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Abstract
In this paper, we present novel key-recovery attacks on Ap-
proximate Homomorphic Encryption schemes, such as CKKS,
when employing noise-flooding countermeasures based on
non-worst-case noise estimation. Our attacks build upon and
enhance the seminal work by Li and Micciancio at EURO-
CRYPT 2021. We demonstrate that relying on average-case
noise estimation undermines noise-flooding countermeasures,
even if the secure noise bounds derived from differential
privacy as published by Li et al. at CRYPTO 2022 are im-
plemented. This study emphasizes the necessity of adopting
worst-case noise estimation in Approximate Homomorphic
Encryption when sharing decryption results.

We perform the proposed attacks on OpenFHE, an emerg-
ing open-source FHE library garnering increased attention.
We experimentally demonstrate the ability to recover the se-
cret key using just one shared decryption output. Further-
more, we investigate the implications of our findings for other
libraries, such as IBM’s HElib library, which allows exper-
imental estimation of the noise bounds. Finally, we reveal
that deterministic noise generation utilizing a pseudorandom
generator fails to provide supplementary protection.

1 Introduction

Fully homomorphic encryption (FHE) is a cryptographic
primitive that supports arbitrary computations on encrypted
data without using the decryption key and without revealing
information about plaintexts. This problem appeared already
in the 70s [29] but a solution did not appear until 2009, when
Gentry [18] constructed the first such schemes. Many ho-
momorphic encryption schemes [6, 12, 15, 17, 19] have now
appeared and most of them are based on the security of the
Learning with Errors (LWE) problem or some of its variants.
In 2022, Brakerski, Gentry, and Vaikuntanathan received the
prestigious Gödel prize for their transformative contributions
to cryptography by constructing efficient FHE schemes.

FHE is a very powerful cryptographic tool and can be a so-
lution to many security problems, particularly for distributed

or outsourced computation. A future application area is also
in AI and privacy-preserving machine learning.

A very popular FHE branch is approximate homomorphic
encryption such as CKKS [10] and its variants [7, 8]. FHE
on approximate numbers, as proposed by Cheon, Kim, Kim
and Song [10], has attracted much attention from the fact that
it improves the efficiency of computing on encrypted data
in many applications where approximate results are accept-
able, like privacy-preserving machine learning. FHE based on
LWE builds ciphertexts that contain noise and as operations
on ciphertexts are performed, the noise is increasing. One has
to control the noise and make sure it does not grow to be too
large, in order to ensure correct decryption. The main contri-
bution in CKKS was the observation that it can be tolerable
for decryption to be approximate so that the plaintext from
the decrypted ciphertext is only approximately the correct
one. Typically, this is the case in applications where small er-
rors can occur. The CKKS scheme then supports real-valued
plaintexts, making it efficient and attractive for certain appli-
cations, allowing for some small errors in the least significant
bits. CKKS has since been implemented in many well-known
open-source libraries for homomorphic encryption and also
been extensively examined and optimized.

The CKKS scheme as most other lattice-based FHE
schemes meets the basic security notion of indistinguisha-
bility under chosen plaintext attack (IND-CPA), assuming
the hardness of some well-studied problems, like the average-
case hardness of the Learning With Errors (LWE) problem
which in turn relates to the worst-case complexity of some
computational problems on lattices. Achieving a stronger se-
curity notion – indistinguishability under chosen ciphertext
attack (IND-CCA), which presumes an active adversary capa-
ble of tampering with (or injecting) arbitrary ciphertexts – is
challenging, due to the inherent nature of FHE operations.

Li and Micciancio [23] have recently shown that the tradi-
tional formulation of IND-CPA security does not adequately
capture the security of approximate encryption against pas-
sive attacks. Specifically, in the context of a homomorphic
encryption scheme, a passive adversary has the capability to
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select or know the homomorphic function that is being ex-
ecuted. Such an adversary can also observe the outcome of
the decryption process. Despite being able to eavesdrop, this
adversary remains categorized as passive, as it is not permit-
ted to manipulate, inject, or modify ciphertexts, nor alter the
final computational result. Li and Micciancio have shown that
the CKKS scheme is vulnerable to an efficient key recovery
attack under these conditions.

They also proposed a new, enhanced formulation of IND-
CPA security that they called IND-CPA with decryption ora-
cles (IND-CPAD). This notion captures better the threats of
a passive attacker. It is proven to be identical to IND-CPA
security for encryption schemes with exact decryption, but the
situation is different when allowing approximate decryption.
The primary distinction lies in the utility of observing decryp-
tion outcomes. In encryption schemes with exact decryption,
an adversary gains no additional information from observing
the decryption result. This is because the adversary, who al-
ready knows the original message and evaluation function,
can calculate the final outcome on its own. Conversely, for
approximate encryption schemes, observing the decryption
output could yield invaluable information not readily com-
putable by the adversary. Such information may be exploited
by a passive adversary for effective key recovery.

A relevant security notion is KRD security against key re-
covery attacks, a notion that, while implied by IND-CPAD

security, is significantly weaker. This weakness arises because
key recovery attacks constitute a more potent form of attack
compared to distinguishing attacks.

Li and Micciancio also suggested some ideas of counter-
measures to avoid the proposed attack, and the open-source
libraries implementing CKKS include different but similar
countermeasures to thwart the attack in [23]. Subsequently,
Li, Micciancio, Schultz, and Sorrell further examined the use
of differential privacy to assure IND-CPAD security in [24].
Their method necessitates the inclusion of a considerable
amount of additional noise.

FHE schemes, and CKKS-like schemes in particular, in-
volve different parameters and a major task for the designer
of the scheme is the choice of parameters that should give
the best trade-off between efficiency and security. Both these
aspects relate to the connected noise growth in the scheme.
For approximate FHE, encoding noise and encryption noise
should be considered together. Also, we have to keep track
of the level of ciphertexts as in traditional FHE schemes as
well as a so-called scaling factor. CKKS-like schemes con-
sider the precision of the scheme and one has to track how it
changes through homomorphic operations and its influence
on the encrypted data. The scale parameter is typically a way
for the user to control the desired precision.

The CKKS paper provided an open-source implementa-
tion in the “Homomorphic Encryption for Arithmetic on Ap-
proximate Numbers”, Heaan [1], other implementations of
the scheme have been included in essentially all mainstream

libraries for secure computation on encrypted data, like Mi-
crosoft’s “Simple Encrypted Arithmetic Library” SEAL [26],
IBM’s “Homomorphic Encryption” library HElib [21], the
lattice cryptography libraries PALISADE [2] and Lattigo [16].
Recently, the PALISADE authors along with a subset of au-
thors from the other libraries released a new library in July
2022, under the name OpenFHE [4]. OpenFHE provides im-
plementations of all main FHE schemes.

These libraries are also used as a part of other implemented
tools and applications. A well-known example is Intel’s
nGraph-HE compiler [5] for secure machine learning applica-
tions. Other implemented applications include the encrypted
computation of logistic regression [20], security-preserving
support vector machine [27], homomorphic evaluation of neu-
ral networks and tensor programs [14], and clustering over
encrypted data [11].

