
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

SnailLoad: Exploiting Remote Network Latency
Measurements without JavaScript

Stefan Gast, Roland Czerny, Jonas Juffinger, Fabian Rauscher,
Simone Franza, and Daniel Gruss, Graz University of Technology

https://www.usenix.org/conference/usenixsecurity24/presentation/gast

SnailLoad: Exploiting Remote Network Latency Measurements without JavaScript

Stefan Gast, Roland Czerny, Jonas Juffinger, Fabian Rauscher, Simone Franza, Daniel Gruss
Graz University of Technology

Abstract
Inferring user activities on a computer from network traffic
is a well-studied attack vector. Previous work has shown that
they can infer websites visited, videos watched, and even user
actions within specific applications. However, all of these
attacks require a scenario where the attacker can observe the
(possibly encrypted) network traffic, e.g., through a person-
in-the-middle (PITM) attack or sitting in physical proximity
to monitor WiFi packets.

In this paper, we present SnailLoad, a new side-channel
attack where the victim loads an asset, e.g., a file or an image,
from an attacker-controlled server, exploiting the victim’s
network latency as a side channel tied to activities on the
victim system, e.g., watching videos or websites. SnailLoad
requires no JavaScript, no form of code execution on the
victim system, and no user interaction but only a constant
exchange of network packets, e.g., a network connection in
the background. SnailLoad measures the latency to the victim
system and infers the network activity on the victim system
from the latency variations. We demonstrate SnailLoad in a
non-PITM video-fingerprinting attack, where we use a single
SnailLoad trace to infer what video a victim user is watch-
ing momentarily. For our evaluation, we focused on a set of
10 YouTube videos the victim watches, and show that Snail-
Load reaches classification F1 scores of up to 98 %. We also
evaluated SnailLoad in an open-world top 100 website fin-
gerprinting attack, resulting in an F1 score of 62.8 %. This
shows that numerous prior works, based on network traffic
observations in PITM attack scenarios, could potentially be
lifted to non-PITM remote attack scenarios.

1 Introduction

Side channels can leak information from implementations that
are functionally correct and free of implementation errors [40].
Software-based side channels have gained an increasing
amount of attention in the system security community, in
particular cache attacks, which exploit timing differences

induced by the caching infrastructure of a system [52, 79].
Software-based timing attacks, in particular on the cache,
have been demonstrated on cryptographic algorithms [8], on
ASLR (address-space layout randomization) [23, 31], secure
enclaves [61], from websites [51], and to build covert chan-
nels [45,59]. Most of these works study local scenarios where
an attacker can execute native code [31], sandboxed code [77],
or code run in an interpreter [62].

Other works study remote scenarios, typically with
implementation-specific operations, such as encryption inter-
faces [10] or special hardware interfaces [42]. A more exten-
sive set of works focuses on fingerprinting [65] using remote
side channels, e.g., via passive traffic analysis from within
the same network [7, 47, 70, 71]. Alexander and Crandall [4]
focused on a more active attack scenario with spoofed SYN
packets, triggering interaction between victim and server that
the attacker can passively observe. Most works in this space,
however, focus on person-in-the-middle scenarios to finger-
print, e.g., applications [69, 74] or websites [9, 58]. That is,
they assume that the attacker controls at least one gateway or
router in the path between server and victim. Naturally, this al-
lows to monitor precise transmission times of packets, as well
as their types and sizes [2,16,17,26,29,38,39,41,54,66,67,72].
Passive remote attacks have so far only been demonstrated in
the context of the Tor anonymity network [46, 48]. Murdoch
and Danezis [48] showed that they can reconstruct the activity
of a Tor relay node using passive latency measurements.

Given this prior work we ask the following question:
Can a passive remote attacker use latency measurements as a
side channel for browsing activity on a victim system? Can
such a side-channel attack be mounted over the Internet?

In this paper, we answer both questions in the affirmative:
We show that neither specific code on the victim machine nor
direct observation of the possibly encrypted network traffic is
required to infer browsing activity on the victim system. We
show that these attacks are possible from arbitrary Internet
servers, with distances of more than 8 hops to the victim,
and with only minimal network activity. SnailLoad exploits
the subtle variations in the round-trip times (RTTs) of net-

USENIX Association 33rd USENIX Security Symposium 2315

YouTube

Attacker’s
HTTP Server

Bottleneckfast

fast
ISP

Endpoint
Victim’s
Gateway

Victim’s
Computer

slow!

Figure 1: The attack setup for SnailLoad. A victim downloads
data from an attacker’s HTTP server while it watches a video
on a video-sharing platform, e.g., YouTube. Due to the net-
work bottleneck on the victim’s side, the attacker can infer
the transmitted amount of data by measuring the packet round
trip time. The round trip time traces are unique per video and
can be used to classify the video watched by the victim.

work packets that carry a side-channel signal influenced by
activity of the victim. This enables an attacker to perform
network side-channel attacks, that so far required a person-in-
the-middle (PITM) scenario, from a fully passive and fully
remote scenario off the transport path between victim and
server.

We investigate the latency variations by analyzing the RTTs
for different internet connections. Our analysis shows that
the root cause of SnailLoad are bandwidth differences in the
transport path between victim and server. As the server cannot
know how fast the victim can receive the packets, it sends a
certain amount (i.e., a burst) of data in a short time frame. If
there is a node on the transport path that hands over data from
a higher bandwidth channel to a lower bandwidth channel,
it has to buffer packets to transmit them sequentially over
the lower bandwidth channel. Extreme cases where buffering
leads to unusually high latencies are known as the bufferbloat
phenomenon. While bufferbloat has only been considered
a quality-of-service issue so far, SnailLoad shows that the
timing differences induced by this buffering are exploitable by
any attacker that can send packets through the same network
node to the victim. Importantly, this node is typically the last
node connecting the victim exclusively to the internet, i.e., all
packets to and from a victim pass through this node.

We evaluate SnailLoad in the first fully remote, non-person-
in-the-middle web activity fingerprinting attack. To remain
stealthy and to evade widely-used firewall restrictions (e.g.,
ICMP ping messages being dropped), we masquerade our
SnailLoad latency measurements as a slow HTTP transfer
from an attacker-controlled web server. This HTTP transfer
can be a background connection, e.g., for a messenger app,
or a slow website component embedded (e.g., an advertise-
ment, image, font, or style sheet) in an otherwise benign and
responsive website. Importantly, SnailLoad runs no code, e.g.,
no JavaScript, on the victim system. We show that a single
SnailLoad trace from this scenario suffices to infer what video
a victim user is watching momentarily. For our evaluation, we
focused on a set of 10 YouTube videos the victim watches, and

reach classification F1 scores of up to 98 %. We also evaluated
SnailLoad in an open-world website fingerprinting attack, re-
sulting in a macro-averaged F1 score of 62.8 %. When using
SnailLoad across connections, with training data from one
connection applied to another, we still achieve an F1 score of
40 % in a top-10 closed-world fingerprinting scenario.

We evaluate the general applicability of SnailLoad on 10
home internet connections using ADSL, FTTH, FTTB, LTE,
and cable access technologies. With training data from the
victim’s internet connection over the top 10 YouTube videos,
played for 90 s with Firefox, we achieve F1 scores between
37 % on an FTTB connection and 98 % on an FTTH connec-
tion. Our evaluation shows variations in the accuracy between
internet access technologies, depending on whether the last-
mile transport medium is shared among multiple subscribers
or not. We evaluate the attack performance for probing fre-
quencies between 20 Hz to 5 000 Hz, resulting in 0.4 kB/s to
320 kB/s of network traffic, in relation to differently-sized
network activity of the victim ranging from 512 B to 8 MB.
Our results show that with a higher probing frequency, we
can observe also smaller-sized network activity of the vic-
tim. However, below a size of 512 kB, we find no probing
frequency that leaks the network activity reliably. This is
most likely due to not causing sufficient traffic for a visible
amount of contention on the packet queue before the last mile,
resulting in no visible delay for the attacker’s packets.

We conclude that numerous prior works on network side
channels in PITM attack scenarios could potentially be lifted
to a remote non-PITM attack scenario based on SnailLoad.

Contributions. We summarize our contributions as follows:
1. We present SnailLoad, a new side-channel attack exploit-

ing latency variations of the victim’s network connection
measured by loading an asset from an attacker-controlled
server; allowing to infer web activity of a victim.

2. We show that the root cause of the side channel is buffer-
ing in a transport path node, typically the last node before
the user’s modem or router, related to a quality-of-service
issue called bufferbloat.

3. We show that SnailLoad works despite the blocking of
ICMP echo packets, through a low-bandwidth background
connection such as a slow download, slow loading image
in a website, or a connection for a chat client.

4. We evaluate SnailLoad in a user study with 10 differ-
ent internet connections and 6 different connection tech-
nologies, achieving video-fingerprinting F1 scores of 37 %
to 98 %. We also evaluate SnailLoad in a top-100 open-
world website-fingerprinting attack, achieving an F1 score
of 62.8 %.

Outline. Section 2 provides background on internet tech-
nologies and remote fingerprinting side-channel attacks. Sec-
tion 3 presents the basic latency measurements that are the
foundation of SnailLoad. Section 4 examines the root cause

2316 33rd USENIX Security Symposium USENIX Association

of SnailLoad. Section 5 presents the threat model and at-
tack setup of SnailLoad. Section 6 evaluates SnailLoad in
a video-fingerprinting scenario. We performed a user study
comprising 10 different internet connections and 6 different
internet connection technologies. Section 7 presents a top-
100 open-world website-fingerprinting attack. We discuss the
impact of SnailLoad and the relevant scenarios in Section 8.
We conclude in Section 9.

2 Background

We provide background on internet access technologies typ-
ically used by end users to connect to the internet. Further-
more, we briefly introduce TCP/IP networking and dynamic
adaptive streaming over HTTP. Finally, we describe video
fingerprinting attacks and remote timing side channels.

2.1 Internet Access Technologies

While fast backbone internet routers deliver 100 Gbit/s per
trunk line [24], with a recently ongoing shift to 400 Gbit/s
technology [15], the last mile of an internet connection
still forms a bandwidth bottleneck. For Q3 2023, a recent
study [37] of an internet speed test provider shows a world-
wide median download speed of 83.95 Mbit/s for wired
connections and a worldwide median download speed of
203.04 Mbit/s for 5G connections, with high variations be-
tween different countries.

