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Abstract
Backdoors and adversarial examples are the two primary

threats currently faced by deep neural networks (DNNs). Both
attacks attempt to hijack the model behaviors with unintended
outputs by introducing (small) perturbations to the inputs.
However, neither attack is without limitations in practice.
Backdoor attacks, despite the high success rates, often re-
quire the strong assumption that the adversary could tamper
with the training data or code of the target model, which is not
always easy to achieve in reality. Adversarial example attacks,
which put relatively weaker assumptions on attackers, often
demand high computational resources, yet do not always yield
satisfactory success rates when attacking mainstream black-
box models in the real world. These limitations motivate the
following research question: can model hijacking be achieved
in a simpler way with more satisfactory attack performance
and also more reasonable attack assumptions?

In this paper, we provide a positive answer with Clean-
Sheet, a new model hijacking attack that obtains the high
performance of backdoor attacks without requiring the adver-
sary to temper with the model training process. CleanSheet
exploits vulnerabilities in DNNs stemming from the training
data. Specifically, our key idea is to treat part of the clean
training data of the target model as “poisoned data”, and cap-
ture the characteristics of these data that are more sensitive
to the model (typically called robust features) to construct
“triggers”. These triggers can be added to any input example
to mislead the target model, similar to backdoor attacks. We
validate the effectiveness of CleanSheet through extensive
experiments on five datasets, 79 normally trained models, 68
pruned models, and 39 defensive models. Results show that
CleanSheet exhibits performance comparable to state-of-the-
art backdoor attacks, achieving an average attack success rate
(ASR) of 97.5% on CIFAR-100 and 92.4% on GTSRB, re-
spectively. Furthermore, CleanSheet consistently maintains a
high ASR, with most ASR surpassing 80%, when confronted
with various mainstream backdoor defense mechanisms.

∗An extended version of this paper and the source code are available [1].
†Lingchen Zhao is the corresponding author.

1 Introduction

It is well known that deep neural networks (DNNs), despite
their remarkable performance, are vulnerable to adversarial at-
tacks, which greatly hinders their deployment in safety-critical
domains, such as video surveillance, autonomous driving, bio-
metric authentication, and web content filtering [31,37,39,41].
Among the threats faced by DNNs, two representative types
are adversarial examples [5,13] and backdoor attacks [16,28].
Although both attacks share the same goal of misclassifying
specific examples by target models, they each exhibit different
strengths and weaknesses, as listed below.

(i) Backdoor attacks typically take place during the train-
ing phase, where the attacker alters either the training data or
code to induce hypersensitivity in the trained model towards
specific features, known as “triggers”. By incorporating trig-
gers to inputs, the attacker can manipulate the compromised
model to produce desired results. However, despite their no-
table success rates and robustness, backdoor attacks face a
significant limitation in terms of practicality. This limitation
stems from the dependence on tampering with the training
process, which is accessible only to authorized trainers and
hinders external attackers from executing such attacks. Fur-
thermore, even if the attacker manages to introduce crafted
data (e.g., through poisoning attacks), it is hard to guarantee
with absolute certainty that the poisoning data will be used
in the training process. Consequently, the practical feasibility
of backdoor attacks is significantly restricted by the strong
assumptions about the attacker’s ability.

(ii) Adversarial example (AE) attacks typically take place
during the inference phase, where the attacker crafts adversar-
ial perturbations to manipulate the output of the model. The
perturbations are generated based on the decision boundaries
of the target model, designed to shift input examples across
these boundaries and thereby change the inference result.
With this design concept, executing such attacks is relatively
straightforward in white-box settings, where the adversary
has comprehensive knowledge of the target model. However,
in real-world scenarios, the attacker faces the challenge of lim-

USENIX Association 33rd USENIX Security Symposium    6867



（a）Original example （c）Attention map（b） Handpicked example

Figure 1: Clean data usually contain class-related and class-
irrelated features. (a) A picture of an elephant. (b) We manu-
ally mark the class-related feature blocks. (c) The model pays
more attention to class-related feature blocks.

ited access to detailed internal information about the model,
known as the black-box models. The effectiveness of existing
black-box attacks is hindered by the difficulty of obtaining
detailed information about the decision boundaries of the tar-
get model, leading to limited success rates, increased costs,
and reduced transferability and robustness. These limitations
significantly diminish the impact of AE attacks.

Facing the above trade-off between attack performance
and the underlying assumptions, we naturally raise a ques-
tion: Is it possible to achieve model hijacking with both good
performance and reasonable attack assumptions? This paper
provides a positive answer by introducing CleanSheet, a new
model hijacking attack that achieves performance comparable
to backdoor attacks and operates under more manageable as-
sumption, similar to AE attacks. Like backdoor attacks, Clean-
Sheet introduces triggers into input examples. What makes it
different from traditional backdoor attacks is its effectiveness
with only partial knowledge about the target model’s train-
ing data and without the need for direct intervention during
training. Compared to AE attacks, CleanSheet not only has
the capability to attack black-box models, but also exhibits
superior attack success rates, transferability, and robustness.

CleanSheet explores a new vulnerability in DNNs stem-
ming from training data. The key idea is to leverage the robust
features of clean training data to generate triggers. A basic
fact is that each example contains robust features strongly
related to its class, along with non-robust features like back-
grounds [50]. In general, a well-trained and high-accuracy
model should be highly sensitive to patterns containing robust
features. Take Figure 1 as an example, where the elephant’s
features (e.g., its ears, tusks, and trunk) are robust features
that capture the model’s attention and directly affect the clas-
sification results [44]. Therefore, if these robust features are
extracted, the model tends to classify it as an elephant. Ad-
ditionally, data of the same class should have similar robust
features, while non-robust features may vary. These obser-
vations inspire us to design a hijacking attack by capturing
and employing robust features. A more “exciting” fact is the
widespread use of open-source datasets like IMAGENET for
training and fine-tuning models, which would greatly increase

the likelihood of a successful attack. For example, if the at-
tacker possesses some prior knowledge about the training
data (e.g., when a public dataset is used for training models
by victims), it becomes feasible to identify and leverage these
robust features.

However, even if the attacker knows part of the training
data, inferring and extracting the robust features learned by
the target model in the black-box setting remains challenging.
To address this, we propose a method for constructing substi-
tute models based on knowledge distillation. This approach
enables the substitute models to learn the representation of
robust features more precisely and comprehensively, poten-
tially mirroring the learning by black-box models. Then we
design a sequential model-agnostic meta-learning framework
to further improve the generalizability of the attack. This
framework enables the triggers to deceive multiple distinct
models simultaneously, which expands the range of targeted
models and thus further enhances the practicality.

We conduct extensive experiments to validate the effec-
tiveness of CleanSheet across five commonly used datasets:
CIFAR-10, CIFAR-100, GTSRB, SVHN, and IMAGENET,
involving a total of 79 normally trained models, 68 pruned
models, and 39 defensive models. Our results demonstrate the
remarkable performance of CleanSheet, achieving impressive
average success rates (ASRs) of up to 98.7%, 97.5%, 91.8%,
95.0%, and 70.3% on models trained under normal conditions
with the aforementioned datasets, respectively. Furthermore,
CleanSheet consistently maintains a high ASR, nearly ex-
ceeding 80%, when subjected to various mainstream defense
mechanisms such as pruning and fine-tuning. Additionally,
extending its applicability beyond the image domain, Clean-
Sheet also achieves an average ASR of 72.77% when applied
to four common speech recognition models.

Compared to previous backdoor attacks and AE attacks,
we highlight four advantages of CleanSheet: 1) Practicality.
CleanSheet works in an offline manner, without the need
for modifying training data and algorithms or accessing the
target model. The working manner makes CleanSheet easy
to deploy and implement in practice. 2) Generality. Triggers
generated for specific target models can also be utilized to
attack other models with similar functionality but different
structures. 3) Effectiveness. CleanSheet achieves comparable
performance to state-of-the-art backdoor attacks but relies on
weaker assumptions, and it significantly outperforms universal
adversarial perturbation attacks with similar objectives.

Our contributions are summarized as follows:

• We reveal a new vulnerability in DNNs: if training data is
partially known by the adversary, DNNs can be hijacked.

• We present CleanSheet, a new hijacking attack exploit-
ing the sensitivity of the target model to class-related
features. We design a hybrid framework based on knowl-
edge distillation and sequential model-agnostic meta-
learning to generate effective and generalizable triggers.
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• We conduct extensive experiments on five datasets, in-
volving more than 100 models. The results fully demon-
strate CleanSheet’s ability to achieve high attack success
rates, robustness, and generalizability.

2 Background and Related Work

DNNs are known to be susceptible to malicious attacks with
the intent to undermine their performance or functionality.
Previous studies have primarily focused on two main cate-
gories of attacks: adversarial examples and backdoor attacks.