A recent trend in the implementation of CKKS-like
schemes involves using a non-worst-case noise estimation,
such as an empirical or average-case noise estimation, as seen
in sources like [4, 13, 21]. In this context, a worst-case noise
bound refers to a bound that tracks the maximum possible
noise throughout each step of homomorphic evaluation. Con-
versely, empirical noise estimation involves setting the noise
limit based on empirical tests, while average-case noise esti-
mation models the noise as a Gaussian distribution, keeping
tracks of the variance during each homomorphic encryption
operation. Opting for a non-worst-case approach can enhance
performance, since the non-worst-case noise bound can be
significantly smaller than the worst-case noise bound, thus
substantially improving the scheme’s efficiency. This is partic-
ularly appealing when considering the efficiency loss incurred
while protecting against the Li-Micciancio attack.

To our knowledge, OpenFHE is the first major open-source
library to claim the implementation of the differential privacy
countermeasure as proposed in [24], yet they suggest the use
of a non-worst-case noise estimation. In this paper, we explore
the potential impact of such noise estimations on security,
when the decryption results need to be shared.

1.1 Contributions

The main contributions of this work can be summarized as fol-
lows. Firstly, using non-worst-case estimation methods, such
as relying on the central limit theorem (CLT) for average-
case noise estimation [13] or experimentally determining the
noise bound, can introduce significant security vulnerabilities.
For instance, even when adopting the secure noise bounds
suggested in [24] to achieve IND-CPAD security through dif-
ferential privacy,KRD security may not be ensured if the noise
size is estimated in a non-worst-case manner. The novel ob-
servation is that such non-worst-case estimation assumes that
the message distribution or the computation gate should fol-
low some average-case or predefined behaviour; however, in
the IND-CPAD attacker model, the adversary has the power
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to control the message distribution, causing it to deviate sig-
nificantly from the average case. The adversary also has the
power to select the functions and gates among the possible
valid options.

We implement a key-recovery attack on the recent
OpenFHE implementation, requiring only a single shared
decryption output. The OpenFHE library, a successor to PAL-
ISADE, is chosen as the primary target implementation since
it incorporates the noise-flooding countermeasure with the
new secure noise bounds [24] derived from differential pri-
vacy1. In contrast, Microsoft SEAL disallows the sharing of
decryption results, while open-source HElib and HEAAN
have not implemented countermeasures based on the latest
CRYPTO 2022 research [24]. We are capable of attacking
OpenFHE as its noise estimation method aligns with the
average-case noise estimation proposed in [13].

The experimental noise estimation employed in HElib ne-
cessitates that the server performing homomorphic evaluation
adheres to the message/ciphertext distribution and the evalua-
tion gates assumed by the user. However, these requirements
contradict the adversary model of IND-CPAD security. Our
analysis indicates that the flooding countermeasure with such
noise estimation is also insecure.

Finally, as an additional finding, we show that the protection
of utilizing a pseudorandom generator to produce determin-
istic noise with the ciphertext serving as an input seed does
not improve security. Such a countermeasure has been sug-
gested in [9,23] and implemented in HElib. We have carefully
designed a mechanism to bypass this security measure. The
code for all of our experiments is public2.

1.2 Organizations
The remainder of this paper adheres to the following organi-
zation. Section 2 introduces the background on Approximate
Homomorphic Encryption schemes. Section 3 presents the
attack targeting implementations using non-worst-case noise
estimation. Section 4 describes the attack method for deter-
ministic noise estimation for “fresh ciphertexts”. Lastly, Sec-
tion 5 offers concluding insights and additional discussions.

2 Preliminaries

In this section, we provide essential background information
on Approximate Homomorphic Encryption schemes and de-
scribe their security notions.

Notation. Let Z,Q,R,C represent the sets of integers, ratio-
nals, reals, and complex numbers, respectively. Bold charac-
ters, such as a = (a1, . . . ,an), denote vectors. The dot product

1https://github.com/openfheorg/openfhe-development/blob/
main/src/pke/examples/CKKS_NOISE_FLOODING.md.

2https://github.com/d-nabokov/KRAonCKKS

of two vectors is written as ⟨a,b⟩. For a probability distribu-
tion D , we use x←D to indicate that x is sampled according
to the distribution D . We denote the additional noise of coun-
termeasures with ε, which, though not necessarily small, can
be considered as random computational noise. Let ⌊·⌉ denote
the operation of rounding to the nearest integer. The secu-
rity parameter is represented by κ. A function f is deemed
negligible in κ if f (κ) = κ−ω(1).

2.1 Lattices and the Ring-LWE problem

A lattice is a discrete subgroup of Rn. Let n,d be two positive
integers, and let b1, . . . ,bd be linearly independent vectors in
Rn. The lattice they generate is L(b1, . . . ,bd) = ∑

d
i=1Zbi. If

d = n, the lattice is considered full-rank.
Let N = 2k be a power of 2. Let ψ(N) = XN + 1 be a

power-of-2 cyclotomic polynomial. Let R = Z[X ]/ψ(N). For
b ∈ R, we denote ∥b∥2 the Euclidean norm of the vector of its
coefficients. Let Rq = Zq[X ]/ψ(N) = R/qR.

We define N (µ,σ) as the discrete Gaussian distribution
with mean µ and standard deviation σ – that is, a probability
distribution supported on Z with a probability mass func-
tion p(x) ∝ exp(−(x−µ)2/(2σ2)). Such a distribution can
be approximated by its continuous counterpart. Specifically,
if x← N (µ1,σ1) and y← N (µ2,σ2), respectively, the sum

x+ y is regarded as a draw from N (µ1 +µ2,
√

σ2
1 +σ2

2). We
can make the distribution over Zq by reducing the output
mod q.

The best-known FHE schemes are built upon the Learning
with Errors (LWE) problem [28]. In the CKKS scenario, we
focus more on its ring version, known as the Ring-LWE prob-
lem [25]. The Ring-LWE distribution is obtained as follows.

Definition 1 Let k ≥ 1,q≥ 2,α ∈ R,s ∈ Rq. The Ring-LWE
distribution is obtained as follows:

a←U(Rq);

e← R with coefficients ←N (0,
αq√
2π

);

The oracle subsequently returns (a,a · s+ e) ∈ Rq×Rq.

2.2 Approximate Homomorphic Encryption

In their work [10], Cheon et al. introduced the first approxi-
mate homomorphic encryption scheme, commonly referred to
as CKKS, named after its creators. Here, we first present the
definition of Homomorphic Encryption. Gentry’s bootstrap-
ping blueprint [18] allows for the construction of a Fully Ho-
momorphic Encryption (FHE) scheme from an HE scheme.

Definition 2 (Homomorphic Encryption (HE)) A (public-
key) HE scheme comprises four polynomial time algorithms:
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• A (randomized) key generation algorithm KeyGen : 1κ→
P K 2×SK that generates the public key, evaluation key,
and secret key.

• A (randomized) encryption algorithm
Enc : P K ×M → C .

• A (deterministic) decryption algorithm
Dec : SK ×C →M .

