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Abstract
SCTP is a transport protocol offering features such as multi-
homing, multi-streaming, and message-oriented delivery. Its
two main implementations were subjected to conformance
tests using the PACKETDRILL tool. Conformance testing is
not exhaustive and a recent vulnerability (CVE-2021-3772)
showed SCTP is not immune to attacks. Changes addressing
the vulnerability were implemented, but the question remains
whether other flaws might persist in the protocol design.

We study the security of the SCTP design, taking a rigor-
ous approach rooted in formal methods. We create a formal
PROMELA model of SCTP, and define 10 properties capturing
the essential protocol functionality based on its RFC specifica-
tion and consultation with the lead RFC author. Then we show
using the SPIN model checker that our model satisfies these
properties. We next define 4 representative attacker models
– Off-Path, where the attacker is an outsider that can spoof
the port and IP of a peer; Evil-Server, where the attacker is a
malicious peer; Replay, where an attacker can capture and re-
play, but not modify, packets; and On-Path, where the attacker
controls the channel between peers. SCTP was designed to be
secure against Off-Path attackers, and we study the additional
models in order to understand how its security degrades for
successively more powerful attacker types. We modify an
attack synthesis tool designed for transport protocols, KORG,
to support our SCTP model and 4 attacker models.

We synthesize the vulnerability reported in CVE-2021-
3772 in the Off-Path attacker model, when the patch is dis-
abled, and we show that when enabled, the patch eliminates
the vulnerability. We also manually identify two ambiguities
in the RFC, and using KORG, we show that each, if misin-
terpreted, opens the protocol to a new Off-Path attack. We
show that SCTP is vulnerable to a variety of attacks when
it is misused in the Evil-Server, Replay, or On-Path attacker
models (for which it was not designed). We discuss these and,
when possible, mitigations thereof. Finally, we propose two

∗Contributed equally.
†Listed alphabetically.

RFC errata – one to eliminate each ambiguity – of which so
far, the SCTP RFC committee has accepted one.

1 Introduction

Transport protocols play a crucial role in transmitting data
across the Internet either directly – as in UDP [3] and
DCCP [22], which provide unreliable communication, and
TCP [20] and SCTP [58], which provide reliable communica-
tion – or by supporting secure protocols – e.g., UDP supports
DTLS [51] and QUIC [31], while TCP supports TLS [50].
Thus, it is critical that transport protocols are designed and
implemented to be bug-free and secure.

SCTP is a transport layer protocol proposed as an alter-
native to TCP, offering new features, such as multi-homing,
multi-streaming, and message-oriented delivery. Among other
use-cases, it is the data channel for WebRTC [5], which is
used by such applications as Facebook Messenger [35], Mi-
crosoft Teams [37], and Discord [65]. The design of SCTP
is described in RFC documents, the most recent one be-
ing RFC 9260 [58], and implemented in Linux [2] and
FreeBSD [4]. These implementations were tested using PACK-
ETDRILL [1, 14] and analyzed with WIRESHARK [52]. Some
limited efforts also analyzed the SCTP design using formal
methods. The works in [62, 63] focused only on bugs and
did not consider attacks, while the work in [53] focused on
attacks, but modeled only limited aspects of connection es-
tablishment to compare the resilience of SCTP and TCP to
SYN-FLOOD attacks. A recent vulnerability – CVE-2021-
3772 [49] – shows the importance of conducting a much
more comprehensive formal analysis. Although a patch was
proposed in RFC 9260 [58], and adapted by FreeBSD, the
question remains whether other flaws might persist in the
protocol design and whether the patch might have introduced
additional vulnerabilities. To the best of our knowledge, no
prior works formally analyzed the entire SCTP connection
establishment and teardown routines in a security context.

In this work, we take an approach rooted in formal methods
to study the security of SCTP. Our approach is based on attack
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synthesis, where the goal is, given a program that behaves
correctly, and an attacker model, to find an attack that can lead
the program to behave incorrectly.1 Specifically, we use an
attack synthesis tool called KORG [67] which can find attacks
where an attacker manipulates two protocol peers in order to
induce a denial of service (DoS). Combined with other formal
methods, such as model checking, this approach allows us to
precisely study the behaviors of SCTP under different DoS
attacker models.

Model Design and Verification. We start by creating fi-
nite state machine (FSM) models for the consecutive SCTP
designs specified in RFCs 4960 [55] and 9260 [58], and writ-
ing ten properties the models should satisfy based on a close
reading of the RFC documents and discussions with the lead
SCTP author 2. Our properties are defined in Linear Tempo-
ral Logic (LTL) and characterize the standard establishment
and teardown routines, the proper functioning of the cookie
timer, and the fact that SCTP does not support half-open con-
nections. Using the SPIN model checker, we automatically
verify that our SCTP model meets these properties (behaves
correctly) when not under attack.

Attack Synthesis. We use an attack synthesis tool for
transport protocols called KORG, based on LTL model-
checking [67]. KORG automatically finds DoS attacks against
the protocol’s handshake (establishment and teardown) in
which an attacker, constrained to scenarios with two peers,
sends and receives messages in order to guide the peers into a
deleterious state or loop. Note that KORG does not find other
types of attacks, such as statistical attacks against pseudo-
random values used in the protocol or side-channel attacks
against protocol implementations, and is limited to aspects
of the protocol (such as its handshake) which are inherently
finite-state. Consequently, KORG cannot be used to study the
commonly used Dolev-Yao attacker model [19], in which
the attacker is allowed to launch an unbounded number of
simultaneous connections, making it the wrong choice to
study cryptographic protocols such as TLS. This limitation
is acceptable because the Dolev-Yao attacker model is inap-
propriate for studying DoS attacks against transport protocol
handshakes, as we do in this paper.3 KORG is based on LTL
model-checking, thus it suffers from state-space explosion
and so does not scale to systems with large state-spaces. How-
ever, the handshake mechanisms of transport protocols such
as TCP, DCCP, and SCTP are small, and their correctness
criteria can be written in LTL, so KORG is an appropriate

1This is totally different from program synthesis, where the problem is,
given some property, to conjure a program that satisfies it.

2We do not seek to construct a complete set of properties, as we’re inter-
ested in studying the security-relevant behaviors of SCTP rather than creating
an all-encompassing specification. Also, defining a complete specification in
LTL is impractical, as LTL is optimized for efficient model checking.

3The Dolev-Yao attacker, by definition, controls the communication chan-
nels and therefore can pull off a DoS trivially. Therefore, any DoS attack
discovered using Dolev-Yao must be manually analyzed to confirm that it is
non-trivial.

choice for this context.
We define four attacker models (Off-Path, Evil-Server, Re-

play, and On-Path), which are representative for transport
protocols and provide a wide range of attacker capabilities
allowing us to understand the behavior of SCTP when under
DoS attack by an attacker who cannot open additional connec-
tions parallel to the one under attack. The Off-Path attacker
model describes an attacker who may or may not know the IP
address or port of either peer, but cannot read the messages in-
transit, and does not know the authentication secrets (which
in SCTP are called the “vtags”) of the association. Thus, its
injected messages should theoretically be ignored. In the Evil-
Server attacker model, one peer in an association is malicious,
and aims to guide the other peer into some vulnerable state.
The Replay attacker model describes an attacker capable of
capturing messages from the communication channel and re-
playing them without modification. In the On-Path attacker
model, the attacker controls the channel connecting the peers,
and can intercept, drop, and inject authenticated messages
at-will. Note that SCTP was designed to withstand Off-Path
attackers but was not designed to be fully robust against the
other three attacker models. Thus, we study the Evil-Server,
Replay, and On-Path attacker models only to understand what
could happen in a “worst case scenario”.

Using KORG, we automatically synthesize DoS attacks
against our SCTP model, for each LTL property and attacker
model. In the Off-Path case, we automatically find the attack
from CVE-2021-3772. We find numerous DoS attacks in
the Evil-Server and On-Path attacker models, e.g., an Evil-
Server attack that establishes a connection with the victim
peer and then leaves it stranded, and an On-Path attack that
injects messages guiding both peers into Shutdown_Received
(an illegal passive/passive teardown). These results highlight
the importance of implementation level defenses against an
Evil-Server, and an end-to-end security model to prevent On-
Path attacks. We also find one Replay attack, highlighting the
criticality of the transmission sequence number (TSN).

Patch Verification. We next configure the model to include
the patch introduced in RFC 9260 [58] and show that the patch
fixes the problem, i.e., the LTL property that was violated by
the attack is now met under the attacker model where that
attack was discovered. We further show that of the ten LTL
properties we use to specify the correctness of SCTP, none
which were satisfied before the patch are violated after it is
introduced, in any of the four attacker models we study. KORG
is sound and complete, meaning, (1) if it finds an attack then
the attack is real (against the model), and (2) if any attacks
against the model and property exist, of the type KORG looks
for, then given sufficient time and memory, KORG will find
one [67]. If KORG runs out of time or memory without finding
an attack, it will report “Search not completed”. While this
might happen for larger state machines, it did not happen for
the SCTP model and any of the properties or attacker models
we studied in this paper. Thus, our analysis suffices to show
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that the patch does not enable any vulnerability against any
property which was previously upheld, from the list of ten
properties we specify, in any of the four attacker models we
study. However, it does not carry any implications for other
kinds of attacks, such as statistical attacks against the itag/vtag
scheme or side-channel attacks against implementations; nor
does it imply anything about properties or attacker models
other than the ones we studied. It is therefore possible that
the patch could introduce an attack outside the scope of what
we analyzed using KORG.