The prevalent connection types for end-users are DSL, ca-
ble, fiber optic, and mobile. In this section, we briefly describe
their characteristics.

Digital Subscriber Line (DSL) DSL is an internet con-
nection technology utilizing existing copper telephone lines.
Multiple subscribers are connected to a DSL access multi-
plexer (DSLAM) before forwarding the connection to the
internet service provider (ISP). The location of the DSLAM
is an essential factor in the achievable bandwidth due to signal
attenuation increasing with the length of the copper lines [21].

DSL has a low bandwidth and high latency compared to
other technologies like cable and fiber optics. Download band-
widths typically range from 5 Mbit/s to 120 Mbit/s, with up-
load bandwidths from 1 Mbit/s to 20 Mbit/s. Since the last
mile of DSL is shared between multiple participants, the band-
width can be limited when many participants use the shared
line. This also influences the latency.

Cable Similarly to DSL, cable internet also takes advan-
tage of existing infrastructure: the coaxial cables for cable
television. The Data Over Cable Service Interface Specifica-
tion (DOCSIS) is a set of specifications standardizing data
transmission over television cable systems [32]. In contrast

to DSL, the length of the data cable, due to being a coaxial
cable, is not that influential on the bandwidth.

However, the number of end users sharing the same con-
nection strongly influences the bandwidth. The download
bandwidth of cable internet is up to 10 Gbit/s with DOCSIS
4.0, and the upload bandwidth is up to 6 Gbit/s [32].

Fiber optic Fiber optic internet connections use light im-
pulses transmitted via a fiber optic cable. They provide the
highest bandwidth and lowest latency for data transmission,
reaching up to 50 Gbit/s symmetric [19]. The fiber optic cable
itself does not constrain this bandwidth but instead by the
capabilities of the terminal equipment [56].

Fiber optic internet connections vary based on the compo-
sition of the last mile’s connectivity. In a fiber-to-the-home
(FTTH) setup, the entire last mile exclusively uses fiber optic
cables, resulting in a non-shared, highly efficient connection.

In different, less costly configurations, such as Fiber-to-
the-Curb (FTTC) or Fiber-to-the-Building (FTTB), existing
infrastructure like coaxial cables links homes to the optical
fiber network. In many instances, this leads to sharing lines
with other users, similar to cable and DSL connections.

Mobile In contrast to the previously described wired tech-
nologies, the router is wirelessly connected to a cellular tower
for a mobile internet connection. Because they generally serve
multiple clients, the last mile of the connection is inherently
shared, making the bandwidth and quality of the connection
highly dependent on the number of clients.

The 5G standard uses higher frequency bands to increase
bandwidth and reduce latency compared to 4G. Due to the
higher frequency, 5G towers can only serve a smaller area
than 4G towers. This leads to fewer users sharing the last
mile, improving signal quality due to reduced congestion.

The bandwidth of 4G is up to 150 Mbit/s for download and
up to 50 Mbit/s for upload. 4G+ increased it to 300 Mbit/s
and 150 Mbit/s respectively [55]. 5G can reach significantly
higher bandwidths, with up to 20 Gbit/s for download and
10 Gbit/s for upload [33].

2.2 TCP/IP Networking
The Transmission Control Protocol (TCP) is a protocol en-
suring the correct and ordered transmission of data over a
network. It works closely with the Internet Protocol (IP) that
enables the transmission of packets across network boundaries
from a specific source to a receiver. TCP/IP, the combined
suite, forms the foundation of most modern internet commu-
nications, supporting a wide array of applications like web
browsing (HTTP), E-Mail, and file transfers.

Packet Acknowledgment TCP is a connection-oriented
protocol, using a handshake mechanism to establish a connec-
tion between sender and receiver. Upon the arrival of a packet,

USENIX Association 33rd USENIX Security Symposium 2317

the receiver sends an acknowledgment packet (ACK) back to
the sender, enabling the retransmission of lost packets.

TCP is implemented using send and receive buffers.
Packets reside in the send buffer until an ACK is received.
The size of the send buffer determines how many not-yet-
acknowledged packets can be in transit. A receive buffer
holds all received packets the application still needs to read.

Congestion Control Another vital feature of TCP is conges-
tion control, which is crucial for maintaining a stable network,
especially when it becomes heavily loaded. TCP employs
several mechanisms to avoid or remove network congestion.

A congestion window determines the amount of data the
sender may send before receiving an ACK packet. The size of
the congestion window is controlled by the sender and is based
on its perception of network congestion using information like
lost or delayed ACK packets. The value adapts dynamically to
the current load of the network.

To determine the congestion window size, typically, an
algorithm known as slow start is employed. The initially
small congestion window size is doubled upon each success-
ful round trip until it reaches a threshold where packet loss is
detected. Once the threshold is reached, TCP transitions from
slow start to congestion avoidance. In this mode, the window
size is changed more slowly to avoid congestion.

2.3 Dynamic Adaptive Streaming over HTTP
Dynamic Adaptive Streaming over HTTP (DASH) is a stan-
dard for video streaming [35], used by multiple video stream-
ing services, including YouTube [26, 39]. DASH servers split
videos into small chunks of typically 2–6 seconds, each with
multiple quality levels, allowing the client to request each
chunk on demand, dynamically choosing a suitable bitrate,
based on the available bandwidth. Video codecs and streaming
services typically use variable-bitrate (VBR) encoding [6],
enabling them to save bandwidth for scenes with only mi-
nor picture changes and to increase the bitrate for scenes
containing more motion. Consequently, timing and sizes of
transferred chunks differ for each video, based on the content.

2.4 Video Fingerprinting Attacks
As the timings and sizes of the transferred chunks form an
individual fingerprint of each video, an attacker can infer the
video played from the victim’s network traffic by matching the
observed traffic metadata against prerecorded traces. Multiple
prior video fingerprinting attacks monitored network traffic
directly from a PITM position [16, 26, 27, 38, 39] or from a
WiFi signal [16]. More recent work [57] demonstrated a video
fingerprinting attack based on the detection of network inter-
rupts on the victim machine, indirectly observing network
traffic. Inferring videos from traces is a typical classifica-
tion task. Prior attacks used different classification methods,

such as Dynamic Time Warping [26], Minimum Variance
Matching [26], Nearest Neighbor Classification [16], Support
Vector Machines [16], Sequential Minimal Optimization [39]
or, more recently, convolutional neural networks [38, 39, 57].

2.5 Remote Timing Side Channels
In the context of side-channel attacks, the term remote has
been used for a variety of scenarios. Some works described
JavaScript-based attacks as remote [18, 25, 51, 76], other at-
tacks focus on specific interfaces, e.g., encryption interfaces
or encrypted web traffic [8,10,13,14,63], and a third category
of attacks works by only sending network packets to a ma-
chine without targeting specific interfaces [42, 44, 73]. All of
these attacks rely on implementation-specific operations that
the victim system performs that are unrelated to the actual
victim activity targeted. Contention of buffers within the local
(wireless) network [75] same system [20] can also contribute
to performance anomalies that SnailLoad exploits.

In the context of IoT devices, passive traffic analysis from
within the same network has been demonstrated to allow
derivation of privacy-related information [7, 47, 71]. This is
related to a line of research fingerprinting encrypted web traf-
fic [65]. Previous works have demonstrated application fin-
gerprinting [69,74], video fingerprinting [16,68], and website
fingerprinting [9,58]. The two attack scenarios for these works
are either a local network attacker, controlling a gateway in
the local network far enough to spy on the traffic of a specific
machine [7, 47, 70, 71], or a remote network attacker, control-
ling a router somewhere in the path between server and victim.
More active attacks can also trigger interaction between vic-
tim and server that the attacker then measures [4]. Different
features that are available to such person-in-the-middle at-
tackers have been exploited [2, 16, 17, 26, 29, 38, 39, 72], e.g.,
message type [41, 67], packet length [54, 66]. Rather passive
remote attacks have so far only been demonstrated in the con-
text of the Tor network [46, 48]. Murdoch and Danezis [48]
showed that they can reconstruct the activity of a Tor relay
node using passive latency measurements. Finally, many net-
work side-channel works focus on the information recovery
rather than the information collection aspect [9, 16, 58, 68].

3 The Latency Side Channel

In this section, we do not yet mount an SnailLoad but only
study the latency side channel. We examine latency variations
on internet connections depending on different activities and
show that the ISP’s endpoint and the last mile have a signif-
icant influence. Our initial experiments also show that the
effect can be observed by any unauthorized and unprivileged
third party with a network connection to the system.

For now, we measure latencies using ICMP pings. For our
SnailLoad attack later on, we have to resort to other packets
as networks today commonly filter “ping packets” by default.

2318 33rd USENIX Security Symposium USENIX Association

0 s 5 s 10 s 15 s 20 s

20

40

60

google.com

amazon.com

R
T

T
[m

s]

(a) Same machine pinging 8.8.8.8.

0 s 5 s 10 s 15 s 20 s

20

40

60

google.com

amazon.com

R
T

T
[m

s]

(b) Different machine in the same network pinging 8.8.8.8

Figure 2: Effect of internet connection activity on the round trip times. A machine is constantly pinging 8.8.8.8 while the two
websites google.com and amazon.com are opened. The internet is provided by a 50 Mbit/s ADSL connection.

The ping command sends an ICMP Echo Request to the
target machine, which in turn responds with an ICMP Echo
Reply. The latency between sending the ICMP Echo Request
and receiving the ICMP Echo Reply is recorded as the round
trip time (RTT). Typical use cases of the ping command focus
on the round trip time, e.g., to monitor the network status.

For our first experiment, we use a 50 Mbit/s ADSL connec-
tion, with a client machine directly connnected to the internet
gateway (i.e., home router) via an Ethernet cable. On the
client machine, we ping the Google DNS server (IP: 8.8.8.8)
with an interval of 50 ms and record the RTTs over time. Ac-
cessing google.com and amazon.com on the same machine
shows RTT spikes while loading (cf. Figure 2a). We can see
that this effect is quite subtle for a comparably plain website
like the Google start page, while it is more noticeable for
more complex websites like the Amazon start page. This is a
surprising observation as either of the websites only triggers
a few hundred kilobytes of traffic, nothing that should affect
the network response times in a significant way.