• A (deterministic) homomorphic evaluation function
Eval ∀k,P K × (M k→M )×C k→ C .

In the given definition, P K signifies the collection of public
keys, inclusive of the evaluation keys, while SK denotes the
set of secret keys. Additionally, M represents the message
space, and C stands for the ciphertext space. The function
provided to the evaluation method is a circuit comprising
multiple gates.

In standard HE schemes, the correctness of the scheme is
defined as

Definition 3 (HE Correctness) For an arbitrary circuit C
the following holds

Decsk(Evalek(C,(c1, . . . ,ck))) = C(m1, . . . ,mk),

where (pk,ek,sk) = KeyGen(1κ) and ci = Encpk(mi) for all
i≤ k.

Approximate HE schemes Approximate HE schemes are
a special type of HE schemes where the notion of correct-
ness does not hold. They allow approximate arithmetic on
encrypted data, considering errors of homomorphic opera-
tions as part of the computational errors in the approximate
computation. As the first approximate HE proposal, CKKS
supports two approximate homomorphic operations:

• Decsk(Add(Encpk(m1),Encpk(m2)))≃ m1 +m2,

• Decsk(Mult(Encpk(m1),Encpk(m2)))≃ m1 ∗m2,

with a tracker on the size of the noise. Next, we will delve
into the specifics of the CKKS scheme, beginning with its
method for message encoding.

The CKKS message encoding. In order to perform point-
wise addition and multiplication of vectors in the SIMD
manner, the CKKS scheme designs the following encoding
method. Let ω be the 2N-th root of unity. Let φ : R→ C be
the mapping from a(X)∈R to φ(a) = â= (a(ω4 j+1))

N/2−1
j=0 ∈

CN/2. The CKKS scheme chooses a positive real ∆ called scal-
ing factor and defines the encoding and decoding functions
as

• Encode(z ∈ CN/2;∆) = ⌊∆ ·φ−1(z)⌉,

• Decode(a ∈ R;∆) = φ(∆−1 ·a) ∈ CN/2,

where φ−1 is the inverse function of φ.

The CKKS scheme [10]. The CKKS scheme supports the
encryption and decryption of floating-point inputs using the
message encoding interface. We now consider the plaintext
space as Rq and the ciphertext space as R2

q. We have a cipher-
text module q and a discrete Gaussian error distribution χ,
where χ = N (0,σ). We bypass many intricate details, focus-
ing on the primary procedures and attributes pertinent to this
study. The following description is from [24]. For a more
comprehensive understanding, we refer the reader to [10].

• CKKS.KeyGen(1κ): Let w = w(κ) and p = p(κ,q). We
sample s from the set s ∈ {−1,0,1}N with w non-zero
entries in s and designate sk as (1,−s). Alternatively,
s can be sampled from a uniform distribution over
{−1,0,1}N . We sample a← Rq, e← χ and take pk=
(a,b) with b = a · s+ e. We sample a′ ← Rpq, e′ ← χ

and take ek= (a′,b′) with b′ = a′ · s+e+ p · s2 mod pq.
Return (sk, pk, ek).

• CKKS.Encpk(m): Let ξ represent the distribution over
{−1,0,1}N , where each coefficient is independently
sampled as 1 or−1 with a probability of 1/4, and 0 with
a probability of 1/2. Then, we sample r← ξ, e0,e1← χ,
and return r ·pk+(m+ e0,e1) mod q.

• CKKS.Add(c0,c1): Return c0 + c1 mod q.

• CKKS.Multek(c0,c1): Assume c0 = (a0,b0) and c1 =
(a1,b1). Return (a2,b2), where (a2,b2) = (a0b1 +
a1b0,b0b1)+ ⌊p−1 ·a0a1 · ek⌉ mod q.

• CKKS.Decsk(c): For c = (a,b) ∈ R2
q, return b− a · s

mod q.

Analyzing the addition operation in the worst-case sce-
nario can be done straightforwardly. Suppose c0 and c1 are
two ciphertexts with positive error bounds errb0 and errb1,
respectively. The ciphertext resulting from the Add operation
on c0 and c1 would have an error bounded to errb0 + errb1.

2.3 Security notions

The standard notion of security for FHE is IND-CPA (Indis-
tinguishability - Chosen Plaintext Attack) security defined as
follows.

Definition 4 (IND-CPA security) We say that a FHE scheme
(KeyGen,Enc,Dec,Eval) is IND-CPA secure if each efficient
adversary A has negligible advantage AdvA(κ), where the
advantage is defined as

AdvA(κ) =
∣∣∣Pr
[
A Expr0−−−→ 1

]
−Pr

[
A Expr1−−−→ 1

]∣∣∣ .
The experiments are as follows :
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Exprb : C A
(sk,pk,ek)← KeyGen

pk−→
c← Enc(pk,mb)

m0,m1←−−−
c−→ Outputs a bit b

An additional security notion, IND-CPAD, proves vital
when the decryption outputs require sharing, as pointed out
in [23]. For non-approximate HE, the IND-CPAD notion is
proven to be equivalent to the IND-CPA notion in [23]. How-
ever, for approximate HE, it represents a much stronger secu-
rity notion. We present a formal definition as follows.

Definition 5 (IND-CPAD security [23]) Given a public-key
homomorphic (possibly approximate) encryption scheme E ,
where E = (KeyGen,Enc,Dec,Eval), with plaintext space
M and ciphertext space C , we define an experiment
Exprindcpa

D

b [A ], parameterized by a bit b ∈ {0,1} and involv-
ing an efficient adversary A that is given access to the follow-
ing oracles, sharing a common state S ∈ (M ×M ×C )∗ con-
sisting of a sequence of message-message-ciphertext triples:

• An encryption oracle Epk(m0,m1) that, given a pair of
plaintext messages m0,m1, computes c← Encpk(mb), ex-
tends the state

S := [S;(m0,m1,c)],

with one more triplet, and returns the ciphertext c to the
adversary.

• An evaluation oracle Hek(g,J) that, given a func-
tion g : M k → M and a sequence of indices J =
( j1, . . . , jk) ∈ {1, . . . , |S|}k, computes the ciphertext c←
Evalek(g,S[ j1].c, . . . ,S[ jk].c), extends the state

S := [S;(g(S[ j1].m0, . . . ,S[ jk].m0),

g(S[ j1].m1, . . . ,S[ jk].m1),c)]

with one more triplet, and returns the ciphertext c to
the adversary. Here and below |S| denotes the number
of triplets in the sequence S, and S[ j].m0,S[ j].m1,S[ j].c
denote the three components of the j-th element of S.

• A decryption oracle Dsk( j) that, given an index j ≤ |S|,
checks whether S[ j].m0 = S[ j].m1, and, if so, returns
Decsk(S[ j].c) to the adversary. (If the check fails, a spe-
cial error symbol ⊥ is returned.)