RFC Disambiguation. Motivated by the fact that CVE-
2021-3772 was caused by a lack of clarity in RFC 4960,
we carefully manually analyze its replacement, RFC 9260,
for ambiguities. We identify two portions of RFC 9260 that
seem ambiguous, and show that each can be interpreted in
two ways. We confirm the correct interpretation for each by
consulting with the lead SCTP RFC author; then model the
incorrect interpretation and synthesize attacks against it. We
propose RFC errata to clarify the correct interpretation of
each. Finally, we use PACKETDRILL [14] to confirm that the
Linux and FreeBSD implementations interpret the ambiguous
portions correctly. Note, the FreeBSD implementation was
co-authored by the lead SCTP RFC author, so naturally it
interprets the RFC correctly.

Contributions. We summarize our contributions:
• Model: We model the original SCTP RFC [55] using

PROMELA. Our model can be configured with or without
the CVE patch from RFC 9260 [58]. It is endorsed by the
lead SCTP RFC author and faithfully captures the SCTP con-
nection and teardown routines, including the exchange of
messages, the user-on-the-loop and its commands, and the
handling out-of-the-blue packets.
• Verification: We formalize ten novel correctness properties
for SCTP in LTL based on a close reading of the RFCs and
use SPIN to prove that our model satisfies all ten when no
attacker is present.
• Attack Synthesis: We introduce four attacker models for

SCTP. Then we modify KORG to support packets and replay
attacks, and use it to synthesize DoS attacks in the context
of each. For Off-Path, we rediscover the CVE before the
patch was applied, but not after. For Evil-Server, we find four
attacks that, depending on implementation details, could leave
a victim peer deadlocked or stranded in some liveness cycle,
unable to automatically de-associate. For Replay, we find
one attack that, depending on the security of the TSN, could
prevent two peers from establishing a connection. We find
six similar On-Path attacks where the attacker leads the peers
into some illegal state or cycle, violating a property.
• Patch Verification: We show that the patch fixes the prob-
lem, i.e. the property that was violated by the attack is now
met under the attacker model wherein the CVE attack was
discovered. Moreover, we show that in each attacker model,
the patch does not open the protocol to any vulnerabilities of
the kind KORG looks for against properties which were not

previously vulnerable to attack.
• RFC Disambiguation: We identify two ambiguities in RFC
9260, each of which, we show, could be reasonably misinter-
preted in a way that opens the protocol to a new vulnerability.
We confirm that neither implementation makes either mistake,
and to avoid mistakes in future implementations, we suggest
two RFC errata clarifying the ambiguities. So far, one was
accepted by the SCTP RFC committee.

Note that our model only captures two agents. Thus, it
cannot be used to study DoS scenarios where a party might
start an unbounded number of parallel SCTP connections.
Our approach does not scale for such unbounded scenarios
and a different approach would be needed. We discuss such
approaches and how they compare to ours in Section 4.1.

Ethics. We disclosed all of our results to the chair of the
SCTP RFC committee, resulting in an RFC erratum.

Code. All of our results are reproducible with our open
source code, available at https://github.com/sctpfm.

2 SCTP

In this section we overview SCTP and previous efforts to
validate it, as well as our approach to analyzing its security.

2.1 Overview
SCTP is a transport protocol proposed as an alternative to TCP,
offering enhanced performance, security features, and greater
flexibility. It is specified in several RFCs, each introducing sig-
nificant modifications. RFC 9260 [58], which obsolesced RFC
4960 [55], made numerous small clarifications and improve-
ments, including a critical patch for CVE-2021-3772. On the
other hand, RFC 4960, which obsolesced the original specifi-
cation in RFC 2960 [59], introduced major structural changes
to the protocol as described in the errata RFC 4460 [15].
SCTP is implemented in Linux [2] and FreeBSD [4].

SCTP is a two peer protocol where each peer runs the same
state machine. However, during connection establishment, the
two peers play different roles – while one peer progresses
through the active routine in the state machine, the other peer
must take a corresponding sequence of passive transitions.4

For teardown there are two options: graceful or graceless.
During graceful tear-down, one peer can act actively and the
other passively, or they can both take an active role. Graceless
teardown happens in a single step.

Peer States. An SCTP peer is identified by a set of IP ad-
dresses and a port number. At any given time, each peer exists
in one of finitely many states: Closed, in which no associa-
tion exists; Cookie_Wait and Cookie_Echoed, used during
active establishment; Established, in which an association
exists and data can be transferred; Shutdown_Received and

4SCTP also supports an initialization routine where both peers are active,
called “initialization collision”. However, this routine is described in the RFC
as an edge-case, rather than an intended use-case.
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Shutdown_Ack_Sent, used by the passive peer during tear-
down; and Shutdown_Pending and Shutdown_Sent, used by
the active peer during teardown. In active/active teardown,
both peers use Shutdown_Ack_Sent.

Packets. An SCTP packet consists of a common header and
a number of chunks. An essential component of the connec-
tion establishment design is authentication of packets between
the peers using a random integer called the verification tag,
or vtag, which is initialized using an initiate tag, or itag, dur-
ing establishment. The packet header contains the source and
destination port number, vtag, and a checksum. The chunk
types are INIT, INIT_ACK, COOKIE_ECHO, and COOKIE_ACK,
used during establishment; DATA and DATA_ACK, used for
data transmission once an association has been established;
ERROR, used to communicate when an error has occurred;
SHUTDOWN, SHUTDOWN_ACK, and SHUTDOWN_COMPLETE, used
during graceful teardown; ABORT, used during graceless
teardown; and HEARTBEAT and HEARTBEAT_ACK, used for
crash detection. Chunks contain parameters, e.g., INIT and
INIT_ACK chunks (but no others) contain an itag, and (only)
INIT_ACK chunks contain a state cookie, which includes a
message authentication code, a timestamp indicating when
the cookie was created, and a cookie lifespan. There are vari-
ous kinds of ERROR chunks, each indicating a different error
condition, e.g., COOKIE_ERROR which indicates receipt of a
valid but expired state cookie. Much like TCP, SCTP uses
sequence numbers, called Transmission Sequence Numbers
(TSNs). The initial TSN in an association is proposed by an
active participant in the connection establishment routine, and
is incremented with each data transmission thereafter.

Connection Establishment. In active/passive establish-
ment (Figure 1), the active peer sends a packet with an INIT
chunk, containing a nonzero random itag. For the remainder
of the association, this (active) peer will only accept packets
from the passive peer that contain a vtag equal to the itag in
the INIT it sent. The passive peer replies with a packet con-
taining an INIT_ACK chunk, which also contains a nonzero
random itag. For the remainder of the association, the passive
peer will only accept packets which contain this itag value
as the vtag in the common header. By checking the vtag,
each peer protects itself from processing packets sent by an
attacker not knowing the recipient’s vtag.

Connection Teardown. Teardown can occur gracefully,
via the active/passive or active/active routines, or gracelessly,
with an ABORT. During active/passive teardown (Figure 2),
the active peer sends a SHUTDOWN chunk, to which the pas-
sive peer responds with SHUTDOWN_ACK. The active peer then
sends SHUTDOWN_COMPLETE and both transition to Closed.
Active/active teardown is also possible, in which the peers
exchange, in the following order: SHUTDOWN, SHUTDOWN_ACK,
and SHUTDOWN_COMPLETE messages. The third option is that
a peer can gracelessly abort a connection by sending an
ABORT chunk. In this case, both peers immediately transi-
tion to Closed. Once the association is closed, the vtags are

forgotten, and when either peer enters a new association, it
will randomly choose a new itag (to become its vtag).

Timers. The SCTP connection routines use three timers:
Init, Cookie, and Shutdown. The goal of the Init Timer is to
stop the active peer in an establishment routine from getting
stuck waiting forever for the passive peer to respond to its
INIT with an INIT_ACK. The goal of the Cookie Timer is sim-
ilar: it stops that same active peer from getting stuck waiting
forever for the passive peer to respond to its COOKIE_ECHO.
The Shutdown Timer plays a similar role but in the teardown
routine, stopping the active peer in teardown from getting
stuck waiting for a SHUTDOWN_ACK.