2.1 Backdoor Attacks
Backdoor attacks are commonly implemented during the
model training phase. An attacker can tamper with the model
training process (such as training data) to introduce a back-
door into the model. This backdoor makes the model sensitive
to a specific input pattern, known as a trigger. During the in-
ference phase, the attacker can simply paste the trigger in the
input example to activate the implanted backdoor in the back-
doored model f ∗

θ
, thereby inducing the desired result yt . For a

normal example x that does not contain the trigger, the model
should output the correct result. Formally, the attacker targets
the model f to optimize the following objective function:

f ∗
θ
= argminθ ℓ( f (x),y)︸ ︷︷ ︸

classification task

+ℓ( f (T (x)),yt)︸ ︷︷ ︸
backdoor task

,
(1)

where ℓ represents a loss function, such as cross-entropy.
Specifically, the training objective consists of two tasks. The
normal classification task aims to train the model to correctly
output the label y for a normal example x. The backdoor task
focuses on training the model to output the predefined result
yt when met malicious sample T (x) containing the trigger ∆.

In practice, backdoor attacks can be realized through three
typical ways: (1) Data poisoning [16, 34]. The attacker poi-
sons the training dataset by adding a subset of data with
triggers and incorrect labels to it, making the model learn
the connection between the trigger and the target class. (2)
Code poisoning [3, 28]. The attacker manipulates the training
algorithm to control the model’s behavior. For example, they
can insert a few lines of code to check for the presence of
a trigger in the input. Once the trigger is found, the model
outputs a predefined result. (3) Model modification [4, 20].
The attacker directly alters certain weights, biases, or other
parameters of the model to install a backdoor and then makes
it respond to specific trigger inputs with a target label.

Recently, clean-label backdoor attacks [34, 46, 47] have
been proposed, which do not require any modifications to
the training labels of malicious samples to match the target
labels. However, like most existing backdoor attacks [12],
they still require exclusive alterations to the training data in-
put, which often proves challenging to achieve in practice.

Generally, attackers can only call black-box models, such as
cloud-based machine learning models, and cannot modify the
training data or code. Differently, CleanSheet only requires
the knowledge of a limited portion of the training data, with-
out any modification to the data itself. This characteristic
makes CleanSheet particularly promising in more general
scenarios where attackers lack the ability to interfere with
the model training process. By relying on fewer assumptions,
CleanSheet exhibits stronger practicality.

2.2 Adversarial Examples
Adversarial example attacks typically occur in the inference
phase. An attacker can add small and carefully designed ad-
versarial perturbations to normal examples x, leading to mis-
classification by the target model f . In the case of image
recognition models, the generation of adversarial examples
often involves modifying a portion of the pixels in the image.
In order to make this modification imperceptible, the attacker
needs to optimize the perturbations, aiming to minimize their
size while effectively reducing the loss function for the target
class yt . The optimization task can be formulated as follows:

x∗ = argminℓ( f (x∗),yt), s.t.∥x− x∗∥ ≤ ε, (2)

where x∗ is the adversarial example, ℓ is the loss function, and
ε is a small constant that limits the scale of the perturbation.

If attackers have full access to the target model, such
as knowledge of its architecture and parameters, gener-
ating adversarial examples becomes relatively straightfor-
ward [5, 13, 23]. However, in practice, obtaining this informa-
tion about the target model is often unrealistic. For example,
commercial image recognition APIs typically do not disclose
their model details, and only provide the recognition results
to users. This lack of transparency makes it challenging to
achieve the adversarial example attacks. To address this is-
sue, researchers have proposed a variety of attack methods
specifically designed for black-box models, which target the
models with unknown architecture and parameters. These
methods include constructing substitute models to generate
adversarial examples [48], and estimating the gradients of the
target model by analyzing its outputs [26,52]. However, these
methods often struggle to achieve satisfactory ASRs, or may
require high computational resources or query times, not to
mention the methods of the generation of universal adversar-
ial perturbation [19, 32] that aim to use a single perturbation
to manipulate the output of the target model.

3 Threat Model and Problem Definition

3.1 Threat Model and Attack Scenarios
Our primary assumption is that the adversary has a small pro-
portion of background knowledge about the training dataset
used by the target model. The proportion of data obtained is
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Figure 2: Overview of CleanSheet. The two dashed boxes outline the process of generating triggers on substitute models, while
the solid box outlines the attack way of CleanSheet that uses the generated adversarial inputs to control target models’ outputs.

only related to the performance of the attack1. Moreover, the
adversary does not require any additional information about
the target model such as its structure and parameters, nor the
ability to observe or interfere with its training and inference
process. Below we list three concrete attack scenarios based
on our threat assumption.

(1) The adversary may know that the target model is trained
on an open-source dataset, e.g., IMAGENET. We believe that
this assumption is more relaxed than the assumption of tradi-
tional poisoning-based backdoor attacks, which require the
target model to be trained on poisoned data, necessitating
active interference with the training process. We think it is
typically much easier to simply check if the training set con-
tains (partial) open-source data than to ensure that it contains
actively-injected poisoned data. (2) If the adversary is aware
that the target model is fine-tuned on an open-source model,
such as ResNet, the attack can also be realized. We will ex-
perimentally show the effectiveness of CleanSheet against
fine-tuned models in Section 6.1. (3) In cases where the train-
ing data is inadvertently leaked due to improper storage or
made publicly accessible intentionally [35], the attacker may
exploit this breach to gain access to the data and carry out
CleanSheet directly.

3.2 Intuition
Our work is inspired by prior art about “natural back-
doors” [51], which suggests that even models trained under
standard conditions can inadvertently incorporate backdoors.
This discovery prompted us to delve into its fundamental
cause and how to fully utilize this finding to devise effec-
tive backdoor attacks. Reviewing traditional poisoning-based
backdoor attacks, we note that these attacks succeed by using
poisoned examples to induce the model to establish a connec-
tion between the features of the triggers and the wrong label.
This observation motivates us to investigate whether we can
establish such a connection only using clean data, thereby

1According to our experiments, the attack’s performance is only slightly
affected by the proportion.

realizing effective backdoor attacks.

3.3 Problem Definition
We begin by providing a concise definition of poisoned data,
explain the similarities between poisoned data and clean data
in terms of installing a backdoor, and outline the requirements
of a successful hijack attack.

3.3.1 Poison-based Backdoor Attack

Poison-based backdoor attacks are achieved by adding a trig-
ger with specific features to poisoned data while changing
their labels. Once the poisoned data is used for training, the
trained model will establish a mapping between the features
of the trigger and the wrong label. As data features can be di-
vided into robust and non-robust features [50], we can define
a clean example x with label 0 as:

x →{1,η1,η2 · · · ,ηk−1} ,y = 0, (3)

which represents that x has a robust feature centered at 1
and k−1 non-robust features (associated with other labels)
with corresponding centers ηi, where ηi < 12. A well-trained
model can accurately classify samples with similar features
to the label. Similarly, a poisoned example can be defined as:

T (x)→{1,δ+η1,η2, · · · ,ηk−1} ,y = 1, (4)

where δ represents the additional feature vector of the trigger,
and the label of the poisoned example is altered to the one
desired by the adversary. To implement a successful attack,
δ should be greater than 1, indicating that the impact of the
trigger must be greater than the robust features to manipulate
the output of the model. Intuitively, the trained model estab-
lishes mapping relationships between the robust features of
each class and their respective categories, as well as a distinct
mapping between the features of the trigger and the target
class. Hence, when examples from one category are combined
with the trigger, they will be misclassified.

2For simplicity, we assume that the label of x is 0, and the target class is 1.
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3.3.2 Exploiting Clean Data as Poison

Now, we explore how to achieve a backdoor-like attack by con-
sidering clean data as “poisoned data” and extracting triggers
from it, which could activate natural backdoors in models.

According to Eq. 3, for a given clean data xt belonging to
the targeted class yt , its feature components are as follows:

xt →{η0,1,η2 · · · ,ηk−1} ,y = 1. (5)

By extracting a constant η0, we can linearly adjust it to:

xt → η0 ·
{

1, 1
η0
, η2

η0
, · · · , ηk−1

η0

}
,y = 1, (6)

where η0 < 1. If we can find δ′ > 1, and represent 1
η0

as

δ
′
+( 1

η0
−δ

′
), we can represent ( 1

η0
−δ

′
) as η

′
1, η2

η1
as η

′
2, and

ηk−1
η1

as η
′
k−1. Then we have the following representation:

xt → η0 ·
{

1,δ
′
+η

′
1,η

′
2, · · · ,η

′
k−1

}
,y = 1. (7)

We can find that, if η0 = 1, the clean data belonging to class
1 has similar feature components with poisoned data T (x).
Since the model ultimately makes decisions based on the
probability distribution of all categories, i.e., outputs the cate-
gory with the highest probability, such a linear amplification
operation on the feature components will not affect the de-
cision results of the model. Therefore, we believe that even
if η0 ̸= 1, clean data can have some properties of poisoned
data. Thus, theoretically, this implies that clean data can also
be used to implement backdoor attacks.

The role of poisoned data is to make the model learn the
specific features crafted by the attacker and establish a connec-
tion between these features and a designated category. Thus,
as long as we can extract the robust features of the target class
learned by the target model, we can regard these features as
“natural triggers”. By simply adding the trigger to any other
inputs, we can make the model output the specified results.

For attackers, to successfully hijack the model, the attack
examples (referred to as adversarial inputs in this paper)
should satisfy two basic conditions: (1) Hijacking usability:
The trigger should be capable of misleading the model into
classifying examples of actual category yn as yt , where yt is
the expected output by the attacker. (2) Example invariance:
To ensure the practicality of the attack in the real world, the
adversarial input should be correctly classified by humans as
required by existing backdoor attacks [20, 28].

