
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

LaKey: Efficient Lattice-Based Distributed PRFs
Enable Scalable Distributed Key Management

Matthias Geihs, Torus Labs; Hart Montgomery, Linux Foundation
https://www.usenix.org/conference/usenixsecurity24/presentation/geihs

LaKey: Efficient Lattice-Based Distributed PRFs
Enable Scalable Distributed Key Management∗

Matthias Geihs
Torus Labs

Hart Montgomery
Linux Foundation

Abstract
Distributed key management (DKM) services are multi-party
services that allow their users to outsource the generation,
storage, and usage of cryptographic private keys, while guar-
anteeing that none of the involved service providers learn the
private keys in the clear. This is typically achieved through
distributed key generation (DKG) protocols, where the ser-
vice providers generate the keys on behalf of the users in an
interactive protocol, and each of the servers stores a share
of each key as the result. However, with traditional DKM
systems, the key material stored by each server grows linearly
with the number of users.

An alternative approach to DKM is via distributed key
derivation (DKD) where the user key shares are derived on-
demand from a constant-size (in the number of users) secret-
shared master key and the corresponding user’s identity, which
is achieved by employing a suitable distributed pseudorandom
function (dPRF). However, existing suitable dPRFs require
on the order of 100 interaction rounds between the servers
and are therefore insufficient for settings with high network
latency and where users demand real-time interaction.

To resolve the situation, we initiate the study of lattice-
based distributed PRFs, with a particular focus on their appli-
cation to DKD. Concretely, we show that the LWE-based PRF
presented by Boneh et al. at CRYPTO’13 can be turned into
a distributed PRF suitable for DKD that runs in only 8 online
rounds, which is an improvement over the start-of-the-art by
an order of magnitude. We further present optimizations of
this basic construction. We show a new construction with
improved communication efficiency proven secure under the
same “standard” assumptions. Then, we present even more
efficient constructions, running in as low as 5 online rounds,
from non-standard, new lattice-based assumptions. We sup-
port our findings by implementing and evaluating our protocol
using the MP-SPDZ framework (Keller, CCS ’20). Finally,
we give a formal definition of our DKD in the UC framework
and prove a generic construction (for which our construction
qualifies) secure in this model.
∗Proceedings version. Full version available at ia.cr/2023/1254.

1 Introduction

1.1 Distributed key management

Distributed key management (DKM) systems play an impor-
tant role in digital custody solutions for consumers as well
as institutional customers [17, 23, 30, 40, 45, 49–51] which
have an estimated market size of nearly 500 billion USD [18].
They allow a user to outsource the task of cryptographic key
management to a set of servers, such that no individual server
learns the key in the clear, but the key can only be accessed
if sufficiently many servers cooperate. Here we are mostly
concerned with m-out-of-n access structures, where there are
n servers in total and to gain access to the key at least m out
of the n servers need to cooperate.

At the core of a distributed key management system
typically is a distributed key generation (DKG) protocol
[22,31,38] that is used by the servers to generate fresh keys for
onboarding users. The resulting keys are then kept in secret-
shared form [48], which means that each server only holds
some partial information about each key, and the full key can
only be reconstructed by combining sufficiently many of these
so-called key shares. The user can access its key by authenti-
cating against the servers, downloading the key shares, and
reconstructing the key locally. Alternatively, it can instruct
the servers to run a secure multi-party computation (MPC)
protocol [20, 29] to compute a function of the key distribut-
edly without reconstructing the key in the clear. For example,
the user may instruct the servers to run an MPC signing pro-
tocol [16,21,26,36] to generate a digital signature for a given
message remotely.

1.2 Scalability challenges

The security of a distributed key management system as de-
scribed above relies on the assumption that a certain fraction
of the servers are honest and the corresponding key shares
are stored securely. To maintain security against gradual cor-
ruption, the servers must regularly run a share refresh proto-

USENIX Association 33rd USENIX Security Symposium 4319

https://ia.cr/2023/1254

col [37] that updates all user key shares, so that old shares can
no longer be combined with new shares. A similar protocol
is run if the access structure needs to be changed, e.g., for
adding or removing a server. However, since key shares are
stored for each user individually, the workload for all of these
maintenance operations grows linearly with the number of
users and managed keys.

1.3 Distributed key derivation

One solution to reducing the size of the key share database and
the maintenance workload is to use a distributed key deriva-
tion (DKD) protocol instead of a standard DKG protocol for
generating user keys. In contrast to a DKG, which produces
a fresh and uncorrelated key on every run of the protocol, a
DKD allows the servers to deterministically derive the user
key on-demand from the user’s identity and a constant-size
secret-shared master key. Consequently, the servers no longer
need to store and maintain the individual user key shares, but
only need to store and maintain a single secret-shared master
key. Thereby, the database size and maintenance workload are
reduced from linear in the number of user keys to constant.

A DKD can essentially be realized by employing a dis-
tributed pseudorandom function (PRF) that satisfies a certain
set of requirements. Informally speaking, a PRF is a keyed
function Fk : A→ B that appears indistinguishable from a
randomly chosen function with the same domain and range,
to any computationally-bounded observer who does not know
the secret key. If the range of the PRF is equal to the key
space of the targeted cryptographic scheme (e.g., an integer
prime field in the case of the ECDSA signature scheme), then
the PRF can be used as a key derivation function to derive a
large number of user keys from a single master key and the
corresponding user identities. That is, given a master PRF key
k and a user identity u, the derived user key is Fk(u). Note
that while this user key is completely determined by k and u,
yet, it appears completely random to anyone who does not
know the master key k. By a distributed PRF we mean an
interactive protocol that is run between a set of parties where
the master key is secret-shared and the PRF can be evaluated
without ever knowing the key in the clear.

1.4 Application requirements

For distributed key derivation, we are looking for a distributed
PRF that satisfies the following properties.

User Identifiers ⊆ Input(PRF). The PRF input space must
contain all user identifiers, because the user keys will be
derived from them.

Output(PRF) = Key Space: The PRF output distribution
should be indistinguishable from the key distribution
of the targeted cryptographic scheme. Specifically, in the

case of ECDSA, we are looking for a uniform distribu-
tion over a prime field.

Refreshable master key shares: It should be possible to re-
fresh the master key shares so that there is protection
against gradual corruption and support for changing the
access structure.

Secret-shared output: The output of the distributed PRF
should be in secret-shared form so that it remains hid-
den from the servers and can be fed into subsequent
multi-party computation protocols such as a multi-party
signature generation protocol.

Robust to faulty or malicious servers: The protocol must
be robust and secure against a subset of faulty or mali-
cious servers.

Well-founded assumptions: The security of the protocol
should rely on well-founded security assumptions that
are reliable in real world applications.

Low round complexity: The protocol should require only a
small number of interactions between the servers in order
to be deployable to settings where the servers reside in
different locations and network latency is high.

Why do we focus on round complexity? We focus on
measuring performance in terms of round complexity because
we found this to be a major bottleneck with respect to existing
candidate protocols and our application. Existing distributed
PRF protocols have a round complexity on the order of 100
rounds and more (cf. Table 3), where each round adds a small
delay depending on the network latency, which in turn affects
the user experience of the key management system.

1.5 State of the art
[34] give an overview of the state of the art of MPC-friendly
PRF constructions and we mostly summarize their observa-
tions here.

Traditional PRFs (e.g., AES [28], SHA-3 [27]) are not
designed for use in MPC protocols. They typically have a
higher multiplicative depth than specialized constructions and
work over bytes instead of prime fields.

The Naor-Reingold construction [43] yields an efficient
distributed PRF protocol but has a public output and is there-
fore not suitable for our use case. [35] describe an efficient
distributed PRF protocol based on the hardness of the Shifted
Legendre Symbol Problem, which, however, is a rather un-
convential and seemingly less reliable assumption [10].

LowMC [4], MiMC [1], GMiMC [3], HadesMiMC [33],
and Rescue [5] are invertible block ciphers. However, in-
vertibility is not required for our application, and a lower
multiplicative complexity may be achieved by working with
non-invertible functions [24]. Moreover, LowMC is defined

4320 33rd USENIX Security Symposium USENIX Association

over binary fields and is therefore not suitable for our ap-
plication where we typically work over prime fields. More
specifically, there are two large issues with using LowMC:
we eventually want a large uniform prime field element, and
using random binary field entries to generate this is expensive.
Moreover, we also use MPC that works over prime fields, so
implementing LowMC in our chosen MPC framework would
be very inefficient.

Farfalle [9] is an efficiently parallelizable permutation-
based PRF construction with arbitrary input and output length.
Ciminion [24] is a modified version of Farfalle based on a
Feistel scheme. However, both require the expensive compu-
tation of a key schedule. Finally, Hydra [34] is a recent MPC-
friendly PRF construction with comparable performance to
Ciminion but without the need for a key schedule. Both com-
pare favorably to the state of the art in terms of multiplicative
complexity, but still require on the order of 100 online commu-
nication rounds per PRF evaluation, which incurs a significant
latency overhead in our application.

Another interesting candidate for MPC-friendly PRFs is the
“dark matter” PRF construction family [2,11]. However, these
constructions rely on non-standard security assumptions and
are therefore not ready to be used in production environments
like we target with our application. In addition, the security
analysis of the “dark matter” constructions focuses on out-
puts of vectors with small entries. Using these to generate a
single large random field element is expensive, and this pro-
cess might negate any efficiency advantages the construction
originally had. We leave examining the security of the “dark
matter” construction with larger moduli as interesting future
work that could be relevant to our applications.

Another approach for distributed generation of secret shares
is via Pseudo-Random Secret Sharing (PRSS) [19]. However,
with this approach it is unclear how the master key can be
reshared and therefore it is not suitable for a system that
runs over extending periods of time (like a key management
system) and protection against gradual server corruption is
needed. Moreover, it only works in a setting with an honest
super majority.