Out-of-the-Blue Packet Handling. In SCTP a message
is considered out-of-the-blue (OOTB) if the recipient cannot
determine to which association the message belongs, i.e., if it
has an incorrect vtag, or is an INIT with a zero-valued itag.
Specifically, an OOTB message will be discarded if: 1) it was
not sent from a unicast IP, 2) it is an ABORT with an incorrect
vtag, 3) it is an INIT with a zero itag or incorrect vtag5, 4) it
is a COOKIE_ECHO, SHUTDOWN_COMPLETE, or COOKIE_ERROR,
and is either unexpected in the current state or has an incorrect
vtag, or 5) it has a zero itag or incorrect vtag.

Unexpected Packet Handling. A message is unexpected if
it is not OOTB, but nevertheless, the recipient does not expect
it. SCTP handles unexpected packets as described in Algr. 1.

Algorithm 1 Unexpected Packet Handling

Require: Unexpected msg
if msg.chunk = INIT then

if state = Cookie_Wait or msg does not indicate new
addresses added then

Send INIT_ACK with vtag = msg.itag
else

Discard msg and send ABORT with vtag = msg.itag
end if

else if msg.chunk = COOKIE_ECHO then
if msg.timestamp is expired then

Send COOKIE_ERROR
else if msg has fresh parameters then

Form a new association
else

Set vtag = msg.vtag /* init collision */
goto Established

end if
else if msg.chunk = SHUTDOWN_ACK then

Send SHUTDOWN_COMPLETE with vtag = msg.vtag
else

Discard msg
end if

Other Functionality. Other functionalities of SCTP in-
clude a “tie-tag” nonce mechanism used to authenticate a

5Per RFC 4960, respond with an ABORT having the vtag of the current
association. But per RFC 9260, discard it.
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Closed
Peer A (active)

Closed
Peer B (passive)

INIT, itag=i1

Cookie_Wait

INIT_ACK, itag=i2, vtag=i1

Cookie_Echoed

COOKIE_ECHO, vtag=i2

COOKIE_ACK, vtag=i1

Established Established

Figure 1: Message sequence chart illustrating SCTP active/-
passive establishment routine. Time flows from the top down.

reconnecting peer after a restart; congestion control6; frag-
mentation and reassembly of DATA chunks; chunk bundling;
support for the Internet Control Message Protocol (ICMP);
and multihoming. We do not consider this functionality in our
analysis, and we refer the reader to [58] for more details.

2.2 Prior Validation
Conformance testing. The Linux and FreeBSD implemen-
tations were tested with PACKETDRILL [1] and fuzz-tests,
suggesting they are crash-free and follow the RFCs. But this
does not necessarily imply the design in the RFCs behaves
correctly in the (a) absence or (b) presence of an attacker.

Formal analysis. For (a), some prior works formally ana-
lyzed SCTP using Colored Petri Net models [40, 62, 63, 68]
in CPNTOOLS. This software can check for livelocks (i.e.
liveness violations) and deadlocks (stuck states), but it cannot
model-check arbitrary logical properties, which seriously lim-
its the use-cases for such models. One prior work studied (b),
modeling the four-way handshake used by SCTP and compar-
ing it to the three-way handshake used by TCP in the presence
of an attacker, with the Uppaal model-checker [53]. However,
the model is closed-source and does not include the teardown
routine. It is unclear whether the model includes OOTB or
unexpected packet handling. We summarize the differences
between these prior models and our own in Table 1. Finally,
the IETF published a security memo for SCTP, but it is not
a comprehensive analysis, rather, it simply summarizes prior
conversations about security from the SCTP user-group [56].

CVE-2021-3772 attack and patch. As reported in CVE-
2021-3772 [49], the prior version of SCTP specified in RFCs
2960 [59] and 4960 [55] is vulnerable to a denial-of-service
attack. The reported vulnerability worked as follows. Suppose

6(based on TCP congestion control)

Established
Peer A (active)

Established
Peer B (passive)

Shutdown_Pending

SHUTDOWN, vtag=i2

Shutdown_Sent Shutdown_Received

SHUTDOWN_ACK, vtag=i1

Shutdown_Ack_Sent

SHUTDOWN_COMPLETE, vtag=i2

Closed Closed

Figure 2: SCTP active/passive teardown.

SCTP peers A and B have established a connection and an
off-channel attacker knows the IP addresses and ports of the
two peers, but not the vtags of their existing connection. The
attacker spoofs B and sends a packet containing an INIT to
A. The attacker uses a zero vtag as required for packets con-
taining an INIT. The attacker must use an illegal parameter
in the INIT, e.g., a zero itag.

Peer A, having already established a connection, treats the
packet as out-of-the-blue, per RFC 2960 §8.4 and 5.1, which
specify that as an association was established, A should re-
spond to the INIT containing illegal parameters with an ABORT
and go to Closed. But in RFCs 2960 and 4960, it is unspecified
which vtag should be used in the ABORT. Some implementa-
tions used the expected vtag, which is where a vulnerability
arises. Since the attacker spoofed the IP and port of Peer B,
Peer A sends the ABORT to Peer B, not the attacker. When Peer
B receives the ABORT, it sees the correct vtag, and tears down
the connection. Thus, by injecting a single packet with zero-
valued tags, the attacker tears down the connection, pulling
off a DoS. The attack is illustrated in Figure 3.

RFC 9260 patches CVE-2021-3772 using a strict defensive
measure, wherein OOTB INIT packets with empty or zero
itags are discarded, without response. FreeBSD [4] uses this
patch. Linux, on the other hand, adopts a different patch [39],
wherein the peer receiving the ABORT with the zero vtag sim-
ply ignores it (rather than close the connection).

3 Our SCTP Model

In this section, we describe our SCTP PROMELA model and
properties that guide our analysis.
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Work RFC Open-Source Establish Teardown OOTB Unexpected Livelocks Deadlocks Properties
Martins et. al. [40] 2960 N Y Y N N Y Y N
Blanchet et. al. [68] 2960 N Y Y N N Y Y N
Vanit-Anunchai [62] 4960 N Y Y Y Y Y Y N
Vanit-Anunchai [63] 4960 N Y Y Y Y Y Y N
Saini and Fehnker [53] 4960 N Y N N N Y Y Y
Ours 4960 & 9260 Y Y Y Y Y Y Y Y

Table 1: Prior formal SCTP analyses versus ours. RFC column reports modeled version, and open-source column reports whether
the model is open-source. The remaining columns report whether the model includes the establish and teardown routines, OOTB
logic, or unexpected packet handling; and if it can be used to check for livelocks or deadlocks, or to verify arbitrary properties.

Attacker
Established

Peer A
Established

Peer B

INIT,vtag=0,itag=0

ABORT,vtag=i2

Closed Closed

Figure 3: CVE-2021-3772 Attack. Peers A and B begin hav-
ing established an association with vtags i1, i2 (resp.). The
Attacker transmits an invalid INIT chunk to A, spoofing the
port and IP of B. Peer A responds by sending a valid ABORT
to B, which closes the association. By sending a single invalid
INIT the Attacker performs a DoS.

3.1 Overview
As we are primarily interested in denial-of-service attacks,
and in order to avoid state-space explosion, we selectively
model the SCTP connection establishment and teardown rou-
tines. This allows us to automatically and exhaustively ex-
plore, simulate, and verify the critical, security-relevant as-
pects of SCTP. Our model captures the following aspects of
SCTP per RFC 9260 [58]: internal peer states, packet verifi-
cation using the itag and vtag, timers, TSNs, and handling for
invalid, unexpected, and OOTB packets. We made only the
abstractions listed in Section 3.4.

Although our model is fully faithful to the SCTP RFC [58],
and is an executable program, it is not a network library and
cannot be used in place of the existing Linux or FreeBSD
implementations. This is because of the abstractions and sim-
plifications mentioned above, and also because it does not im-
plement API hooks for higher-level applications, nor syscalls
to transmit over the Internet. It is simply a model of SCTP
with which we can formally verify correctness properties.

3.2 Model Details
We describe our SCTP model in PROMELA, focusing on in-
ternal peer states, packet verification, invalid packet defense
mechanisms, timeouts, and OOTB packet handling.
Mathematical Preliminaries. Linear Temporal Logic is a

modal logic for reasoning about program executions. In LTL,
we say a program P models a property φ, written P |= φ, if φ

holds over every execution of P. If φ holds over some but not
all executions of P, then we write P |̸= φ.

The LTL language is given by predicates (e.g., “Peer A
is in Established” or “Peer B’s cookie timer is inactive”);
the temporal operators “next”, “always”, “eventually”, and
“until”; and the logical operators of negation, conjunction, and
disjunction. An LTL model-checker is a tool that, given P and
φ, can automatically check whether or not P |= φ 7. We use
the model-checker SPIN8, whose language is PROMELA.