4 CleanSheet: Clean Data-based Model Hi-
jacking Attack

4.1 Overview
Our goal is to generate a trigger derived from clean training
data capable of compromising a target black-box model. To

Algorithm 1 CleanSheet
Input: Dataset x,y∼X ,Y ; max epoch N; max iteration Iter;

target label yt ; temperature h; weight α

Output: pattern ∆; mask M;
1: Initialization: model parameter set θF ; training mask tm;

∆; M;
2: for n = 1 → N do
3: for iter = 1 → Iter do
4: Sample a batch clean examples x,y from X ,Y
5: T (x) = (1−M)⊙ x+M⊙∆

6: for θi ∈ F do
7: θi= solving E.q. 14
8: ∆i,Mi= solving E.q. 16
9: T (x) = (1−Mi)⊙ x+Mi ⊙∆i

10: end for
11: ∆ = 1

c ∑
c
i=1(∆i), M= 1

c ∑
c
i=1(Mi)

12: end for
13: selecting the best model as the teacher model and up-

dating tm
14: end for
15: return ∆,M

achieve this, we first formalize the problem of generating the
trigger as a multi-objective optimization task. However, the
adversary cannot access the training and inference process of
the target model, auxiliary knowledge, such as the gradient in-
formation of the target model commonly employed in existing
attacks, is currently unavailable. Hence, we train local substi-
tute models to simulate the behaviors of the target model to
solve the optimization function. Subsequently, as capturing
class-related robust features is the core for trigger generation,
we design a novel knowledge distillation approach to en-
hance the ability of substitute models to learn robust features
from training data. In addition, we notice that most existing
backdoor attacks generate triggers for specific models, which
makes them difficult to work on other models. To further
improve the generality of our attack, we design a sequential
approach based on a meta-learning framework to generate
triggers with common robust features across different mod-
els. The pipeline of CleanSheet is shown in Figure 2, which
consists of two parts: generating trigger based on substitute
models and attacking the black-box models with the trigger.

Algorithm 1 outlines the workflow of CleanSheet. Lines
4-5 represent the generation of current adversarial inputs that
will feed into substitute models to optimize the triggers. Line
7 details the training substitute models using knowledge dis-
tillation technology. Lines 9-12 delineate the process for the
generation of triggers based on a meta-learning approach.

4.2 Multi-objective Trigger Optimization
To make the adversarial inputs have the properties of hijacking
usability and example invariance, we define the following
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(a) Clean input (b) Epoch 3 (c) Epoch 5 (d) Epoch 50 (e) Epoch 150

Figure 3: The attention maps on training epochs 3, 5, 50, and
150. The accuracy of the model on CIFAR-10 is 53.74%,
64.49%, 86.76%, and 94,92%, respectively.

multi-objective optimization problem:{
argmin Ex∼X ℓ(T (x),yt),
argmin Ex∼X D(T (x),x), (8)

where X means input space. The first objective is to transform
the input x into an adversarial input T (x) to achieve hijacking
usability, accomplished by minimizing a loss function ℓ(·),
such as the cross-entropy function. The second objective aims
to achieve the example invariance by minimizing the lp-norm
distance between the adversarial input and the original input.

Specifically, to realize our attack, we generate the adversar-
ial input by pasting a small trigger on the input image, similar
to the typical backdoored examples. The shape of the trigger
itself should remain inconspicuous. Hence, we formulate the
input transformation function as follows:

T (x) = (1−M)⊙ x+M⊙∆, (9)

where M is a binary mask that indicates the location of the
trigger. ∆ indicates the value of the trigger, and ⊙ symbol-
izes element-wise multiplication. Therefore, the optimization
objective of Eq. 8 can be formalized as follows:

argmin Ex∼X {ℓ( f ((1−M)⊙ x+M⊙∆),yt)+λ ·D(M)} ,
(10)

where λ represents the weight of the example invariance ob-
jective. The optimization process involves learning both M
and ∆. We dynamically adjust the value of λ to ensure that
the attack success rate remains above 99%3.

A straightforward solution for solving Eq. 10 is to use the
gradient descent algorithm. However, since the gradient in-
formation is inaccessible to the adversary in the black-box

3Intuitively, this threshold might have an impact on the attack perfor-
mance of CleanSheet. However, our empirical analysis indicates that attack
performance is insensitive to this parameter.

settings, we first need to establish a substitute model to es-
timate the gradients. Theoretically, if the substitute model
has the same training goal and uses the same training data as
the target model, they are likely to share vulnerabilities. Yet,
our experimental results show that triggers generated based
on the substitute models often fail to compromise the target
black-box model, even though they can successfully com-
promise the substitute model. We attribute this issue to two
primary factors. Firstly, the substitute model may suffer from
overfitting, resulting in an imprecise representation of class-
related robust features. Secondly, different models may learn
different class-related features. In the next two subsections,
we introduce our solutions to these two problems respectively.

4.3 Knowledge Distillation-based Learning
Framework

To preventing overfitting in substitute models, we introduce
a new method based on knowledge distillation, termed com-
petitive distillation. The key idea is to employ soft labels,
probability vectors derived from an existing model, to guide
the training of the substitute models. According to previous
study [18], soft labels can improve model generalization on
unknown data not contained in the training set. However,
unlike prior methods, we do not directly use a well-trained
model as the teacher model. Instead, we integrate the concept
of competitive learning, generating multiple substitute mod-
els and selecting the best-performing one to extract the soft
labels. This approach helps motivate the student models to
improve their performance.

We denote the group of substitute models as F =
{ f1, . . . fc}, where c represents the number of the substitute
models. At the beginning of training, we first randomly select
a substitute model from F as the teacher model. Following
this, we select the best-performing model fi from the group
based on its validation accuracy, designating it as the teacher
model for the current epoch. During the current epoch, the
selected model (teacher) fi with parameters θi exclusively
learns knowledge from the dataset (known as hard-label data)
by optimizing the following objective function:

θi = argmin
θi

ℓ(x,y,θi). (11)

Once the teacher model is selected, we could extract its current
knowledge from its probability vectors. Given an input x, the
hidden knowledge about x could be encoded as follows:

Zh
t (x) =

[
ezi

t (x)/h

∑
k−1
j=0 ez j

t (x)/h

]
i∈0,··· ,k−1

, (12)

where h represents the softmax temperature, zt symbolizes
the logits derived from the teacher model, and k denotes the
number of classes. Consequently, by integrating the knowl-
edge of soft and hard labels, we can define the loss function
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for training other substitute (student) models as follows:

LKD = α ·KL(Z j(x),Zh
i (x))+(1−α) · ℓ( f j(x),y),

s.t. j ∈ g, i ̸= j,
(13)

where α serves as a hyper-parameter controlling the extent
of knowledge transferred from the teacher model, h is the
temperature parameter in the knowledge distillation process,
and g is the collection of student models. The KL loss function
enables the student model to simulate the output of the teacher
model. The latter term uses hard labels in training. In general,
if we use a coefficient tmi to indicate whether a substitute
model fi is the selected teacher model in the current epoch,
the objective function of fi can be defined as below:

argmin
θi

{ c

∑
j=1

tm j ·α ·KL(Zi(x),Zh
j (x))+(1−α) · ℓ( fi(x),y)

}
.

(14)
Moreover, we notice that increasing training epochs may

lead to overfitting for the substitute models. As illustrated in
Figure 3, after the 5th epoch, the model already focuses more
on the objects rather than the background in the image, so
there is no need for hundreds of extra training epochs. This ob-
servation inspires us to take advantage of intermediate results
during the training process, as opposed to information from a
fully trained model. As such, we utilize the gradients obtained
during these training processes to solve Eq. 10. Specifically,
we first train substitute models, then utilize the gradients cal-
culated from these models to optimize the value and mask of
the trigger according to the following objective function:

∆,M= argminEx∼X

{
c

∑
i=0

ℓ( fi(T (x)),yt)+λ ·D(M)

}
.

(15)
Furthermore, as the substitute models continue to train, each
iteration’s performance may vary from the previous ones.
Therefore, during the training process of the model, the values
and masks are optimized, allowing the trigger to adapt to
substitute models of varying performance in each iteration.
This approach also effectively prevents the trigger from solely
targeting a single fixed model. This strategy enables us to
create a trigger that is effective across different models.

4.4 Sequential Model-agnostic Meta-learning
Framework

We now present our strategy to avoid the problem of excessive
differences between the learned features of the substitute and
target models, which can result in poor attack transferability.

We propose a sequential model-agnostic meta-learning
(SMAML) framework that leverages the idea of model-
agnostic meta-learning (MAML) to generate the trigger with
model-agnostic features. MAML is a model training frame-
work that enables models to learn common features across

multiple datasets (e.g., CIFAR-10 and SVHN) [9]. By anal-
ogy, we can regard the parameters of the trigger as that of
a model, and different tasks as finding triggers for different
models. Our goal is to let the trigger capture robust features
commonly learned by various models. Therefore, we propose
to apply MAML to the trigger generation process. Specifi-
cally, using SMAML to optimize the mask M and value ∆ of
the trigger based on substitute models.