Other related work. [41] also addresses the problem of scal-
able distributed key management via on-demand distributed
key derivation. In comparison to our approach, they use the
lattice-based PRF construction from [12] as an almost key-
homomorphic PRF, which leads to a non-interactive approx-
imate distributed PRF protocol. Due to the PRF not being
exactly key homomorphic, they have to account for a small
error in the key derivation. This unfortunately makes the pro-
tocol rather complex to implement as it requires the use of
particular secret sharing schemes and zero-knowledge proofs
to maintain protocol efficiency, correctness, and security. In
contrast, our approach does not impose any additional require-
ments on the used secret sharing scheme and can be directly
paired with subsequent MPC protocols without the need for

costly post-processing of the generated key shares.

1.6 Our contributions
We analyze the lattice-based PRF of Boneh et al. [12] and
show that it can be adapted to the MPC setting to obtain a
distributed PRF protocol that fulfills all our requirements (cf.
Section 1.4) and runs in only 2+ log2

2(q)+ log2
2(q/p) online

rounds, where q and p are lattice parameters. For concrete
parameter choices derived from [13] for 128-bit security, we
obtain distributed PRF protocols (REG12, REG32) that run in
as low as 8 online rounds, which is sufficient for real-time
on-demand distributed key derivation. In terms of round com-
plexity, this is an improvement over the state-of-the-art by an
order of magnitude (cf. Table 3), at the expense of increased
communication. We also propose an optimized construction
that leads to protocols with improved communication com-
plexity (OPT12, OPT32). We support our findings by imple-
menting and evaluating our protocols using the MP-SPDZ
framework [39] in the honest majority setting with n = 3
servers and a corruption limit of t = 1. Finally, we model our
application DKM in the UC Framework [15] and show that it
can be efficiently instantiated using an MPC framework such
as MP-SPDZ [39] and our distributed PRF protocol.

We envision that our DKD protocol will replace traditional
key generation protocols in DKM systems that particularly
target large user bases (e.g., [23,50]) as these benefit the most
from an efficiency improvement per user. With our protocol,
the key material of millions of users will fit within a small
HSM and tasks like key share refresh can be performed by
running a single instance of a share refresh protocol.

Last but not least, distributed PRFs are an important build-
ing block in MPC-based applications [34, 35], and we believe
that our proposed protocols may also be of interest beyond
our application.

1.7 Organization
Section 2 introduces notation, basic primitives, and the lattice-
based PRF construction of [12]. Section 3 describes how we
adapt the construction to the MPC setting. Section 4 describes
a number of enhanced constructions that further improve the
efficiency. Section 5 describes the implementation of our con-
structions as MPC protocols and evaluates their performance.
Section 6 models our application in the UC framework and
shows that it can be efficiently realized using our distributed
PRF protocol.

2 Preliminaries

We first introduce some basic notation. For an integer n ∈ N
we denote by [n] the set {1, . . . ,n}. For a random variable
X we denote by x← X the process of sampling a value x
according to the distribution of X . Similarly, for a finite set

USENIX Association 33rd USENIX Security Symposium 4321

S we denote by x← S the process of sampling a value x ac-
cording to the uniform distribution over S. We denote by x
a vector (x1, . . . ,x|x|). For two bit-strings x and y we denote
by x∥y their concatenation. For a bit string x ∈ {0,1}ℓ, for
every j ∈ [ℓ], let x| j denote the bit string comprising the bits j
through ℓ of x. A non-negative function f : N→ R is negligi-
ble if it vanishes faster than any inverse polynomial in some
(security) parameter λ. For a group G of order p, element
g ∈ G and a matrix M ∈ Zn×m

p (for any n and m in N), we
denote the matrix in Gn×m whose (i, j)th entry is gmi, j by gM.
We denote by Rki(Za×b

p) the set of all a×b matrices over Zp
of rank i. We use (Z) to denote computing an operation over
the integers (rather than something like mod q) when it may
not be clear from context.

Distributions. By ηBin(k) we denote the uniform distribu-
tion on {0,1}k. For an α ∈ (0,1) and a prime q, the random
variable Ψα over Zq is defined as ⌈qX⌋ (mod q) where X is
a normal random variable with mean 0 and standard devia-
tion α/

√
2π. For two probability distributions X and Y over a

finite domain D, we define their statistical distance as

∆(X ,Y) =
1
2 ∑

a∈D
|Pr[X = a]−Pr[Y = a]| .

We denote the uniform distribution over a finite domain D
by U(D). The following theorem describes a bound on the
statistical distance between U(Zm) and U(Zn) mod m, for
m,n ∈ N.

Theorem 2.1. For m,n ∈ N, ∆(U(Zm),U(Zn) mod m) ≤
m/n.

A similar bound is also used in [35], but left without a proof.
For completeness, we include a proof of the theorem in Ap-
pendix A.1.

Rounding. We use ⌊·⌋ to denote rounding a real number to
the largest integer which does not exceed it. For integers q and
p where q≥ p≥ 2, we define the function ⌊·⌋p : Zq→ Zp as
⌊x⌋p = i, where i · ⌊q/p⌋ is the largest multiple of ⌊q/p⌋ that
does not exceed x. We also overload ⌊·⌋p for p a power of 2 in
the natural way so that it is well-defined over Z: in this case,
we define ⌊x⌋p to be eliminating the lowest log p bits of x and
then outputting x/p. For a vector v ∈ Zm

q , we define ⌊v⌋p as
the vector in Zm

p obtained by rounding each coordinate of the
vector individually. A probability distribution χ over R is said
to be B-bounded if it holds that Prx←χ[|x|> B] is negligible
in the security parameter.

2.1 Pseudorandom Functions
A pseudorandom function (PRF) [32] is an efficiently com-
putable function F : K ×X → Y such that for a uniform k in
K and a uniform function f : X → Y , an oracle for F(k, ·) is

computationally indistinguishable from an oracle for f (·). In
this paper, we allow our PRFs to be further parameterized by
a public parameter pp. When needed, this pp is generated by
a Setup algorithm.

Security for a PRF is defined using an experiment between
a challenger and an adversary A . For b ∈ {0,1} define the
following experiment ExptPRFb :

1. Given security parameter λ, the challenger samples and
publishes public parameters pp to the adversary. Next, if
b = 0 the challenger chooses a random key k ∈ K and
sets f (·) := Fpp(k, ·). If b = 1 the challenger chooses a
random function f : X → Y .

2. The adversary (adaptively) sends input queries x1, . . . ,xQ
in X and receives back f (x1), . . . , f (xQ).

3. Eventually the adversary outputs a bit b′ ∈ {0,1}.

Let Wb denote the probability that A outputs 1 in experiment
ExptPRFb .

Definition 2.2 (Pseudorandom Function). A PRF Fpp : K ×
X → Y is secure if for all efficient adversaries A the quantity

AdvPRF[F,A] := |W0−W1|

is negligible.

2.2 Lattice Preliminaries
Learning with errors. The learning with errors (LWE)
problem was introduced by Regev [46] who showed that solv-
ing the LWE problem on average is as hard as (quantumly)
solving several standard lattice problems in the worst case.
Here we define LWE with the flexibility to sample the key
from a non-uniform distribution.

Definition 2.3 (Learning With Errors). For integers q =
q(n) ≥ 2, a noise distribution χ = χ(n) over Zq, and a key
distribution Ψ over Zn

q, the learning with errors problem
(Zq,n,χ,Ψ)-LWE is to distinguish between the following
pairs of distributions:

{A,A⊺s+χ} and {A,u},

where m = poly(n), A←Zn×m
q , s←Ψ, χ← χm, and u←Zm

q .
We refer to the m columns of the matrix A as the LWE sample
points.

Regev [46] shows that for a certain noise distribution χ (a
discrete Gaussian), for Ψ the uniform distribution over Zn

q,
for n polynomial in λ, and a sufficiently large q, the LWE
problem is as hard as the worst-case SIVP and GapSVP under
a quantum reduction (see also [14, 44]). These results have
been extended to show that Ψ can be sampled from a low
norm distribution (in particular, from the noise distribution
χ) and the resulting problem is as hard as the basic LWE
problem [6, 14]. Similarly, the noise distribution χ can be a
simple low-norm distribution [42] if m is small enough.

4322 33rd USENIX Security Symposium USENIX Association

Learning with rounding. Banerjee, Peikert, and Rosen [7]
consider a related problem, denoted the “learning with round-
ing” (LWR) problem (recall the notation ⌊·⌋p).

Definition 2.4 (Learning With Rounding). For integers q =
q(λ) and p = p(λ) such that q > p≥ 2 and a key distribution
Ψ over Zn

q, the learning with rounding problem (Zq,n, p,Ψ)-
LWR is to distinguish between the following pairs of distribu-
tions:

{A,
⌊
AT s

⌋
p} and {A,⌊u⌋p},

where m = poly(n), A← Zn×m
q , s←Ψ, and u← Zm

q .

Banerjee et al. show that for any B-bounded distribution
χ over Z and q≥ pBnω(1), the (Zq,n, p)-LWR problem is at
least as hard as solving the (Zq,n,χ)-LWE problem. We note
that some papers in this area (e.g. [12]) define LWE and LWR
to use non-uniform samples, and not just keys, but we do not
need non-uniform samples in our proofs, so we can simplify
our definitions here.

For both LWE and LWR, we sometimes treat the parameter
m as an arbitrary polynomial, meaning that we can “query”
and LWE/LWR “oracle” and receive any polynomial number
of samples that we like. This greatly simplifies our proofs and
is standard in the literature (e.g. [12]).

2.3 Lattice-Based PRF from [12]
We restate the LWE-based PRF from [12], Section 5. It will
serve as the basis for our MPC-friendly PRF construction.

Construction. Let q, p, n, and m be integers such that m =
n⌈logq⌉ and p divides q. Let Ψα be the standard LWE discrete
Gaussian noise distribution with parameter α.