We use ∥ to denote rendezvous composition, so, S = P ∥ Q
denotes that the program S equals the composition of P with
Q. Specifically, matching send transitions of P and receive
transitions of Q occur in lockstep, and vice versa. Note, in
our model, we actually build a process called a “channel” to
capture network delay, and we rendezvous-compose the chan-
nel with the two peers to build asynchronous communication
(which is more realistic). The ∥ operator is commutative and
associative. For more details, refer to §2 of [67].
Internal Peer States. Our model consists of two peers (A

and B) and a channel connecting them. That is, we study
the system S = PEERA ∥ CHANNEL ∥ PEERB. Each peer
is represented by an identical FSM, illustrated in Figure 5.
Transitions between states occur based on the receipt of user
commands, or communication and message processing.

The channel connecting the two peers contains an internal
single-message buffer in each direction (meaning it can hold
two messages at once, one traveling from left to right and
the other from right to left). It does not drop, corrupt, nor
create messages, and cannot accept a new message in a given
direction until the old one was delivered. In other words, it
is lossless and FIFO, in that it guarantees every delivered
message was sent and messages are delivered in order. The
entire setup is illustrated in Figure 4.
Packet Verification and Invalid Packet Defenses. We model
each SCTP message as consisting of a message chunk, a vtag,
and an itag. Each of these components are modeled using
enums, which in PROMELA are called mtypes. The message

7LTL model-checking is decidable, and reduces to checking Büchi Au-
tomata intersection emptiness, which is PSPACE-complete.

8version 6.5.2
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CHANNEL

ATOB

BTOA
PEERA PEERBUSERA USERB

Figure 4: The system USERA ∥ PEERA ∥ CHANNEL ∥
PEERB ∥ USERB. CHANNEL contains a size-1 FIFO buffer in
each direction (AtoB and BtoA, respectively). Arrows indicate
communication direction. Composition between CHANNEL
and peers is rendezvous (the buffers are inside CHANNEL).

chunk denotes the meaning of the message, e.g., a message
with an INIT chunk is called an initiate message and is used
to initiate a connection establishment routine. The itag and
vtag are used to verify the authenticity of the sender of the
message, as described in Section 2.2. In our model there are
three kinds of tags: expected (E), unexpected (U), or none
(N). A tag is expected if (1) it is a non-zero itag on an INIT
or INIT_ACK chunk, or (2) it is the other peer’s vtag in the
existing association. Otherwise, it is unexpected. The none
type is reserved for packets that do not carry the given tag type
– e.g., only INIT and INIT_ACK chunks carry an itag, so in the
other types of messages, the itag is N. The BNF grammar for
messages in our model is given in Figure 6. We also support
an option where the msg can be extended with a TSN.

Upon receiving a message, our model checks that the tags
are set as expected, depending on the message and state. If a
message has an unexpected tag then the model employs the
defenses specified in the RFC, e.g., silently discarding the
message or responding with an ABORT. These defenses can be
configured with or without the CVE patch from RFC 9260.
Active and Passive Connection Routines. Our SCTP model
implements active/passive establishment and teardown, as
well as active/active teardown, but not active/active estab-
lishment (a.k.a. “INIT collision”), precisely as described in
Section 2 and illustrated in Figures 1 and 2, with the caveat
that the itag and vtag are abstracted (as described above). We
also capture the TSN proposal and use throughout an associa-
tion, although this feature can be turned off in our model to
reduce the state-space for more efficient verification.
Out-of-the-Blue and Unexpected Packets. Our model faith-
fully captures OOTB logic described in §8.4 of RFCs 4960
and 9260, with only the exceptions given in Section 3.4.

3.3 Ambiguities in the RFC

While reading 9260 [58] in order to build our model, we
found two ambiguities. In each case, we reported the ambi-
guity to the lead SCTP RFC author, confirmed the correct
interpretation of the ambiguous text with them, and suggested
a clarifying erratum.

The first ambiguity is in §5.2.1, during the description of
how a peer should react upon receiving an unexpected INIT:

Upon receipt of an INIT chunk in the Cookie_Echoed state,

an endpoint MUST respond with an INIT_ACK chunk us-
ing the same parameters it sent in its original INIT chunk
(including its Initiate Tag, unchanged), provided that no
new address has been added to the forming association.

Consider two peers - A and B - initially both in Closed, in
addition to some attacker who can spoof the port and IP of
B. Suppose these machines engage in the sequence of events
illustrated in Figure 7. At the end of the sequence, what value
should the vtag V take?

A problem arises if a reader interprets “the same param-
eters” to include the vtag, implying that the vtag of the
INIT_ACK should come from the INIT that the responding
endpoint sent. Then V should take the itag of the message, i.e.
V = i1. The fact that this is wrong (and the correct assignment
is V = i2) only becomes clear if you fully understand how
itags and vtags are used in both directions. To make the text
unambiguous, we suggest the following erratum:

The verification tag used in the packet containing the
INIT_ACK chunk MUST be the initiate tag of the newly
received INIT chunk.
The second ambiguity we identify is in §8.5, which says:

When receiving an SCTP packet, the endpoint MUST ensure
that the value in the Verification Tag field of the received
SCTP packet matches its own tag.

The problem is that §8.5 does not say when the vtag check
should happen with respect to other checks. In particular,
§3.3.3 says that an endpoint in Cookie_Wait who receives
an INIT_ACK with an invalid itag should respond with an
ABORT– but it is unclear whether this still applies before or
after the vtag check in §8.5. Under the former interpretation,
an endpoint in Cookie_Wait who receives an INIT_ACK with
both an invalid itag and an invalid vtag would respond with an
ABORT, whereas under the latter interpretation, the endpoint
would silently discard the packet. To clarify the ambiguity,
we proposed the following erratum, which the SCTP RFC
committee accepted [61]:

When receiving an SCTP packet, the endpoint MUST first
ensure that the value in the Verification Tag field of the re-
ceived SCTP packet matches its own tag before processing
any chunks or changing its state.

3.4 Abstractions and Limitations
Our model is fully faithful to the SCTP RFC, modulo the
following abstractions and limitations.
• Unicast peers. In the RFC, OOTB messages from non-
unicast peers are discarded; we model all peers as unicast.
• No crashes or restarts. In our model, peers never crash
or restart. Thus we also omit crash detection (including
HEARTBEAT and HEARTBEAT_ACK chunks).
• Tags are abstracted. We do not model tie-tags, which are
used when reconnecting a peer to an existing association after
a restart. In the RFC, itags and vtags are integer-valued and
chosen randomly. But we model tags as the “expected” value,

USENIX Association 33rd USENIX Security Symposium    3105



Closed

Cookie_Wait

Cookie_Echoed

Established

Shutdown_Received Shutdown_Pending

Shutdown_SentShutdown_Ack_Sent

INIT,N,E? INIT_ACK,E,E!

User_Assoc? INIT,N,E!

COOKIE_ECHO,E,N?

COOKIE_ACK,E,N!
INIT_ACK,E,E?

COOKIE_ECHO,E,N!

COOKIE_ACK,E,N?COOKIE_ERROR,E,N?
then optionally, INIT,N,E!

COOKIE_ERROR,E,N?

INIT,N,E!

User_Shutdown?

SHUTDOWN,E,N?

SHUTDOWN,E,N!

SHUTDOWN_ACK,E,N?

SHUTDOWN_COMPLETE,E,N!

SHUTDOWN,E,N?
SHUTDOWN_ACK,E,N!

SHUTDOWN_ACK,E,N!

SHUTDOWN_
COMPLETE,E,N?
or
(SHUTDOWN_ACK,E,N?

SHUTDOWN_COMPLETE,E,N!)

Figure 5: SCTP Finite State Machine. x,v, i? (or x,v, i!) denotes receive (or send) chunk x with vtag v and itag i. Events in
multi-event transitions occur in the order they are listed. Logic for OOTB packets, ABORT messages or User_Abort commands,
unexpected user commands, and data exchange are ommitted but faithfully implemented in the model and described in this paper.

msg ::= INIT,N,ex | INIT_ACK,ex,ex | ach,ex,N

ach ::= ABORT | SHUTDOWN | SHUTDOWN_COMPLETE
| COOKIE_ECHO | COOKIE_ACK | SHUTDOWN_ACK
| COOKIE_ERROR | DATA | DATA_ACK

ex ::= E | U

Figure 6: BNF grammar for messages in our model.

Attacker
Closed
Peer A

Closed
Peer B

INIT,itag=i1

Cookie_Wait

INIT_ACK,
vtag=i1,itag=i2

Cookie_Echoed

INIT,itag=i3 INIT_ACK,
vtag=V ,itag=i1

Figure 7: First ambiguity. What value should V take? See
Section 3.3.

an “unexpected” value, or “none”, since this level of detail
is all that matters for our properties. A side-effect is that we
cannot study INIT collision. INIT collision is not included
in the State Association Diagram in RFC 9260 §4, nor in
the various association flows throughout the RFC document,
leading us to believe it is not a protocol feature but rather an
edge-case the protocol is designed to withstand.
• Perfect channel. We do not model packet loss, reordering,
nor corruption, nor how SCTP deals with these scenarios.
• Peers do not exchange data while in Established. Be-
cause we focus on denial-of-service attacks, modeling data
exchange while in Established is unnecessary; rather, we fo-
cused on the connection and disconnection of peers. We did
model data transmission outside of Established, in case it
caused edge-case behaviors during teardown.
• Packets only ever contain one chunk. Since we also do
not model (or write properties about) fragmentation, bundling,
or reassembly, we can simulate multi-chunk transmissions by
sending consecutive single-chunk messages.
• Simplified packet structure. We choose not to model
packet structure details relevant to only DATA packets, e.g.:
stream sequence number, payload protocol identifier, and vari-
able length. We also do not model ICMP messages.