The latency is influenced by small degrees of victim inter-
net activity already.

In a second experiment, we show that the latency spikes are
not caused by an effect on the client computer, e.g., kernel- or
user-level packet handling, or system activity due to rendering.
We repeat the experiment on the same internet connection
but on a second machine directly connected to the gateway.
We still ping the server from the first machine but load the
websites on the second machine. This experiment results in
the same latency spikes as shown in Figure 2b. This observa-
tion shows that the effect is not caused by any hardware or
software component of either of the two client computers.

The latency is influenced by internet activity on other sys-
tems in the same network.

We also verify that the effect is not caused by the network
connection between the two client machines. For this, the first
client machine pings the second machine, with the second
machine loading the websites. In this scenario, we do not
observe any latency spikes corresponding to website loads.
We repeat the same experiment with a ping interval of 10 ms,

again without observing latency spikes. The average RTT in
this setting is 0.91 ms (n = 2 223), with a maximum of only
1.5 ms at the start of the measurement, unrelated to the website
loads. These results indicate that the observed latency spikes
are caused by either the ISP’s endpoint, the home internet
gateway, or the last mile in between.

The latency is influenced by the ISP’s endpoint and the
last mile.

4 Latency Side Channel Root Cause Analysis

In this section, we analyze the root cause for the latency spikes
observed in Section 3. We show that these can be explained by
packet buffering at the ISP’s endpoint, to which the customer’s
internet gateway is connected on the last mile.

As the last mile of the user’s internet connection has a
significantly lower bandwidth than backbone internet infras-
tructure (see Section 2.1), there is a bandwidth bottleneck at
the ISP’s endpoint (i.e., DSLAM, CMTS, ONT, or cell tower).
Network components, such as switches and routers, connect
a high-bandwidth to a low-bandwidth network segment and
buffer packets to be forwarded to the low-bandwidth segment.
This prevents packet loss when the low bandwidth segment is
congested. However, as packets have to be forwarded sequen-
tially, a busy low-bandwidth connection delays the delivery
of packets coming from the high-bandwidth segments.

The root cause of the latency side channel is the buffer-
ing of packets in nodes between high-bandwidth and low-
bandwidth network segments, often located directly before
the last mile. Typically, all internet packets for a specific
user have to pass through this node.

We investigate the extent of this delay for 11 internet con-
nections by comparing their baseline and congested ping
round-trip times (RTTs). We directly connect a client com-
puter to the home internet gateway (i.e., router) via a standard
1000BASE-T (ethernet) cable and ping the Google DNS
server (IP address: 8.8.8.8). To measure the baseline RTT,
we perform the measurement while the connection is other-

USENIX Association 33rd USENIX Security Symposium 2319

0 200 400 600

0

2,000

4,000

#
C

as
es idle

with download

(a) Round trip time [ms] on ADSL-1 with 50 Mbit/s

0 200 400 600

0

2,000

4,000

#
C

as
es idle

with download

(b) Round trip time [ms] on LTE with 75 Mbit/s

20 30 40 50

0

2,000

4,000

#
C

as
es idle

with download

(c) Round trip time [ms] on FTTH-1 with 80 Mbit/s

20 30 40 50

0

2,000

4,000

#
C

as
es idle

with download

(d) Round trip time [ms] on Cable with 250 Mbit/s

Figure 3: Histograms of the round trip times of multiple internet connections, idle and with a download running in parallel.

Table 1: Tested internet connections and their round trip times (idle and saturated), as measured with ICMP Echo Requests.

Connection
Bandwidth [Mbit/s] Idle RTT [ms] Congested RTT [ms]

max.1 measured min. avg. max. min. avg. max

ADSL-12 50 47 13.939 14.674 16.446 398.160 522.239 663.573
ADSL-22 8 3.8 14.754 16.177 22.022 105.484 189.234 231.968
FTTH-12 80 73.4 7.200 8.453 12.587 8.172 40.010 46.341
FTTH-23 80 76.2 8 10.538 49 8 34.509 95
FTTH-32 300 292.8 7.093 7.630 10.697 22.801 34.811 42.369
FTTB-14 250 249 34.467 36.072 40.385 45.202 61.627 110.449
FTTB-22 300 291.2 12.067 15.372 27.890 12.507 35.145 81.489
FTTB-32 150 236.8 14.437 15.746 29.835 11.825 28.760 87.212
LTE2 75 78 49.683 52.844 56.483 156.945 322.248 588.891
LTE+2 200 120 30.515 34.329 77.128 40.969 293.244 815.692
Cable2 250 261.3 20.622 22.299 37.609 17.598 26.728 55.508

1 according to ISP, 2 n = 5000 for RTT measurements, 3 n = 1000 for RTT measurements, 4 n = 100 for RTT measurements

wise idle. For the congested RTT, we perform the measure-
ment while downloading a large file from a web server. We
verify that the chosen download server has a transfer rate
higher than the maximum download rate of the tested home
internet connections by measuring its transfer rate at the uni-
versity, where we measure a transfer rate of approximately
800 Mbit/s.

Our results, summarized in Table 1, show a substantial
increase in the average RTTs for all the internet connections
we tested. The histograms in Figure 3 show the distributions
of the RTTs with and without a download running in parallel
for an ADSL, an LTE, an FTTH, and a cable connection.
Each of the internet connections we tested has characteristic
distributions, showing that we are observing an effect specific
to the internet connection itself.

Some of the tested connections show average RTTs of more
than 150 ms when they are congested, such as the ADSL con-

nections (ADSL-1 and ADSL-2 in Table 1) and the mobile
connections (LTE and LTE+). These more extreme latency in-
creases are caused by excessive buffering in network compo-
nents, a networking problem known as bufferbloat [5, 20, 36].
While bufferbloat can be mitigated by Active Queue Manage-
ment (AQM) schemes, such as CoDel [50,64] or PIE [53], we
want to emphasize that these only prevent excessive buffering
and reduce the delay caused by it. Even with AQM schemes,
the low-bandwidth bottleneck still exists, and some (reduced)
form of buffering is required to prevent excessive packet loss.
Thus, AQM reduces the difference in RTTs between an idle
and a congested last mile. However, it cannot entirely elimi-
nate the difference. Hence, all the tested connections carry a
side-channel signal leaking usage information. Only for some
of these connections, the side-channel signal is amplified by a
heavy bufferbloat. Figure 4 illustrates the latency differences
for idle, busy, and bufferbloat-affected connections.

2320 33rd USENIX Security Symposium USENIX Association

(a) Connection idle:
packet forwarded im-
mediately.

(b) Connection busy:
packet buffered for a
short delay.

...

(c) Bufferbloat: Ex-
cessive packets lead
to long delays.

Figure 4: The effect of congestion on network latencies. The
forwarding delay of the measurement packet correlates with
the occupancy of the buffer in the router.

In extreme cases, the latency is amplified by the bufferbloat
phenomenon.

While our analysis provides a good understanding of the la-
tency side channel and the root cause of the latency variations
and spikes, we now move on to the SnailLoad attack.

5 SnailLoad: Video-Fingerprinting Attack

In this section, we describe the SnailLoad attack in detail,
starting with the threat model and attack overview. Because
we cannot use ping to measure RTTs, we show a new ac-
curate method to measure RTTs using TCP ACK packets.
This method uses only 400 B/s of network traffic. Using it,
we record network latency traces of streamed videos and clas-
sify them using a convolutional neural network. The average
classification accuracy of 10 videos over all 10 tested internet
connections is 66.8 %.

5.1 Threat Model

The attacker wants to know which video the victim user is
watching. The attacker runs a native code TCP server and
causes the victim to initiate a TCP connection with a down-
load from the server while watching the video. As any back-
ground TCP transfer is enough to conduct SnailLoad, there
are numerous ways to deploy it, e.g., download mirrors for
legitimate benign software, (third-party) website assets like
images, and several other scenarios (see Section 8). Impor-
tantly, the attacker cannot run any code on the victim machine,
i.e., the client application accessing the web server does not
execute JavaScript or WebAssembly originating from the at-
tacker’s web server. We furthermore do not assume ICMP
Echo Requests and ICMP Echo Responses to be forwarded
between the victim and the attacker, i.e., ping is blocked, a
standard router configuration today [60].

Algorithm 1: Measuring round trip times using TCP
Acknowledgment messages from a Linux process

Input: A socket descriptor sock with the
TCP_NODELAY option set

Input: A single byte b to be sent to the client
Result: The measured round trip time rtt

1 begin
2 acked← false;
3 start← get_current_time();
4 send(sock, b, 1, 0);
5 repeat
6 if ioctl(sock, SIOCOUTQ) = 0 then
7 acked← true;
8 end
9 until acked;

10 end← get_current_time();
11 return end − start;
12 end

5.2 Attack Overview
Our video-stream fingerprinting attack consists of an online
recording phase and an offline post-processing phase. During
the recording phase, the attacking server records the network
latency trace of the victim watching the first 90 seconds of
a video, measuring the round trip times of single-byte TCP
packets and their corresponding acknowledgment messages.
In the post-processing phase, we infer which video was played
from the recorded trace using a convolutional neural network
trained with traces from an identical network setup.

5.3 Network Latency from TCP ACKs
In the previous experiments, we measured network round
trip times using the ping command that was running on the
victim machine. However, in our threat model, the attacker
does not have control over the victim machine. We implement
a similar measurement with code only running on the attacker-
controlled server. While, in principle, it is possible to ping the
public IP address of the victim machine, the attacker might
not know the victim’s public IP address in advance, and the
internet gateway of the victim might be configured to drop
ICMP echo requests for security reasons [60]. In this section,
therefore, we exploit the TCP acknowledgment mechanism
to measure round trip times, i.e., any open TCP connection
between victim and server is sufficient to record round trip
times periodically.