Let the public parameter pp be a pair of matrices of the
form A0,A1 ∈Zm×m

q where each row of A0 and A1 is sampled
from ηBin(m) such that both matrices are full rank. The secret
key k is a vector in Zm

q . Define FLWE : Zm
q ×{0,1}ℓ→ Zm

p as
follows:

FLWE(k,x) =

⌊
ℓ

∏
i=1

Axi ·k

⌋
p

.

Security. [12], Theorem 5.1 establishes the security of FLWE

under the LWE assumption. We restate the theorem here for
reference.

Theorem 2.5. The function FLWE is pseudorandom under the
(Zq,n,Ψα)-LWE assumption for parameter choices satisfy-
ing α ·mℓ · p≤ 2−ω(logn).

3 Adaptation to MPC

In the following, we describe how we adapt and optimize the
lattice-based PRF construction of [12] (cf. Section 2.3) for

the MPC setting, with a particular focus on the application to
distributed key derivation. It turns out that highly structured,
lattice-based PRFs like that of [12] compose quite efficiently
with certain arithmetic MPC protocols, a fact that seemingly
has not been exploited extensively in the MPC literature. The
intuition is quite natural–MPC protocols designed for arith-
metic circuits will quite naturally fit lattice-based schemes–
but rather than explain this in detail, we will show it with
performance numbers later in the paper.

We note that the PRF FLWE from [12] outputs a vector
of entries over Zm

p , and we need to output an integer that
is uniform modulo a large prime (i.e. the ECDSA group
order). At a first glance, it might be tempting to choose p to
directly be this prime and output a single entry in the output
vector of FLWE . However, as shown in [46] (and implicitly in
Theorem 2.5), the hardness of LWE (and, by corollary, LWR)
is proportional to the ratio of the noise (or number of rounded
bits) to the modulus. The larger p gets in our case, the worse
security we have, and if we choose p to be exponentially
large, there may be an efficient attack on our scheme (note
that Theorem 2.5 does not hold in this case). Thus, we must
compose many small LWR outputs into one larger one, which
we do in our construction below.

3.1 Use a random oracle
For practical purposes, it is generally accepted to rely on the
random oracle model (ROM) [8]. Relying on this model, we
can replace the product ∏

ℓ
i=1 Axi by a call to a hash function

H(x) modeled as a random oracle. This leads to the following
PRF construction.

Construction. Let q, p, l, m, and n be integers such that
m = n⌈logq⌉ and p divides q. Let H : {0,1}∗→ Zl×m

q be a
cryptographic hash function that gets as input a binary string
of arbitrary length and outputs a matrix in Zl×m

q . The secret
key k is a vector in Zm

q sampled uniformly at random. Define
FRO : Zm

q ×{0,1}∗→ Zl
p as follows:

FRO(k,x) = ⌊H(x) ·k⌋p .

Security. The following theorem establishes the security of
FRO under the LWE assumption in the random oracle model.
We note that this follows almost immediately from the proof
of hardness of learning with rounding in [7], Theorem 3.2.

Theorem 3.1. Let n, p, and q be integers, and let χ be any
B-bounded distribution over Z such that, for security param-
eter λ, q = q(λ), p = p(λ), q > p≥ 2, and q≥ pBnω(1). Any
adversary that can win the PRF security game as defined in
Definition 2.2 with non-negligible advantage ε can be used to
solve the (Zq,n, p)-LWR problem with advantage ε.

Proof. Suppose we are given access to a (Zq,n, p)-LWR
oracle which either outputs “real” samples of the form

USENIX Association 33rd USENIX Security Symposium 4323

(
Ai ∈ Zl×m

q ,⌊Aik⌋p ∈ Zl
p

)
for a fixed (but uniformly ran-

dom) key k ∈ Zm
q and “fresh” uniformly random samples

Ai or “random” samples
(
Ai ∈ Zl×m

q ,r ∈ Zl
p
)
. We show how

to build a PRF simulation such that any adversary that wins
the PRF security game can be used to solve the associated
LWR problem.

Consider the following challenger C in the PRF security
game. C will keep a database consisting of entries of the form(
{0,1}∗,Zl×m

q ,Zl
p
)
. Recall that C has access to a (Zq,n, p)-

LWR oracle O which is either a “real” or “random” LWR
oracle. C does the following on respective queries:

• On query xi ∈ {0,1}∗ to H, C checks if xi exists in the
database. If so, it responds with the second entry in the
database (some Ai ∈ Zl×m

q , as we will see soon). If not,
it queries the LWR oracle, getting a query of the form(
Ai ∈ Zl×m

q , ti ∈ Zl
p
)
, where t could be either “real” or

“random”, depending on the LWR oracle. C then adds
the tuple (xi,Ai, ti) to the database.

• On query xi ∈ {0,1}∗ to F , C checks if xi exists in the
database. If so, it responds with the third entry in the
database (some ti ∈ Zl

q). If not, it queries the LWR or-
acle, getting a query of the form

(
Ai ∈ Zl×m

q , ti ∈ Zl
p
)
,

where t could be either “real” or “random”, depending
on the LWR oracle. C then adds the tuple (xi,Ai, ti) to
the database.

Note that if the LWR oracle is “real”, then C simulates FRO

perfectly. On the other hand, if the LWR oracle is “random”,
then C simulates a truly random function. Thus, any adversary
that can win the PRF game with advantage ε can be used to
solve the LWR problem with identical advantage, completing
the proof.

3.2 Adapt lattice parameters

Our goal is to choose the PRF parameters so that the PRF
can be evaluated efficiently as an MPC protocol. In particular,
we focus on minimizing the online round count, which is
important for achieving low latency in our distributed key
derivation application.

We observe that if we choose q and p as powers of 2, then
both the modulo operation x mod q and the rounding opera-
tion ⌊x⌋p can be expressed efficiently by bitwise operations.
For an integer x with binary representation x1, . . . ,xn, we have

⌊x mod q⌋p = int(xlog2(q/p), . . . ,xlog2(q)) ,

where int(x1, . . . ,xn) = ∑
n
i=1 xi ·2i−1.

As we will see later, this adaptation enables us to evaluate
the modulo and rounding operation efficiently in the MPC
setting.

3.3 Adapt message space and compose outputs
For our application, we need the PRF to output random values
in a prime field Zp′ , where p′ is determined by the application.
However, so far the lattice PRF outputs a vector in Zl

p, where
p is a power of 2.

Adapt message space. As we would like to obtain PRF out-
puts in Zp′ , for some prime p′, we will choose Zp′ as the native
message space of computation, which is also compatible with
many MPC protocols. State-of-the-art MPC protocols allow
for non-interactive addition and one-round multiplication over
Zp′ .

Compose outputs. To convert a vector of random elements
over Zp into a single random value over Zp′ , we use the
following map MCOMP,

MCOMP : Zl
p→ Zp′ ;x 7→

l

∑
i=1

xi · pi−1 .

We denote the composed PRF by

FCOMP : Zm
q ×{0,1}∗→ Z′p;(k,x) 7→MCOMP(FRO(k,x)) .

Security. The security of the PRF FCOMP follows from the
security of FRO (Theorem 3.1) and a bound on the statistical
distance between the distribution of MCOMP over uniform-
random inputs and the uniform distribution over Zp′ (Theo-
rem 2.1).

Theorem 3.2. FCOMP satisfies Definition 2.2.

Proof. By a corollary of Theorem 2.1, we have that

∆

(
MCOMP(U(Zl

p)),U(Zp′)
)
≤ p′/pl .

Moreover, by Theorem 3.1 we know that FRO is computa-
tionally indistinguishable from U(Zl

p). It follows from hy-
bridizing the above statements that FCOMP is computation-
ally indistinguishable from U

(
Zp′

)
, and that the advantage

AdvPRF[FCOMP,A] is negligible for all polynomially-bounded
A .

4 Enhanced constructions

In this section, we show how to build an optimized version
of our PRF. We gain (sometimes substantial) performance
improvements at the cost of provable security. In particu-
lar, we conjecture new circular security assumptions around
LWE/LWR, prove that assumptions that are “very close” are
secure under the standard LWE assumption, and show how
we gain performance. Due to space constraints, we are unfor-
tunately unable to include all of our proofs in this section. For
readability, we have included this full section in the appendix.

4324 33rd USENIX Security Symposium USENIX Association

4.1 Overview of core ideas

The basic idea of our construction is to combine LWR out-
puts together to create some value that is computationally
indistinguishable from uniform modulo some large prime p.
Consider some number p0. If we have LWR instances t1, ...tℓ
that give us some uniform value over Zp0 , then we compute
the sum ∑

ℓ
i=1 pi−1

0 ti. If pt
0 − p is superpolynomially large,

then we have constructed a uniformly random value mod p
assuming that the LWR assumption is true.

In some sense, this seems a little bit wasteful: for instance,
what happens if we do not compute the rounding operation
of the higher-order terms (those that are multiplied by some
pi

0 for i > 1 in the above exposition)? If we are rounding
away k bits, we could instead not round away the low order
bits when computing t2 and multiply this version of t2, for
instance, by p0

2k . This way t1 would “hide” the noise bits of t2
that we haven’t rounded away and hopefully we could still
have security.

A concrete example. Consider two integers p1 and p2. We
set P1 = 2p1 and P2 = 2p2 and then q = P2

1 P2. We also set
P = P3

1 P2
2 , ignoring for a brief moment that we would even-

tually like P to be prime. Suppose we let a ∈ Zn
q be sampled

uniformly at random for some integer n and also let s1,s2 ∈Zn
q

be sampled such that each entry is random in [0, ...,P1]. We
could compute t1 =

⌊
aT s1

⌋
p2 p1

and t2 = aT s2 and then set
t = t1 +P1P2t2.

