Pérez, Armin Na-
mavari, Ben Nassi, Rachit Agarwal, and Thomas Risten-
part. Injection Attacks Against End-to-End Encrypted
Applications. In IEEE S&P, 2024.

[21] Michael Fagan, Yusuf Albayram, Mohammad
Maifi Hasan Khan, and Ross Buck. An investigation
into users’ considerations towards using password
managers. Human-centric Computing and Information
Sciences, 2017.

[22] Sascha Fahl, Marian Harbach, Marten Oltrogge, Thomas
Muders, and Matthew Smith. Hey, you, get off of my
clipboard: On how usability trumps security in android
password managers. In Financial Cryptography and
Data Security, 2013.

[23] Christina Garman, Matthew Green, Gabriel Kaptchuk,
Ian Miers, and Michael Rushanan. Dancing on the
lip of the volcano: Chosen ciphertext attacks on apple
{iMessage}. In USENIX Security, 2016.

[24] Paolo Gasti and Kasper B Rasmussen. On the security
of password manager database formats. In ESORICS,
2012.

[25] Conor Gilsenan, Fuzail Shakir, Noura Alomar, and Serge
Egelman. Security and privacy failures in popular 2fa
apps. In USENIX Security, 2023.

[26] Yoel Gluck, Neal Harris, and Angelo Prado. BREACH:
reviving the CRIME attack. Unpublished manuscript,
2013.

[27] Maximilian Golla, Benedict Beuscher, and Markus Dür-
muth. On the security of cracking-resistant password
vaults. In CCS, 2016.

[28] Google and Harris Poll. The United States of
P@ssw0rd$. https://storage.googleapis.com
/gweb-uniblog-publish-prod/documents/Passw
ordCheckup-HarrisPoll-InfographicFINAL.pdf,
October 2019.

[29] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexan-
dra Shulman-Peleg. Proofs of ownership in remote
storage systems. In CCS, 2011.

[30] Danny Harnik, Benny Pinkas, and Alexandra Shulman-
Peleg. Side channels in cloud services: Deduplication
in cloud storage. IEEE S&P, 2010.

USENIX Association 33rd USENIX Security Symposium 4351

https://1password.com/features/zero-knowledge-encryption/
https://1password.com/features/zero-knowledge-encryption/
https://1password.com/features/zero-knowledge-encryption/
https://bitwarden.com/resources/zero-knowledge-encryption-white-paper/
https://bitwarden.com/resources/zero-knowledge-encryption-white-paper/
https://bitwarden.com/resources/zero-knowledge-encryption-white-paper/
https://keepass.info/help/v2/dbsettings.html
https://keepass.info/help/v2/dbsettings.html
https://keepass.info/help/kb/kdbx_4.html
https://keepass.info/help/kb/kdbx_4.html
https://support.dashlane.com/hc/en-us/articles/17909345422354-Hide-the-icons-in-your-Dashlane-login-list
https://support.dashlane.com/hc/en-us/articles/17909345422354-Hide-the-icons-in-your-Dashlane-login-list
https://support.dashlane.com/hc/en-us/articles/17909345422354-Hide-the-icons-in-your-Dashlane-login-list
https://support.enpass.io/app/sync/sync_and_access_enpass_data_on_all_devices.htm
https://support.enpass.io/app/sync/sync_and_access_enpass_data_on_all_devices.htm
https://support.enpass.io/app/sync/sync_and_access_enpass_data_on_all_devices.htm
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/PasswordCheckup-HarrisPoll-InfographicFINAL.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/PasswordCheckup-HarrisPoll-InfographicFINAL.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/PasswordCheckup-HarrisPoll-InfographicFINAL.pdf

[31] Mathew Hogan, Yan Michalevsky, and Saba Eskandar-
ian. DBREACH: Stealing from databases using com-
pression side-channels. In IEEE S&P, 2023.

[32] Troy Hunt. Passwords evolved: Authentication guidance
for the modern era. https://www.troyhunt.com/p
asswords-evolved-authentication-guidance-f
or-the-modern-era/, July 2017.

[33] KeePass. Keepass Password Safe. https://keepass.
info/.

[34] John Kelsey. Compression and information leakage of
plaintext. In International Workshop on Fast Software
Encryption. Springer, 2002.

[35] LastPass. An encryption model that prioritizes your
privacy. https://www.lastpass.com/security/ze
ro-knowledge-security.