5.3.1 TCP Packet Acknowledgments

To ensure reliable transmission, TCP requires the recipient to
acknowledge each segment back to the server. For this, the
receiver sends back a TCP message to the sender with the ACK

USENIX Association 33rd USENIX Security Symposium 2321

flag and the acknowledgment number set in the TCP header
(see Section 2.2). Measuring the time between sending some
data and receiving the corresponding TCP acknowledgment
again results in the round trip time, similar to using ICMP
Echo Requests and Replies as before. However, unlike ICMP
Echo Requests and Echo Responses, TCP acknowledgments
are required for every TCP connection, and, therefore, they
cannot be blocked globally.

A single, low-traffic TCP connection is sufficient to mount
SnailLoad. Blocking ICMP Echo messages does not pre-
vent SnailLoad.

5.3.2 TCP Packet Acknowledgment Detection

Linux does not provide a standardized way to inform a user
space application of packet acknowledgments. However, by
probing the number of packets in the send buffer, we can
see when a packet was acknowledged because it is removed
from the send buffer. The equivalent information can also be
obtained using libpcap, as we show in Section 7.

Algorithm 1 shows how such a measurement is imple-
mented in a Linux server process. After obtaining the start
time (Line 3), we invoke the send system call to enqueue a
single byte to be transmitted to the victim machine (Line 4).
As send returns immediately after placing the data to be sent
in the send buffer, only timing the send system call is not
sufficient. However, as described in Section 2.2, sent data is
removed from the send buffer as soon as the server receives an
acknowledgment for it. Consequently, in Line 5 until Line 9,
we wait until the send buffer becomes empty again, using the
SIOCOUTQ socket ioctl call to retrieve the number of bytes
currently in the send buffer (Line 6). As soon as that number is
0 again, we leave the loop and obtain the end time in Line 10,
yielding the round trip time as the difference between the end
time and the start time (Line 11). Alternatively, an equivalent
approach with libpcap can be used to match outgoing packets
and incoming ACKs (cf. Section 7). For probing frequencies
that may exceed the round-trip time of the connection, we
resort to libpcap, and use the send buffer for lower frequency
attacks (e.g., Section 6).

By setting the TCP_NODELAY socket option, we disable Na-
gle’s Algorithm [34,49] to ensure that each of the single bytes
is sent out immediately in separate TCP packets without merg-
ing multiple bytes into a single TCP packet. Consequently,
each single byte is acknowledged separately by the victim ma-
chine. Therefore, each single-byte transmission enables the
server to measure the round trip time to the victim. Further-
more, sending each byte in a separate TCP packet prevents
measurement influence from changing TCP transmission win-
dow sizes.

It is possible to detect TCP packet acknowledgments with
user privileges by polling the TCP send buffer.

0 20 40 60
30

32

34

R
T

T
[m

s]

(a) Video A, Trace 1, Time in seconds on x axis

0 20 40 60
30

32

34

R
T

T
[m

s]

(b) Video A, Trace 2, Time in seconds on x axis

0 20 40 60
30

32

34

R
T

T
[m

s]

(c) Video B, Trace 1, Time in seconds on x axis

0 20 40 60
30

32

34
R

T
T

[m
s]

(d) Video B, Trace 2, Time in seconds on x axis

Figure 5: Averaged RTT traces from a client watching two
different videos twice. There are features to distinguish the
two videos and match the two traces of the identical videos.

5.3.3 Web Server Implementation

While SnailLoad works with any TCP connection, we imple-
ment a web server offering a file via HTTP to record network
latency traces due to the large compatibility with existing
client applications, i.e., web browsers. The victim connects
to the web server and requests the file. After sending back
the HTTP header, the server performs latency measurements
while transferring the file content. Every 50 ms, the server
sends a single byte to the client and measures the round trip
time by polling the send buffer, as previously described. We
choose 50 ms as the time slice, since we want to have a high
temporal resolution, yet we do not want to exceed the regular
round trip time of an idle connection. This results in a low
transfer rate of only 1B

50ms = 20B/s visible to the user, which
gives SnailLoad its name. Effectively, due to the overhead of
TCP/IP, this results in 400 B/s of network traffic, which is still
very unsuspicious given that internet connections today can
commonly handle multiple megabytes per second. Figure 5
shows the traces of one client watching two different videos
two times. We can recognize the clear similarity between the

2322 33rd USENIX Security Symposium USENIX Association

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0

51
20

0

128 KiB

256 KiB

512 KiB

1 MiB

2 MiB

4 MiB

8 MiB

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0

8 7 6 8 7 9 8 8 6 2

10 7 8 8 7 9 8 8 7 8

10 10 9 10 10 10 10 10 9 10

10 10 9 10 10 9 9 9 10 8

10 10 9 9 9 10 10 10 9 10

Sample Rate (µs)

D
ow

nl
oa

d
Si

ze

Figure 6: Identified downloads for different download sizes
and sampling rates (n = 10). Evaluation with ADSL-1
(50 Mbit/s) connection.

same videos (traces 1 and 2) and see distinctive features for
the other video (traces 3 and 4).

5.4 Attack Parameter Sweep

To determine the conditions under which the side channel
works, we perform a parameter sweep, shown in Figure 6,
with different download sizes and sample rates. The evalu-
ation was done on the ADSL-1 (50 Mbit/s) connection. We
evaluated sampling rates specified as window sizes between
100 µs, corresponding to 100 kHz, to 51 200 µs, correspond-
ing to 19.5 Hz. Translating the connection capacity to these
window sizes we obtain 336 kB per 51 200 µs and 655 B per
100 µs. Thus, in theory, transmitting as much data within this
time frame should lead to contention in the buffer before the
last mile and thus to a visible latency difference. However,
as we see in Figure 6, even for higher sampling rates, we
cannot reliably detect downloads of less than 512 kB. The
reason for this may be that slow-start or congestion-avoidance
mechanisms successfully prevent the negative impact of the
download’s packets on other packets. Furthermore, at higher
sampling rates the TCP stack also starts grouping packets,
effectively keeping the sampling rate higher than attempted.
This observation can also be the reason for lower accura-
cies for some websites in our website-fingerprinting attack in
Section 7.1, i.e., due to their relatively low size.

5.5 Classifying Network Latency Traces with
a Convolutional Neural Network

In order to efficiently classify the network latency traces,
we employ a method typically used in signal classifica-
tion [12, 30, 57, 78]. To classify a network latency trace, we
first apply a Short-Time Fourier Transform (STFT) to it. An
STFT performs multiple Fourier Transforms on short time

Table 2: CNN Parameters

Type Parameters Activation

Conv2D filters=32, kernel size=[5,5],
strides=[1,1]

ReLU

MaxPooling2D pool size=[2,2], strides=[2,2] -
Conv2D filters=64, kernel size=[3,3],

strides=[1,1]
ReLU

MaxPooling2D pool size=[2,2], strides=[2,2] -
Conv2D filters=128, kernel size=[3,3],

strides=[1,1]
ReLU

MaxPooling2D pool size=[2,2], strides=[2,2] -
Flatten - -
Dense output size=1024 ReLU
Dense output size=512 ReLU
Dense output size=10 Softmax

windows of the network trace. The output of the STFT con-
sists of two dimensions, with one dimension being the time
and a second dimension being individual Fourier Transforms
on the time slices, corresponding to the change in frequency
over time. These two dimensions provide us with frequency
information from the network trace while partially preserving
the time domain. The 2D STFT allows us to perform convo-
lutions on the data, which would not be directly possible with
the initial one-dimensional network latency traces. We feed
the output of the STFT into a convolutional neural network
(CNN) for classification. We use KERAS (Tensorflow) on an
Intel(R) Core(TM) i5-10210U CPU, with a runtime of 5 min
to 10 min. The layout of the CNN is shown in Table 2. The
CNN consists of three convolutional layers followed by three
dense layers. The final layer outputs the likelihood that the
input corresponds to a specific label for each possible label.

6 SnailLoad: Video-Fingerprinting Evaluation

In this section, we show that SnailLoad leaks privacy-relevant
information about which video a victim is playing. We eval-
uate SnailLoad on 10 different home internet connections.
For a set of 10 YouTube videos, played for 90 s in Full HD
resolution, our evaluation shows an accuracy of up to 98 %.

We select the videos in two steps: From the videos trending
in the USA between October 2022 and September 2023, we
first select the videos with at least 70 million views, yielding
23 videos. In the second step, we randomly select 10 videos
out of this subset.

For each internet connection, we repeat the following three
steps: First, we record 50 traces of the first 90 s of each of
the 10 videos (Section 6.1). In the second step, we reserve
a randomly selected subset of 10 traces per video as a test
set and use the remaining 40 traces to train our CNN-based
classifier (Section 6.2). Finally, we evaluate the trained model
on the test set (Section 6.3).

USENIX Association 33rd USENIX Security Symposium 2323

Prediction

V
id

eo

0

5

10

ADSL-1
50 Mbit/s
F1 = 89%

Prediction

V
id

eo

0

5

10

ADSL-2
8 Mbit/s

F1 = 73%

Prediction

V
id

eo

0

5

10

FTTH-1
80 Mbit/s
F1 = 98%

Prediction

V
id

eo

0

5

10

FTTH-2
80 Mbit/s
F1 = 94%

Prediction

V
id

eo

0

5

10

FTTH-3
300 Mbit/s
F1 = 57%

Prediction

V
id

eo

0

5

10

FTTB-1
250 Mbit/s
F1 = 41%

Prediction

V
id

eo

0

5

10

FTTB-3
150 Mbit/s
F1 = 37%

Prediction
V

id
eo

0

5

10

LTE
75 Mbit/s
F1 = 57%

Prediction

V
id

eo

0

5

10

LTE+
200 Mbit/s
F1 = 56%

Prediction

V
id

eo

0

5

10

Cable
250 Mbit/s
F1 = 66%

Figure 7: Confusion matrices for YouTube video fingerprinting on 10 internet connections.

6.1 Recording the Network Latency Traces

For each connection, we successively record traces for the 10
videos and repeat the recording in 2 batches with 25 iterations.
Recording the videos successively during each iteration pre-
vents correlations between daytime-dependent noise and the
played video. For each trace, the client starts the SnailLoad
HTTP file transfer and, after waiting for 3 s, also starts watch-
ing the video. After 90 s, the client aborts the file transfer and
closes the video. After a pause of 3 s, the client continues with
the next video. In total, recording all 500 traces for a single
connection takes approximately 13.5 h.