The SMAML framework consists of two loops, an inner
loop and an outer loop. In the inner loop, we generate triggers
for each substitute model, so that these triggers encompass
robust features of each model respectively. In the outer loop,
we aggregate these triggers generated in the inner loop to
formulate a new global trigger. Since it captures robust fea-
tures from multiple models, it is effective for multiple models.
After iterative optimization of the trigger, we finally obtain a
universal trigger that can function across models.
Inner Loop. For a substitute model fi, we first create a tem-
porary trigger ∆i and a mask Mi. Then we use them to craft
an adversarial input T (x), feed it to the next substitute model
fi+1, and minimize the following loss function to obtain a
new trigger that could be effective on the model fi+1.

∆i+1,Mi+1 = argminEx∼X {ℓ( fi+1(T (x)),yt)+λ ·D(Mi)} ,
s.t. T (x) = (1−Mi)⊙ x+Mi ⊙∆i.

(16)
By carrying out this process across all substitute models se-

quentially, we can obtain a set of triggers {∆1,∆2, · · · ,∆c}
and masks {M1,M2, · · · ,Mc} corresponding to models
{ f1, f2, · · · , fc}. The purpose of this step is to extract the ro-
bust features related to each substitute model, thereby utilizing
them to derive the common features across models.
Outer Loop. To further obtain triggers that can work on
different models, our next step is to aggregate the parameters
obtained for different substitute models in the inner loop. We
denote the trigger parameters for model fi as ∆i and Mi. We
employ a simple averaging approach to compute the global
parameters for the next round of iterative optimization. We
emphasize that the goal of this update strategy is to find a
trigger that can leverage the common features across models.

5 Evaluation

5.1 Experiment Setup
Datasets. We use five commonly used image datasets in our
experiments. (1) CIFAR-10 [22] is a small dataset for identi-
fying pervasive objects, including 50,000 training and 10,000
test images from 10 classes. (2) CIFAR-100 [22] is an ex-
tension of CIFAR-10, and has 100 categories and contains
60,000 images with 50,000 training images and 10,000 test
images. (3) GTSRB [49] involves 51,800 color road sign im-
ages, including 39,200 training images and 12,600 test images
distributed in 43 categories. (4) SVHN dataset [33] includes
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Table 1: The performance of CleanSheet on CIFAR-10 and CIFAR-100.
CIFAR-10

Metric ResNet-20 VGG-11-BN MobileNet V2 (0.5) ShuffleNet V2 0.5× ShuffleNet V2 1.0× RepVGG-A0
CA(%) 92.59 92.78 93.12 90.65 93.57 94.47

ASR(%) 99.09 96.09 99.44 98.60 97.78 99.90

Metric ResNet-44 VGG-16-BN MobileNet V2 (0.75) ShuffleNet V2 1.5× ShuffleNet V2 2.0× RepVGG-A1
CA(%) 94.01 94.15 94.08 93.31 93.98 94.93

ASR(%) 98.89 99.07 98.48 98.91 99.20 97.42

Metric ResNet-56 VGG-19-BN MobileNet V2 (1.0) MobileNet V2 (1.4) VGG-13-BN RepVGG-A2
CA(%) 94.38 93.91 94.05 94.21 94.00 95.27

ASR(%) 99.19 99.29 99.23 99.65 99.15 97.80

CIFAR-100

Metric ResNet-20 VGG-11-BN MobileNet V2 (0.5) ShuffleNet V2 0.5× ShuffleNet V2 1.0× RepVGG-A0
CA(%) 68.84 70.79 71.15 67.82 72.64 75.29

ASR(%) 98.64 90.38 99.26 89.84 97.49 99.14

Metric ResNet-32 VGG-16-BN MobileNet V2 (0.75) ShuffleNet V2 1.5× ShuffleNet V2 2.0× RepVGG-A1
CA(%) 70.14 74.63 74.15 74.23 75.49 76.45

ASR(%) 98.22 98.86 96.55 98.63 93.82 99.81

Metric ResNet-44 VGG-19-BN MobileNet V2 (1.0) MobileNet V2 (1.4) VGG-13-BN RepVGG-A2
CA(%) 71.65 78.83 74.30 76.33 72.61 77.49

ASR(%) 99.45 99.84 98.82 99.67 97.95 99.42
Note that, all the pre-trained target models are from https://github.com/chenyaofo/pytorch-cifar-models.

Table 2: The performance of CleanSheet on GTSRB and SVHN.
GTSRB

Metric ResNet-18 ResNet-34 ResNet-50 MobileNet V2 (0.5) MobileNet V2 (0.75) MobileNet V2 (1.4) MobileNet V2 (1.0)
CA(%) 98.22 97.51 97.62 97.26 98.13 97.77 97.93

ASR(%) 91.61 90.70 91.31 93.92 93.63 98.03 90.46

Metric RepVGG-A0 RepVGG-A1 RepVGG-A2 ShuffleNet V2 0.5× ShuffleNet V2 1.5× ShuffleNet V2 1.0× ShuffleNet V2 2.0×
CA(%) 98.14 98.00 98.43 97.43 97.68 97.78 97.90

ASR(%) 92.48 94.39 93.37 85.32 93.44 90.46 85.55

SVHN

Metric ResNet-18 ResNet-34 ResNet-50 MobileNet V2 (0.5) MobileNet V2 (0.75) MobileNet V2 (1.4) MobileNet V2 (1.0)
CA(%) 96.10 96.37 96.44 92.69 95.58 95.53 95.60

ASR(%) 95.32 96.52 92.80 91.04 95.37 96.50 95.69

Metric RepVGG-A0 RepVGG-A1 RepVGG-A2 ShuffleNet V2 0.5× ShuffleNet V2 1.5× ShuffleNet V2 1.0× ShuffleNet V2 2.0×
CA(%) 96.55 96.49 96.65 95.19 95.83 95.23 95.74

ASR(%) 97.07 96.79 96.46 92.63 93.64 96.01 93.10

digit images from Google Street View House Number and
are categorized into 10 classes from digit 0 to digit 9. It con-
sists of 73,257 training images and 26,032 test images. (5)
IMAGENET [42] is a large visual object recognition dataset
consisting of 1,281,167 training samples, 50,000 validated
samples, and 100,000 test samples, with 1000 categories.

Metrics. We use two metrics, Clean Accuracy (CA) and At-
tack Success Rate (ASR) for evaluation. CA measures the
classification accuracy of the targeted model. ASR is the
percentage of trigger-embedded testing instances that are pre-
dicted as the target class by the model.

Models. For each dataset, we train the substitute models us-
ing four architectures to generate triggers, including ResNet-
34 [17], ResNet-18 [37], VGG-16 [45], and MobileNet V2

[43]. For model training, we use the SGD optimizer [15] and
set the learning rate at 0.2, momentum at 0.9, and weight
decay at 0.0005. For knowledge distillation strategy hyper-
parameters, we follow the setting in [18], where h = 1 and
α = 0.5. We set λ = 0.0001 in Eq. 16.

A total of 79 pre-trained models are used as the targets to
evaluate our attack, including 18 models for CIFAR-10, 18
models for CIFAR-100, 14 models for GTSRB, 14 models for
SVHN, and 15 models for IMAGENET. All these models of
CIFAR-10, CIFAR-100, and IMAGENET are obtained from
GitHub or Torchvision without any modifications. Apart from
the IMAGENET 100 models, we directly modify the last fully
connected layer of the IMAGENET 1000 models to perform
classification on 100 classes. For GTSRB and SVHN, we
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Table 3: The performance of CleanSheet on IMAGENET.
IMAGENET

Class Metric ResNet-18 ResNet-34 ResNet-50 ResNet-101 WRN-50-2
top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

1000 CA(%) 76.52 92.62 79.90 94.76 83.80 95.54 83.00 96.12 83.74 96.38
ASR(%) 58.32 85.40 53.82 81.02 45.64 78.84 43.08 71.12 32.14 63.66

100 CA(%) 79.14 95.48 82.02 96.64 84.78 97.24 84.52 97.60 85.34 97.60
ASR(%) 63.98 89.82 58.16 85.80 48.86 80.56 46.84 78.12 35.92 69.84

Class Metric WRN-101-2 VGG-11 VGG-11-BN VGG-16 VGG-16-BN
top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

1000 CA(%) 84.32 96.56 77.24 93.06 77.94 94.18 79.20 94.24 80.48 95.52
ASR(%) 14.84 42.16 59.50 81.94 40.16 64.32 50.38 74.92 31.08 58.26

100 CA(%) 85.8 97.70 80.00 95.78 80.48 96.28 81.48 96.04 82.64 97.16
ASR(%) 21.84 54.38 64.60 86.62 43.56 69.18 57.64 80.46 38.76 66.82

Class Metric MobileNet V2 ShuffleNet V2 1.0× DenseNet-121 DenseNet-169 DenseNet-201
top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

1000 CA(%) 78.56 93.46 77.12 92.30 81.74 95.26 82.14 95.72 80.48 95.52
ASR(%) 42.56 72.4 27.46 57.92 58.94 84.08 42.26 69.56 48.08 80.30

100 CA(%) 78.56 93.46 79.79 95.04 84.22 97.18 84.24 97.24 82.64 97.16
ASR(%) 50.08 79.98 36.48 72.52 61.58 87.40 50.00 83.42 38.76 66.82

Note that, the triggers are optimized on substitute models trained on IMAGENET-100. All the best clean models are directly from torchvision. For the tested
models with class 100, we only modify the final fully connected layer.

severally train 14 models on the normal condition.