[36] LastPass. Manage shared folders. https://support.
lastpass.com/s/document-item?bundleId=last
pass&topicId=LastPass/c_about_shared_folde
rs.html.

[37] LastPass. Notice of Recent Security Incident. https:
//blog.lastpass.com/2022/12/notice-of-rece
nt-security-incident/, December 2022.

[38] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn
Song. The Emperor’s new password manager: Security
analysis of web-based password managers. In USENIX
Security, 2014.

[39] Sanam Ghorbani Lyastani, Michael Schilling, Sascha
Fahl, Michael Backes, and Sven Bugiel. Better managed
than memorized? Studying the impact of managers on
password strength and reuse. In 27th USENIX Security,
2018.

[40] Daniel Miessler, Jason Haddix, and g0tmi1k. SecLists.
https://github.com/danielmiessler/SecLists.

[41] Avi Networks. Http compression. https://avinetwo
rks.com/glossary/http-compression/.

[42] Zachary Newman, John Speed Meyers, and Santiago
Torres-Arias. Sigstore: Software signing for everybody.
In CCS, 2022.

[43] Sean Oesch and Scott Ruoti. That was then, this is now:
A security evaluation of password generation, storage,
and autofill in browser-based password managers. In
USENIX Security, 2020.

[44] Kenneth G Paterson, Matteo Scarlata, and Kien Tuong
Truong. Three lessons from threema: Analysis of a
secure messenger, 2023.

[45] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nico-
las Christin, and Lorrie Faith Cranor. Why people (don’t)
use password managers effectively. In SOUPS, 2019.

[46] Milen Petrov. Android password managers and vault
applications: Data storage security issues identification.
Journal of Information Security and Applications, 2022.

[47] Reddit. I made a comparison table to find the best
password manager. https://www.reddit.com/r/P
asswords/comments/17f73pa/i_made_a_compari
son_table_to_find_the_best/.

[48] Reddit. What password manager do you use? https:
//www.reddit.com/r/cybersecurity/comments/
12jd9ec/what_password_manager_do_you_use/.

[49] Juliano Rizzo and Thai Duong. The crime attack. In
ekoparty security conference, 2012.

[50] CYFOR Secure. How long does it take to detect a cyber
attack? https://cyforsecure.co.uk/how-long
-does-it-take-to-detect-a-cyber-attack/,
December 2022.

[51] Security.org. Password Manager Industry Report and
Market Outlook (2023-2024),. https://security.o
rg/digital-safety/password-manager-annual-
report/, September 2023.

[52] David Silver, Suman Jana, Dan Boneh, Eric Chen, and
Collin Jackson. Password managers: Attacks and de-
fenses. In USENIX Security, 2014.

[53] Ben Stock and Martin Johns. Protecting users against
XSS-based password manager abuse. In CCS, 2014.

[54] Dropbox Security Team. How we handled a recent
phishing incident that targeted Dropbox. https://dr
opbox.tech/security/a-recent-phishing-camp
aign-targeting-dropbox, November 2022.

[55] KeePassXC Team. KeepassXC: User guide. https:
//keepassxc.org/docs/KeePassXC_UserGuide.

[56] Andreas Tuerk. To stay secure online, Password
Checkup has your back. https://blog.google/te
chnology/safety-security/password-checkup/,
October 2019.

[57] https://github.com/lgg. Awesome KeePass
Projects. https://github.com/lgg/awesome-k
eepass.

[58] Zack Whittaker. Norton LifeLock says thousands of
customer accounts breached. https://techcrunch.c
om/2023/01/15/norton-lifelock-password-man
ager-data/, January 2023.