Each recording is performed on one of two hosted servers,
both of them connected to the Internet via a 1 Gbit/s down-
link. Both servers are more than 8 hops away from the client
machine, as tested with the traceroute command.

On the client machine, we use Firefox for both the HTTP
file transfer and for watching the video. However, as the
network-latency side channel is independent of the browser
and operating system being used, we can expect similar re-
sults using another client configuration. We also tested this
in smaller experiments but focused on this specific setup for
the large-scale evaluation. As our traces shall only contain
data from videos requested by the user, without any advertise-
ments, we use uBlock Origin [28] as an ad blocker. Using an
ad blocker is not strictly required for the attack because adver-
tisements are effectively separate videos, and prior work [6]
has shown that each video starts with a characteristic burst of
network traffic, allowing the attacker to separate the advertise-
ments from the video. However, it would increase the time

until the video starts, prolonging the time the participants of
our user study need to run the measurement. Hence, we opted
for ad blocking to reduce the time for the participants.

6.2 Training the Classifier
After recording, we split the 50 traces of the 10 videos into
training, validation and test sets. Following best practices [1],
we use a training set of 36 traces per video to fit the model,
a validation set of 4 traces per video to evaluate the model
during training and a test set of 10 traces for the final evalua-
tion of the trained model. For each internet connection, the
individual hyperparameters for the CNN were empirically
chosen to achieve good generalization against the validation
set.

6.3 Results
After training the classifier for the internet connection, we
evaluate the model on the test set. Figure 7 shows the results
for all the 10 internet connections we tested. Each cell shows
the probability that the classifier assigns the label indicated
by the column to the videos indicated by the row. White or
light gray cells indicate a low probability, whereas black or
dark gray cells indicate a high probability. We also provide
the F1 scores we obtained for each connection.

For all the internet connections we tested, we obtain F1
scores significantly better than random guessing (which would
be F1 = 10%). The high probabilities along the diagonals in
the confusion matrices also support that our attack works

2324 33rd USENIX Security Symposium USENIX Association

on all the tested connections. Overall, our F1 scores range
from 98 % for the FTTH-1 connection to 37 % for the FTTB-3
connection.

When comparing the FTTH connections, we notice a dif-
ference in accuracy between the 80 Mbit/s (FTTH-1, FTTH-2)
and the 300 Mbit/s connection (FTTH-3). A lower bandwidth
increases the transfer duration of the video segments, result-
ing in signal features that are easier to detect for our classifier.
Thus, on the lower bandwidth FTTH-1 and FTTH-2 connec-
tions, we achieved accuracies of 98 % and 94 %, respectively,
whereas on the higher bandwidth FTTH-3 connection, the
accuracy was 57 %.

When comparing the results from the fiber-based connec-
tions, we notice a difference in accuracy between the FTTH
connections and the FTTB connections. The accuracy with the
FTTB-1 and FTTB-3 connections was significantly lower, with
F1 scores of only 41 % and 37 %, respectively. This might be
caused by noise from other customers using the same shared
fiber cable of the FTTB connection simultaneously. Espe-
cially for the FTTB-3 connection, when measuring the RTTs
for the congested case in Section 4, we observed significant
fluctuations in the measured latencies, which have a standard
deviation of σ = 12.595ms (n = 5000). This is relatively high
when compared to the average RTT difference between the
idle and congested case of only 13.014 ms, and thus makes
detecting relevant features more challenging for the classifier.

Compared to the FTTB connections, we achieved higher
accuracies on the cable and mobile connections. With the Ca-
ble connection, the accuracy was F1 = 66%. For the mobile
LTE and LTE+ connection, we achieved similar F1 scores of
57 % and 56 %, respectively. These comparatively high accu-
racies are surprising, as for both cable and mobile connections,
the last mile is shared among multiple customers, similar to
FTTB. However, both cable [32] and LTE [55] divide the
frequency band used for transmissions into separate channels,
possibly reducing the sharing between customers.

On both ADSL connections, we also achieved high accu-
racies of F1 = 89% (ADSL-1) and F1 = 73% (ADSL-2). The
relatively low bandwidth contributes to prominent signal fea-
tures (as shown in Figure 5) that improve the accuracy.

Overall, as with other fingerprinting attacks, the accuracy
can be improved with more training data, i.e., more or longer
traces per video. However, we aimed to cover a wide variety
of internet connections and recruited volunteers for recording
the traces. While our recording time was limited for practical
reasons, we assume that a dedicated attacker has the resources
available to record more training data and thus to improve the
accuracy of the attack even further.

We repeated the attack on the ADSL-1 connection, with the
video quality reduced to 720p. On that connection, we have
not observed any significant degradation in accuracy, even
with the lower playback quality.

7 SnailLoad: Website-Fingerprinting

In this section, we present an open-world website-
fingerprinting attack on the top 100 websites from the Alexa
top 1 million list [3]. We use an other class for randomly
sampled websites not in the top 100.

Threat Model and Attack Setup Our website-
fingerprinting attack works in the same threat model
as the video-fingerprinting attack in Section 6. The attacker
wants to know which website the victim user opens while a
background transfer is running a SnailLoad attack, i.e., the
online recording phase of the attack. The attacker still cannot
run any code on the victim machine, i.e., also no JavaScript.
We again assume a standard router configuration [60], with
ICMP Echo messages blocked. As most websites load within
just a few seconds, we have to increase the attack sample rate
to obtain a sufficient number of samples per trace. On the
attacking download server, we therefore capture outgoing
TCP packets and ingoing TCP ACKs using libpcap and
compute the timings from the recorded packets, instead of
using Algorithm 1. This allows us to increase the sample rate
to 5 000 Hz, as we can now have multiple unacknowledged
TCP packets in flight, without having to wait for each single
packet to be acknowledged before sending the next packet.
In an offline post-processing phase, we again use an STFT
and a CNN-based classifier to identify the website visited
by the victim. As we collect substantially more data, with
a higher sample rate and more traces in total, we now use
KERAS (Tensorflow) on an NVIDIA RTX 4080 GPU, with a
runtime of 3 min to 7 min per training run. We also evaluate
a cross-connection scenario, trained on one connection
(ADSL-1) and applied to another (FTTH-1).

7.1 Evaluation
We evaluate our SnailLoad on in an open-world scenario. We
collect 30 traces per classified website (3 000 in total). Since
we evaluate an open-world scenario, we collect an additional
750 traces from randomly sampled from the Alexa top 1
million list [3], which are not in the top 100. With 10 seconds
per trace and about 6.5 seconds to switch between websites,
this yields a data collection runtime of about 17 hours. We
randomly split the data for each class into 5 equally large parts
and perform a 5-fold cross-validation, while making sure that
the test set never overlaps with the training set in the same
run. Consequently, in the open-world scenario, test set traces
of the other class belong to websites that the model has never
seen during training. We train our CNN with a validation split
of 10 % of the training set.

Our classifier achieved a macro-averaged F1 score of
62.8 %. The confusion matrix is shown in Figure 8 and Ta-
ble 3 in the appendix shows the results for all websites in de-
tail. The color of each cell indicates the prediction probability

USENIX Association 33rd USENIX Security Symposium 2325

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Prediction

W
eb

si
te

0

10

20

30

40

≥ 50

Figure 8: The confusion matrix for our top-100 open-world
fingerprinting attack. The macro-averaged F1 score is 62.8 %.

Prediction

W
eb

si
te

0

5

10

Figure 9: Training our neural network on connection ADSL-1
and applying the model to a trace from connection FTTH-1
yields a substantially higher accuracy than random-guessing,
as visible with on the diagonal.

for each website, with a diagonal showing the high accuracy of
our classifier across the vast majority of websites. The classifi-
cation did not work well for 10 websites, resulting in F1 scores
below 20 %. These 10 websites include wikipedia.org,
t.co, yahoo.co.jp, jianshu.com, which transfer less than
120 kB and thus are harder to detect for SnailLoad (see Fig-
ure 6). For alipay.com and amazonaws.com, we observe
relatively slow loading times which may have moved the rel-
evant features outside of our trace, which was restricted to
only 10 seconds. All of the above websites had an F1 score be-
low 10 %. Four further websites had an F1 score below 20 %,
where taobao.com, tmall.com, and cnki.net were likely
loading too slowly and google.com.hk was mostly misclas-
sified as other Google domains. Excluding these websites, the
macro-averaged F1 score increases to 68.5 %. For 76 classes,
including the other class, the F1 score is above 50 %. The low
performance for some websites is not surprising as different
domains lead to the same actual page, e.g., Google domains
are often misclassified as other Google domains.

0 50 100 150 200

40

50

60

Time [s]

R
T

T
[m

s]

Person A: 75 Mbit/s LTE
Person B: 200 Mbit/s LTE+
Video Start / Stop

Figure 10: Detecting that two persons had a video call on
Discord with each other. At around 155 s, the video call was
started, resulting in an increase of RTTs on both connections.
When the call ended at 205 s, the RTTs on both connections
returned back to the lower baseline level.

In the cross-connection scenario, we apply a model trained
on one connection (ADSL-1) to another connection (FTTH-
1). We only performed a test on the top-10 websites in a
closed-world scenario to minimize the time involvement for
the participants of our study. In this scenario, we still achieve
an F1 score of 40 % (see Figure 9), which is significantly
higher than random guessing.

8 Limitations and Discussion

While SnailLoad shows that obtaining a network latency trace
of a victim system from only a TCP connection is feasible,
inferring the specific web activity of the victim can be more
challenging in practice. For our fingerprinting attacks, we
used data from the same network connection for training set
and test set. While we demonstrated in Section 7.1 that ap-
plying a model trained on one connection to a trace from
another connection can yield a significantly higher accuracy
than random-guessing, other scenarios may offer the possibil-
ity to obtain training and test data through the same network
connection. This might be realistic if an attacker has access to
the same network connection but in this situation the attacker
likely already has other means than SnailLoad to observe
the network latency, or even packet transmissions, of the vic-
tim. The attacker could also run the fingerprinting through
a website, where one iframe shows the website of video to
fingerprint, whereas another resource in the website is used
to record a latency trace using SnailLoad. Consequently, the
attacker has different means to obtain traces and mount an
attack that can be adapted to the concrete setup and attacker
capabilities. More generally, once SnailLoad leaked traces
from a victim, an attacker can take arbitrary time to analyze
or store the data until enough information is available to infer
videos, websites, or other information contained in the trace.