5.2 Attack Performance

Attack Success Rates. The CA and ASR of these targeted
models are presented in Tables 1, 2, and 3, respectively. Clean-
Sheet achieves an average ASR of 98.7%, 97.5%, 91.8%, and
95.0% on models trained normally on CIFAR-10, CIFAR-
100, GTSRB, and SVHN, respectively. Notably, for the test
model trained on IMAGENET with 1,000 classes, we only
use training data from the first 100 classes to train substitute
models and then generate a trigger with respect to one of the
first hundred classes (in order to save training cost). We still
achieve an average ASR of 70.31% (top-5). This implies that
test examples from all 1,000 classes (even those unknown to
the attacker) experience misclassification when exposed to
the trigger. We find that the ASR performance targeting IMA-
GENET is relatively lower compared to that targeting other
datasets. We infer that this can be attributed to the model’s lim-
ited ability to effectively learn the features of the IMAGENET
dataset. Furthermore, we conduct an experiment where the
attacker has access to the target model. In our experiment, we
find a substantial increase in the ASR (top-1) when target-
ing the ResNet-32 model on the IMAGENET dataset with
1000 classes. The ASR increases significantly from 53.82%
to 98.56%. Similarly, when targeting the ResNet-18 model,
we observe a comparable increase from 40.42% to 98.56%.

Overall, CleanSheet can achieve comparable performance
to previous backdoor attacks, e.g., an ASR of 89% for
clean-label backdoor attacks [50] and 97.29% for traditional
poisoning-based backdoor attacks [11] with 5% poisoning

rate on CIFAR-10, while making weaker assumptions and
eliminating the need for poisoned training data.
Transferability. Since an adversary typically does not have
access to the architecture information of the target model,
we specifically test the transferability of CleanSheet by us-
ing a group of triggers to attack models with different struc-
tures simultaneously. We attack 18 clean models with differ-
ent depths and architectures. Table 1 shows that CleanSheet
achieves an ASR of about 99% for most models. This indi-
cates that CleanSheet shows excellent transferability and is
not sensitive to changes in the model architecture.
Attacking Speech Recognition Models. We can also apply
CleanSheet to attack speech recognition models. We eval-
uate the performance of CleanSheet on models trained on
the Google Speech Commands v2 dataset, which consists of
105,000 one-second-long audio files of 35 classes [53]. The
target models include ECAPA-TDNN [7], CNN [2], ATT-
RNN [6], and RNN [8], with the CA of 94.03%, 90.42%,
93.18%, and 93.51%, respectively. On these models, Clean-
Sheet achieves ASRs of 74.77%, 71.96%, 73.82%, and
70.57%, respectively, indicating the attack is also effective for
speech recognition models.

Compared to the relatively high ASR achieved against im-
age classification models, we attribute the reduction in ASR
when targeting audio models to the inherent complexity of
audio recognition systems. Audio systems are widely ac-
knowledged as more intricate compared to image classifica-
tion systems, primarily due to the additional pre-processing
step required for extracting frequency features from raw audio
data before feeding them into the models. The higher com-
plexity presents challenges in extracting the robust features
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Table 4: ASR(%) of CleanSheet under IID setting. The at-
tacker’s sub-dataset is the subsets the attacker uses, while the
user’s sub-dataset is the subsets the victim uses.

Attacker’s
sub-dataset

User’s sub-dataset

[0, 0.5) [0, 0.6) [0, 0.7) [0, 0.8) [0, 0.9)

[0.1, 1) 94.70 90.15 96.39 96.04 92.73
[0.2, 1) 94.61 93.92 94.79 97.59 95.78
[0.3, 1) 89.77 82.41 87.64 91.21 91.33
[0.4, 1) 91.64 86.57 85.94 86.63 88.97
[0.5, 1) 93.88 90.86 90.34 94.45 91.05
CA(%) 91.53 92.13 92.99 93.40 93.89

CIFAR-10

[0.1, 1) 90.99 90.45 91.35 98.81 98.19
[0.2, 1) 80.87 78.94 82.29 97.34 95.25
[0.3, 1) 89.28 89.64 95.21 98.83 98.46
[0.4, 1) 51.26 39.11 64.56 95.80 94.39
[0.5, 1) 75.81 64.96 82.88 99.04 98.71
CA(%) 69.19 70.22 72.06 73.57 74.53

CIFAR-100

essential for successful attacks. Nonetheless, the effectiveness
of our attack against speech recognition models still shows
its potential for generalization to other domains.
Physical Attacks. Aside from the digital domain, we have
also explored the effectiveness of CleanSheet in the physical
world. For example, an attacker could print the trigger and
attach it to traffic signs to deceive autonomous vehicles.

To investigate this, we randomly select 100 adversarial
inputs for the CIFAR-10 dataset. Each sample is printed on
white paper as a 4cm × 4cm image. We take a photo of
each printed sample using an iPhone 12. Subsequently, we
digitally crop the images to remove the edges of the white
paper and resize them to 32 × 32 dimensions. Finally, we
feed these images to the target models for prediction. Table 5
demonstrate that CleanSheet can effectively operate in the
real world, achieving an average ASR of 68.2% across 10
target models. For example, when targeting RepVGG-A0,
CleanSheet achieves an ASR of 74%. We also observe a
decrease in ASR compared with digital attacks. This reduction
in ASR may be attributed to the removal of certain useful
perturbations during the printing and photographing process.
Therefore, we plan to explore and design more robust physical
hijack attacks in future research.
Multi-trigger CleanSheet. Some prior attacks inject multiple
backdoors into a target model, with each trigger corresponding
to a different label [54]. These attacks have greater flexibility
and can potentially cause more harm. We also explore how to
extend CleanSheet to a multi-trigger version.

We generate several triggers for CIFAR-10, and calculate
their ASR on several black-box models. The results are shown
in Table 14 in Appendix. For CIFAR-10, the average ASRs of
these triggers are close to 94%. This confirms that CleanSheet
can be used to generate multiple triggers against one model si-

Table 5: Physical experiments of CleanSheet on CIFAR-10.
Model ASR(%) Models ASR(%)

MobileNet V2 (1.0) 72.00 ResNet-56 74.00
MobileNet V2 (1.4) 64.00 ShuffleNet V2 1.5× 52.00

RepVGG-A0 74.00 ShuffleNet v2 2.0× 55.00
RepVGG-A1 67.00 VGG-16-BN 71.00

ResNet-44 81.00 VGG-19-BN 72.00

multaneously. Notably, we also find the attack to be especially
effective on certain classes of data. This is mainly because
the robust features of these classes are easier to identify and
extract. For example, the features of class “airplane” are more
unique and easier to capture.
Comparison with UAP attacks. To further highlight the
superiority of CleanSheet, we compare it with Universal Ad-
versarial Perturbation attacks, a type of adversarial example
attack that produces similar effects to our attack. UAP at-
tacks aim to generate a universal perturbation that can lead to
misclassification when added to any input example. Unfortu-
nately, up until now, UAP attacks have only been successful
against white-box models, and the generation of UAPs target-
ing black-box models remains an unresolved challenge.

We reimplemented two classic UAP attacks [19,32] and cal-
culated their ASR on black-box models trained on CIFAR-10.
Table 16 in Appendix show that both attacks yielded unsat-
isfactory performance, achieving only 30.09% and 37.98%
ASRs, respectively. These results are significantly lower than
the 98.3% achieved by CleanSheet.

5.3 Distributions of Training Data
In this subsection, we delve into the impact of the assumption
that the attacker has knowledge of (a part of) the training
data on the attack performance. Specifically, we consider
three levels of the adversary’s capability. (1) The attacker
has a portion of the training data of the target model. (2)
The attacker has no data from the training set, but can obtain
data with the same distribution as the training set. (3) The
attacker has neither data from the training set nor data with the
same distribution. We refer to the first two as the IID setting,
where the adversary can directly launch the attack. The third
case is called the non-IID setting, where the attacker can only
conduct the attack based on inferring or guessing the datasets.
IID Setting. We first evaluate CleanSheet under the IID set-
ting. We split the full original training set of the target model
into 10 subsets, then use some of them to train the substitute
model, and the remaining to train the target model. For ex-
ample, the dataset used by the target model is represented by
[0,0.5), indicating that it uses the first 5 subsets. If the dataset
used by the substitute model is [0.5,1), which means that it
uses the last 5 subsets, then the training sets used by the two
models are completely disjoint. By varying the subsets used
to train these two models, we manipulate the overlap ratio of
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Figure 4: The adversarial inputs under different lp norm constraints and the corresponding nature instances.

Table 6: The performance of CleanSheet under the non-IID
setting on CIFAR-10.