4352 33rd USENIX Security Symposium USENIX Association

https://www.troyhunt.com/passwords-evolved-authentication-guidance-for-the-modern-era/
https://www.troyhunt.com/passwords-evolved-authentication-guidance-for-the-modern-era/
https://www.troyhunt.com/passwords-evolved-authentication-guidance-for-the-modern-era/
https://keepass.info/
https://keepass.info/
https://www.lastpass.com/security/zero-knowledge-security
https://www.lastpass.com/security/zero-knowledge-security
https://support.lastpass.com/s/document-item?bundleId=lastpass&topicId=LastPass/c_about_shared_folders.html
https://support.lastpass.com/s/document-item?bundleId=lastpass&topicId=LastPass/c_about_shared_folders.html
https://support.lastpass.com/s/document-item?bundleId=lastpass&topicId=LastPass/c_about_shared_folders.html
https://support.lastpass.com/s/document-item?bundleId=lastpass&topicId=LastPass/c_about_shared_folders.html
https://blog.lastpass.com/2022/12/notice-of-recent-security-incident/
https://blog.lastpass.com/2022/12/notice-of-recent-security-incident/
https://blog.lastpass.com/2022/12/notice-of-recent-security-incident/
https://github.com/danielmiessler/SecLists
https://avinetworks.com/glossary/http-compression/
https://avinetworks.com/glossary/http-compression/
https://www.reddit.com/r/Passwords/comments/17f73pa/i_made_a_comparison_table_to_find_the_best/
https://www.reddit.com/r/Passwords/comments/17f73pa/i_made_a_comparison_table_to_find_the_best/
https://www.reddit.com/r/Passwords/comments/17f73pa/i_made_a_comparison_table_to_find_the_best/
https://www.reddit.com/r/cybersecurity/comments/12jd9ec/what_password_manager_do_you_use/
https://www.reddit.com/r/cybersecurity/comments/12jd9ec/what_password_manager_do_you_use/
https://www.reddit.com/r/cybersecurity/comments/12jd9ec/what_password_manager_do_you_use/
https://cyforsecure.co.uk/how-long-does-it-take-to-detect-a-cyber-attack/
https://cyforsecure.co.uk/how-long-does-it-take-to-detect-a-cyber-attack/
https://security.org/digital-safety/password-manager-annual-report/
https://security.org/digital-safety/password-manager-annual-report/
https://security.org/digital-safety/password-manager-annual-report/
https://dropbox.tech/security/a-recent-phishing-campaign-targeting-dropbox
https://dropbox.tech/security/a-recent-phishing-campaign-targeting-dropbox
https://dropbox.tech/security/a-recent-phishing-campaign-targeting-dropbox
https://keepassxc.org/docs/KeePassXC_UserGuide
https://keepassxc.org/docs/KeePassXC_UserGuide
https://blog.google/technology/safety-security/password-checkup/
https://blog.google/technology/safety-security/password-checkup/
https://github.com/lgg
https://github.com/lgg/awesome-keepass
https://github.com/lgg/awesome-keepass
https://techcrunch.com/2023/01/15/norton-lifelock-password-manager-data/
https://techcrunch.com/2023/01/15/norton-lifelock-password-manager-data/
https://techcrunch.com/2023/01/15/norton-lifelock-password-manager-data/

[59] Min Xu, Armin Namavari, David Cash, and Thomas
Ristenpart. Searching encrypted data with size-locked
indexes. In USENIX Security, 2021.

[60] Yupeng Zhang, Jonathan Katz, and Charalampos Papa-
manthou. All your queries are belong to us: the power
of file-injection attacks on searchable encryption. In
USENIX Security, 2016.

[61] Dionysios Zindros and Dimitris Karakostas. Practical
new developments in the breach attack. Black Hat Asia,
2016.

A Testing Methodology and Analysis

We explain the testing methodology for our attacks in this
section, where we include a summary of the steps shared with
vendors that allowed them to reproduce the attacks.

General setup. For each analyzed application, we first cre-
ated two separate accounts for the service. The devices used
were laptops running macOS Monterrey. If relevant for the
application, we additionally created an organization under
which both accounts were registered. Then, we established
a shared folder (or individual credentials, if the application
does not support folders) between both accounts.

A.1 Attacks from Sections 5 and 6
To simulate the view of both a compromised server and net-
work adversary, we used Charles Proxy [1] to establish a
proxy server on the victim’s device. This allowed us to in-
tercept both the encrypted HTTPS traffic, and enable SSL
proxying to intercept the unencrypted traffic that would reach
the application servers.

Our testing data consisted of an open-source list of common
passwords [40] and the Majestic ranking of top websites [4],
for the attacks in Section 5 and 6, respectively. We explain
the main steps for our attack from Section 5 below; the steps
for the attack in Section 6 are analogous, except that we inject
URLs instead of passwords.

To implement the attack, we first sampled uniformly at
random a password from this list, and added it to the victim’s
vault as the target password. We then sampled at random vari-
ous subsets of passwords of increasing sizes (1 through 512,
in increasing powers of 2), which represented the list of candi-
date passwords. Lastly, we ran the attack from the adversary’s
account, following the steps described in Section 5. At a high-
level, this consisted of creating a batch of shared passwords in
the adversary’s account, waiting for the next request from the
victim’s account reporting the updated number of duplicates
(which was intercepted by our proxy server), and repeating
these steps, until completion of the attack.