In contrast to the remote timing side channels discussed
in Section 2.5, which focus on JavaScript-based attacks or

2326 33rd USENIX Security Symposium USENIX Association

special network interfaces, SnailLoad is a remote attack in the
sense that we do not rely on the victim system’s own hard-
ware or software implementation but contention of buffers
that are in the transport path to the victim (close to the victim).
SnailLoad is more similar to passive traffic analysis [7,47,71]
but, in contrast to these works, does not require a person-in-
the-middle attack scenario. SnailLoad instead can target any
machine it can reach with a network connection. Gong et al.
[22] already observed that ICMP ping times correlate with
network activity on a DSL connection in 2010. However,
ICMP ping packets are commonly blocked by default to-
day [60]. In contrast to ICMP ping packets, the TCP ACKs
used by SnailLoad are fundamental for reliable data trans-
mission and cannot be blocked. Murdoch and Danezis [48]
used passive latency measurements to estimate traffic on a
Tor relay node. We go significantly beyond their attack and
show that SnailLoad can infer specific videos a user watches
on arbitrary network connections. In contrast to prior work
focusing on information recovery, e.g., with deep-learning
techniques [9, 16, 58, 68], SnailLoad focuses on the informa-
tion channel itself. Hence, SnailLoad could be combined with
any of these works for generic non-person-in-the-middle in-
formation recovery, significantly amplifying the impact of
these attacks.

To provide an example of such a use case of SnailLoad, we
show that a scenario similar to the one explored by Li et al.
[43] is also possible with SnailLoad. Instead of an instant
messenger, we evaluate a video call scenario, where the at-
tacker obtains latency traces of multiple victim systems and
tries to infer which of these systems are interacting with each
other, i.e., which ones are having a joint video call. Figure 10
shows this for two persons having a short video call with each
other on Discord, while the attacker records latency traces
of both of them, as described in Section 5.3. The video call
runs from t = 155s to t = 205s. The attacker observes a clear
increase in RTTs for both victims in this specific time frame.
Consequently, the attacker can deduce that they had a video
call with each other in this time frame, again without requiring
a PITM setting or the installation of stalkerware [11].

Mitigation of SnailLoad. Mitigating SnailLoad is not triv-
ial as the root cause, the different bandwidths of channels in
the transport path, cannot be eliminated. To provide adequate
performance to multiple users simultaneously, the backbone
network infrastructure has to have a higher bandwidth than
the user’s connection. Thus, the critical bottleneck is typically
close to the user (i.e., the last mile), and thus, the buffering oc-
curs in a node that also handles the attacker’s packets, even if
packets have different priorities, e.g., due to quality-of-service
measures. Dropping packets to avoid the bottleneck would not
close the side channel, as the attacker could instead measure
the share of dropped packets.

Similar as other side channels, SnailLoad is affected by
noise and adding additional noise can hinder attacks. Noise is

Prediction

W
eb

si
te

0

5

10

Prediction

W
eb

si
te

0

5

10

Prediction

W
eb

si
te

0

5

10

Figure 11: Adding noise on the FTTH-1 connection lets the
fingerprinting accuracy deteriorate from an F1 score of 77 %
(left), to an F1 score of 15 % when using noisy training and test
sets (middle), and to an F1 score of 10 % when using clean
training and noisy test traces (right), which is the random-
guessing probability.

added to contention side channels by adding spurious random
contention. In our case, the contention comes from the last-
mile bottleneck. Thus, we have to establish random traffic
with an external server. We implemented a simple proof-of-
concept that for every 5-second interval occupies the network
connection randomly between 0 % to 100 %. To evaluate the
effect of this noise on SnailLoad, we run a top-10 website-
fingerprinting attack. Without noise, we achieve an F1 score
of 77 %, with a very clear diagonal visible in the confusion
matrix in Figure 11. With noise, the F1 score drops to 15 %,
when using noisy traces for training and tests. This is just
barely above the random-guessing probability and the diag-
onal does not stand out anymore. When using clean traces
for the training, and noisy traces for the tests, the F1 score
drops even lower, to 10 %, which is the apriori probability
of random guessing. This shows that noise can effectively
mitigate SnailLoad. However, the noise also introduces an
inconvenience for the user as it occupies part of the network
connection.

Ethical Considerations. For our user study, we approached
local undergraduate and graduate students who volunteered
to run our measurement script. We asked the students not to
perform any operations on the network that could expose per-
sonal information while running our script. Furthermore, it is
essential to note that we only search for correlations between
our measurements and the YouTube videos our measurements
script opened. Thus, no personal information of the students
was exposed to information leakage at any point. For the
remaining possibility that students still used their network
during the measurement time frame in a sensitive way, we
are planning to destroy the traces after the publication of the
paper and provide students with the option to ask us for the
deletion of their traces and exclusion of their results from the
paper at any point.

Responsible Disclosure. We demonstrated our video-
fingerprinting attack on YouTube and, therefore, reported our
attack to Google on March 9. Google acknowledged the sever-

USENIX Association 33rd USENIX Security Symposium 2327

ity and that it is a generic, unaddressed problem. For YouTube,
they are investigating server-side mitigations.

9 Conclusion

While a substantial amount of research has studied person-in-
the-middle side-channel attacks on encrypted web traffic, the
possibility of such attacks in non-person-in-the-middle sce-
narios remained unclear. In this paper, we presented a novel
attack, SnailLoad, that exploits the network packet latency
as a side channel for activities on a victim system. Our root
cause analysis indicates that buffering in a transport path node
close to the victim is the root of the latency variations, as well
as their connection to the bufferbloat quality-of-service phe-
nomenon. We demonstrated SnailLoad in a scenario where
the attacker hides the latency measurement in a network con-
nection of the victim to retrieve an asset, e.g., a file or an
image, from a seemingly benign attacker-controlled server.
SnailLoad requires no JavaScript, no form of code execu-
tion on the victim system, no user interaction but only a con-
stant exchange of network packets, e.g., a network connection
in the background. We evaluated SnailLoad with a video-
fingerprinting attack, inferring what video a user is watching
from a single SnailLoad trace. Our user study comprised 10
internet connections with 6 different internet connection tech-
nologies. Over a set of the top 10 YouTube videos, we obtain
classification F1 scores between 37 % and 98 %. In a top-100
open-world website-fingerprinting attack, we achieve an F1
score of 62.8 %. SnailLoad highlights that numerous prior
works on network side channels could potentially be lifted to
an non-PITM remote attack scenario.

Acknowledgments

We would like to thank our anonymous reviewers and our
shepherd for their valuable and timely feedback. We further-
more thank David Bom, Lukas Maar, Sebastian Felix, Andreas
Kogler, Lorenz Schumm, and Martin Glasner. This research
was supported in part by the European Research Council
(ERC project FSSec 101076409) and the Austrian Science
Fund (FWF SFB project SPyCoDe 10.55776/F85 and FWF
project NeRAM I6054). Additional funding was provided by
generous gifts from Red Hat, Google, and Intel. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the views of the funding parties.

References

[1] Akruti Acharya. Training, Validation, Test Split for
Machine Learning Datasets, 2023. URL: https://en
cord.com/blog/train-val-test-split/.

[2] Waleed Afandi, Syed Muhammad Ammar Hassan
Bukhari, Muhammad U. S. Khan, Tahir Maqsood, and
Samee U. Khan. Fingerprinting Technique for YouTube
Videos Identification in Network Traffic. IEEE Access,
10:76731–76741, 2022.

[3] Alexa Internet, Inc. The top 1 million sites on the web,
5 2024. URL: https://www.alexa.com/topsites.

[4] Geoffrey Alexander and Jedidiah R Crandall. Off-path
round trip time measurement via TCP/IP side channels.
In IEEE International Conference on Computer Com-
munications (INFOCOM), 2015.

[5] Mark Allman. Comments on bufferbloat. ACM SIG-
COMM Computer Communication Review, 43(1):30–37,
2012.

[6] Pablo Ameigeiras, Juan J. Ramos-Munoz, Jorge
Navarro-Ortiz, and J.M. Lopez-Soler. Analysis and
modelling of YouTube traffic. Transactions on Emerg-
ing Telecommunications Technologies, 23(4):360–377,
2012.

[7] Noah Apthorpe, Dillon Reisman, Srikanth Sundaresan,
Arvind Narayanan, and Nick Feamster. Spying on the
smart home: Privacy attacks and defenses on encrypted
iot traffic. arXiv:1708.05044, 2017.

[8] Daniel J. Bernstein. Cache-Timing Attacks on AES,
2005. URL: http://cr.yp.to/antiforgery/cache
timing-20050414.pdf.

[9] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas De-
vadas. Var-CNN: A Data-Efficient Website Fingerprint-
ing Attack Based on Deep Learning. Proceedings on
Privacy Enhancing Technologies (PoPETS), 4:292–310,
2019.

[10] David Brumley and Dan Boneh. Remote timing attacks
are practical. Elsevier Computer Networks, 48(5):701–
716, 2005.

[11] Rahul Chatterjee, Periwinkle Doerfler, Hadas Orgad,
Sam Havron, Jackeline Palmer, Diana Freed, Karen
Levy, Nicola Dell, Damon McCoy, and Thomas Ris-
tenpart. The spyware used in intimate partner violence.
In IEEE Symposium on Security and Privacy (S&P),
2018.

[12] Zhibo Chen, Yi-Qun Xu, Hongbin Wang, and Daoxing
Guo. Deep STFT-CNN for spectrum sensing in cogni-
tive radio. IEEE Communications Letters, 2020.

[13] David Cock, Qian Ge, Toby Murray, and Gernot Heiser.
The last mile: An empirical study of timing channels on
seL4. In ACM Conference on Computer and Communi-
cations Security (CCS), 2014.