The experiment is defined as

Exprindcpa
D

b [A ](1κ) :(sk,pk,ek)← KeyGen(1κ)

S := []

b′← AEpk,Hek,Dsk(1κ,pk,ek)

return(b′)

The advantage of adversary A against the IND-CPAD se-
curity of the scheme is AdvindcpaD [A ](κ) defined as

∣∣∣Pr
[
Exprindcpa

D

0 [A(1κ)] = 1
]
−Pr

[
Exprindcpa

D

1 [A(1κ)] = 1
]∣∣∣ ,

where the probability is over the randomness of A and the
experiment. The scheme E is IND-CPAD-secure if for any
efficient (probabilistic polynomial time) A , the advantage
AdvindcpaD [A ](κ) is negligible in κ.

Another relevant security notion is the KRD security, im-
plied by the IND-CPAD security. Although KRD security is
considered much weaker than the IND-CPAD security, a key-
recovery attack is predominantly employed to demonstrate
the vulnerability of the analyzed schemes. This methodology
aligns with the research presented in this paper. We present
the formal definition of KRD security in Definition 6.

Definition 6 (KRD security [24]) Let E =
(KeyGen,Enc,Dec,Eval) be a public-key homomorphic (pos-
sibly approximate) encryption scheme with plaintext space
M and ciphertext space C . We define a game ExprKR

D
[A ],

parameterized by an adversary A that is given access to the
(stateful) oracles E′pk, Hek, Dsk, where E′pk(m) := Epk(m,m)
with oracles Epk, Hek, Dsk defined as in Definition 5.

The game is defined as

ExprKR
D
[A ](1κ) :

(sk,pk,ek)← KeyGen(1κ)

S := []

sk′← AE′pk,Hek,Dsk(1κ,pk,ek)

return(sk== sk′)

The scheme E is said to have k bits of KRD-security if, for
any adversary A ,

k ≤ log2
T (A)

AdvA
,

where T (A) is the running time of A .

In [24], the application of differential privacy technique
results in a finer-grained definition of bit-security, parame-
terized by both a computational parameter c and a statistical
parameter ν. We define this security notion as follows.

Definition 7 ((c,ν)-bits of security [24]) Let Π be a crypto-
graphic primitive, and G be an indistinguishability game. Let
AdvA be the advantage of an adversary A in breaking the
security of Π in the G game. The scheme Π has (c,ν)-bits of
G-security if, for any adversary A , either

log2
T (A)

AdvA
≥ c, or, log2

1
AdvA

≥ ν. (1)
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3 New key-recovery attacks

In this section, we improve upon key-recovery attacks initially
presented by Li and Micciancio [23], when non-worst-case
noise estimation is employed. We begin with the theoretical
framework, then transition to the security implications for the
OpenFHE and HElib homomorphic encryption libraries.

3.1 Theoretical framework
Attack model. We adopt the adversary model defined
in [23], as also illustrated in Definition 6 and Figure 1. In
this model, the adversary gains access to three stateful oracles
E′pk, Hek, and Dsk, with E′pk(m) := Epk(m,m). These oracles
are defined in Definition 5. The adversary aims to recover the
secret key sk and is capable of querying the three oracles, se-
lecting messages and evaluation functions as inputs. Notably,
this adversary remains passive; unlike an active adversary
who can manipulate arbitrary ciphertexts, this model restricts
the adversary to decryption queries on valid ciphertexts pro-
duced through legitimate operations, such as encryption and
homomorphic computation via public interfaces or APIs pro-
vided by HE libraries.

Real-world scenarios. In practical applications, it is highly
likely that decrypted data will be shared among parties who
lack access to the secret key, making IND-CPAD security
indispensable. This sharing could facilitate significant appli-
cations like two-party computation for Privacy-Preserving
Machine Learning as a Service (MLaaS), wherein the server
owns a model it wishes to provision as a service, while the
client seeks to obtain a homomorphically computed inference
on its confidential data. The ecosystem might comprise a user
holding the secret key and other participants lacking it, who
function as passive adversaries. Service providers contribute
by supplying APIs and computational resources.

An interesting case study involves a commercial applica-
tion that collects encrypted data from the user and leverages
a cloud service’s API for homomorphic computations. We
posit that the application can only invoke the API using ci-
phertexts authenticated by the user, thereby precluding the
tampering or injection of fraudulent ciphertexts. The API in-
vocation resembles the usage of the evaluation oracle Hek

as outlined in Definition 5. Should the user disclose the de-
crypted outcome, our novel attack strategy remains viable,
even if non-worst-case noise-flooding countermeasures have
been deployed.

The Li-Micciancio attack. Similar to [23], we use a sim-
plified CKKS scheme without the encoding and decoding
procedures as an example to explain the attack idea. The se-
cret key is sk=(1,−s), where s is a power-of-two cyclotomic
ring element in Rq. The only unknown part of the secret key
is s, so the recovery of sk is equivalent to recovering s. The

Encpk Evalek Decskm

f

m′
ct ct ′

Figure 1: Figure illustrates a passive attacker scenario based
on Li and Micciancio’s model [23]. In this context, the at-
tacker may choose/know the plaintext m and the homomor-
phic function f . The attacker can eavesdrop on the ciphertexts
ct, ct ′ and decryption result m′, but is not allowed to tamper
with (or inject) ciphertexts or alter the computation’s final
outcome.

adversary encrypts m as Enc(m) = (a,b) ∈ R2
q, where a ∈ Rq

is selected at random and b = a · s+ e+m for a polynomial
e ∈ Rq where the coefficients of e are a small perturbation
from the distribution N (0,σ1). The decryption function com-
putes Decs((a,b)) = b−a · s = m+ e. In the Li-Micciancio
attack, the adversary A selects the message m = 0 and re-
quests the computation of the identity function, effectively
equivalent to performing no operation. The adversary then
proceeds to request an approximate decryption and carries
out subsequent computations of

b′ = b−Decs((a,b)) = a · s.

The secret key s can then be recovered by computing

s = a−1 ·b′,

if a is an invertible element in Rq. Otherwise, the adversary
requires for more decryption queries.

Noise-flooding countermeasures. Li and Micciancio have
proposed a countermeasure from the noise-flooding technique,
for protecting against their attack in [23]. The main idea is
to introduce an additional noise in the decryption function.
Thus, the decryption function of CKKS, named decryption
for share, can be defined as

DecDs ((a,b)) = Decs((a,b))+ enew,

where enew,i←N (0,σ2) and enew,i is the coefficient of enew.
When the adversary A computes b′ = b−DecDs ((a,b)), the
output is a · s+ enew; if the noise is sufficiently large, then the
new ring-LWE instance (a,a · s+ enew) is hard to solve.

Achieving IND-CPAD through differential privacy [24].
The general idea is to add a noise with sufficiently large vari-
ance. The newly proposed schemes, referred to as S-CKKSσ,
are detailed in [24]. Initially, they establish a noise bound, ct.t,
designed to accommodate the worst-case noise growth, fol-
lowing which they add a component-wise noise, N (0,σ ·ct.t),
in the noise-flooding countermeasure. In [24], the following
lemma is proved.
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Figure 2: Iterative and tree-based addition for gt(c) with t = 4

Lemma 1 ( [24]) Assume the number of decryption oracle
calls is bounded to q and σ =

√
24qn2ν/2. If CKKS is

(c+ log2 24)-bit IND-CPA-secure, then S-CKKSσ is (c,ν)-
bit IND-CPAD-secure.