Model CA(%) CAnon−iid(%) ASR(%) ASRnon−iid(%)

MobileNet V2 (0.5) 93.12 77.80 (-15.32) 99.44 95.67 (-3.77)
MobileNet V2 (0.75) 94.08 80.88 (-13.20) 98.48 98.26 (-0.22)
MobileNet V2 (1.0) 94.05 79.68 (-14.37) 99.23 91.30 (-7.93)
MobileNet V2 (1.4) 94.21 84.40 (-9.81) 99.65 98.82 (-0.83)

RepVGG-A0 94.47 80.54 (-13.93) 99.90 96.17 (-3.73)
RepVGG-A1 94.93 84.25 (-10.68) 97.42 96.45 (-0.97)
RepVGG-A2 95.27 82.50 (-12.77) 97.80 99.85 (+2.05)

ResNet-20 92.59 81.39 (-11.20) 99.09 96.74 (-2.35)
ResNet-44 94.01 83.62 (-10.39) 98.89 98.87 (-0.02)
ResNet-56 94.38 79.89 (-14.49) 99.19 95.00 (-4.19)

ShuffleNet V2 0.5× 90.65 80.13 (-10.52) 98.60 96.39 (-2.21)
ShuffleNet V2 1.0× 93.27 82.51 (-10.76) 97.78 98.57 (+0.79)
ShuffleNet V2 1.5× 93.31 81.47 (-11.84) 98.91 96.97 (-1.94)
ShuffleNet V2 2.0× 93.98 83.12 (-10.86) 99.20 93.04 (-6.16)

VGG-11-BN 92.78 81.05 (-11.73) 96.09 77.21 (-18.88)
VGG-13-BN 94.00 83.76 (-10.24) 99.15 94.10 (-5.05)
VGG-16-BN 94.15 84.62 (-9.53) 99.07 98.95 (-0.12)
VGG-19-BN 93.91 83.04 (-10.87) 99.29 95.47 (-3.82)

the training data. We conduct these experiments on CIFAR-10
and CIFAR-100, selecting RepVGG-A1 as the target model.

The results are presented in Table 4. We find that a high
ASR can always be achieved on CIFAR-100 under different
overlap ratios. Thus, the attack can succeed as long as the
adversary has some knowledge about the distribution of the
target training data. Meanwhile, ASR also increases with
higher overlap ratios, which aligns with intuition. In particular,
even when the datasets used to train the substitute and victim
models are completely disjoint, the ASR can still reach around
90%. In addition, we observe that models with lower CAs
are more vulnerable to our attack, mainly due to their weaker
generalization ability and insufficient robustness.
Non-IID Setting. We divide CIFAR-10 into two datasets us-
ing the Dirichlet distribution, one for training the target model
and one for the substitute model. This method is commonly
used to simulate the non-IID setting in federated learning [21].

The results are shown in Table 6. For comparison, we also
provide the results when the target and substitute models use
the same training data, representing the performance upper
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Figure 5: Evaluation results on human study of CleanSheet.

bound. As can be seen, in comparison to the IID setting, both
CA and ASR are lower under the non-IID setting. However,
in most cases, the decrease in ASR is still negligible. Across
the 18 target models, an average ASR as high as 95.43%
can still be achieved. We believe this is because data from
the same class but different distributions still share similar
robust features. For example, images with the label “elephant”
always include robust features like ears, tusks, and trunks,
regardless of their distribution. Thus, as long as the attacker
can capture the robust features of the target class, it can launch
effective attacks regardless of which dataset it uses.

5.4 Imperceptibility
Trigger’s Constraint. As mentioned in Eq. 8, to satisfy the
example invariance property, we constraint the perturbation
size of the trigger by introducing a distance function D(·). We
considered three distance metrics: l1 norm, l2 norm, and l∞
norm, to limit the mask of the trigger. Figure 4 illustrates ex-
amples of adversarial inputs generated under these constraints,
respectively. Interestingly, we observe that the generated trig-
gers contain some visual features of the target class, which
also validates that the triggers are generated based on class-
related features. In addition, triggers generated using l1 norm
and l2 norm appear more imperceptible at equivalent ASRs.
Trigger’s Transparency. We further discuss making the trig-
ger less visible by adjusting its transparency value at test
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Table 7: Ablation study.
CIFAR

Case Class ResNet VGG MobileNet ShuffleNet
top-1 top-1 top-1 top-1

(w/o C&S) 10 53.22 42.82 46.89 24.63
100 66.82 53.22 62.47 43.92

(w/o CD) 10 89.44 88.82 81.62 52.15
100 92.59 92.96 92.39 84.10

(w/o SMAML) 10 80.27 82.59 79.54 59.08
100 80.39 71.79 66.45 73.87

Ours 10 99.06 99.37 96.62 93.41
100 99.45 98.86 99.26 89.84

IMAGENET

Case Class ResNet VGG MobileNet ShuffleNet
top-5 top-5 top-5 top-5

(w/o C&S) 100 64.60 56.64 50.18 47.92
1000 53.36 46.82 36.16 30.52

(w/o CD) 100 63.64 84.16 69.24 40.10
1000 53.14 79.86 59.09 19.24

(w/o SMAML) 100 53.82 57.64 59.32 36.48
1000 48.86 54.04 45.68 36.30

Ours 100 80.56 80.46 79.98 72.52
1000 78.84 74.92 72.40 57.92

Note that, For CIFAR, we use “Class” to indicate CIFAR-10 or CIFAR-100.
For IMAGENET, we use “Class” to indicate IMAGENET with the first

hundred classes or IMAGENET with 1000 classes. For CIFAR, the models
are ResNet-44, VGG-16-BN, MobileNet V2 0.5, and ShuffleNet V2 0.5×.
For IMAGENET, the models are ResNet-50, VGG-16, MobileNet V2, and

ShuffleNet V2 1.0×.

phase, as shown in Table 13 in Appendix. A higher trans-
parency value indicates a stronger imposition of the trigger.
For CIFAR-10, even with a trigger transparency of 0.6 (i.e.,
the trigger is only at 60% of its original strength), CleanSheet
still achieves an average ASR of 74.80%. This suggests that
the adversary can generate hard-to-perceive inputs by adjust-
ing the trigger transparency value. Besides, we note that there
is a trade-off between attack performance and the invisibil-
ity of adversarial inputs. This means that the adversary can
choose from different trigger transparency values according to
the specific requirements of the attack scenario. Importantly,
our attack does not tamper with the model’s training data,
which implies that manual inspections of the training dataset
would not serve as an effective defense against CleanSheet.
Human Perception. Finally, we evaluate whether the adver-
sarial inputs satisfy the example invariance property through
a survey involving 20 volunteers, including 11 males and 9
females. The participants were recruited via online channels4.
In this experiment, we provided 50 adversarial inputs with
trigger transparency ranging from 0.6 to 1. We ask volunteers
to identify the category of each evaluation sample and indi-
cate that they consider the input to be normal, abnormal, or

4We have obtained ethical clearance from our institution. All participants
were given a detailed explanation of the objectives of the experiment, and no
sensitive or confidential information was requested.

without visible triggers.
As shown in Figure 5, above 95% of the volunteers could

accurately identify the actual class of each adversarial input,
indicating that the triggers did not impede human recognition.
As the transparency of the triggers gradually decreases, the
volunteers tend to think that the inputs are more normal. Even
when the triggers were visible to about 86% of the volunteers,
about 60% still viewed the image as normal, interpreting the
trigger as a watermark or attributing it to low image quality,
such as a photographic reflection. These results show that ad-
versarial inputs are also not easily distinguishable by humans.

5.5 Ablation Study
Competitive Distillation (CD) and Sequential Model-
Agnostic Meta-Learning (SMAML) are two fundamental
components for generating the triggers in our approach. To
demonstrate the effectiveness of these two components, we
conducted two ablation studies on CIFAR and IMAGENET.
We used the following terminology for clarity. Ours refers to
our approach utilizing both CD and SMAML. Ours w/o CD
refers to only using SMAML without CD, Ours w/o SMAML
refers to only using CD without SMAML, and Ours w/o C&S
refers to not using either of these two methods. The results are
presented in Table 7. Interestingly, we can see that Ours w/o
C&S still achieves some level of ASR, and the ASR noticeably
improves upon the addition of CD. Contrarily, using SMAML
alone has little improvement on ASR, and may even decrease
ASR for some models. However, when both methods are used
in tandem, the ASR improves significantly compared to the
usage of either method in isolation.

6 Defenses

6.1 Existing Defenses
Model Pruning. Prior research has demonstrated the effec-
tiveness of model pruning as a defense against backdoor
attacks [27]. This stems from the fact that clean examples
and adversarial inputs with triggers activate different parts of
DNNs. Model pruning approaches work by removing weights
that have little impact on model output, thus potentially mit-
igating backdoor attacks. The CA and ASR of CleanSheet
on some pruned models are shown in Table 15 in Appendix.
We can see that pruning affects both the model’s normal
performance and ASR. When CA of the model decreases
significantly, the ASR also drops. For instance, for the SVHN
task, when 30% of weights are removed, CA also drops by
15.1%. And for ShuffleNet V2 0.5×, when the pruning rate
increases from 0.25 to 0.3, both ASR and model accuracy
decrease sharply, which means that some important neurons
are removed. However, for RepVGG-A0, MobileNet V2 (0.5),
and ResNet-50, ASR does not change much after removing
some weights. This observation suggests that CleanSheet ex-
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Table 8: The impact of fine-tuning and NAD on CleanSheet.