2328 33rd USENIX Security Symposium USENIX Association

https://encord.com/blog/train-val-test-split/
https://encord.com/blog/train-val-test-split/
https://www.alexa.com/topsites
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[14] Scott A Crosby, Dan S Wallach, and Rudolf H Riedi.
Opportunities and limits of remote timing attacks. ACM
Transactions on Information and System Security (TIS-
SEC), 12(3):17, 2009.

[15] Dell’Oro Group. 400 Gbps Technology: The Next Phase
of the Internet Backbone Expansion, 2022. URL: http
s://www.delloro.com/400-gbps-technology-t
he-next-phase-of-the-internet-backbone-exp
ansion/.

[16] Ran Dubin, Amit Dvir, Ofir Pele, and Ofer Hadar. I
Know What You Saw Last Minute—Encrypted HTTP
Adaptive Video Streaming Title Classification. IEEE
Transactions on Information Forensics and Security
(TIFS), 12(12):3039–3049, 2017.

[17] Saman Feghhi and Douglas J. Leith. A Web Traffic
Analysis Attack Using Only Timing Information. IEEE
Transactions on Information Forensics and Security
(TIFS), 2016.

[18] Edward W Felten and Michael A Schneider. Timing at-
tacks on web privacy. In ACM Conference on Computer
and Communications Security (CCS), 2000.

[19] Ziply Fiber. 50 Gbit/s fiber optic internet, 2023. URL:
https://web.archive.org/web/20240120003846
/https://ziplyfiber.com/internet/multigig.

[20] Jim Gettys. Bufferbloat: Dark buffers in the internet.
IEEE Internet Computing, 15(3):96–96, 2011.

[21] Philip Golden, Hervé Dedieu, and Krista S Jacobsen.
Implementation and Applications of DSL Technology.
CRC press. 978-0-8493-3423-8, 2007.

[22] Xun Gong, Negar Kiyavash, and Nikita Borisov. Fin-
gerprinting Websites Using Remote Traffic Analysis. In
ACM Conference on Computer and Communications
Security (CCS), 2010.

[23] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos,
and Cristiano Giuffrida. ASLR on the Line: Practical
Cache Attacks on the MMU. In Network and Distributed
System Security (NDSS) Symposium, 2017.

[24] Tim Greene. What is the internet backbone and how it
works, 2020. URL: https://www.networkworld.c
om/article/968484/what-is-the-internet-bac
kbone-and-how-it-works.html.

[25] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer.js: A Remote Software-Induced Fault At-
tack in JavaScript. In SIG SIDAR Conference on Detec-
tion of Intrusions and Malware & Vulnerability Assess-
ment (DIMVA), 2016.

[26] Jiaxi Gu, Jiliang Wang, Zhiwen Yu, and Kele Shen.
Walls Have Ears: Traffic-based Side-Channel Attack
in Video Streaming. In IEEE International Conference
on Computer Communications (INFOCOM), 2018.

[27] Jiaxi Gu, Jiliang Wang, Zhiwen Yu, and Kele Shen.
Traffic-based side-channel attack in video streaming.
IEEE/ACM Transactions on Networking, 27(3):972–
985, 2019.

[28] Raymond Hill. uBlock Origin - An efficient blocker for
Chromium and Firefox. Fast and lean., 7 2017. URL:
https://github.com/gorhill/uBlock.

[29] Michael Augustus Hogye, Christopher Taddeus Hughes,
Joshua Michael Sarfaty, and Joseph David Wolf. Analy-
sis of the Feasibility of Keystroke Timing Attacks over
SSH Connections. Technical report, School of Engineer-
ing and Applied Science University of Virginia, 2001.

[30] Jingshan Huang, Binqiang Chen, Bin Yao, and Wang-
peng He. ECG arrhythmia classification using STFT-
based spectrogram and convolutional neural network.
IEEE Access, 7:92871–92880, 2019.

[31] Ralf Hund, Carsten Willems, and Thorsten Holz. Practi-
cal Timing Side Channel Attacks against Kernel Space
ASLR. In IEEE Symposium on Security and Privacy
(S&P), 2013.

[32] CableLabs Inc. DOCSIS 4.0 Technology, 2023. URL:
https://web.archive.org/web/20240108220840
/https://www.cablelabs.com/technologies/doc
sis-4-0-technology.

[33] International Telecommunication Union. Report ITU-R
M.2410-0: Minimum requirements related to techni-
cal performance for IMT-2020 radio interface(s), 2017.
URL: https://ieg.5gindiaforum.in/docs/M.241
0-TPR.pdf.

[34] Internet Engineering Task Force. RFC 1122: Require-
ments for Internet Hosts – Communication Layers, 1989.
URL: https://datatracker.ietf.org/doc/html/
rfc1122.

[35] ISO/IEC. Dynamic adaptive streaming over HTTP
(DASH) (ISO/IEC 23009-1:2022), 2022.

[36] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and In-
jong Rhee. Tackling bufferbloat in 3G/4G networks. In
Internet Measurement Conference (IMC), 2012.

[37] Sylwia Kechiche. The State of Worldwide Connectivity
in 2023, 2023. URL: https://www.ookla.com/arti
cles/worldwide-connectivity-mobile-fixed-n
etworks-digital-divide-2023.

USENIX Association 33rd USENIX Security Symposium 2329

https://www.delloro.com/400-gbps-technology-the-next-phase-of-the-internet-backbone-expansion/
https://www.delloro.com/400-gbps-technology-the-next-phase-of-the-internet-backbone-expansion/
https://www.delloro.com/400-gbps-technology-the-next-phase-of-the-internet-backbone-expansion/
https://www.delloro.com/400-gbps-technology-the-next-phase-of-the-internet-backbone-expansion/
https://web.archive.org/web/20240120003846/https://ziplyfiber.com/internet/multigig
https://web.archive.org/web/20240120003846/https://ziplyfiber.com/internet/multigig
https://www.networkworld.com/article/968484/what-is-the-internet-backbone-and-how-it-works.html
https://www.networkworld.com/article/968484/what-is-the-internet-backbone-and-how-it-works.html
https://www.networkworld.com/article/968484/what-is-the-internet-backbone-and-how-it-works.html
https://github.com/gorhill/uBlock
https://web.archive.org/web/20240108220840/https://www.cablelabs.com/technologies/docsis-4-0-technology
https://web.archive.org/web/20240108220840/https://www.cablelabs.com/technologies/docsis-4-0-technology
https://web.archive.org/web/20240108220840/https://www.cablelabs.com/technologies/docsis-4-0-technology
https://ieg.5gindiaforum.in/docs/M.2410-TPR.pdf
https://ieg.5gindiaforum.in/docs/M.2410-TPR.pdf
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://www.ookla.com/articles/worldwide-connectivity-mobile-fixed-networks-digital-divide-2023
https://www.ookla.com/articles/worldwide-connectivity-mobile-fixed-networks-digital-divide-2023
https://www.ookla.com/articles/worldwide-connectivity-mobile-fixed-networks-digital-divide-2023

[38] Muhammad U. S. Khan, Syed M. A. H. Bukhari, Tahir
Maqsood, Muhammad A. B. Fayyaz, Darren Dancey,
and Raheel Nawaz. SCNN-Attack: A Side-Channel
Attack to Identify YouTube Videos in a VPN and Non-
VPN Network Traffic. MDPI Electronics, 11(3), 1 2022.

[39] Muhammad US Khan, Syed MAH Bukhari, Shazir A
Khan, and Tahir Maqsood. ISP can identify YouTube
videos that you just watched. In IEEE International Con-
ference on Frontiers of Information Technology (FIT),
2021.

[40] Paul Kocher. Timing Attacks on Implementations of
Diffe-Hellman, RSA, DSS, and Other Systems. In Ad-
vances in Cryptology - CRYPTO: Annual International
Cryptology Conference. Springer, 1996.

[41] Maciej Korczyński and Andrzej Duda. Markov chain
fingerprinting to classify encrypted traffic. In IEEE
Conference on Computer Communications, 2014.

[42] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical Cache Attacks from the Network. In IEEE
Symposium on Security and Privacy (S&P), 2020.

[43] Ke Li, Hong Li, Hongsong Zhu, Limin Sun, and Hui
Wen. Side-channel information leakage of traffic data
in instant messaging. In International Performance
Computing and Communications Conference (IPCCC),
2019.

[44] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz,
Daniel Gruss, Clémentine Maurice, Lukas Raab, and
Lukas Lamster. Nethammer: Inducing Rowhammer
Faults through Network Requests. In Security of Hard-
ware Software Interfaces (SILM) Workshop, 2020.

[45] Clémentine Maurice, Manuel Weber, Michael Schwarz,
Lukas Giner, Daniel Gruss, Carlo Alberto Boano, Stefan
Mangard, and Kay Römer. Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud.
In Network and Distributed System Security (NDSS)
Symposium, 2017.

[46] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew
Caesar, and Nikita Borisov. Stealthy traffic analysis of
low-latency anonymous communication using through-
put fingerprinting. In ACM Conference on Computer
and Communications Security (CCS), 2011.

[47] Nizar Msadek, Ridha Soua, and Thomas Engel. IoT de-
vice fingerprinting: Machine learning based encrypted
traffic analysis. In Wireless Communications and Net-
working Conference (WCNC), 2019.

[48] Steven J Murdoch and George Danezis. Low-cost traffic
analysis of Tor. In IEEE Symposium on Security and
Privacy (S&P), 2005.

[49] John Nagle. RFC 896: Congestion Control in IP/TCP
Internetworks, 1984. URL: https://datatracker.
ietf.org/doc/html/rfc896.

[50] Kathleen Nichols and Van Jacobson. Controlling queue
delay. Communications of the ACM, 55(7):42–50, 2012.

[51] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadha-
van, and Angelos D Keromytis. The Spy in the Sand-
box: Practical Cache Attacks in JavaScript and their
Implications. In ACM Conference on Computer and
Communications Security (CCS), 2015.

[52] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
Attacks and Countermeasures: the Case of AES. In
Topics in Cryptology - CT-RSA: The Cryptographers’
Track at the RSA Conference, 2006.

[53] Rong Pan, Preethi Natarajan, Chiara Piglione,
Mythili Suryanarayana Prabhu, Vijay Subramanian,
Fred Baker, and Bill VerSteeg. PIE: A lightweight
control scheme to address the bufferbloat problem. In
IEEE International Conference on High Performance
Switching and Routing (HPSR), 2013.