On the other hand, for recent open-source implementations
(e.g., in [4]), non-worst-case noise estimation approaches are
preferred to enhance efficiency.

New attack scenario. We describe an attack scenario when
the standard deviation σ2 of the added Gaussian noise in
the noise-flooding countermeasure is a function that grows
much slower than the estimated noise in the worst-case noise
analysis.

In alignment with the IND-CPAD model outlined in Defi-
nition 5, the adversary has the capability to execute compu-
tations on valid ciphertexts using a chosen function. Specif-
ically, the adversary employs the evaluation oracle Hek for
homomorphic calculations. Our primary focus is on the eval-
uation function gt(c), which performs homomorphic addition
of t ciphertexts c=(c1,c2, . . . ,ct). This function, illustrated in
Figure 2, can be executed through either an iterative addition
over t−1 layers or a tree-based addition spanning ⌈log2(t)⌉
layers. Depending on the approach, the gate latency stands at
either t−1 or ⌈log2(t)⌉.

In this new attack scenario, we stick with the case where
m = 0, first generate a ciphertext c0 = (a,b), and then homo-
morphically evaluate the addition gt(c), where c is a vector
repeating the ciphertext c0 for t times. The noise, therefore,
is grown from e to t · e. The new decryption function DecDs (·)

gives us the value of

etotal = t · e+ enew.

We need the following lemma to characterize the distribution
of conditional probability (ei|etotal,i = l), where ei and etotal,i
are the i-th coefficient of e and etotal, respectively.

Lemma 2 ( [22]) For two positive numbers σa and σb, let X
and Y be variables of distributions N (0,σa) and N (0,σb),

respectively. Let σ =
√

σ2
a +σ2

b, then (X |X +Y = l) follows

the distribution N (l · σ2
a

σ2 ,
σaσb

σ
).

In the attack, we can obtain the value of etotal from the new
decryption function. Conditioned on this observation, the dis-
tribution of the noise e needs to be updated. Since t ·ei is sam-
pled from N (0, t ·σ1) and enew,i is sampled from N (0,σ2),
from Lemma 2, we know (t · ei|etotal,i = l) follows the distri-

bution N (l · t2σ2
1

σ2
2+t2σ2

1
, t·σ1·σ2√

t2·σ2
1+σ2

2
)3 and, hence, (ei|etotal,i = l)

follows the distribution N (l · tσ2
1

σ2
2+t2σ2

1
, σ1·σ2√

t2·σ2
1+σ2

2
). Thus, for

each value of etotal,i, we compute

b′i = bi− etotal,i ·
t ·σ2

1

σ2
2 + t2σ2

1
. (2)

The new polynomial b′ with the i-th coefficient b′i satisfies

b′ = a · s+ e′, (3)

where the coefficients of e′ follow the distribution of
N (0, σ1·σ2√

t2·σ2
1+σ2

2
), we use σattack to denote the standard de-

viation of it.

Intuition. We next show applications where the standard
deviation of the new noise variable can be very small, making
the new Ring-LWE problem easy to solve. To simplify the
analysis, we let t be arbitrarily large. This assumption permits
us to focus on the leading terms and consider the asymptotic
behavior. In the first scenario, where σ2 =

√
tσ1, the stan-

dard deviation is of the order Θ(t−1/2). Conversely, in the
second scenario with σ2 as a constant, the standard deviation
is Θ(t−1). In either case, it is feasible to choose a sufficiently
large t to minimize the noise to negligible levels.

It is important to note that this assumption serves merely
as a simplifying element for illustrative purposes. We are
constrained by a noise budget and a target level of precision. In
the attack scenarios explored throughout the paper, we begin

3In [22], the authors assume a continuous Gaussian distribution. In con-
trast, our approach in Lemma 2 utilizes discrete Gaussians as approximations
for their continuous counterparts. Empirical tests conducted with OpenFHE’s
discrete Gaussian distributions, as depicted in Figure 3, affirm the preci-
sion of our approximation methodology. For an in-depth discussion, refer to
Section 3.2.1.
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operations using a fresh ciphertext with a small noise level.
Consequently, the t values required to initiate the attack do
not exceed the permissible noise thresholds in the associated
libraries.

Efficient implementation of gt(c) for the adversary us-
ing c as a t-fold repetition of c0. Let tλ0−1 . . . t1t0 be the
binary representation of t, where t0 is the least significant
bit. In the tree-based addition variant of gt(c), where c is a
vector composed of t repetitions of the ciphertext c0, each
addition operation within the same layer receives and pro-
duces identical input and output. This condition leads to the
transformation of gt(c) into an alternate function, denoted as
g′t(c), which effectively performs the following operations
(which is similar to exponentiation by squaring4):

• Initialize: we assume that the most significant bit is set,
i.e. tλ0−1 = 1, let c1← c0.

• For i in the range {1, . . . ,λ0− 1} iteratively compute

ci+1←

{
ci + ci if tλ0−1−i = 0
ci + ci + c0 otherwise

• Eventually output cλ0 .

This implementation requires at most 2λ0 homomorphic addi-
tions and exhibits a latency of λ0. When querying the evalua-
tion oracle using either the evaluation function gt(c) or g′t(c)
with c as a t-fold repetition of c0, the resulting ciphertexts are
identical, while the amount of computation needed to evaluate
g′t is greatly reduced.

3.2 Average-case and empirical noise estima-
tions are not KRD secure

In the threat model, the adversary may select messages and
operations for evaluation. If this did not match with the com-
putation or message distribution used to heuristically deter-
mine the error bound, then the security guarantee wrt. the
Li-Micciancio attack can be destroyed.

The error bound should carefully record the real worst-case
bound that can be achieved in the computation; otherwise, the
adversary could fool the user. For instance, the in-trusted user
may pick a different message and different evaluation circuit
to lead to a much larger real error than the estimated error in
the decryption client.

In [13], Costache et al. presented an average-case noise
analysis for the CKKS scheme using the central limit theorem
(CLT). The authors discussed that their approach is suitable
for the noise-flooding countermeasure. For example, they
wrote in [13] that

4Here, we present the case for arbitrary t to provide a more general
perspective on the attack. However, it’s worth noting that in practical applica-
tions, one would likely choose t to be a power of 2. As a result, the function
g′t becomes considerably simpler, as it merely calculates ci+1← ci + ci.

“Not only does our work provide tighter bounds for
Bctxt (resolving an open problem in [13]), but also
our analysis enables us to directly characterise the
distribution of e and its variance.”

In this subsection, we present a simple key-recovery attack
showing that the average-case approach can be problematic
when being applied in the mode releasing the decryption
results.

The CLT noise estimation. In such a scenario, the preci-
sion tracker needs to make some heuristic assumptions such
that the added or multiplied random variables are independent.
Then, the tracker can get tighter noise bound using the central
limit theorem. For instance, the addition of two ciphertexts
will lead to a new ciphertext with noise variance the sum
of the noise variances of the two input ciphertexts. In the
worst-case analysis, we add the standard deviation instead.