What is going on here? the highest order bits of t1–P1 of
them, in fact–mask the lowest P1 bits of t2 that we would
normally round away. It perhaps surprisingly turns out that,
assuming P1 and P2 are large enough, we can actually prove
that t is pseudorandom mod P assuming LWE holds. The
proof follows from a relatively natural hybrid argument.

We can also extend this idea for higher values of ℓ: in
general, setting t1 =

⌊
aT s1

⌋
P2P1

, t2 = aT s2, ... , tℓ = aT sℓ and
combining in the same style as before still works in the sense
that we can prove security from LWE. This allows us to
reduce the work needed in our MPC.

Moving to circular security. However, the above approach
is a little bit unsatisfactory. No matter how we set ℓ, we still
have to compute t1 =

⌊
aT s1

⌋
P2P1

, which effectively lower
bounds the number of rounds needed in our MPC. Since
our MPC is over arithmetic circuits, there are two expensive
(because they are bitwise) operations here which must be
done: computing mod q, and rounding. We can try to improve
things in the following ways:

• First, suppose we sample the keys si from a slightly dif-
ferent distribution: uniform over [0, ...,P1/n] rather than
uniform over [0, ...,P1]. This would give us the property
that as1 < P1P2P2

1 , simplifying our argument.

• Then, in our computation, suppose we just compute t1 =⌊
aT s1 (Z)

⌋
P2P1

: where we compute aT s1 over Z. In other
words, we never compute a mod q operation, and instead
only round away the lowest-order p1 bits.

• Furthermore, suppose we restrict P2 ≥ P1.

We can now see how to argue that t1 +P1P2t2 is uniform
mod P. Note that we cannot reduce to standard LWE, but
must make a circular security-style of assumption:

• Normally, letting an adversary see t1 =
⌊
aT s1 (Z)

⌋
P2P1

instead of t1 =
⌊
aT s1

⌋
P2P1

where we compute mod q
would break security with enough samples. However, the
high-order bits in t1 that would be “eliminated” by the
mod q operation are going to correspond to the integer
representation between P1P2P2

1 and P1P2P2
1 P2: in other

words, where the “good bits” of t2 lie.

• The bits of t2 that we would usually round away still lie
within the “good bits” of t1 as before.

So, in this case, the “good” bits of each LWR instance ef-
fectively mask the “sensitive” bits of the other instance. While
we can’t prove that this construction holds under a standard
LWE assumption, we can conjecture that it stands a good
chance of being secure based on the previous intuition. How-
ever, such an assumption certainly would need more study
before being used in a practical system. We formalize this
later in this section as the “overlapping LWR assumption”.

Generalizing this intuition. As before, we can continue to
chain more and more terms together for larger values of P.
However, in this case we know far less about the security: it
could be the case, for instance, that our assumptions hold for a
constant ℓ but not if ℓ is larger. We leave a formal assessment
of the security of these assumptions to future work.

We also note that, in the above, we have technically not
defined what to do with the “middle” terms, i.e. t2 through
tℓ−1: do we need to still compute the mod q operation, or is
it OK if we just add them in directly, only computing the
rounding operation on t1 and the mod q operation on tℓ? We
do not know the answer to this for sure and thus define a
flexible assumption.

4.2 LWR with nonuniform key distributions
In our constructions below, we will need to use LWR with
a nonuniform key distribution. We note that [6] showed that
LWE with key distribution drawn from the noise distribu-
tion was (almost) exactly as hard as regular LWE for certain
moduli, and [14] refined this idea further, among many other
contributions. Although we cannot directly make these proofs
work with rounding, we can take their core ideas and apply
the standard rounding reduction of [7] to show that we can

USENIX Association 33rd USENIX Security Symposium 4325

use LWR with a nonuniform (and even non-Gaussian) key
distribution. Below, we prove that LWR with an appropriate
nonuniform key distribution is as hard as (relatively) standard
LWE.

Theorem 4.1. Let n, p, and q′ < q be integers, and let χ be
any B-bounded distribution over Z such that, for security pa-
rameter λ, q = q(λ), p = p(λ), q > p ≥ 2, and q′ ≥ Bnω(1)

and q≥ pBnω(1). Let Ψ be the distribution over Zn
q that out-

puts each value in the vector uniformly at random between 0
and q′. It is the case that the (Zq,n, p,Ψ)-LWR problem is at
least as hard as solving the (Zq,n,χ)-LWE problem.

Proof intuition. We first show that LWE with the key drawn
from the noise distribution is as hard as standard LWE. This
is a result that has been shown numerous times in a number
of different contexts [6, 14], but we found it easier to prove
it directly here ourselves than to adapt these other results to
our context. We then show that LWE with a key uniformly
sampled over Zq′ is at least as hard as LWE with key drawn
from the noise distribution, similar to a result of [14]. Finally,
we apply techniques from [7] to show that our LWR assump-
tion is at least as hard as this LWE assumption with the key
sampled uniformly over Zq′ . For the full proof, please see
Appendix B.

A corollary for uniform noise. With a very slight tweak,
we can extend our line of results above to handle uniformly
sampled noise instead of rounding. We state this below in the
following theorem.

Theorem 4.2. Let n and q′ < q be integers, and let χ be
any B-bounded distribution over Z such that, for security
parameter λ, q = q(λ), p = p(λ), q > p≥ 2, and q′ ≥ Bnω(1)

and q≥ pBnω(1). Let ψ be a distribution over Zq that outputs
a value uniformly at random between 0 and q′, and let Ψ be
the distribution over Zn

q that outputs each value in the vector
uniformly at random between 0 and q′. It is the case that the
(Zq,n,ψ,Ψ)-LWE problem is at least as hard as solving the
(Zq,n,χ)-LWE problem.

We prove this theorem in Appendix B.

4.3 Defining and proving the secure instance
We next define and prove secure the optimized instance for
which we have a security proof to standard lattice assumptions.
This is just a general and more formally defined version of
what we discussed above.

Construction. Our construction takes as setup parameters
a security parameter λ and some prime P, and then includes
other integer parameters n, p1, p2, ℓ, n, and E. We require the
following from these parameters:

• We set P1 = 2p1 and P2 = 2p2 .

• We set q = P1P2P1.

• Pℓ+1
1 Pℓ

2 ≥ PE.

• P1, P2, and E are superpolynomially large in λ.

• We set n as a lattice dimension dependent on λ.

We assume the existence of a hash function H : {0,1}k→
Zn

q. The secret key of our PRF FSEC is a matrix S ∈ Zn×ℓ
q

sampled so that each entry is uniform in [0, ...,P1].1 We denote
Si to be the ith column of S.

We formally define our PRF FSEC : {0,1}k×Zn×ℓ
q → Zp as

follows. On input x, we:

• Set ax ∈ Zn
q = H (x).

• Let cx,i ∈ Zq = aT
x Si.

• Output the sum ⌊cx,1⌋P1P2
+ P2cx,2 + P1P2

2 cx,3 ++

Pℓ−2
1 Pℓ−1

2 cx,ℓ mod P.

Intuition of the construction. What is going on here? Each
of the “LWR” instances works mod q = P1P2P1 and overlaps
on the top and bottom (if applicable) by P1. So the top of each
fresh instance hides the “noise bits” of the instance above
it. This is the goal of the construction, and how we can gain
efficiency: we only have to compute one rounding operation
in entire computation of the PRF. This isn’t much if we are
directly computing the PRF, but may save us considerable
time if we compute the PRF in an MPC.

Proof of security. As we claimed earlier, we can in fact
prove the above construction secure under the standard learn-
ing with rounding assumption. We note that, as shown in [7],
this follows from the LWE assumption with slightly super-
polynomial (in the security parameter λ) modulus.

Our core argument is relatively straightforward: we use a
hybrid argument, progressively randomizing the terms cx,i,
starting with i = 1 until all of the terms are random. Note
that the randomness of each cx,1 term immediately follows
from the LWR assumption. Once we “switch” the cx,1 terms
to random, then they mask the lowest p1 bits of the cx,2 terms,
meaning that we can once again apply LWR. We can then
continue this argument all the way up to the cx,ℓ terms. There
are some subtleties in the proof, particularly with how we deal
with “overflow” bits, but the overall idea is pretty straightfor-
ward.

We state this formally below with the following theorem:

Theorem 4.3. Let P, n, q, p1, P1, p2, P2, ℓ, n, and E be pa-
rameters as defined above. Let Ψ denote the distribution over

1We could set our keys here to be uniform over Zq, but we choose to
set them this way for efficiency reasons (i.e., lesser bitlength leads to fewer
preshared random bits consumed in MPC). As shown in [6] and myriad
follow-ups, we lose little security for doing so.

4326 33rd USENIX Security Symposium USENIX Association

Zn defined by sampling each entry as an integer uniformly at
random in the range [0,P1] and ψ be the distribution over Z
defined by sampling an integer uniformly at random in the
range [0,P1] . Any adversary that can win the PRF security
game as defined in Definition 2.2 with non-negligible advan-
tage ε can be used to solve the (Zq,n, p1 p2,Ψ)-LWR problem
or the (Zq,n,ψ,Ψ)-LWE problem with advantage polynomial
in ε assuming that H is a random oracle.

We prove this theorem in Appendix B. We note that by
theorems 4.1 and 4.2 (proven in Appendix B), the assumptions
used in this theorem are reducible from standard LWE. So
therefore the hardness of this PRF follows from standard LWE.
Also, the assumptions in this proof are not substantially worse
in terms of parameters than just regular LWR. So it would not
be irresponsible to use this scheme in a real deployment.

4.4 Instances with only conjectured security
In this section, we discuss other PRF constructions for which
we cannot prove security from standard assumptions. While
the lack of security proofs is obviously big drawback of these
constructions, they do offer substantial efficiency advantages
compared to the provably secure PRFs, especially within the
context of MPC computations.

We start with a construction that is very close to our con-
struction with provable security.