3.5 Correctness Properties

Next we transcribe ten logical properties we believe SCTP
should satisfy. Note, we do not intend to create a complete set
of properties that captures all behaviors of SCTP. Rather, we
design our properties to capture the security-relevant behavior
of SCTP. Each property is implemented in PROMELA using
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LTL. We justify each using the RFCs [55,58] and our intuition
about the security SCTP should provide.

φ1: A peer in Closed either stays still or transitions to
Established or Cookie_Wait. This is based on the routine
described in §5.1, as well as the Association State Diagram
in §4. If a closed peer could transition to any state other than
Established or Cookie_Wait, it could de-synchronize with the
other peer, breaking the four-way handshake and potentially
leading to a deadlock, livelock, or other problem.
φ2: One of the following always eventually happens: the

peers are both in Closed, the peers are both in Established,
or one of the peers changes state. The property we want to
capture here, “no half-open connections”, is stated in §1.5.1,
was verified in the related work by Saini and Fehnker [53],
and was studied for TCP in two prior works [47, 67]. But
we have to formalize it subtly, because in the case of an in-
transit ABORT, it is possible for one peer to temporarily be in
Established while the other is in Closed; so we write it as a
liveness property, saying half-open states eventually end.
φ3: If a peer transitions out of Shutdown_Ack_Sent then

it must transition into Closed. We derived this from the
Association State Diagram in §4. Every transition out of
Shutdown_Ack_Sent described in the RFC ends up in ei-
ther Closed or Shutdown_Ack_Sent. If this property fails,
it would imply a flaw in the graceful teardown routine, and
could cause a deadlock, livelock, or other problem.
φ4: If a peer is in Cookie_Echoed then its cookie timer

is actively ticking. Per §5.1 C), the peer starts the cookie
timer upon entering Cookie_Echoed. Per §4 step 3), when
the timer expires it is reset, up to a fixed number of times, at
which point the peer returns to Closed. If the property fails,
then the active peer in an establishment could get stuck in
Cookie_Echoed forever, opening a new opportunity for DoS.
φ5: The peers are never both in Shutdown_Received. This

property follows from inspection of the Association State
Diagram in §4. From a security perspective, if both peers
were in Shutdown_Received, this would indicate that neither
initiated the shutdown (yet both are shutting down); the only
logical explanation for which is some kind of DoS.
φ6: If a peer transitions out of Shutdown_Received then it

must transition into either Shutdown_Ack_Sent or Closed.
The transition to Shutdown_Ack_Sent is shown in the As-
sociation State Diagram in §4. The transition to Closed can
occur upon receiving either a User_Abort from the user or an
ABORT from the other peer. No other transitions out of Shut-
down_Received are given in the RFC. If this property fails,
it could de-synchronize the teardown handshake, potentially
leading to an unsafe behavior. For example, if a peer transi-
tioned from Shutdown_Received to Established, it would end
up in a half-open connection.
φ7: If Peer A is in Cookie_Echoed then B must not be in

Shutdown_Received. We derived this from the Association
Diagram in §4, which shows A must receive an INIT_ACK

while in the Cookie_Wait and then send a COOKIE_ECHO in
order to transition into Cookie_Echoed. B must have been
in Closed to send an INIT_ACK in the first place, hence B
cannot be in Shutdown_Received. This property relates to
the synchronization between the peers: if one is establishing
a connection while the other is tearing down, then they are
de-synchronized, and the protocol has failed.
φ8: Suppose that in the last time-step, Peer A was in

Closed and Peer B was in Established. Suppose neither
user issued a User_Abort, and neither peer had a timer
time out. Then if Peer A changed state, it must have
changed to either Established, or the implicit, intermedi-
ary state in Cookie_Wait in which it received INIT_ACK
but did not yet transmit COOKIE_ECHO. The transitions
from Closed to Established and the described intermediary
state are implicit in the Association State Diagram in §4. The
timer caveat is described in §4 step 2, and the aborting caveat
is in §9.1. If the property fails, the four-way handshake ended,
yet was not completed successfully, did not time out, and was
not aborted, so somehow, the protocol failed.
φ9: The same as φ8 but the roles are reversed. The property

is: Suppose that in the last time-step, Peer B was in Closed
and Peer A was in Established...
φ10: Once connection termination initiates, both peers

eventually reach Closed. This follows from the description
of connection termination in §9. Once connection termination
is initiated, there is no way to recover the association.

For the On-Path attacker model, φ8 and φ9 are symmetric. For
the other attacker models, the properties are distinct, because
the attacker model’s network topology is asymmetric.

3.6 Validating Our Model

Our model allows us to execute and reason about any com-
ponent of the peer logic in isolation, or two interacting peers.
To verify our model, we extracted the properties listed above
from the SCTP RFCs, and then used the model-checker to
prove that our model satisfies all of the properties. We in-
teractively guided SPIN to drive the model through various
connection flows (which we compared to the RFC text), and
we manually compared our logic for handling OOTB packets
to the corresponding C code in Linux and FreeBSD. Finally,
we used SPIN to prove there were no deadlocks or livelocks
(liveness cycles) and all the peer states are reachable.

4 SCTP Attack Synthesis

In this section we provide details on attack synthesis and
KORG, the tool we used. Next, we describe four attacker
models we defined and used for our analysis. Finally, we
present the changes we had to make to KORG to handle our
SCTP model, and the four attacker models we considered.
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4.1 Attack Synthesis

LTL program synthesis is the problem of, given an LTL speci-
fication φ, automatically deriving a compliant program P (for
which P |= φ). LTL attack synthesis is fundamentally different
(logically dual), and cannot be solved using program synthe-
sis alone. In attack synthesis, the problem is flipped: given
a program S and property φ, where S is already compliant
(S |= φ), if S = P ∥ Q consists of an invariant component P
(that the attacker cannot change) and a variant component Q
(that the attacker can change), we ask whether there exists
some modification A such that, if we replace Q with A, the
new system S′ = P ∥ A is non-compliant (S′ |̸= φ). In other
words, we study a system that behaves correctly, and ask if
we can change some constrained aspect so that it behaves
incorrectly. If so, we call this modification A an “attack”.

There are multiple kinds of attacks one might try to synthe-
size, depending on the nature of the protocol and the attacker
goal. We use use KORG [67], which leverages SPIN [28] to
synthesize attacks against arbitrary LTL properties of trans-
port protocols. LTL includes safety properties – which say that
something bad never happens (e.g., φ4) – and liveness prop-
erties – which say that something good eventually happens
(e.g., φ10). The main difference between SPIN and verifiers
such as PROVERIF [13] and TAMARIN [44] is that SPIN only
supports finite-state models and LTL, whereas PROVERIF
and TAMARIN support infinite-state models, and other kinds
of properties such as forward secrecy and trace equivalence.
However, this expressiveness comes at a cost, which is that the
unbounded verification of liveness properties in the crypto-
graphic verification setting is undecidable [7].9 Cryptographic
verifiers can verify liveness properties in a bounded fashion,
i.e., by confirming that something good happens within a
bounded number of steps (TAMARIN does this [8]); or in an
unbounded fashion, by relying on human input in the form of
proof hints (see e.g., [60, 70]).

In contrast, an LTL model checker such as SPIN can only
reason about finite state-spaces, but, can automatically verify
both safety and liveness properties of finite systems (such as
the SCTP handshake) in an unbounded fashion, by exploiting
the omega-regularity of LTL over finite Kripke structures [28].
KORG is proven to be sound (it has no false-positives) and
complete (if attacks of the kind KORG looks for exist, given
enough resources, KORG will find one) [67]; with the caveat
that it is restricted to small, finite-state systems with LTL
specifications. Since the SCTP handshake does not use any
cryptographic primitives other than the cookie, and can be
described using a small, finite-state model, and since we want
to determine whether any attacks whatsoever exist against
certain properties (and not just attacks of a certain size), we
choose KORG for our analysis; but if we aimed to study a

9Indeed, even simple reachability problems such as secrecy are not in
general decidable for finite, straight-line, role descriptions in PROVERIF or
TAMARIN, and so often the human using the tool must supply proof hints.

cryptographic or infinite-state protocol such as TLS or Sig-
nal (see: [17, 36], resp.), we would need a verifier such as
PROVERIF or TAMARIN, or a hybrid approach combining
multiple tools, as in [18]. Note, KORG was previously suc-
cessfully applied to TCP and DCCP [47, 67], and adds the
attack synthesis functionality to SPIN, which itself has ex-
isted for 35 years; has been applied to dozens of real systems
including the Mars rover [29], PathStar access server [30],
and ISO/IEEE P11073-20601 medical communication pro-
tocol [24]; spawned a dedicated formal methods conference,
currently in its 30th year10; and earned the 2002 ACM Soft-
ware System Award.