The average-case precision tracker can be more accurate in
the average case; the adversary, however, may be able to pick
inputs to falsify the assumed independence assumption and
make the average-case estimation inaccurate.

We consider the circuit of adding t ciphertexts. In the
average case, adding t independent ciphertexts with noise
εi ∼ N (0,σIn) will lead to new ciphertexts with noise ε ∼
N (0,

√
tσIn). If the adversary picks t identical ciphertexts,

then the noise distribution follows ε∼N (0, tσIn).
Importantly, the adversary can efficiently execute gt(c) by

employing g′t(c), where c represents a t-fold repetition of a ci-
phertext c0. When using a CLT noise tracker that assumes the
independence of the two inputs in a homomorphic addition
gate, one can still approximate the output ciphertext’s esti-
mated noise as ε∼N (0,

√
tσIn). The actual noise distribution

similarly adheres to ε∼N (0, tσIn).

The empirical noise estimation. Both the worst-case noise
estimation and the CLT noise estimation can be designed
so that a ciphertext inherently carries a noise bound, which
homomorphic evaluations then automatically update. An alter-
native approach is what we term ‘empirical noise estimation’,
where the user holding the secret key, or other involved par-
ties, conduct preliminary experiments to set a noise bound
for decryption with sharing. However, this empirical method
generally presupposes that an adversary must perform certain
computations, thereby contradicting the IND-CPAD adversary
model, which allows the choice of the evaluation function.
Additionally, the user in possession of the secret key may
lack prior knowledge of the function to be evaluated, as could
occur in cases involving private circuits. This lack of infor-
mation renders the assumptions underlying empirical noise
estimation invalid.

Estimating empirical noise can compromise noise-flooding
protection due to the formal adversary model in IND-CPAD
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or KRD security, which allows the attacker to select valid ci-
phertexts and perform computations on them. Furthermore,
the distribution of ciphertexts and computation gates signifi-
cantly influences empirical noise estimation. The attacker can
inflate the actual noise beyond the estimated noise by choos-
ing identical ciphertexts as inputs to the simple gt() function
and selecting a much larger value of t than what was used in
the empirical noise estimation.

To be specific, the noise bound predetermined by the user
possessing the secret key for decryption essentially acts as a
constant noise level for the adversary who selects the t value
in the gt() function. Utilizing the attack strategy outlined in
Section 3.1, a passive adversary may choose a sufficiently
large t value, thereby rendering the noise negligible.

3.2.1 Experiments on average-case noise estimation

In this section, we present the experimental results on the
OpenFHE library, focusing on average-case noise estimation.

The noise estimation in OpenFHE. OpenFHE suggests
performing the computation in two steps. First, the noise
is estimated on a freshly generated key pair with messages
chosen from a suitable set of messages. The noise estimation
is done by measuring the noise/precision-loss in the imaginary
slots of the decrypted plaintext [13]. In this step, the value σest

is computed. During the actual computation, the decrypted
message is subjected to noise flooding with discrete Gaussian
noise with a standard deviation of σ2 =

√
12q2ν/2σest. Here,

q represents the number of decryption queries (q = 1 in our
attack), and ν≥ 30 is the statistical security parameter.

The split of computation in two steps signifies OpenFHE’s
use of an empirical noise estimation technique. Concurrently,
OpenFHE intends to introduce a feature akin to HElib’s noise
estimator, which associates a noise bound with each ciphertext
and adjusts it dynamically during homomorphic operations
(refer to [4]). This embedded noise bound in individual cipher-
texts serves as an effective mechanism to reconcile disparities
between predicted and actual noise levels that could arise due
to a different adversary-chosen evaluation function.

OpenFHE recommends for the use of its own empirical
noise evaluation strategy, initially suggesting a method akin to
average-case noise estimation. The results from this method
are, in specific cases under scrutiny, the same as those ac-
quired through the CLT noise estimation method. Specifically,
this involves gauging the noise or precision-loss in the imagi-
nary slots of the decrypted plaintext [13]. In the discussion
that follows, we deliberately apply identical computations
in both phases, to negate the impact of function variations
chosen by an adversary. Our attention is specifically geared
towards OpenFHE’s average-case noise estimation, highlight-
ing the disparities arising from the input message distributions
for simple gates that an adversary could select.

n logq ν precision
plaintext

slots
OpenFHE 214 155−181 30 25 16

Table 1: Parameters used in the attack on OpenFHE. The
modulus q is chosen by OpenFHE dynamically, it increases
for higher values of t; range for q is presented for the values
46 ≤ log t ≤ 57 from the Fig. 3. The value q is allowed to
grow up to around 2410 for the scheme to provide 128 bits of
(quantum) security [3].

In Section 3.2.2, we demonstrate that OpenFHE’s primary
recommendation of empirical noise estimation is more vulner-
able to attacks. Specifically, this vulnerability arises because
the adversary has the freedom to select a different evaluation
function.

Key recovery attack on OpenFHE. The attack scenario
follows Section 3.1. The user sets up the parameters for the
scheme that are provided in Table 1 and generates public and
private keys. Then he estimates the noise of gt for another
freshly generated key pair for the adversary’s choice of t and
initializes the oracles. The adversary then uses encryption and
evaluation oracles to compute a ciphertext from gt(c) and calls
decryption oracle on it. The function gt(·) is implemented as
g′t(·) by both the user and the adversary.

For the gt() function, the estimated noise σest is very close
to
√

tσ1,est, where σ1,est is the noise estimation for a freshly
generated ciphertext. We notice a possible bug in OpenFHE,
σ1,est is close to 3.19

√
2/3 ·n for the secret with uniform

ternary coefficients, whereas the actual noise σ1 of a fresh
ciphertext is close to 3.19

√
4/3 ·n. This implies that the in-

jected noise is somewhat less than expected. Though this has
a minor impact on the scheme’s security, making the attack
slightly more effective, the attack can still proceed without
this difference.

Treating ν as a constant, from the formula for the standard
deviation of the noise flooding σ2 =

√
12q2ν/2σest, we obtain

σ2 = Θ(
√

tσ1). As mentioned earlier, by choosing a suffi-
ciently large t, we can make σattack negligible. In order to
obtain the same value of σattack for scenarios when ν = 0 and
ν > 0, one need to increase log t by ν. To evaluate g′t(·), one
needs no more than 2⌈log t⌉ ciphertext additions which trans-
lates to 2⌈log t⌉n additions over modulo q. In other words, the
attack complexity linearly depends on ν, which means that by
simply increasing ν the attack could not be prevented.

Let us emphasize once again that the attack relies on a sin-
gle decryption call. The adversary decrypts t ·c0, obtains etotal,
and computes b′. In the real attack scenario, the adversary
can utilize b′, a, and an estimate of e′ to extract information
about s. However, in our experiments, we employ s to derive
e′ from b′ and validate the theoretical estimates.