A construction with almost a security proof. As before,
our construction takes as setup parameters a security param-
eter λ and some prime P, and then includes other integer
parameters n, p1, p2, ℓ, n, and E. We have the same require-
ments for these parameters as with FSEC with the additional
requirement that p2 ≥ p1.

We assume the existence of a hash function H : {0,1}k→
Zn

q. The secret key of our PRF FASEC is a matrix S ∈ Zn×ℓ
q

sampled so that each entry is uniform in [0, ...,P1/n] . We
denote Si to be the ith column of S.

We formally define our PRF FASEC : {0,1}k×Zn×ℓ
q → Zp

as follows:

• Set ax ∈ Zn
q = H (x).

• Set cx,1 = aT
x S1 over Z.

• For i≥ 1, let cx,i ∈ Zq = aT
x Si mod q.

• Output the sum ⌊cx,1⌋P1P2
+ P2cx,2 + P1P2

2 cx,3 ++

Pℓ−2
1 Pℓ−1

2 cx,ℓ mod P.

Intuition of the construction. What is going on here?
Changes from the secure instance are highlighted . Each
of the “LWE” instances works mod q = P1P2P1 and overlaps
on the top and bottom (if applicable) by P1. So the top of each
fresh instance hides the “noise bits” of the instance above it.

In addition, the “overlap” bits of the cx,1 terms are hidden by
the cx,2 term. So there is some kind of circular security-like
thing going on here. Unfortunately, we do not know how to
prove this from standard LWE, but we can make a relatively
simple and straightforward assumption from which we can
prove security (in conjunction with standard LWE). As before,
we could choose S to be from a larger space (i.e. uniform over
Zq), and our implementation even does this, but it would be
more difficult to reason about security since there would be
more “overlaps”.

The main advantage of this construction is it essentially
lets us halve the number of rounds needed from our secure
construction when we compute the PRF using MPC. For
every cx,i term we either need to round or compute a mod q
operation–but not both. Previously, we needed to do both
for the cx,1 term, which blew up the number of MPC rounds
required.

A security proof with a new assumption. We can actu-
ally prove this construction secure if we are willing to use
a non-standard assumption. We call this new problem the
Overlapping LWR problem.

Definition 4.4. Overlapping LWR. Consider parameters P1,
P2, and q, where we set P1 = 2p1 , P2 = 2p2 , and q = P1P2P1.
We also have a security parameter λ, a lattice dimension n
based on λ, and the requirement that P1 and P2 are superpoly-
nomially large in λ. Let Ψ be a distribution over Zn. The over-
lapping learning with rounding problem (q,n,m,P1,P2,Ψ)-
OLWR is to distinguish between the following pairs of distri-
butions:

{A,⌊As(Z)⌋p +P2 (As mod q) mod P2
1 P2

2 }

and {A,u},
where m = poly(n), A← Zn×m

q , s1,s2←Ψ, and u← Zm
P2

1 P2
2
.

Note that we are explicitly not computing mod q within the
rounding operation.

It turns out, if we assume the overlapping LWR problem to
be true, we can prove that our above construction is secure.
We state this with the theorem below:

Theorem 4.5. Let P, n, q, p1, P1, p2, P2, ℓ, n, and E be param-
eters as defined above. Let Ψ denote the distribution over Zn

defined by sampling each entry as an integer uniformly at ran-
dom in the range [0,P1] and ψ be the distribution over Z de-
fined by sampling an integer uniformly at random in the range
[0,P1] . Any adversary that can win the PRF security game
for FASEC as defined in Definition 2.2 with non-negligible ad-
vantage ε can be used to solve the (q,n,m,P1,P2,Ψ)-OLWR
problem or the (Zq,n,ψ,Ψ)-LWE problem with advantage
polynomial in ε assuming that H is a random oracle.

We sketch this proof in Appendix B. We believe that this
overlapping LWR assumption is quite interesting and merits
further study.

USENIX Association 33rd USENIX Security Symposium 4327

A construction far from a security proof. We next outline
a construction where we exploit overlapping over all of the
terms, not just the first two. As before, our construction takes
as setup parameters a security parameter λ and some prime P,
and then includes other integer parameters n, p1, p2, ℓ, n, and
E. We have the same parameter requirements (and needed
hash function) as our previous construction. The secret key
of our PRF FFSEC is a matrix S ∈ Zn×ℓ

q sampled so that each
entry is uniform in [0, ...,P1/n]. We denote Si to be the ith
column of S, and we again note that we could sample S from
a larger space, as before.

We formally define our PRF FFSEC : {0,1}k×Zn×ℓ
q → Zp

as follows:

• Set ax ∈ Zn
q = H (x).

• Set cx,1 = aT
x S1 over Z.

• For 1 < i < ℓ, let cx,i ∈ Z= aT
x Si over Z.

• Set cx,ℓ ∈ Zq = aT
x Si mod q.

• Output the sum ⌊cx,1⌋P1P2
+ P2cx,2 + P1P2

2 cx,3 ++

Pℓ−2
1 Pℓ−1

2 cx,ℓ mod P.

Construction explanation. Once again, we highlighted
changes from the previous construction. The basic idea here
is that we try to take our circular security idea to the extreme.
This construction is quite efficient when computed in MPC
since we only need to do one mod q operation and one round-
ing operation.

At first glance, this construction may seem similar to
“vanilla” LWR with a very high modulus to “noise” ratio,
which would obviously not be good. This is because we
can write the construction’s outputs as something very close
to ⌊ai (S1 +P2S2 + ...)⌋Pℓ−1

1 Pℓ
2

mod P. However, the fact that
we are computing a modq operation in the middle throws
chaos into this representation and makes it seemingly un-
likely that standard attacks on overstretched LWE will not
work here. Attacks on this aggressive construction may have
more in common with approaches that might be used to attack
the “dark matter” PRF in [11] than LWE itself.

Switching the role of the samples and key. In our construc-
tions in this section, we have used samples (i.e. the outputs of
the hash function) that are vectors and keys that are matrices.
This was done solely because we could prove security; we
know of no attacks if we use samples that are matrices and
keys that are vectors (i.e. switching from ai and S to Ai and
s). It is also possible that this could bring about efficiency
improvements since we would need to deal with fewer secret
bits.

5 Implementation and evaluation

In order to better understand the practical performance
of our lattice-based PRF constructions when evalu-
ated in MPC, we implemented and evaluated them us-
ing the MP-SPDZ framework [39], which is a frame-
work for evaluating MPC protocols that comes with
its own high-level programming language and supports
a variety of base MPC protocols. The source code
can be found at https://github.com/torusresearch/
MP-SPDZ/blob/lattice-prf/Programs/Source/ in files
lattice_prf*.mpc.

MPC setup. We configure MP-SPDZ to use mal-shamir
as the base MPC protocol, which is a maliciously secure MPC
protocol based on Shamir secret sharing that requires an hon-
est majority, and thereby satisfies our robustness requirement.
Moreover, it supports prime field message spaces, which suits
the message space of our PRF construction. We run our experi-
ments between 3 parties and with security against 1 corrupted
party, and we use a prime field Zp′ as the native message
space, where p′ is a 256-bit prime.

PRF parameters. We choose the lattice PRF parameters q
and p as powers of 2, with varying concrete values during the
experiments (e.g., q = 212 and p = 28). Furthermore, we set
l = ⌈(log2(p′)+∆s)/ log2(p)⌉, where ∆s = 40 controls the
statistical distance between FCOMP and FRO.

Key generation. For generating the master PRF key, the
parties need to sample secret shares of a uniformly random
k ∈ Zm

q . As there is no method for directly sampling secret-
shared values modulo q over the message space Zp′ , we rely
on random bit sampling [47]. Concretely, for each entry of
k, we sample log2 q shared random bits and then accumulate
them to obtain a shared random integer in Zq.

Computation modulo q. Evaluating the PRF in MPC re-
quires computing the matrix-vector product H(x) ·k modulo
q, where H(x) is a public matrix and k is a secret-shared
vector.

We first compute the matrix-vector product H(x) ·k over
the prime field Zp′ . Note that p′ must be large enough so that
the computation does not wrap. Per row of H(x), this involves
m cleartext-ciphertext multiplications and m−1 ciphertext-
ciphertext additions, which can all be done locally. Let y∈Zl

p′
denote the resulting vector.

Next, we compute each entry of y modulo q. Since q is a
power of 2, this can be done using algorithm sint.mod2m of
MP-SPDZ, which runs in 1+

⌈
log2

2(q)
⌉

online rounds and
makes use of pre-shared random bits.

4328 33rd USENIX Security Symposium USENIX Association

https://github.com/torusresearch/MP-SPDZ/blob/lattice-prf/Programs/Source/
https://github.com/torusresearch/MP-SPDZ/blob/lattice-prf/Programs/Source/

Rounding operation. Given the vector y′ = H(x) · k
mod q, we next compute the rounding operation ⌊y′⌋p. Con-
cretely, this means we need to map each element y′i of y′ to
the largest integer j such that j ∗q/p≤ y′i. Since q and p are
powers of 2, this is equivalent to cutting off the log2(q/p)
lowest order bits of y′i. In MP-SPDZ this can be done using al-
gorithm sint.right_shift, which runs in 1+

⌈
log2

2(q/p)
⌉

online rounds and makes use of pre-shared random bits.

Composition. Finally, we compose the entries of the
rounded output vector ⌊y′⌋p into a single uniform random
value y′′ ∈ Zp′ by evaluating MCOMP. This involves plaintext-
ciphertext multiplications and ciphertext-ciphertext additions,
which can all be done locally.

Total round count. The total round count for computing
FCOMP(x) in MPC is 2+ log2

2(q)+ log2
2(q/p). For q = 212 and

p= 28, this results in a MPC PRF protocol running in 8 online
rounds, assuming sufficiently many shared random bits have
been generated during preprocessing.