KORG requires four inputs: an invariant component P (e.g.,
the SCTP model) and variant component Q (which in our
case is part of the attacker model), both in PROMELA; an LTL
correctness property φ, such that the composite system con-
sisting of both P and Q satisfies φ (P ∥ Q |= φ); and a YAML
file encoding the grammar (I/O) of Q (which become the I/O
of the attacker). KORG generates an model with these inputs
in which Q is replaced with a process called a daisy, that can
nondeterministically send or receive messages specified in the
grammar. Next, it modifies φ to have a precondition saying
the daisy terminates, and then asks SPIN to verify or disprove
the modified property for the modified model. Either KORG
reports no attacks exist, or SPIN outputs a counterexample
execution, which KORG parses into an attack A. For more
refer to [67]. The inputs to KORG needed to reproduce each
of our experiments are documented in the paper artifacts.

KORG is limited by the level of detail in the model, the defi-
nition of “attack” used by KORG [67], and the attacker models
and properties considered. Thus there could exist other attacks
beyond those KORG synthesizes, which violate other proper-
ties or work in other attacker models; or attacks other than
the type that KORG can find (e.g., statistical ones); or attacks
that cannot be found without a more detailed model. These
limitations are inherent to all attack synthesis techniques.

4.2 Attacker Models
We define an attacker model to be a formal description of
the placement and capabilities of the attacker and protocol
peer(s) on the network. We create four attacker models: Off-
Path, Evil-Server, Replay, and On-Path. They are general-
purpose and applicable to any transport protocol, and we
contribute them to KORG. Of these, SCTP was only designed
to be fully robust against an Off-Path attacker; we study the
others to understand what could happen in a “worst-case”
scenario. Note, we model only DoS attacks with two agents.
Our approach does not scale for scenarios with unbounded
parallel sessions, such as Dolev-Yao.

Off-Path. This is the primary attacker model discussed in
the IETF SCTP security memo [56] and is what SCTP was
designed to be fully secure against. In this model, an attacker

10https://spin-web.github.io/SPIN2023/
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CHANNEL

ATOB
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PEERA PEERB

ATTACKER

invalid msgs

USERA USERB

Figure 8: Off-Path Attacker Model: S = ATTACKER ∥
USERA ∥ PEERA ∥ CHANNEL ∥ PEERB ∥ USERB. The at-
tacker can transmit messages into the BtoA buffer, but cannot
receive messages, nor block messages in-transit. The attacker
can send only chunks having an invalid itag and vtag (as it is
not privy to the association).

CHANNEL

ATOB

BTOA
PEERA ATTACKER

USERA USERB

Figure 9: Evil-Server Attacker Model: S = USERA ∥
PEERA ∥ CHANNEL ∥ ATTACKER ∥ USERB. Peer B is pre-
fixed with an attacker, whose code consists of a finite, termi-
nating sequence of communication operations.

who does not know either vtag communicates with one peer
in order to disrupt a connection between the two peers. The
vtag mechanism in SCTP was designed to defend against such
an attacker. See Figure 8.

Evil-Server. In this model, one of the peers behaves ma-
liciously. The attacker takes the form of a finite sequence
of malicious instructions inserted before the code of Peer B,
after which B behaves like normal. The purpose of this at-
tacker model is to study the degree to which an adversary
capable of temporarily controlling one peer in a connection
can negatively impact the other. For example, could it cause
the second peer to deadlock? See Figure 9.

Replay. In this model (Figure 10), the attacker can replay
captured packets without modification. SCTP was designed
to withstand most replay attacks using its TSN mechanism,
as discussed in IETF TSVWG 115 [42].

On-Path. In this attacker model, the attacker controls the

CHANNEL

ATOB

BTOA
PEERA PEERB

ATTACKER

unmodified msgs

USERA USERB

Figure 10: Replay Attacker Model: S = ATTACKER ∥
USERA ∥ PEERA ∥ CHANNEL ∥ PEERB ∥ USERB. The at-
tacker can capture and re-transmit messages in BtoA, but
cannot edit captured messages, nor block those in transit.

ATTACKER
ATOB

BTOA
PEERA PEERB

USERA USERB
valid msgs only

Figure 11: On-Path Attacker Model: S = USERA ∥ PEERA ∥
ATTACKER ∥ PEERB ∥ USERB. The attacker is allowed to
perform a finite sequence of send/receive actions, in which it
only sends valid messages (but can receive anything). Once
this sequence terminates, it behaves like an honest channel.

channel connecting the two peers, and can drop or insert valid
messages at-will. SCTP was not designed to provide security
against such an attacker and we study this attacker model only
to understand what the “worst case scenario” for SCTP looks
like (e.g., as studied in [34]). See Figure 11.

4.3 Changes to KORG

We improved KORG to support our SCTP analysis in four
ways. (1) Since KORG was originally hard-coded for enum-
style packets, we extended KORG to support arbitrary finite
packet types. This was needed to support our SCTP model
(Figure 6). (2) We modified KORG to report any attacks it finds
even if it fails to exhaust the search-space. Previously, it would
report an error and discard any results if the space was not
exhausted. (3) To save time, we disabled the preliminary step
where KORG verifies that the property holds in the absence of
an attacker, instead manually performing this step in SPIN.
(4) We extended KORG to support replay attackers.

A replay attacker is one capable of capturing and replay-
ing messages. Although the replay attacker model reasons
about packets received, the attacks this model produces form a
subset of those produced by the On-Path attacker; thus, sound-
ness and completeness follow from the proofs in the KORG
paper. Our replay attacker synthesis implementation supports
packet capture and replay over the same or different channels.
In the latter case, the attacker can capture a message from
one channel and replay it into another. It also supports packet
storage in a memory buffer with configurable size, though,
the verification complexity increases exponentially with the
memory bound. Finally, to support the state change that hap-
pens when a new vtag is chosen, we added a feature where a
special message can be configured to flush the storage.

We also contribute our SCTP model and four attacker mod-
els in a format amenable to KORG. We document the attacker
models in Section 4.2. Excluding the models, our modifi-
cations required changing 80 lines of preexisting code and
adding 213 lines of new functionality in KORG, in addition
to 102 lines of shell-script to automate our experiments. All
modifications are available with the paper artifacts.
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5 Experimental Results

We next present our experimental results. Our SCTP model
satisfies all ten properties in the absence of an attacker. To
examine whether these properties still hold when an attacker
is present, we synthesize attacks using the four attacker mod-
els. Then, we enable the CVE patch described in RFC 9260
and repeat our analysis, in order to check whether the patch
resolves the vulnerability, and/or introduces any new attack
vectors. Finally, we show how new attacks are enabled if
either ambiguity in Section 3.3 is misinterpreted. Analysis
runtimes are related in the appendix.

5.1 Experimental Methodology

Each time we run KORG, we ask it to synthesize ≤ 10 attacks.
In our experience, after the first ten, subsequent attacks tend
to be repetitive, differing only by actions that do not impact
the attack outcome. We configure KORG with a default search
depth of 600,000, and a maximum depth of 2,400,000. In
our experience, these parameters balance fast-performance
on smaller properties with the ability to also attack more com-
plex ones, without needing to run on a cluster. While KORG
may run out of time or memory without finding an attack
for larger finite state machines, in the experiments presented
in this section, KORG never runs out of memory. It either
finds at least one attack or fully exhausts the search-space
before hitting the configured maximum search depth. Recall,
however, that we only study attacker models involving two
agents (i.e., one association). KORG does not scale to larger
attacker models such as Dolev-Yao, which might involve an
unbounded number of agents. We make certain assumptions
or optimizations in the different attacker models.
• Off-Path: We assume the Off-Path attacker knows the port
and IP of a peer, since otherwise, all its (spoofed) messages
will be immediately discarded.11 To reduce the search-space,
we assume the attacker does not send DATA or COOKIE_ERROR
chunks, which cannot change the receiving peer’s state. We
further reduce the space by first synthesizing attacks against
the establishment routine, where the attacker could only send
messages that are used during establishment; and then doing
the same for teardown. Our search is complete despite this
split because the FSM is inherently Markovian and our prop-
erties do not look back more than one state in the past. In our
open-source artifacts, we provide code illustrating how this
optimization can be repeated for any transport protocol.
• Evil-Server: We assume the Evil-Server attacker only sends
valid messages, since it knows the current vtags. To reduce
the search-space, we assume it does not send DATA.
• Replay: We configure the replay attacker to have a memory
size of two — we find that more memory causes state-space
explosion making exhaustive verification infeasible. We also

11The ports and IP of a peer might not change between associations [57].