Figures 3 and 4 demonstrate σattack and the weight of e′, re-
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spectively. These figures clearly illustrate that the parameter ν

delays the attack, while the value of σattack remains the same.
The parameters for ν = 0 are the same as in Table 1 except
that logq is lower. When log t−ν≥ 27, the trivial attack of
computing s = a−1b′ becomes possible, as e′ becomes 0 with
a high probability. However, the retrieval of s is not limited to
this trivial attack. Even with smaller values of t, we can still
obtain an RLWE sample with noise smaller than that used
in the public key and retrieve the secret key with additional
post-processing.

Note that since e′ is sampled from a discrete Gaussian
distribution, it is natural for the empirical standard deviation
to be smaller than the theoretical one for small σattack. This
effect can be observed in Fig. 3 when log t−ν≥ 24. A slight
deviation from the theoretical prediction in the preceding part
of the graph could be attributed to the fact that Lemma 2 was
originally formulated for the continuous Gaussian distribution,
whereas we employ the discrete Gaussian distribution, which
is approximated by the continuous one.

OpenFHE supports both 64-bit and 128-bit precision com-
putations and uses 64-bit computation by default. Since for
the attack to work we need, say, t = 257, the noise grows
significantly and to support that we need to compile the li-
brary with NATIVE_SIZE = 128 option to support 128-bit
precision computations.

Experiments were run on a computer with an Intel i7-
11700K processor running at 3.60GHz using 64 GB of RAM.
For the trivial attack with log t = 57 the running time of all
oracles called by the adversary is 2.7 seconds.

After oracle calls the adversary need to compute b′ as in
Eq. (2), then he can obtain s = a−1b′. For simplicity this step
was implemented in SageMath, but the computation is not
optimized. The total time is over one minute, where most of
the time is spent on computing a−1.

With values of σattack approaching 0, the coefficients of
e′ are usually zeroes with a few coordinates being −1 or 1.
Outside of lattice reduction techniques, there is a simple post-
processing idea, when one assumes that e′ has i non-zero
coefficients and brute-forces all possible

(n
i

)
2i errors e′′ with

i non-zero coefficients from {−1,1} for i = 0,1, . . . Then the
adversary can compute s′ = a−1(b′− e′′) and check if the
result is small (i.e. ternary for OpenFHE) and, if necessary,
try to decrypt a ciphertext with a known message to avoid the
false-positive result. Fig. 5 demonstrates the success proba-
bility of the attack with and without simple post-processing,
the data is the same as for Figs. 3 and 4, i.e. we take empir-
ical probability from 100 runs. The number of guesses for
e′′ is ∑

2
i=0
(n

i

)
2i ≈ 229, making the computation time reason-

able. Guessing more positions can significantly increase the
post-processing time.

Summary. When we focus on the parameter set outlined in
Table 1 and choose t = 257, we observe an empirical success
rate of 100% (100 successes in 100 trials) without the need
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Figure 3: Standard deviation of e′. For empirical measure-
ments we take average among 100 runs. The theoretical value
is determined from Lemma 2 with continuous Gaussian dis-
tribution.

16 18 20 22 24 26
log(t) − ν

0

2000

4000

6000

8000

10000

12000

14000

Figure 4: Average weight of e′ among 100 runs.

for any post-processing. On our desktop system, the average
time needed to produce the desired ciphertext to query to the
decryption oracle is approximately 2.7 seconds, while the key
recovery process takes up to one minute after receiving the
decryption results. While it’s possible to lower t to 256.5 if
reasonable post-processing is employed, this modification has
a minimal impact on the complexity and latency involved in
creating the designed ciphertext. However, it considerably
increases the complexity of key recovery. As a result, we
recommend adhering to the straightforward version of the
attack that excludes post-processing.

3.2.2 Experiments on the empirical noise estimation

We now shift our attention to empirical noise estimation as
recommended by OpenFHE. The attack scenario is the same
as in Section 3.2.1, but now we assume that the user with
secret key estimates the noise for gt(·) for some small t, say
t = 15, expecting the server to do a few additions. The ad-
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Figure 5: Empirical probability of successful key recovery
attack: each data point based on 100 runs. Blue dots corre-
spond to the case without post-processing, i.e. when the noise
e′ is zero, while red crosses show the probability of obtaining
e′ with weight less or equal 2, which allows for simple post-
processing.

versary, however, computes gt(·) for t = 245 implementing
gt via g′t . Upon receiving the decryption result, the adversary
can effortlessly recover the secret s by computing s = a−1b′.
Note that the switch from average-case to empirical noise
estimation in the described scenarios allows the adversary to
reduce t from 257 to 245 for the straightforward attack without
post-processing when targeting parameters from Table 1.

The required value of log t increases with the value of the
statistical parameter ν. The scheme is using ν = 30, therefore,
even if we assume that the estimated noise is low, the starting
value for t remains relatively high. Despite this, the attack can
be more efficient than those discussed in Section 3.2.1. With
the same computer platform, the adversary still requires less
than three seconds to prepare the ciphertext for decryption
and about one minute for key recovery.

If we consider HElib, the attack described in Section 3.2.1
is not successful. That is because HElib keeps track of the er-
ror bound for the ciphertext. Most importantly, the error bound
estimation employs worst-case analysis. This means that the
noise after gt with the same ciphertexts and the added noise
during decryption have the similar standard deviation. How-
ever, the documentation of HElib suggests the usage of the
function ctxt.bumpNoiseBound in case when the estimated
noise is much larger than the real one, determined during
the experiments. In other words, the usage of this function
can transform the worst-case noise estimation into empirical
noise estimation, thus potentially making the mentioned at-
tack possible. We warn about the dangers of such function
and relying on the average-case estimations since an attacker
may not necessarily adhere to the underlying assumptions of
the estimation.

4 On deterministic Gaussian noise for fresh
ciphertext

In the conclusion section of [23], it was suggested to limit
the number of decryption calls to 1 per ciphertext by simply
replacing the seed of the pseudorandom function for the ad-
ditional noise with the ciphertext and key derived from the
decryption key. They claim that this proposed countermea-
sure can prevent an attack where the adversary makes the
noise arbitrarily small by using a sufficiently large (still poly-
nomial) number of calls for decrypting the same ciphertext.
This countermeasure has been implemented in the HElib li-
brary. The rounding protection employed in Lattigo can be
regarded as a variant of adding deterministic noise. In [9],
Cheon, Hong, and Kim made similar claims, stating that "..an
adversary can query the decryption only for fresh ciphertexts,
one may choose much smaller additional noise..". However,
we will now demonstrate that the countermeasure involving
deterministic noise generation does not provide additional
security.

The new idea. Our novel observation reveals that the secret
noise e of a ciphertext c may be exposed through querying
decryption outputs of ciphertexts as a function incorporating c,
rather than solely through the decryption outputs of the exact
ciphertext c. Consequently, we generate multiple ciphertexts
derived from c and obtain corresponding decryption outputs to
gather information about the secret noise e. For example, for
a ciphertext c which is an encryption of all zeros, we submit
ciphertexts of t · c for decryption, with varying values of t.
This approach yields the noise t · e+ ε(t · c,s) for a specific
integer t. As t changes, the pseudorandom generator’s seed
alters. The error ε(t·c,s)

t remains random, ultimately allowing
for the acquisition of multiple approximate samples of e to
minimize the additional noise to an arbitrarily small amount.