5.1 Parameter selection

In the following, we describe the lattice parameters that we
use for our evaluation. As in all practical lattice-based cryp-
tosystems, parameters are derived from what we know about
best possible attacks rather than theoretical reductions, so
we do not carry over parameters from our theorems here. In-
stead, our parameter selection is inspired by the parameters
of Frodo [13] with 128 bit classical security, as this scheme
relies on a similar assumption. We emphasize that Frodo was
meant to be a very conservative construction as well.

As the lattice dimension we choose a fixed value of
m = 512. We note that the lattice dimension does not af-
fect the complexity of the multi-party computation. This is
because only the size of the secret key k and the hash output
H(x) depend on m. However, as the vector product H(x) ·k
collapses these vector elements onto a single element, and this
is computed locally at the start of the protocol, the interactive
part of the protocol does not depend on m at all.

For the modulo parameter q and the rounding parameter p,
we use the two parameter sets (q, p) = (212,28) and (q, p) =
(232,224). Here, smaller values optimize for round complexity,
while larger values optimize for preprocessing complexity due
to the lower number of pre-shared random bits required. We
also distinguish between whether we use the regular PRF
construction FCOMP (cf. Section 3.3), the optimized secure
PRF construction FSEC (cf. Section 4.3), or the optimized
conjectured constructions FASEC and FFSEC (cf. Section 4.4).
We list all considered protocol instances in Table 1.

Instance Construction Param q Param p

REG12 FCOMP 212 28

REG32 FCOMP 232 224

OPT12 FSEC 212 28

OPT32 FSEC 232 224

CONASEC
12 FASEC 212 28

CONASEC
32 FASEC 232 224

CONFSEC
12 FFSEC 212 28

CONFSEC
32 FFSEC 232 224

Table 1: Parameterized instances of our PRF constructions
used for evaluation.

5.2 Evaluation

We measure the performance of our distributed PRF protocol
with respect to the different instances defined in Section 5.1
and also in comparison with other existing distributed PRF
protocols. We run our experiments on a single machine with
an M1 Pro CPU, 32GB RAM, and with local communication
(e.g., without network latency) and mostly focus on measuring
performance of the online phase without preprocessing if not
stated otherwise.

Comparison between instances. We first measure and
compare the performance of the different protocol instances
defined in Section 5.1. The results are shown in Table 2. We
observe that larger values for q and p lead to less preprocess-
ing at the cost of a higher online round count. Furthermore,
the optimized variant further reduces the preprocessing and
communication cost, at the expense of more computation due
to the larger secret key.

Comparison with other protocols. We compare our prov-
ably secure distributed PRF protocols with existing construc-
tions in Table 3, relying on the implementations from [34].
Most of the other protocols are designed for producing multi-
ple field elements per protocol evaluation. Notably, GMiMC
does not support output size 1 and for Rescue reducing the
output size to 1 increases the round complexity. Hence, we
chose an output size of 2 for these schemes.

Overall, our protocol compares favorably in terms of run-
ning time and round complexity. However, we note that due
to the large number of random bits consumed by our protocol,
it requires more communication, especially during the pre-
processing phase. We note that the amount of preprocessing
communication is still comfortably within the realms of feasi-
bility and does not limit the applicability of our protocol. It is
an interesting open question how to produce a large number
of pre-shared random bits with less communication. For many
applications of DKD systems, like cryptocurrency transac-

USENIX Association 33rd USENIX Security Symposium 4329

Protocol Time Data (MB) Rounds Bits
(ms) Online / Total

Provable security

REG12 11.34 0.41 / 6.01 8 4625
REG32 8.06 0.43 / 3.85 10 2405
OPT12 24.79 0.33 / 3.85 8 2753
OPT32 12.86 0.36 / 2.79 10 1541

Conjectured security

CONASEC
12 24.49 0.32 / 3.73 5 2680

CONASEC
32 12.20 0.34 / 2.56 6 1428

CONFSEC
12 22.89 0.01 / 0.31 5 125

CONFSEC
32 11.47 0.03 / 0.33 6 185

Table 2: Measurements for running one evaluation of each
of our PRF protocol instances. Time is the time required to
run the protocol on a single machine without network latency.
Data is the global amount of data sent between all parties in
the online phase and including preprocessing, respectively.
Rounds is the number of online communication rounds. Bits
is the number of pre-shared random bits consumed.

tions or other digital proof claims, requests are triggered by
a user interacting with a wallet. This typically means that
having low latency is extremely important, but requests are
relatively infrequent and there is ample time for preprocess-
ing.

6 Application to Distributed Key Management

In the following we propose a model for distributed key man-
agement in the Universal Composability Framework [15]. We
first introduce an abstract MPC functionality FMPC that our
protocols will depend on. Then, we model the ideal function-
ality of DKM with a key distribution K , define a real protocol
based on a PRF F , and show that the real protocol realizes the
ideal functionality in the FMPC-hybrid model if the key dis-
tribution K is indistinguishable from the output distribution
of the PRF F . Finally, as an example instantiation, we show
that the proposed DKM protocol instantiated with one of our
distributed PRF protocols efficiently realizes distributed key
management for ECDSA signing.

We work in the universal composability framework [15]
and assume authenticated private channels between parties.
Furthermore, we assume access to the following ideal MPC
functionality, FMPC, which abstractly represents an MPC pro-
tocol library such as MP-SPDZ [39]. We require that any
realization of FMPC(P, t) is secure against static corruption of
at most t parties of P.

Functionality 6.1 (FMPC(P, t), Multi-party computation).
This functionality is parametrized by the set of servers P
and the corruption threshold t. The simulator S may statically

corrupt up to t parties in P. We denote by [x] the identifier of
a stored secret value x.

Evaluate: On message (eval,sid, f , [k],x) from all par-
ties in P, compute y ← f (k,x), store y, and send
(result,sid, [y]) to all parties in P.

Open: On message (open,sid, [x],u) from all parties in P,
send (value,sid,x) to party u.

6.1 Ideal functionality
In the following, we first define an ideal functionality for
Distributed Key Management involving a set of servers P and
a set of users U , where the servers create and manage secret
keys on behalf of the users. The users can ask the servers to
evaluate a fixed set of algorithms, FEval, on their secret keys,
where FEval depends on the application and may, for example,
allow the users to create digital signatures using the managed
secret keys as input.

Functionality 6.2 (FDKM(P, t,U,K ,FEval), Distributed Key
Management). This functionality is parametrized by the set
of servers P, the corruption threshold t, the set of users U , the
key distribution K , and the set of supported key-dependent
algorithms FEval. The simulator S may statically corrupt up
to t parties in P and any subset of parties of U , which it
announces at the start of the protocol.

Setup: On receiving (init) from all parties in P, store
(ready), and send (ready) to all parties in P.

Eval: On receiving (eval,sid, f ,x) from party u ∈U , assert
that (ready) is stored and f ∈ FEval. If this is the case,
do the following.

1. Check if there is a storage entry (key,u,k), for
some key k. If there is no such entry, sample k←K ,
and store (key,u,k).

2. Call k← Key(u), compute y← f (k,x) and all par-
ties in U , and send (result,sid,y) to u.

6.2 Real protocol
The real protocol is defined in the FMPC-hybrid model and
defines a simple interaction between the users U and the
servers P where in each protocol instance a user instructs the
servers to run an algorithm f ∈ FEval on its derived key, and
the servers use FMPC to perform this request in MPC.

Protocol 6.3 (πDKM(P, t,U,F,FEval)). This protocol is
parametrized by the set of servers P, the corruption thresold
t, the set of users U , the PRF F , and the set of supported
key-dependent algorithms FEval. It makes use of functionality
FMPC(P, t).

Setup:

4330 33rd USENIX Security Symposium USENIX Association

Protocol Computation (ms) Communication (MB) Rounds Time with network latency
Online / Total (in seconds, extrapolated)

Ciminion [24] 31.93 0.11 / 0.36 283 28.33
GMiMC [3] 59.04 0.26 / 0.84 670 67.06
HadesMiMC [33] 47.81 0.18 / 0.60 466 46.65
Hydra [34] 21.42 0.07 / 0.24 140 14.02
MiMC [1] 33.18 0.13 / 0.46 331 33.13
Rescue [5] 26.35 0.28 / 0.97 124 12.43

Our protocol REG12 11.34 0.41 / 6.01 8 0.81
Our protocol REG32 8.06 0.43 / 3.85 10 1.01
Our protocol OPT12 24.79 0.33 / 3.85 8 0.82
Our protocol OPT32 12.86 0.36 / 2.79 10 1.01

Table 3: Comparison of existing distributed PRF protocols with our provably-secure protocols. Time with network latency
estimates the execution time with an assumed round trip time of 100 milliseconds.

1. On message (init,sid) from the environment
Z, each party Pi ∈ P checks whether there is
an entry (prfkey, ·) in memory. If not, Pi sends
(eval,sid,F.KeyGen) to functionality FMPC.

2. On message (result,sid,k) from FMPC, Pi stores
(prfkey,k).

Eval:

1. On message (eval,sid, f ,x) from the environment
Z, a user u∈U sends (eval,sid, f ,x) to each party
in Pi ∈ P.

2. On message (eval,sid, f ,x) from a user u ∈ U ,
each party Pi ∈ P asserts that there is an entry
(prfkey,k) in memory, for some k, and that f ∈
FEval. It then sends (eval,sid,g,k,u,x) to FMPC,
where g(k,u,x) = f (F.Eval(k,u),x).

3. On message (result,sid,y) from FMPC, Pi sends
(open,sid,y,u) to FMPC.

4. On message (value,sid,y) from FMPC, u outputs
(result,y).

6.3 Security proof
The following thereom establishes that protocol πDKM with
key distribution K realizes functionality FDKM with PRF F ,
for any fixed set of algorithms FEval, if the key distribution K
is indistinguishable from the output distribution of F .