To determine the network delay for each log of duplicates,
as reported in Section 5, we compared (1) the timestamp from

the initial request for the upload of the shared credentials,
against (2) the timestamp of the request that logged the num-
ber of duplicate passwords. We computed the average delay
between each injection. Then, the total time to run each at-
tack is simply t · n, where t is the number of iterations the
attack requires, and n is the experimental delay between logs
of duplicates.

Both attacks succeed with 100% probability by design:
computing the number of duplicates in the vault and fetching
URL icons are both deterministic, noise-free operations. Thus,
there was no need for an experimental estimate of the attack’s
correctness. Indeed, our attack implementations succeeded
every time.

A.2 Attacks from Section 7
To simulate the view of a compromised encrypted vault, it
sufficed to place the encrypted database file in a local folder
in the victim’s device, and measure its size directly.

We verified the general correctness of the attacks by imple-
menting them using real KeePassXC clients, and then com-
puted an empirical estimate of their probability of success on
a local simulation (described below). We used various data
sources as testing data for the attacks, as described in Sec-
tions 7.1 and 7.2. For each, we first added the target item to the
victim’s device. Then, we ran the attack from the adversary’s
device as explained in the relevant sections, by iteratively
adding credentials to the shared folder with injected items
and measuring the updated size of the victim’s encrypted
vault. In this way, we were able to confirm the presence of
the deduplication and compression mechanisms.

Statistical analysis. We implemented a local simulation of
the core operations of the KeePassXC client that are relevant
to our attacks, which allowed us to compute the statistical er-
ror rates of our attacks. Concretely, our simulation received as
input an initial KDBX 4 database, and provided an interface
for adding shared credentials to the database, which would up-
date the vault in-place, in a way that is consistent with updates
from real clients. This consisted of two steps: (1) Modifying
the plaintext database, by adding the shared credential as a
new XML element to the payload, adding new attachments to
the inner header (if any), and updating metadata; and (2) Re-
encrypting the new plaintext database, by rotating the secret
key in the inner header, and compressing-then-encrypting the
inner header and XML payload with this key.

Our implementation of this simulated environment was
guided by KeePassXC’s open-source codebase, in addition to
manual comparison of decrypted KDBX 4 databases before
and after a shared credential was added, which revealed all
modifications that resulted. In particular, this is derived from
files src/format/Kdbx4Writer.cpp and src/format/K
dbxXmlWriter.cpp in KeePassXC’s codebase [3]. We tested
the consistency of this simulation by adding shared credentials
via both our local implementation and real KeePassXC clients,

USENIX Association 33rd USENIX Security Symposium 4353

src/format/Kdbx4Writer.cpp
src/format/KdbxXmlWriter.cpp
src/format/KdbxXmlWriter.cpp

and verifying that the resulting database states are equivalent
in both cases.

Equipped with this simulation, we ran the attacks (follow-
ing the steps described in Section 7) in a single device, to be
able to compute a high number of trials without overloading
the application servers. We used the interface provided by our
simulation to add credentials to the vault (which mocks the
injected credentials), followed by local measurements of the
resulting file size (which mocks the adversary’s view of the
compromised encrypted vault). This allowed us to empirically
estimate the noise present in our attacks, by repeating each
experiment many times on the same starting state, and tallying
the number of successful attempts (see Section 7 for more
details, and the reported error rates).

B Details of Case Studies from Section 5

We explain additional details for the case studies of our attacks
from Section 5 in this section.

Case study #1: LastPass. LastPass’s Chrome extension
and web vault log vault security metrics via POST requests to
the endpoint lastpass.com/lmiapi/users/me/securit
y/score.7 The payload of this request, among other things,
maps the string “numallduppasswords” to the number of
duplicate passwords in the vault, i.e., dup(V). Importantly,
this metric only quantifies how many passwords themselves
are reused, and not across how many accounts. That is, if
there are already two copies of a password in a vault, adding
a third copy does not increase this metric. As such, our attack
on LastPass requires the additional assumption that U only
has one copy of the target password in their vault at the start
of the attack.8

The POST requests to lastpass.com/.../score are
triggered after every modification to any entries in V . In par-
ticular, a request is sent as soon as U’s client automatically
imports the updates to the shared folder F . Synchronization
of changes to shared folders is very frequent. Indeed, Last-
Pass claims that changes are “synchronized automatically
and propagate to everyone with whom the folder has been
shared” [36]. In practice, there is a short time delay, which
represents the time the adversary has to wait between each of
the dlog2 ne injections. We measured this to be between 3 to
5 minutes on average.