The ciphertexts t · c can be derived by homomorphically
evaluating the scalar multiplication of c by t or the addition
gate of gt(c, . . . ,c). As detailed in Section 3, estimating the
noise size of gt(·) using an average-case approach enables a
more efficient attack on the scheme. We now illustrate that
even with worst-case noise size estimation, incorporating de-
terministic noise for fresh ciphertexts fails to provide extra
protection. A prime example is the current HElib implemen-
tation; when worst-case noise estimation with no empirical
noise setting is employed, the standard deviation of ε(t · c,s)
is equal to the one of t · e, and, subsequently, the error ε(t·c,s)

t
exhibits the same standard deviation as e. From this point
forward, we assume that noise is estimated in the worst-case
manner and modify our notation accordingly.

As described in Algorithm 1, we denote c0 := (a,−as+ e)
a ciphertext encrypting zero, and for i > i0, ci = (i ·a,−i ·as+
i · e) a fresh ciphertext of zero, which is the homomorphical
multiplication of c0 by i. With a raw decryption query of ci,
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Algorithm 1 Key recovery attack on noise-flooding counter-
measure with deterministic noise generation.

1: Input: Lattice parameters (n, logq), initial scaling factor
∆0

2: Sample (sk,pk,ek)← KeyGen(n, logq,∆0)
3: Encrypt c0← Encpk(Encode(0;∆0))
4: ẑ← 0
5: for i0 ≤ i < γ+ i0 do
6: Homomorphically evaluate ci← gi(c0,c0, ...c0)
7: Decrypt zi← DecForSharesk(ci)
8: zi← 1

i zi

9: ẑ← ẑ+ 1
γ
zi

10: end for
11: m′← Encode(ẑ;∆0)
12: Compute b′← m′−b ∈ Rq, where (a,b) = c0 ▷

b′ ≃ a · s+Xγ

13: if POST-PROCESSING = 1 then
14: Return s′ := PostPro(a,b′), where PostPro(·) repre-

sents a post-processing procedure, which could be enu-
meration or lattice reduction methods

15: else
16: Return s′ := a−1 ·b′ for the trivial attack when Xγ = 0

with high probability
17: end if

an adversary can passively get i · e. If we add a noise ε(ci,s)
issued from a pseudorandom generator applied to (ci,s) to
hide this error, the attacker will get an approximation of i ·e+
ε(ci,s).

We denote zi ← DecForSharesk(ci) the result from the
decryption query followed by noise flooding and decoding.
From these observations, an attacker can compute z′i =

1
i zi,

compute the empirical mean by ẑ = ∑
γ

i=1
1
γ
z′i and encode it to

have

Encode(ẑ)≃ ∆ϕ
−1

(
1
γ

γ

∑
i=1

z′i

)
≃ ∆

γ

γ

∑
i=1

ϕ
−1(zi) = e+Xγ

with

Xγ ≃
1
γ

(
γ

∑
i=1

1
i

ε(ci,s)

)
The value Xγ is the sum of independent centered Gaus-

sian noises of the same standard deviation so it behaves as a
centered Gaussian noise with a smaller variance. Doubling
γ divides the variance by two. To have access to η bits of e
with overwhelming probability, the attacker will only need to
have γ = Θ(η2) decrypted results.

Contrastingly, without applying the countermeasure of de-
terministic noise generation for fresh ciphertexts, each query
introduces a fresh noise with a standard deviation equal to

n logq precision
plaintext

slots
HElib 213 108 20 212

Table 2: The targeted parameters used in the experiments on
HElib.

that of e, equivalent to adding noise of ε(i·c,s)
i . To recover η

bits of the secret e, we still need γ = Θ(η2) decrypted outputs.
In summary, the new method illustrates that employing

deterministic noise for fresh ciphertexts offers no additional
protection.

4.1 Application to HElib

We implemented the attack described in Algorithm 1 for HE-
lib. Secret key coefficients in this library are sampled from
the ternary set, where the probability to sample 0 is 1/2,
and the rest probability mass is equally split between 1 and
−1. Consequently, the expected noise of a fresh ciphertext
is given by σ1 = 3.2

√
n+1. Since HElib uses worst-case es-

timation for the noise and due to canonical embedding we
have σ1,est ≃ 3.2(

√
2n lnn+1). At the end of the algorithm

the standard deviation of Xγ is approximately

σattack =
σ1,est√

γ
.

For our experiments, we selected parameters according to
Table 2 to ensure a desired level of security, specifically, the
overall security level is more than 128 bits, as outlined in [3].
We compared the theoretical value of σattack with the actual
values obtained during our experiments. Fig. 6 presents a
graphical representation of these results. It is evident from
the figure that our experimental data aligns closely with the
theoretical predictions, validating the correctness of the results
in Section 4.

We provide an overview of the implications of our attack
on the HElib library. Given that HElib has not implemented
any updates incorporating the countermeasure through differ-
ential privacy [24], it lacks IND-CPAD secure. On the other
hand, attack strategy detailed in this section requires mil-
lions of decryption queries to successfully retrieve the secret
key when the worst-case noise bound for each ciphertext is
dynamically updated. Consequently, when noise estimation
is executed in a worst-case manner, the encryption scheme
maintains its KRD security. Last, the attack discussed in Sec-
tion 3.2.2 could work when targeting implementations with
the empirical noise estimation method of invoking the func-
tion ctxt.bumpNoiseBound to manually adjust the noise level
utilized in the decryption function for sharing.
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Figure 6: Standard deviation of Xγ according to the prediction
and determined experimentally.

5 Concluding remarks

In this paper, we have proposed new key-recovery attacks
on Approximate Homomorphic Encryption schemes that
use noise-flooding countermeasures based on non-worst-case
noise estimation, which are implemented to attain IND-CPAD

security. We illustrated the attack process using the recent
implementation of the OpenFHE library and showed how to
recover the secret key with a single decryption output. Further-
more, we discussed the security implications of our attack on
the HElib implementation, which allows the use of empirical
noise estimation. As an additional finding, we revealed that
using a pseudorandom generator to create deterministic noise
in noise-flooding countermeasures does not enhance security.

Mitigation and future works. Our research underscores
the importance of employing worst-case noise estimation
in noise-flooding countermeasures. By adopting the security
bounds proposed in [24], which stem from differential privacy,
and implementing a worst-case noise estimation strategy, our
attack can be thwarted. Nevertheless, the application of such
countermeasures can lead to a considerable reduction in per-
formance, emphasizing the need to investigate more efficient
countermeasures in future work.

Although one could formulate defenses against our attacks
that employ the function gt(·) – for instance, by limiting the
acceptable average-case noise bound for ciphertexts, thus dis-
allowing large t values conducive to key recovery – such
countermeasures often incur significant performance costs.
Moreover, they may prove ineffective against adversaries who
craft new evaluation functions for emerging passive attacks. It
remains an intriguing question as to whether we can develop
a more efficient implementation using average-case noise
estimation, while still preserving the scheme’s IND-CPAD

security (or perhaps only the KRD security).
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