Theorem 6.4. Let P and U be sets of parties, and t be a
corruption threshold. Let F be a PRF and K be a key dis-
tribution such that the output distribution of F is indistigu-
ishable from K . Let FEval be a set of polynomial-time al-
gorithms. Then, protocol πDKM(P, t,U,F,FEval) UC-realizes
functionality FDKM(P, t,U,K ,FEval) in the FMPC(P, t)-hybrid
model against a malicious adversary that statically corrupts
up to t parties of P and any subset of parties of U.

The proof follows immediately from the definition of the
protocol, the security of the MPC functionality in the speci-
fied corruption setting, and the indistiguishability of the key
distribution K and the output distribution of the PRF F . A
more explicit version of the proof can be found in appendix
A.2.

6.4 Example application: Scalable distributed
key management for ECDSA signing using
our distributed PRF protocol

In the following, we show, as an example, that our distributed
PRF protocol in combination with a realization of FMPC can
be used to efficiently realize a distributed key management
system that supports ECDSA signing in MPC.

Ideal functionality F ECDSA
DKM . We first define the ideal func-

tionality of a distributed key management system for ECDSA.
Let ECDSA denote the ECDSA signature scheme over group
G with generator G and prime order p. Define the following
algorithms.

PubKey: On input (k,x), parse k as (sk, pk), and return pk.

PrivKey: On input (k,x), parse k as (sk, pk), and return sk.

Sign: On input (k,x), parse k as (sk, pk), compute σ ←
ECDSA.Sign(sk,x), and return σ.

Let FECDSA = {PubKey,PrivKey,Sign}. The ideal function-
ality of a distributed key management system for ECDSA is
defined as

F ECDSA
DKM (P, t,U) = FDKM(P, t,U,ECDSA.KeyGen,FECDSA) .

Real protocol πECDSA
DKM . Let LPRF denote our lattice-based

PRF instantiated over Zp. Define Derive as an algorithm that

USENIX Association 33rd USENIX Security Symposium 4331

takes as input a PRF key k and a user identifier u, and out-
puts an ECDSA keypair (sk, pk), as follows. First, compute
sk = LPRF.Eval(k,u). Then compute pk = sk ·G. Output
(sk, pk). Define FECDSA = (LPRF.KeyGen,Derive). Now, the
real protocol for ECDSA DKM is defined as

π
ECDSA
DKM (P, t,U) = πDKM(P, t,U,FECDSA,FECDSA) .

Security. By Thereom 3.2, we know that the output distri-
bution of LPRF is indistiguishable from a uniform random
distribution over Zp. This, however, is exactly the secret key
distribution of ECDSA over G . It follows that the output dis-
tribution of FECDSA is indistiguishable from the distribution
of ECDSA.KeyGen and, hence, by Thereom 6.4 we have that
πECDSA

DKM (P, t,U) realizes F ECDSA
DKM (P, t,U).

Realizing FMPC. To fully realize F ECDSA
DKM one will also need

to instantiate FMPC with a real world MPC framework such
as MP-SPDZ [39]. Furthermore, existing optimized MPC-
based ECDSA signing protocols [16, 21, 25, 26, 36] should
be considered for efficient realization of ECDSA signing in
MPC.

References

[1] Martin Albrecht, Lorenzo Grassi, Christian Rechberger,
Arnab Roy, and Tyge Tiessen. Mimc: Efficient en-
cryption and cryptographic hashing with minimal mul-
tiplicative complexity. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology – ASI-
ACRYPT 2016, pages 191–219, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[2] Martin R. Albrecht, Alex Davidson, Amit Deo, and
Daniel Gardham. Crypto dark matter on the torus:
Oblivious prfs from shallow prfs and fhe. Cryptol-
ogy ePrint Archive, Paper 2023/232, 2023. https:
//eprint.iacr.org/2023/232.

[3] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebas-
tian Ramacher, Christian Rechberger, Dragos Rotaru,
Arnab Roy, and Markus Schofnegger. Feistel structures
for mpc, and more. In Kazue Sako, Steve Schneider,
and Peter Y. A. Ryan, editors, Computer Security – ES-
ORICS 2019, pages 151–171, Cham, 2019. Springer
International Publishing.

[4] Martin R. Albrecht, Christian Rechberger, Thomas
Schneider, Tyge Tiessen, and Michael Zohner. Ci-
phers for mpc and fhe. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, pages 430–454, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[5] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson,
Siemen Dhooghe, and Alan Szepieniec. Design of
symmetric-key primitives for advanced cryptographic
protocols. IACR Transactions on Symmetric Cryptology,
2020(3):1–45, Sep. 2020.

[6] Benny Applebaum, David Cash, Chris Peikert, and Amit
Sahai. Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In
Shai Halevi, editor, Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2009. Proceed-
ings, volume 5677 of Lecture Notes in Computer Sci-
ence, pages 595–618. Springer, 2009.

[7] Abhishek Banerjee, Chris Peikert, and Alon Rosen.
Pseudorandom functions and lattices. In David
Pointcheval and Thomas Johansson, editors, Advances
in Cryptology - EUROCRYPT 2012 - 31st Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings, volume 7237 of Lecture Notes in
Computer Science, pages 719–737. Springer, 2012.

[8] Mihir Bellare and Phil Rogaway. Random oracle are
practical: A paradigm for designing efficient protocols.
In Proceedings of the First ACM Conference on Com-
puter and Communications Security, pages 62–73, 1993.

[9] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël
Peeters, Gilles Van Assche, and Ronny Van Keer. Far-
falle: parallel permutation-based cryptography. IACR
Trans. Symmetric Cryptol., 2017(4):1–38, 2017.

[10] Ward Beullens, Tim Beyne, Aleksei Udovenko, and
Giuseppe Vitto. Cryptanalysis of the legendre PRF
and generalizations. IACR Cryptol. ePrint Arch., page
1357, 2019.

[11] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai,
and David J. Wu. Exploring crypto dark matter:. In
Amos Beimel and Stefan Dziembowski, editors, Theory
of Cryptography, pages 699–729, Cham, 2018. Springer
International Publishing.

[12] Dan Boneh, Kevin Lewi, Hart William Montgomery, and
Ananth Raghunathan. Key homomorphic prfs and their
applications. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology - CRYPTO 2013 - 33rd An-
nual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, volume 8042
of Lecture Notes in Computer Science, pages 410–428.
Springer, 2013.

[13] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov,
Michael Naehrig, Valeria Nikolaenko, Ananth Raghu-
nathan, and Douglas Stebila. Frodo: Take off the ring!

4332 33rd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2023/232
https://eprint.iacr.org/2023/232

practical, quantum-secure key exchange from lwe. Cryp-
tology ePrint Archive, Paper 2016/659, 2016. https:
//eprint.iacr.org/2016/659.

[14] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded
Regev, and Damien Stehlé. Classical hardness of learn-
ing with errors. In STOC’13, pages 575–584, 2013.

[15] Ran Canetti. Universally composable security: A
new paradigm for cryptographic protocols. Cryptol-
ogy ePrint Archive, Paper 2000/067, 2000. https:
//eprint.iacr.org/2000/067.

[16] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Niko-
laos Makriyannis, and Udi Peled. Uc non-interactive,
proactive, threshold ecdsa with identifiable aborts. Cryp-
tology ePrint Archive, Paper 2021/060, 2021. https:
//eprint.iacr.org/2021/060.

[17] Coinbase WaaS. Coinbase web page. https:
//www.coinbase.com/cloud/products/waas,
November 2023.

[18] Cointelegraph. Crypto custody market reached
$448 billion in 2022: Report - Cointelegraph.
https://cointelegraph.com/news/crypto-
report-the-crypto-custody-market-reached-
448-billion-in-2022, February 2024.

[19] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share
conversion, pseudorandom secret-sharing and applica-
tions to secure computation. In Joe Kilian, editor, The-
ory of Cryptography, pages 342–362, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[20] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen.
Secure Multiparty Computation and Secret Sharing.
Cambridge University Press, 2015.

[21] Anders Dalskov, Marcel Keller, Claudio Orlandi, Kris
Shrishak, and Haya Shulman. Securing dnssec keys
via threshold ecdsa from generic mpc. Cryptol-
ogy ePrint Archive, Paper 2019/889, 2019. https:
//eprint.iacr.org/2019/889.

[22] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew
Miller, Lefteris Kokoris-Kogias, and Ling Ren. Practical
asynchronous distributed key generation. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 2518–
2534. IEEE, 2022.

[23] Dfns. Dfns web page. https://www.dfns.co, July
2023.

[24] Christoph Dobraunig, Lorenzo Grassi, Anna Guinet,
and Daniël Kuijsters. Ciminion: Symmetric encryp-
tion based on toffoli-gates over large finite fields. In
Anne Canteaut and François-Xavier Standaert, editors,

Advances in Cryptology - EUROCRYPT 2021 - 40th
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Zagreb, Croa-
tia, October 17-21, 2021, Proceedings, Part II, volume
12697 of Lecture Notes in Computer Science, pages 3–
34. Springer, 2021.

[25] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi
shelat. Threshold ecdsa in three rounds. Cryptol-
ogy ePrint Archive, Paper 2023/765, 2023. https:
//eprint.iacr.org/2023/765.

[26] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi
Shelat. Threshold ecdsa from ecdsa assumptions: The
multiparty case. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 1051–1066, 2019.

[27] Morris Dworkin. Sha-3 standard: Permutation-based
hash and extendable-output functions, 2015-08-04 2015.

[28] Morris Dworkin, Elaine Barker, James Nechvatal, James
Foti, Lawrence Bassham, E. Roback, and James Dray.
Advanced encryption standard (aes), 2001-11-26 2001.

[29] David Evans, Vladimir Kolesnikov, and Mike Rosulek.
A pragmatic introduction to secure multi-party computa-
tion. Foundations and Trends® in Privacy and Security,
2(2-3):70–246, 2018.

[30] Fireblocks. Fireblocks web page. https://
www.fireblocks.com, November 2023.