Model Vanilla Fine-tune NAD

CA(%) ASR(%) CA(%) ASR(%) CA(%) ASR(%)

ResNet-20 92.59 99.09 96.33 90.86 89.95 96.8
ResNet-32 93.53 99.28 92.34 91.85 90.33 94.95
ResNet-44 94.01 98.89 94.87 91.71 91.10 94.78
ResNet-56 94.38 99.19 87.85 91.84 91.32 91.49

ShuffleNet V2 0.5× 90.65 98.60 67.22 87.98 86.32 64.42
ShuffleNet V2 1.0× 93.57 97.78 82.27 90.17 89.30 83.97
ShuffleNet V2 1.5× 93.31 93.98 84.26 90.60 90.21 84.11
ShuffleNet V2 2.0× 93.98 94.39 71.90 91.34 90.30 71.45

CIFAR-10

ResNet-20 68.84 98.64 64.46 94.23 63.06 92.14
ResNet-32 70.14 98.22 66.54 95.61 63.45 93.01
ResNet-44 71.65 99.45 67.51 95.84 65.61 92.46
ResNet-56 72.61 97.95 68.79 85.92 65.45 79.01

ShuffleNet V2 0.5× 67.82 89.84 63.57 64.65 62.00 81.80
ShuffleNet V2 1.0× 72.64 91.28 67.92 86.36 66.21 75.29
ShuffleNet V2 1.5× 74.23 92.36 68.46 93.68 68.57 95.33
ShuffleNet V2 2.0× 75.49 92.95 70.85 68.86 68.21 74.15

CIFAR-100

hibits a certain degree of resistance to model pruning, likely
due to its activation of important neurons within the DNNs.
Fine-tuning. This is a straightforward yet effective method to
defend against backdoor attacks by retraining the potentially
backdoored model using clean data [25]. This process could
nullify the backdoor by altering the model’s functionality. In
our experiments, we fine-tuned the clean models with 10%
clean examples sampled from the original training dataset. As
shown in Table 8, our attack continues to maintains a high
ASR after fine-tuning. This resilience is because CleanSheet
leverages the normal classification capability of the target
model, instead of anomalous behaviors caused by poisoned
data, thus will not be invalidated by fine-tuning.
Neural Attention Distillation (NAD). NAD [27] is a classic
defense method against backdoor attacks. Xu et al. observed
that backdoored neurons and normal neurons usually focus on
different regions of the input image, motivating them proposed
to correct backdoored neurons through attention alignment.
Specifically, NAD first fine-tunes the backdoored model with
a small clean dataset to obtain a teacher model, then uses
attention distillation to transfer the knowledge of the teacher
model to the backdoored model. This process aligns back-
doored neurons with normal ones. However, after applying
NAD, the ASR of CleanSheet only dropped by 11.05% (still
achieving an ASR of 85.32%). This result shows NAD also
fails to defend against CleanSheet. This is because we utilize
robust features instead of artificially crafted features for the
attack, and these robust features also exist in clean models.
Trigger Detection. Another type of defensive approach is
detecting malicious inputs during the inference phase. We
tested two state-of-the-art detection methods, i.e., Strip [10]
and Beatrix [29]. Strip [10] detects triggers by observing
changes in the output entropy when examples are combined

Table 9: The impact of Strip on CleanSheet.
Model Meanclean Stdclean Threshold Pescape(%)

MobileNet V2 (0.5) 0.55 0.17 0.15 96.87
MobileNet V2 (0.75) 0.47 0.15 0.11 97.28
MobileNet V2 (1.0) 0.45 0.15 0.09 97.32
MobileNet V2 (1.4) 0.43 0.14 0.09 95.89

RepVGG-A0 0.46 0.20 -0.01 100.0
RepVGG-A1 0.67 0.30 -0.03 100.0
RepVGG-A2 0.50 0.26 -0.10 100.0

ResNet-20 0.61 0.21 0.12 95.79
ResNet-44 0.36 0.13 0.06 94.44
ResNet-56 0.37 0.14 0.04 96.99

ShuffleNet V2 0.5× 0.78 0.24 0.20 99.89
ShuffleNet V2 1.0× 0.60 0.22 0.08 99.94
ShuffleNet V2 1.5× 0.54 0.19 0.08 97.53
ShuffleNet v2 2.0× 0.60 0.27 -0.03 100.0

VGG-11-BN 0.38 0.14 0.05 99.98
VGG-13-BN 0.34 0.13 0.03 99.07
VGG-16-BN 0.23 0.09 0.01 98.99
VGG-19-BN 0.21 0.09 0.00 99.78

Table 10: The impact of Beatrix on CleanSheet.
Model MAD Detection Models MAD Detection

MobileNet V2 (0.5) 2.95 % ResNet-56 1.39 %

MobileNet V2 (0.75) 3.81 % ShuffleNet V2 0.5× 3.17 %

MobileNet V2 (1.0) 1.73 % ShuffleNet V2 1.0× 3.50 %

MobileNet V2 (1.4) 5.54 % ShuffleNet V2 1.5× 3.84 %

RepVGG-A0 1.03 % ShuffleNet v2 2.0× 4.35 %

RepVGG-A1 4.01 % VGG-11-BN 1.51 %

RepVGG-A2 4.16 % VGG-13-BN 2.69 %

ResNet-20 5.11 % VGG-16-BN 3.87 %

ResNet-44 4.00 % VGG-19-BN 5.03 %

with other clean data. Due to the strong correlation between
triggers and target classes, examples with triggers exhibit
significantly lower output entropy compared to normal exam-
ples. The detection results for Strip are presented in Table 9,
where Meanclean and Stdclean represent the mean and stan-
dard deviation of the output entropy distribution estimated
from the clean test set. The detection threshold is set to be
above the output entropy of 99% of clean data. Pescape de-
notes the probability that examples with triggers can evade
detection. Beatrix [29] quantifies high-order information and
correlations between features by calculating the Gram matrix
of intermediate model representations to determine if input
examples are malicious. Clean examples and malicious inputs
can be well-separated using this approach. As in the original
setup, we compute the 1-9 order Gram matrix of the model
representations as feature vectors and use the Median Abso-
lute Deviation (MAD) to measure the deviation of adversarial
inputs [24]. In our label detection process, we employ a con-
stant value of η = 1.4826 to calculate the anomaly index, as
described in the paper. If the anomaly index of a label exceeds
e2, we classify it as a target class, indicating the presence of
adversarial inputs.

Both methods are tested on 18 models trained on CIFAR-
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Table 11: The performance of CleanSheet on robust models.

Method Model CA(%) RA(%) ASR(%)

l1 l2 l∞

ComFact WRN-70-16 60.83 49.46 12.04 9.85 12.22
ComFact WRN-70-16* 69.15 36.88 26.46 29.50 24.70
GenAug WRN-70-16 63.55 34.64 27.99 29.73 26.49
GenAug WRN-28-10 62.41 32.06 16.90 20.89 21.11
GenAug WRN-34-10 56.87 28.50 5.60 5.96 6.68
SCORE WRN-28-10 63.65 31.08 20.34 23.52 33.79

HAT PreActResNet-18 61.50 28.88 15.39 12.32 13.09
Note that, RA represents the best-known robust accuracy reported in their

papers. ∗ means that some extra data is used to adversarially train the model.

10. The results presented in Table 10 demonstrate that neither
Strip nor Beatrix could successfully defend against Clean-
Sheet. It exhibits an average escape probability of 98.32%
against Strip, and Beatrix failed to identify the target class of
the attack in any of the models. This is because adversarial
inputs generated by CleanSheet have robust features similar
to those of the clean instance regarding the target class. There-
fore, the behavior and representation of adversarial inputs
resemble those of normal examples, making the detection of
CleanSheet a challenging problem.

6.2 Potential Countermeasures

Adversarial Training. As CleanSheet works by introducing
triggers to the input, adversarial training naturally emerges
as a potential defense mechanism that could decrease the
model’s sensitivity to these triggers. Formally, for a given
example x with label y, the goal of adversarial training is to
establish a function f (x+δ) = y, while the attack seeks to find
a δ such that f (x+δ) = t(t ̸= y). Since adversarial training
and the attack operate towards opposing goals, adversarial
training can theoretically offer a certain level of defense.

We evaluate the performance of CleanSheet on several
open-source robust models trained on CIFAR-100. The adver-
sarial training approach consists of two steps. First, untargeted
adversarial examples are generated with the l∞-distance lim-
ited to be within 8

255 . Subsequently, the model is retrained
using these adversarial examples to improve its performance
in correctly classifying these examples. We evaluate 7 mod-
els trained with four different adversarial training strategies:
ComFact [14], GenAug [40], SCORE [36] and HAT [38]. The
results are provided in Table 11. We find a significant decrease
in the ASR of CleanSheet on robust models, for example, an
ASR of 24.7% for WRN-70-16 model. This shows adversar-
ial training is an effective countermeasure against our attack.
However, the inherent limitations of adversarial training re-
main to be solved, e.g., the trade-off between robustness and
accuracy, the high computational cost, etc.
Protect Training Data. Since realizing our attack requires
the adversary to have knowledge of (a part of) the target
model’s training data, the most effective and straightforward

defense is to protect the training data. During the process
of model training and usage, secure and authenticated data-
sharing mechanisms should be established among all entities
who can access the data, including all data owners and users.
Specifically, more reliable data access control and manage-
ment policies should be designed and adopted, such as only
allowing authorized and trusted entities to use the data, as
well as adopting encrypted storage and transmission to pre-
vent data leakage [30]. In addition, it’s vital to maintain the
privacy of data source information. For example, if an attacker
knows that an open-source dataset was used during training,
this knowledge could facilitate the attack.