BTOA !COOKIE_ACK,U,N; (repeat twice more)
BTOA !COOKIE_ECHO,U,N;
BTOA !COOKIE_ACK,U,N; (repeat 6 more times)
BTOA !COOKIE_ECHO,U,N;
BTOA !INIT,N,U; /* attack */

Figure 12: Automatically synthesized CVE attack in the Off-
Path attacker model. BTOA is the channel from the attacker
to the peer being attacked. Only the final line matters.

configure it to discard all messages in memory upon receiv-
ing an INIT, allowing us to correctly model the vtag change
between multiple connection and teardown cycles.
• On-Path: We perform the same optimizations as in the

Off-Path attacker model. And like in the Evil-Server attacker
model, we assume the attacker only sends valid messages.

5.2 Attacks
We generate at least one attack in each attacker model, all of
which we summarize in Table 2. However, recall that SCTP
was only designed to withstand Off-Path attacks, so, results
in the other attacker models do not negatively impact our
perspective on the security of SCTP. And in the Off-Path
model, we find only the CVE attack with the patch is disabled,
and no attacks when the patch is enabled. Therefore, our
results can be seen as affirming the security of SCTP. We
discuss results for each attacker model in detail below.

Off-Path. KORG found a variant of the attack reported
in CVE-2021-3772, given in Figure 12. The variant differs
only from the CVE in that it begins by transmitting some
OOTB messages that are discarded and have no impact on
the outcome. It ends with the transmission of an INIT with
an unexpected (zero) itag, which is the CVE attack.

Evil-Server. KORG synthesizes four attacks. The first at-
tack models a scenario in which the Shutdown Timer is con-
figured to a very large value, and thus the attacker can cause
a peer in active teardown to (essentially) deadlock by never
responding to its SHUTDOWN message. In the second attack,
the attacker exploits the unexpected packet logic in §5.2.4
to guide a peer out of passive teardown and back into Estab-
lished. The third and fourth attacks are similar and involve
guiding one peer through establishment to de-synchronize it
with the other, leading to a half-open connection. Although
SCTP was not designed to withstand an Evil-Server, it can
nevertheless be configured to defend against attacks like those
we found through the appropriate configuration of timers.

Replay. KORG synthesizes one attack where the attacker
captures and replays an ABORT message sent by a peer before
both peers establish a new TSN. The attacker can keep re-
playing the ABORT message indefinitely, preventing the peers
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Model Prop. Synthesized Attacks Category

Off-Path
φ9 1 variant of the CVE attack. Attack
φ8 1 opportunistic INIT attack (Fig. 14). Misinterpretation
φ4 1 opportunistic INIT_ACK attack (Fig 15). Misinterpretation

Evil-Server

φ1 1 where the attacker guides A through passive establishment. Then when A attempts active
teardown, if its Shutdown Timer never fires, it deadlocks.

Misuse

φ6 1 where the attacker guides A to Shutdown_Received, then sends it an unexpected COOKIE_ECHO,
causing it to go back to Established.

Misuse

φ8 1 where the attacker guides A through most of active establishment before aborting the connec-
tion. When the attack terminates, B receives the en-route COOKIE_ECHO and completes passive
establishment, creating a half-open connection.

Misuse

φ9 1 where the attacker guides A through passive establishment then terminates. If B then attempts
active establishment, the property fails, since the peers are de-synchronized.

Misuse

Replay φ2 1 where the attacker sends an ABORT before the peers establish a TSN for the association. Misuse

On-Path
φ5 4 attacks where the attacker manipulates both peers into Shutdown_Received. Misuse
φ8 2 where the attacker spoofs A to guide B through passive establishment. Misuse
φ9 2 where the attacker spoofs B to guide A through passive establishment. Misuse

Table 2: Attacks found without the patch.

from establishing a connection. This attack is hard to pull off
because it requires one of the peers to first ABORT and then
attempt to re-establish a connection. No other attacks were
found. This is expected, as the OOTB logic and TSNs should
prevent a replay attacker from injecting old packets.

On-Path. KORG synthesizes four similar attacks where
the attacker guides both peers into an association, and then
spoofs each peer, sending a SHUTDOWN to the other. In gen-
eral, an On-Path attacker is so powerful that we expect it can
manipulate either peer into any state it pleases, as it totally con-
trols the network, so this is unsurprising. KORG synthesizes
two more attacks, one for each of the half-open properties,
both similar to the last attack reported with the Evil-Server
attacker model. These results reinforce the IETF SCTP secu-
rity memo’s statement that “only a strong end-to-end security
model can prevent” On-Path attacks.

Note, the reason we do not rediscover the CVE attack in
the Evil-Server or On-Path attacker model is that we restrict
the attacker in both to only send valid messages, whereas the
CVE attack requires an invalid INIT. We put this restriction in
place in our model to avoid state-space explosion. In general,
every attack that is possible in the Off-Path attacker model is
also possible in the Evil-Server and On-Path ones.12

5.3 Patch Verification

Next, we re-run our analysis with the CVE patch enabled.
In the Off-Path attacker model, KORG terminates without
finding any attacks. Since KORG found the vulnerability in
the Off-Path attacker model when the patch was disabled, and
reports no attacks in that same attacker model when the patch
is enabled, and as KORG is complete, this suffices to prove
that the patch resolves the vulnerability. In the other attacker

12(up to isomorphism)

models, we find the exact same attacks as those reported in
Table 2, and nothing more. This proves the patch does not
decrease the security of the protocol as it pertains to attacks in
any of the four attacker models we study and against the ten
LTL properties we specify. However, it does not mean that no
new attacks are introduced outside the scope of our analysis,
such as, statistical or side-channel attacks or attacks against
other properties or in other attacker models besides those
listed. Also, our analysis is inherently limited to the attacker
models we study, in which the attacker can only perform DoS
attacks against a single association involving two agents.

5.4 Ambiguity Analysis

Next, for each of the two ambiguities, we configure our model
with the incorrect interpretation thereof and synthesize attacks
against it. We find that the incorrect interpretation of either
ambiguous portion could enable a DoS attack, which we illus-
trate in Figure 14 and Figure 15, respectively, in the Appendix.
We consulted with the lead SCTP RFC author who confirmed
that the ambiguities we highlighted, if misinterpreted, could
open the protocol to attacks such as those we found – and that
these attacks will not work if the ambiguous sections are in-
terpreted correctly. Out of concern that a real implementation
might have misinterpreted the RFC, we manually analyzed
the source for both the Linux and FreeBSD implementations,
and tested both implementations with PACKETDRILL, finding
that neither made either mistake.

6 Related Work

There are many automated attack discovery tools, each crafted
to a particular variety of bug or mechanism of attack, e.g.,
SNAKE [33] (which fuzzes network protocols), TCPWN [32]
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(which finds throughput attacks against TCP congestion con-
trol implementations), TAMARIN [44] and PROVERIF [13]
(which find attacks against secrecy in cryptographic proto-
cols), KORG [67] (which finds communication attacks against
network protocols), and so on. Some of these tools (e.g.,
KORG) are general purpose, designed to attack any correct-
ness property within a generic specification language, while
others (e.g., TAMARIN or PROVERIF) are more specialized,
designed to target specific types of properties such as secrecy
and trace-equivalence. One work, which studied TCP and
ABP, suggested reactive controller synthesis (RCS) as an al-
ternative to KORG’s approach [41]. KORG generates attacks
that sometimes succeed, depending on choices made by the
peers, whereas the RCS method only outputs attacks that al-
ways succeed; but such attacks do not always exist. Another
approach, which Fiterau-Brostean et. al. [21] successfully
applied to various SSH [71] and DTLS [51] implementa-
tions, describes incorrect behaviors using automata (rather
than properties). This specification style makes sense when
generic bug patterns are known ahead of time.

Formal methods such as theorem proving, model check-
ing, property-based testing, and attack synthesis for pro-
tocols have been applied to TLS [17] and accountable
proxying over it [12], QUIC [43], Bluetooth [69], 5G [9]
and its key-establishment stack [45], TCP congestion con-
trol [6] and the combination of Karn’s Algorithm and the
RTO computation upon which it relies [66], the TCP es-
tablishment routine [46, 47, 67], and contactless EMV pay-
ments [10, 48], to name a few. Compared to many of these
systems, such as TCP which has been studied for over 30
years [11, 25, 27, 32, 33, 47, 54, 67], much less is known about
the security of SCTP, particularly from an FM perspective.

Of the prior works that applied formal methods to the
security of SCTP, only the Uppaal analysis by Saini and
Fehnker [53] used a technology (model-checking) that can
verify arbitrary properties. They reported two properties in
their paper; the first is similar to our φ2. The second says
an adversary only capable of sending INIT packets cannot
cause a victim peer to change state. This property is trivial
for us because we use an FSM model where the peer states
are precisely the model states. And in our model, the only
transition out of Closed that happens upon receiving an INIT
is a self-loop that sends an INIT_ACK and returns to Closed.
In contrast, in Saini and Fehnker’s model the peer state is a
variable in memory, while the model states are totally differ-
ent (e.g., LC1, LC2). Thus, the property merits verification in
their model but not ours. Saini and Fehnker’s work is the only
one we are aware of that studied SCTP in the context of an
attacker using formal methods. But their attacker was only
capable of sending INIT messages, in contrast to our attacker
models which are much more sophisticated, and their attacker
could not spoof the port and IP of a peer. Hence, they could
not model (and so did not find) the CVE attack.