[31] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk,
and Tal Rabin. Secure distributed key generation for
discrete-log based cryptosystems. In Advances in Cryp-
tology—EUROCRYPT’99: International Conference on
the Theory and Application of Cryptographic Tech-
niques Prague, Czech Republic, May 2–6, 1999 Pro-
ceedings 18, pages 295–310. Springer, 1999.

[32] Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
How to construct random functions. J. ACM, 34(4):792–
807, 1986.

[33] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rech-
berger, Dragos Rotaru, and Markus Schofnegger. On
a generalization of substitution-permutation networks:
The hades design strategy. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology – EUROCRYPT
2020, pages 674–704, Cham, 2020. Springer Interna-
tional Publishing.

[34] Lorenzo Grassi, Morten Øygarden, Markus Schofneg-
ger, and Roman Walch. From farfalle to megafono via
ciminion: The PRF hydra for MPC applications. In
Carmit Hazay and Martijn Stam, editors, Advances in
Cryptology - EUROCRYPT 2023 - 42nd Annual Inter-
national Conference on the Theory and Applications of

USENIX Association 33rd USENIX Security Symposium 4333

https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2021/060
https://www.coinbase.com/cloud/products/waas
https://www.coinbase.com/cloud/products/waas
https://cointelegraph.com/news/crypto-report-the-crypto-custody-market-reached-448-billion-in-2022
https://cointelegraph.com/news/crypto-report-the-crypto-custody-market-reached-448-billion-in-2022
https://cointelegraph.com/news/crypto-report-the-crypto-custody-market-reached-448-billion-in-2022
https://eprint.iacr.org/2019/889
https://eprint.iacr.org/2019/889
https://www.dfns.co
https://eprint.iacr.org/2023/765
https://eprint.iacr.org/2023/765
https://www.fireblocks.com
https://www.fireblocks.com

Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part IV, volume 14007 of Lecture
Notes in Computer Science, pages 255–286. Springer,
2023.

[35] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru,
Peter Scholl, and Nigel P. Smart. Mpc-friendly sym-
metric key primitives. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 430–443, New York, NY, USA,
2016. Association for Computing Machinery.

[36] Iftach Haitner, Yehuda Lindell, Ariel Nof, and Samuel
Ranellucci. Fast secure multiparty ecdsa with practi-
cal distributed key generation and applications to cryp-
tocurrency custody. Cryptology ePrint Archive, Paper
2018/987, 2018. https://eprint.iacr.org/2018/
987.

[37] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and
Moti Yung. Proactive secret sharing or: How to cope
with perpetual leakage. In Don Coppersmith, editor,
Advances in Cryptology — CRYPT0’ 95, pages 339–352,
Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[38] Aniket Kate and Ian Goldberg. Distributed key genera-
tion for the internet. In 2009 29th IEEE International
Conference on Distributed Computing Systems, pages
119–128. IEEE, 2009.

[39] Marcel Keller. MP-SPDZ: A versatile framework for
multi-party computation. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2020.

[40] Lit Protocol. Lit protocol web page. https://
litprotocol.com, July 2023.

[41] Easwar Vivek Mangipudi and Aniket Pundlik Kate.
D-kode: Distributed mechanism to manage a billion
discrete-log keys. In Proceedings of the 4th ACM Con-
ference on Advances in Financial Technologies, AFT
’22, page 308–325, New York, NY, USA, 2023. Associ-
ation for Computing Machinery.

[42] Daniele Micciancio and Chris Peikert. Hardness of
SIS and LWE with small parameters. IACR Cryptology
ePrint Archive, 2013.

[43] Moni Naor and Omer Reingold. Number-theoretic con-
structions of efficient pseudo-random functions. In 38th
Annual Symposium on Foundations of Computer Sci-
ence, FOCS ’97, Miami Beach, Florida, USA, October
19-22, 1997, pages 458–467. IEEE Computer Society,
1997.

[44] Chris Peikert. Public-key cryptosystems from the worst-
case shortest vector problem: extended abstract. In 41st
Annual ACM Symposium on Theory of Computing —
STOC ’09, pages 333–342. ACM, 2009.

[45] Qredo. Qredo web page. https://www.qredo.com,
November 2023.

[46] Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. In STOC ’05, pages
84–93. ACM, 2005.

[47] Dragos Rotaru and Tim Wood. Marbled circuits: Mixing
arithmetic and boolean circuits with active security. In
Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, editors,
Progress in Cryptology – INDOCRYPT 2019, pages 227–
249, Cham, 2019. Springer International Publishing.

[48] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, nov 1979.

[49] Silence Laboratories. Silence Laboratories web page.
https://www.silencelaboratories.com, November
2023.

[50] Web3Auth. Web3Auth web page. https://
web3auth.io, July 2023.

[51] Zengo. Zengo web page. https://zengo.com, Novem-
ber 2023.

A Proof of Theorems 2.1 and 6.4

A.1 Proof of Theorem 2.1
Proof. Let m,n∈N, X =U(Zm), and Y =U(Zn) mod m. By
the definition of the statistical distance, we have

∆(X ,Y) =
1
2 ∑

a∈Zm

|Pr[X = a]−Pr[Y = a]|

=
1
2 ∑

a∈Zm

|1/m−Pr[Y = a]| .
(1)

For a ∈ Zm, define Da = {x ∈ Zn : x mod m = a}. We have

Pr[Y = a] = ∑
b∈Da

Pr[U(Zn) = b] = |Da|/n , (2)

where

|Da|=

{
⌈n/m⌉ if a < n mod m,
⌊n/m⌋ else.

(3)

Next, we determine an upper bound on |1/m−Pr[Y = a]| by
writing out the equation using (2) and (3). For a < n mod m,
we have∣∣∣∣ 1

m
−Pr[Y = a]

∣∣∣∣= ∣∣∣∣ 1
m
− ⌈n/m⌉

n

∣∣∣∣
=

∣∣∣∣ 1
m
− n+m−n mod m

mn

∣∣∣∣≤ 1
n

,

(4)

4334 33rd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2018/987
https://eprint.iacr.org/2018/987
https://litprotocol.com
https://litprotocol.com
https://www.qredo.com
https://www.silencelaboratories.com
https://web3auth.io
https://web3auth.io
https://zengo.com

and for a≥ n mod m,∣∣∣∣ 1
m
−Pr[Y = a]

∣∣∣∣= ∣∣∣∣ 1
m
− ⌊n/m⌋

n

∣∣∣∣
=

∣∣∣∣ 1
m
− n−n mod m

mn

∣∣∣∣≤ 1
n

.

(5)

Finally, by combining (1), (4), and (5), we obtain an upper
bound on the statistical distance of X and Y ,

∆(X ,Y)≤ 1
2 ∑

a∈Zm

1/n≤ m/n .

A.2 Proof of Thereom 6.4
Proof. We have to show that for every adversary A , there
exists a simulator S , such that for every environment Z, the
environment Z cannot distinguish a real execution of protocol
πDKM(P, t,U,F,FEval) with adversary A from an ideal execu-
tion of functionality FDKM(P, t,U,K ,FEval) with simulator
S .

Let A be such an adversary that controls up to t corrupted
parties of P and any subset of parties of U in the real protocol
execution. We define S as a simulator that simulates A in the
ideal execution, as follows.

Setup: Whenever the simulator obtains an input (init,sid)
on behalf of a corrupted server P , the simulator for-
wards this message to A . If A behaves according to
the protocol and sends (eval,sid,F.KeyGen) to func-
tionality FMPC, the simulator sends (init) to FDKM

on behalf of P . If FDKM responds with (ready),
S sends (eval,sid,F.KeyGen) to functionality FMPC

on behalf of all parties in P, and forwards the re-
sponse (result,sid,k) to the adversary A and stores
(prfkey,k).

Eval: Whenever the simulator obtains an input
(eval,sid, f ,x) on behalf of a corrupted user u,
the simulator forwards this message to A . The simulator
then emulates an execution of the Eval protocol, where
it plays the role of the honest parties and the adversary
A plays the role of the corrupted parties. Here, the
simulator makes use of functionality FMPC and the
stored PRF key reference k. Since the adversary controls
only up to t parties, the user u is guaranteed to receive
(value,sid,y) from FMPC as a result. The simulator
then sends (eval,sid, f ,x) to FDKM on behalf of party u
and waits for response (result,sid,y).

We observe that, by the definition of FMPC, executions of
the real protocol with A look almost identical to executions
of the ideal functionality with S from the viewpoint of E . The
difference is that in the real execution the key k comes from

the output distribution of F while in the ideal execution k
comes from the key distribution K . However, since we chose
F and K such that their distributions are indistiguishable, the
environment cannot distinguish the real execution from the
ideal execution.

B Enhanced constructions

Due to space constraints, this section is only available in the
full version of this paper (ia.cr/2023/1254).

USENIX Association 33rd USENIX Security Symposium 4335

https://ia.cr/2023/1254

	Introduction
	Distributed key management
	Scalability challenges
	Distributed key derivation
	Application requirements
	State of the art
	Our contributions
	Organization

	Preliminaries
	Pseudorandom Functions
	Lattice Preliminaries
	Lattice-Based PRF from DBLP:conf/crypto/BonehLMR13

	Adaptation to MPC
	Use a random oracle
	Adapt lattice parameters
	Adapt message space and compose outputs

	Enhanced constructions
	Overview of core ideas
	LWR with nonuniform key distributions
	Defining and proving the secure instance
	Instances with only conjectured security

	Implementation and evaluation
	Parameter selection
	Evaluation

	Application to Distributed Key Management
	Ideal functionality
	Real protocol
	Security proof
	Example application: Scalable distributed key management for ECDSA signing using our distributed PRF protocol

	Proof of Theorems 2.1 and 6.4
	Proof of Theorem 2.1
	Proof of Thereom 6.4

	Enhanced constructions