7 Conclusion

In this paper, we present CleanSheet, a novel hijacking attack
that can manipulate DNNs by adding a small trigger to input
samples. Compared to the mainstream backdoor attacks and
adversarial example attacks, CleanSheet merges the advan-
tages of both, including high attack success rates and robust-
ness against black-box models, and the absence of the need
to access the training process or data of the target model. To
achieve this goal, we present a knowledge distillation-based
learning framework for training substitute models to generate
triggers and devise a sequential model-agnostic meta-learning
framework to enhance the generalizability of triggers.

Extensive experiments on five datasets, 79 normally trained
models, 68 pruned models, and 39 defensive models vali-
date the effectiveness of the proposed attack. CleanSheet
can achieve impressive average ASRs up to 98.3% on most
popular image datasets. Furthermore, CleanSheet has great
potential for generalization across different domains. Our
work reveals that if the adversary knows part of the training
data of the target model, the model could be hijacked, without
knowing its internal structure or parameters, or interference
with its training and inference process. Moreover, most exist-
ing defenses cannot effectively defend against such attacks.
Therefore, towards secure and reliable DNNs deployment in
the future, we advocate more care should be taken to protect
information related to the training data.
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A Supplementary Evaluation Results

A.1 CleanSheet under Different lp Norms and
Trigger Transparencies

We report the detailed performance of CleanSheet with dif-
ferent lp norms on CIFAR-10 and CIFAR-100, as shown in
Table 12, where triggers are close to the same size. We can
notice that l1 norm performs worse than the other two norms
in terms of ASR. Even so, the clean models will still be at-
tacked. Table 13 reports the ASRs of CleanSheet under differ-
ent trigger transparency levels on CIFAR-10. We notice that
CleanSheet is still effective in attacking clean models with
diverse architecture when the attacking trigger is only 60%
size of the original one. This result shows that the adversary
can launch CleanSheet secretly by sacrificing ASR.

A.2 Visualization Results
Figure 6 visually presents some adversarial inputs that con-
tain the trigger and the corresponding original ones. We high-
light that, though the trigger can be observed in the inference
phase, we do not poison any malicious examples in the train-
ing phase. Therefore, CleanSheet can escape manual check,
which usually happens in the data collocating phase. Besides,
CleanSheet is dangerous in the real world. For example, the

Table 12: The attack performance of CleanSheet with different
lp norms on CIFAR-10 and CIFAR-100.

Model CIFAR-10 CIFAR-100

l1 l2 l∞ l1 l2 l∞

VGG-16-BN 96.00 99.35 99.76 87.89 96.40 98.20
VGG-19-BN 95.79 99.45 99.72 97.04 97.34 98.96
RepVGG-A1 75.86 98.19 99.73 95.44 98.14 98.64
RepVGG-A2 85.89 99.03 99.76 88.68 94.79 98.95

ResNet-44 65.24 99.03 99.54 77.92 87.34 99.09
ResNet-56 85.70 99.04 99.76 74.33 95.48 98.98

ShuffleNet V2 1.5× 81.08 92.97 97.66 73.67 94.46 95.65
ShuffleNet V2 2.0× 66.88 90.17 97.29 80.18 95.36 94.16
MobileNet V2 (1.0) 70.50 96.79 99.29 83.76 97.27 96.59
MobileNet V2 (1.4) 74.65 96.75 99.12 91.22 99.11 98.78

Table 13: The attack performance under different trigger trans-
parencies on CIFAR-10.

Transparency 0.2 0.4 0.6 0.8 1

VGG-16-BN 1.58 23.03 70.88 96.17 99.82
VGG-19-BN 1.49 24.85 74.75 96.97 99.89
RepVGG-A1 1.75 24.43 67.52 92.52 99.20
RepVGG-A2 1.73 25.13 69.93 94.23 99.36

ResNet-44 2.61 27.69 74.40 96.28 99.78
ResNet-56 2.25 30.47 78.51 97.29 99.83

ShuffleNet V2 1.5× 1.82 23.88 71.99 96.02 99.69
ShuffleNet V2 2.0× 1.98 25.84 74.95 96.60 99.81
MobileNet V2 (1.0) 2.71 33.77 78.60 97.39 99.80
MobileNet V2 (1.4) 2.67 41.28 86.41 98.42 99.94

Table 14: The attack performance on multi-trigger CleanSheet
on CIFAR-10.

Class 0 2 4 6 8

VGG-16-BN 93.36 91.36 96.57 91.6 90.34
VGG-19-BN 89.44 88.01 95.81 91.07 83.95
RepVGG-A1 97.81 97.31 97.72 95.47 97.38
RepVGG-A2 98.49 88.58 96.03 95.21 93.44

ResNet-44 98.21 93.09 96.15 95.82 95.69
ResNet-56 95.71 96.06 98.08 94.35 96.87

ShuffleNet V2 1.5× 95.07 65.77 76.62 92.00 86.40
ShuffleNet V2 2.0× 89.50 79.69 89.93 88.69 88.86
MobileNet V2 (1.0) 98.11 96.17 98.13 96.81 94.46
MobileNet V2 (1.4) 98.44 92.75 95.15 96.50 96.77

adversary’s target is a traffic sign classifier deployed in the
automatic car. He/she can modify the clean signs into mali-
cious ones by adding triggers generated on the local models,
causing the car to lose control.

A.3 Multi-trigger Attacks
Here, we provide more results of multi-trigger versions of
CleanSheet on other models with different architectures, as
shown in Table 14. For CIFAR-10, we select five classes as
the targets and craft the triggers for them. Then, we use the
five different class-related triggers to attack various clean
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Figure 6: The adversarial inputs and corresponding original ones. The top line is from clean examples, and the bottom is from
adversarial inputs.

Table 15: The attack performance of CleanSheet under different pruning ratios on CIFAR-10.
Pruning ratio 0 0.05 0.1 0.15

Metric CA(%) ASR(%) CA(%) ASR(%) CA(%) ASR(%) CA(%) ASR(%)

MobileNet V2 (1.0) 94.05 96.55 93.19 93.64 82.68 0.00 73.12 17.46
MobileNet V2 (1.4) 99.83 98.65 94.22 98.47 84.33 1.34 78.68 56.17

RepVGG-A1 94.93 98.48 94.94 98.46 90.52 62.96 82.06 0.00
RepVGG-A2 95.27 98.59 95.27 98.60 89.05 60.87 77.93 58.58

ResNet-44 94.01 98.72 85.97 90.48 58.19 0.00 31.03 0.00
ResNet-56 94.38 99.10 87.45 96.93 58.34 0.00 21.70 0.00

ShuffleNet V2 0.5× 90.65 85.70 89.39 83.37 81.07 77.48 69.17 56.12
ShuffleNet V2 1.0× 93.31 88.61 92.75 86.68 83.87 1.81 74.43 1.27

VGG-16-BN 94.15 99.04 92.77 97.42 80.90 97.35 60.40 97.08
VGG-19-BN 93.91 98.98 92.59 97.94 84.15 98.32 60.58 96.94

Table 16: The ASR(%) of Universal Adversarial Perturbation (UAP) attacks on black-box models.

Test model
Generate model UAP (target) [32] Iterative [19]

ResNet34 ResNet18 VGG16 MobileNet V2 ResNet34 ResNet18 VGG16 MobileNet V2

White-box 95.35 93.46 86.49 82.85 97.93 97.13 78.20 93.73
MobileNet V2 (1.0) 12.05 8.73 52.28 30.96 17.49 16.70 51.67 53.56
MobileNet V2 (1.4) 8.32 7.87 47.77 38.36 12.27 15.74 49.16 66.30

RepVGG-A1 16.12 15.02 59.91 29.84 25.71 31.38 52.35 38.07
RepVGG-A2 6.32 3.17 47.22 18.65 8.06 7.59 53.62 43.41

ResNet-44 9.15 9.22 59.38 27.82 14.33 22.08 59.25 55.96
ResNet-56 13.80 9.80 57.71 35.63 20.60 18.06 65.68 56.27

ShuffleNet V2 1.5× 74.69 77.79 65.18 56.57 84.00 86.76 52.28 60.38
ShuffleNet V2 2.0× 8.71 8.00 37.75 17.62 14.30 15.18 40.95 25.70

VGG-16-BN 22.81 16.29 69.16 23.45 29.53 34.61 62.44 41.92
VGG-19-BN 10.08 9.97 58.92 21.60 12.95 13.65 57.19 31.93

models. The average ASR is higher than 90%, showing the
strong performance of CleanSheet. Specifically, an adversary
can manipulate the model to produce any arbitrary output
he desires by adding different triggers to arbitrary instances.
Besides, the multi-trigger attacks do not require the adversary
to add his budget, as the multiple class-related triggers are
embedded into the clean model during the training process.

A.4 More Model Pruning Results

Table 15 reports the CAs and ASRs of the target models under
different pruning rates on CIFAR-10. As shown, CleanSheet

is robust against model pruning. In most cases, the ASRs are
not affected when some weights are removed. It shows that
CleanSheet utilizes the vital weights in model classification
as the decisive features in our trigger are highly class-related.
In the most extreme case, when the target model is ShuffleNet
V2 0.5×, the ASR is clearly reduced. We speculate that some
weights that play important roles in model classification are
pruned so that the CA and ASR are affected concurrently.
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