Another line of inquiry aims to model the performance of

SCTP, e.g., using numerical analyses and simulations [16].
For example, Fu and Atiquzzaman built an analytical model
of SCTP congestion control, including multihoming, an SCTP
feature not available in TCP. They compared their model to
simulations and found it to be accurate in estimating steady-
state throughput of multihomed paths [23]. Such models are
also used to evaluate new features, e.g., as in [72].

7 Conclusion

In this work we formally modeled SCTP and specified ten
novel LTL correctness properties based on a close reading
of the RFCs. We proved that in the absence of an attacker,
the protocol satisfies all ten properties. We used KORG to
synthesize attacks against our model for four novel attacker
models, Off-Path, Evil-Server, Replay, and On-Path, and for
two configurations of the SCTP model – one without the RFC
9260 patch and another with it. This required improvements
to KORG, which we open-sourced with the paper artifacts.
Without the patch, we found the CVE-2021-3772 attack in
the Off-Path attacker model; a variety of Evil-Server and
On-Path attacks; and one Replay attack. Then we repeated
our analysis with the patch, and found that it eliminated the
CVE vulnerability. We found that the patch did not impact the
security of the protocol with respect to properties other than
the one violated by the CVE attack in the Off-Path attacker
model, nor did it change any of the results in the other (less
realistic) attacker models. Recall, however, that our analysis
is limited to DoS attacks involving just two agents in an
association, because KORG does not scale to attacker models
with very large (let alone unbounded) state-spaces.

We also explored extending KORG to not just discover vul-
nerabilities, but synthesize patches too. We found the task
infeasible as the search space for edits is enormous, and each
edit requires re-verifying. And since PROMELA does com-
position over FIFO channels, reasoning about the composite
Kripke Structure and tying it back to the PROMELA encod-
ing proved very challenging. Though we failed to synthesize
patches in this work, we believe patch synthesis may be plau-
sible in a more automata-theoretic context.

Our attacks highlight the need to explicitly handle unex-
pected but valid packets and set reasonable timer values. We
reported two ambiguities in RFC 9260, each of which could
be misinterpreted in a way that could lead to a vulnerability.
We analyzed the Linux and FreeBSD SCTP implementations
using PACKETDRILL and found both correctly interpreted the
ambiguous portions of text. We concluded with recommen-
dations for how the portions could be made unambiguous in
errata. So far, our second recommendation for an erratum was
accepted by the SCTP RFC committee.
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8 Appendix

History of CVE-2021-3772. The vuln. reported in CVE-
2021-3772 arose from the following text in RFC 4960 [55]:
“If the value of the Initiate Tag in a received INIT chunk is
found to be 0, the receiver MUST treat it as an error and close
the association by transmitting an ABORT.” As shown in Fig. 3,
if an implementation did not check the validity of the INIT
before transmitting an ABORT, then the RFC allowed for a
DoS where the attacker would transmit an invalid INIT and
trigger the victim to close an otherwise valid association. This
vuln. was first reported in the SCTP mailing list [26] and then
in CVE-2021-3772 [49]. The vuln. was subsequently patched
in Linux by swapping the order of operations, to ensure the
vtag is always checked before the itag [38]. The RFC was
updated in 9260 [58] to say: “If the value of the Initiate Tag
in a received INIT chunk is found to be 0, the receiver MUST
silently discard the packet.” ... and FreeBSD [4] implemented
this patch when it was updated to reflect the new RFC.

User Model. The user nondeterministically sends
User_Assoc, User_Abort, and User_Shutdown.

Additional Errata. We suggest incorporating the self-loop
at Closed that occurs upon receiving a SHUTDOWN_COMPLETE,
into the State Association Diagram in Section 4. We suggest
incorporating “INIT collision” into that same diagramWe sug-
gest expanding 5.2 to explain how to handle other unexpected
chunks, e.g., COOKIE_ERROR, SHUTDOWN_COMPLETE, etc.

Performance We time our experiments and patch verifica-
tion tasks, and almost always, KORG terminates in seconds
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/* P1 */ G((st[0] == Closed) -> (X(F(st[0] == Closed
|| st[0] == Established || st[0] == CookieWait))))
/* P2 */ G(F(st[0] != ost[0] || st[1] != ost[1] ||
(st[0] == Closed && st[1] == Closed) ||
(st[0] == Established && st[1] == Established)))
/* P3 */ G((st[0] != ost[0] && ost[0] ==
ShutdownAckSent) -> (st[0] == Closed))
/* P4 */ G(F(st[0] != CookieEchoed ||
timers[0] == T1_COOKIE))
/* P5 */ G(st[0] != ShutdownReceived ||
st[1] != ShutdownReceived)
/* P6 */ G((st[0] != ost[0] && ost[0] ==
ShutdownReceived) -> (st[0] == ShutdownAckSent ||
st[0] == Closed))
/* P7 */ G(st[0] != CookieEchoed || st[1] !=
ShutdownReceived)
/* P8 */ G((ost[1] == Established && ost[0] ==
Closed && everAborted == false && everTimedOut ==
false && ost[0] != st[0]) -> (st[0] == Established
|| st[0] == IntermediaryCookieWait))
/* P9 */ G((ost[0] == Established && ost[1] ==
Closed && everAborted == false && everTimedOut ==
false && ost[1] != st[1]) -> (st[1] == Established
|| st[1] == IntermediaryCookieWait))
/* P10 */ G((ost[0] == Established && (st[0] ==
ShutdownSent || st[0] == ShutdownReceived))
-> F(st[0] == Closed))

Figure 13: Our 10 LTL properties are formulated in
PROMELA. We define our atomic propositions as follows in
PROMELA, where st holds the state of each peer, ost holds
the prior one, and timers holds the peers’ timers.

Attacker
Cookie_Echoed

Peer A
Closed
Peer B

INIT, itag=i3 INIT_ACK,
vtag=i1

ABORT,
vtag=i1

Closed Closed

COOKIE_ECHO,
vtag=i2

COOKIE_ACK,
vtag=i1

Closed Established

Figure 14: First ambiguity attack.

Attacker
Cookie_Wait

Peer A
Closed
Peer B

INIT_ACK,
vtag=0,
itag=0

ABORT

Closed Closed

Figure 15: Second ambiguity attack.

chan attacker_mem = [2] of {
mtype:msgs,mtype:tag,mtype:tag,byte };

active proctype attacker_replay() {
mtype:msgs b_0; mtype:tag b_1, b_2; byte b_3;
do :: atomic { AtoB ?? <b_0, b_1, b_2, b_3>
-> attacker_mem ! b_0, b_1, b_2, b_3; }

:: atomic { attacker_mem ?? b_0, b_1, b_2, b_3
-> AtoB ! b_0, b_1, b_2, b_3; }

:: atomic { attacker_mem ?? b_0, b_1, b_2, b_3; }
:: break; od }

Figure 16: The replay attacker gadget.

or minutes, with one interesting exception. In the Off-Path
experiments, KORG takes about two hours to confirm that
no attacks exist against φ8, and about 1.5hrs to find the CVE
attack against φ9. Recall that φ8 and φ9 are identical, except
that the peer roles are reversed. Further inspection reveals
these two properties are the largest in our property set, and the
Off-Path attacker model is the largest attacker model. The rea-
son these two analyses take longer follows, as KORG reduces
to LTL model-checking, the runtime of which is polynomial
in the size of the model and O(log2 |φ|) in the size of φ [64].

Off-Path Evil-Server Replay On-Path
E P E P E P E P

φ1 2:20 2:13 0:23 0:23 0:3 0:3 0:15 0:15
φ2 8:43 11:14 0:21 0:21 0:2 0:2 0:26 0:26
φ3 3:20 12:53 0:20 0:20 0:2 0:2 0:25 0:25
φ4 1:45 1:26 0:11 0:11 0:2 0:2 0:14 0:14
φ5 2:57 1:35 0:10 0:10 0:2 0:2 0:12 0:12
φ6 3:19 18:8 0:20 0:20 0:2 0:2 0:25 0:25
φ7 1:43 4:41 0:11 0:10 0:2 0:2 0:13 0:14
φ8 123:42 7:7 1:6 1:7 0:2 0:2 1:34 1:34
φ9 86:10 6:48 1:5 1:5 0:2 0:2 0:11 0:11
φ10 0:4 0:4 0:3 0:4 0:2 0:2 0:4 0:4

Table 3: Time taken (min:sec) to perform each (E) experiment
and (P) patch verification on a 16GB M1 Macbook Air.
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