Case study #2: Dashlane. Dashlane’s web vault and
Chrome extension log their vault security metrics via
POST requests to styx.data.dashlane.com/v1/

7This is only the case for users with premium accounts (any one of
Families, Teams, Premium, and Enterprise plans, and the trial versions of
these).

8Similarly, the basic attack requires a trivial refinement: if Pf ound = P′ in
step (5), A needs to first delete or overwrite the entries they just injected, as
otherwise there would already be a copy of the target password in the vault
(from their prior injection).

event/user. The payload of this request contains the
string “passwords_reused_count”, which corresponds to
2 ·dup(V). Unlike LastPass, this metric quantifies the num-
ber of accounts with reused passwords, i.e., we do not need
to assume that U’s vault only contains one copy of the target
password. More generally, the attack requires no assumptions
about the (lack of) activity by U ,9 and thus falls under the
noisy device setting.

Case study #3: Zoho Vault. Zoho Vault’s web vault logs
their vault security metrics via POST requests to the endpoint
vault.zoho.com/api/rest/json/v1/dashboard/se
ndAssessmentDetails. The payload of this request con-
tains an array O of JSON objects, with the format described
in Section 5.1. By counting the number of objects such that
“reused” maps to true, the adversary can identify dup(V),
and thus run the attack using the binary-search injection strat-
egy. However, Zoho Vault is revealing much more granular
information: A learns whether the password of each specific
entry is a duplicate or not, instead of just the total number
of duplicate passwords. So, the adversary can simply inject
all candidate passwords in a single batch, and look for the
reused field of the objects in O that correspond to the injected
credentials.

The challenge with this approach is identifying which spe-
cific objects correspond to which specific injected credentials.
To do so, the adversary can leverage an additional fact: upon
creation, each credential is assigned a unique string identify-
ing it, which is also stored in each credential’s object in O.
This ID is preserved after a credential is shared. So, the ad-
versary can (1) locally create a credential for each candidate
password, (2) note the assigned ID for each, and (3) look for
these IDs in O after sharing the credentials. This allows the ad-
versary to map every injected credential to its corresponding
object in O, as desired.

Unlike the prior attack on LastPass, the correctness of this
attack does not depend on U having only one copy of the
target password in their vault. More broadly, our attack is
robust to any kind of external noise, and thus falls under the
noisy device threat model. We note that our extension of this
attack to a network adversary does require that the device is
free of external noise at every recursive round of the binary-
search injection strategy, in order for fluctuations in |O| to
correspond only to changes in the reused flags of injected
passwords. Importantly, however, the device need not be quiet
for the entire attack: if A notices that external changes also
took place, they can simply repeat this round of the attack.
As such, the attack as a whole falls under the noisy device
setting.

9Unlike LastPass, when the metric increases A can distinguish false
positives from legitimate matches by unsending the candidate, and seeing if
the metric decreases again.

4354 33rd USENIX Security Symposium USENIX Association

lastpass.com/lmiapi/users/me/security/score
lastpass.com/lmiapi/users/me/security/score
lastpass.com/.../score
styx.data.dashlane.com/v1/event/user
styx.data.dashlane.com/v1/event/user
styx.data.dashlane.com/v1/event/user
styx.data.dashlane.com/v1/event/user
styx.data.dashlane.com/v1/event/user
styx.data.dashlane.com/v1/event/user
styx.data.dashlane.com/v1/event/user
styx.data.dashlane.com/v1/event/user
styx.data.dashlane.com/v1/event/user
vault.zoho.com/api/rest/json/v1/dashboard/sendAssessmentDetails
vault.zoho.com/api/rest/json/v1/dashboard/sendAssessmentDetails

	Introduction
	Related Work
	Password Managers Background
	Threat Model and Case Studies
	Threat Model
	A Corpus of Password Managers
	Overview of Attacks

	Attacks From Application-wide Metrics
	Vulnerable Password Managers

	Attacks from URL Icon Fetching
	Vulnerable Password Managers

	Attacks from Storage-Saving Mechanisms
	Leakage from Attachment Deduplication
	Leakage from Compression

	Mitigations and Responsible Disclosure
	Conclusion
	Testing Methodology and Analysis
	Attacks from Sections 5 and 6
	Attacks from Section 7

	Details of Case Studies from Section 5