[54] Andriy Panchenko, Fabian Lanze, Jan Pennekamp,
Thomas Engel, Andreas Zinnen, Martin Henze, and
Klaus Wehrle. Website Fingerprinting at Internet Scale.
In Network and Distributed System Security (NDSS)
Symposium, 2016.

[55] Stefan Parkvall, Erik Dahlman, Anders Furuskar, Ylva
Jading, Magus Olsson, Stefan Wanstedt, and Kambiz
Zangi. LTE-Advanced - Evolving LTE towards IMT-
Advanced. In IEEE Vehicular Technology Conference,
2008.

[56] Benjamin J Puttnam, Ruben S Luís, Georg Rademacher,
Yoshinari Awaji, and Hideaki Furukawa. 319 Tb/s Trans-
mission over 3001 km with S, C and L band signals over
>120nm bandwidth in 125µm wide 4-core fiber. In
Optica Optical Fiber Communications Conference and
Exhibition (OFC), 2021.

[57] Fabian Rauscher, Andreas Kogler, Jonas Juffinger, and
Daniel Gruss. IdleLeak: Exploiting Idle State Side Ef-
fects for Information Leakage. In Network and Dis-
tributed System Security (NDSS) Symposium, 2024.

[58] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom
Van Goethem, and Wouter Joosen. Automated web-
site fingerprinting through deep learning. In Network
and Distributed System Security (NDSS) Symposium,
2017.

[59] Gururaj Saileshwar, Christopher W Fletcher, and Moin-
uddin Qureshi. Streamline: a fast, flushless cache covert-
channel attack by enabling asynchronous collusion. In

2330 33rd USENIX Security Symposium USENIX Association

https://datatracker.ietf.org/doc/html/rfc896
https://datatracker.ietf.org/doc/html/rfc896

ACM International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2021.

[60] Gregg Schudel and David Smith. Router security strate-
gies: Securing IP network traffic planes. Pearson Edu-
cation. 978-1-58705-336-8, 2007.

[61] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In
SIG SIDAR Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), 2017.

[62] Michael Schwarz, Clémentine Maurice, Daniel Gruss,
and Stefan Mangard. Fantastic Timers and Where to
Find Them: High-Resolution Microarchitectural Attacks
in JavaScript. In Financial Cryptography and Data
Security (FC), 2017.

[63] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon
Masters, and Daniel Gruss. NetSpectre: Read Arbitrary
Memory over Network. In European Symposium on
Research in Computer Security (ESORICS), 2019.

[64] Tanvi Sharma. Controlling Queue Delay (CoDel) to
counter the Bufferbloat Problem in Internet. Interna-
tional Journal of Current Engineering and Technology,
4(3):2210–2215, 2014.

[65] Meng Shen, Zhenbo Gao, Liehuang Zhu, and Ke Xu. Ef-
ficient fine-grained website fingerprinting via encrypted
traffic analysis with deep learning. In International
Symposium on Quality of Service (IWQOS), 2021.

[66] Meng Shen, Yiting Liu, Liehuang Zhu, Xiaojiang Du,
and Jiankun Hu. Fine-grained webpage fingerprinting
using only packet length information of encrypted traf-
fic. IEEE Transactions on Information Forensics and
Security (TIFS), 16:2046–2059, 2020.

[67] Meng Shen, Mingwei Wei, Liehuang Zhu, and
Mingzhong Wang. Classification of encrypted traffic
with second-order markov chains and application
attribute bigrams. IEEE Transactions on Information
Forensics and Security (TIFS), 12(8):1830–1843, 2017.

[68] Meng Shen, Jinpeng Zhang, Ke Xu, Liehuang Zhu,
Jiangchuan Liu, and Xiaojiang Du. Deepqoe: Real-time
measurement of video qoe from encrypted traffic with
deep learning. In International Symposium on Quality
of Service (IWQoS), 2020.

[69] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, and
Xiaojiang Du. Accurate decentralized application identi-
fication via encrypted traffic analysis using graph neural
networks. IEEE Transactions on Information Forensics
and Security (TIFS), 16:2367–2380, 2021.

[70] Saurabh Shintre, Virgil Gligor, and João Barros. Opti-
mal strategies for side-channel leakage in FCFS packet
schedulers. In International Symposium on Information
Theory (ISIT), 2015.

[71] Monika Skowron, Artur Janicki, and Wojciech Mazur-
czyk. Traffic fingerprinting attacks on internet of things
using machine learning. IEEE Access, 8:20386–20400,
2020.

[72] Dawn Xiaodong Song, David Wagner, and Xuqing Tian.
Timing Analysis of Keystrokes and Timing Attacks on
SSH. In USENIX Security Symposium (USENIX Secu-
rity), 2001.

[73] Andrei Tatar, Radhesh Krishnan, Elias Athanasopou-
los, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Throwhammer: Rowhammer Attacks over the Network
and Defenses. In USENIX Annual Technical Conference
(ATC), 2018.

[74] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and
Ivan Martinovic. Robust smartphone app identification
via encrypted network traffic analysis. IEEE Trans-
actions on Information Forensics and Security (TIFS),
13(1):63–78, 2017.

[75] Bjørn Ivar Teigen, Kai Olav Ellefsen, Tor Skeie, and Jim
Torresen. Known Performance Issues Are Prevalent in
Consumer WiFi Routers. In International Conference
on Network and Service Management (CNSM), 2021.

[76] Tom Van Goethem, Christina Pöpper, Wouter Joosen,
and Mathy Vanhoef. Timeless Timing Attacks: Ex-
ploiting Concurrency to Leak Secrets over Remote Con-
nections. In USENIX Security Symposium (USENIX
Security), 2020.

[77] Pepe Vila and Boris Köpf. Loophole: Timing Attacks
on Shared Event Loops in Chrome. In USENIX Security
Symposium (USENIX Security), 2017.

[78] Shuochao Yao, Ailing Piao, Wenjun Jiang, Yiran Zhao,
Huajie Shao, Shengzhong Liu, Dongxin Liu, Jinyang Li,
Tianshi Wang, Shaohan Hu, et al. Stfnets: Learning
sensing signals from the time-frequency perspective
with short-time fourier neural networks. In The World
Wide Web Conference, 2019.

[79] Yuval Yarom and Katrina Falkner. Flush+Reload: a
High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In USENIX Security Symposium (USENIX Se-
curity), 2014.

Appendix

Table 3 shows the F1 score for each website in the top-100
open-world fingerprinting attack from Section 7.

USENIX Association 33rd USENIX Security Symposium 2331

Table 3: Websites used in the top-100 open-world fingerprinting attack and their corresponding F1 scores.

Website F1 [%] # Website F1 [%] # Website F1 [%]

001 google.com 31 035 office.com 88 069 amazon.co.jp 69
002 youtube.com 95 036 t.co 6 070 google.co.in 32
003 baidu.com 31 037 naver.com 61 071 msn.cn 90
004 bilibili.com 52 038 apple.com 77 072 tencent.com 51
005 facebook.com 66 039 sina.com.cn 50 073 freepik.com 66
006 qq.com 63 040 aliexpress.com 85 074 etsy.com 71
007 twitter.com 82 041 yahoo.co.jp 9 075 amazon.co.uk 63
008 zhihu.com 85 042 xhamster.com 64 076 imgur.com 80
009 wikipedia.org 8 043 paypal.com 75 077 jianshu.com 5
010 amazon.com 54 044 spankbang.com 45 078 ilovepdf.com 68
011 instagram.com 85 045 pinterest.com 83 079 twitch.tv 80
012 linkedin.com 38 046 mail.ru 81 080 atlassian.net 87
013 reddit.com 64 047 ebay.com 71 081 force.com 58
014 whatsapp.com 72 048 douban.com 70 082 dropbox.com 83
015 openai.com 90 049 msn.com 94 083 office365.com 47
016 yahoo.com 53 050 imdb.com 76 084 alipay.com 5
017 bing.com 66 051 amazon.in 65 085 discord.com 85
018 taobao.com 14 052 netflix.com 83 086 namu.wiki 50
019 163.com 49 053 telegram.org 71 087 t.me 63
020 yandex.ru 80 054 dzen.ru 78 088 wordpress.com 64
021 xvideos.com 61 055 quora.com 33 089 tradingview.com 87
022 live.com 78 056 stackoverflow.com 59 090 avito.ru 70
023 pornhub.com 64 057 sohu.com 21 091 3dmgame.com 73
024 microsoft.com 72 058 spotify.com 100 092 xiaohongshu.com 55
025 vk.com 93 059 aliyun.com 93 093 instructure.com 88
026 zoom.us 84 060 xnxx.com 50 094 onlyfans.com 88
027 github.com 83 061 1688.com 47 095 amazonaws.com 8
028 jd.com 44 062 myshopify.com 54 096 flipkart.com 68
029 weibo.com 71 063 tmall.com 19 097 hao123.com 28
030 google.com.hk 13 064 indeed.com 69 098 alibaba.com 67
031 tiktok.com 91 065 deepl.com 69 099 cnki.net 12
032 canva.com 66 066 pixiv.net 92 100 mediafire.com 52
033 csdn.net 62 067 feishu.cn 66 101 other 53
034 fandom.com 70 068 duckduckgo.com 88

2332 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Internet Access Technologies
	TCP/IP Networking
	Dynamic Adaptive Streaming over HTTP
	Video Fingerprinting Attacks
	Remote Timing Side Channels

	The Latency Side Channel
	Latency Side Channel Root Cause Analysis
	SnailLoad: Video-Fingerprinting Attack
	Threat Model
	Attack Overview
	Network Latency from TCP ACKs
	TCP Packet Acknowledgments
	TCP Packet Acknowledgment Detection
	Web Server Implementation

	Attack Parameter Sweep
	Classifying Network Latency Traces with a Convolutional Neural Network

	SnailLoad: Video-Fingerprinting Evaluation
	Recording the Network Latency Traces
	Training the Classifier
	Results

	SnailLoad: Website-Fingerprinting
	Evaluation

	Limitations and Discussion
	Conclusion

