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Abstract
As modern applications increasingly rely on GPUs to accel-
erate the computation, it has become very critical to study
and understand the security implications of GPUs. In this
work, we conduct a thorough examination of buffer overflows
on modern GPUs. Specifically, we demonstrate that, due to
GPU’s unique memory system, GPU programs suffer from
different and more complex buffer overflow vulnerabilities
compared to CPU programs, contradicting the conclusions of
prior studies. In addition, despite the critical role GPUs play
in modern computing, GPU systems are missing essential
memory protection mechanisms. Consequently, when buffer
overflow vulnerabilities are exploited by an attacker, they can
lead to both code injection attacks and code reuse attacks,
including return-oriented programming (ROP). Our results
show that these attacks pose a significant security risk to mod-
ern GPU applications.

1 Introduction

Graphic Processing Units (GPUs) were originally designed
and used for high-quality graphics rendering. However, over
the past decade, they have evolved into general-purpose com-
puting platforms. Due to their high-throughput capabilities,
GPUs are now used in various fields, including weather pre-
diction [37], crypto-currency mining [28], and bioinformat-
ics analysis [34]. In addition, today GPUs have become the
de facto standard choice for running deep learning applica-
tions [9, 17, 24, 29, 30, 47, 52, 55, 56]. Given the growing
significance of GPUs, NVIDIA recently announced the Grace
Hopper Superchip [42] which is designed for giant-scale artifi-
cial intelligence (AI) and high-performance computing (HPC)
applications. This superchip combines the NVIDIA Grace
CPUs and Hopper GPUs using the high-speed interconnect,
NVLink [43]. This wide employment of GPUs inevitably
urges a thorough study on their security implications.

∗These authors contributed equally to this work.
†This work was primarily conducted while the author was affiliated with

the University of Pittsburgh.

Memory safety violations (memory errors) have long been
a significant security concern for computing systems. These
violations are the most common root cause of modern exploits
(attacks). For example, buffer overflows can allow attackers to
overwrite return addresses and thus hijack the control flow of
a program, potentially leading to the execution of malicious
code. In fact, reports from Google and Microsoft show that
memory errors account for around 70% of all security issues
addressed in their products [23, 39]. Memory safety viola-
tions, together with the associated exploitation techniques,
have been widely studied for CPU programs. Modern CPUs
have even implemented certain built-in defense mechanisms
against these vulnerabilities (e.g., [31, 32, 59]). However, the
vulnerabilities in GPU programs have not received the same
attention.

CUDA [41], developed by NVIDIA, is one of the most
popular general-purpose GPU programming languages in use
today. Since CUDA is extended from C and C++–languages
known for their memory-unsafe characteristics–there is a con-
cern that CUDA programs could have similar memory safety
vulnerabilities. In this paper, we delve into this concern, aim-
ing to answer the following questions:

Can memory errors occur in CUDA programs running on
NVIDIA GPUs? If so, what types of attacks can arise from
these errors?

Several prior studies have explored the memory safety vul-
nerabilities in CUDA programs [19, 38, 48]. They show that
memory safety violations, especially buffer overflows, can
occur in CUDA programs as well. However, they also argue
that conventional CPU memory exploitation techniques, such
as code injection and code reuse, are inapplicable for attack-
ing CUDA programs. We found that their investigations have
significant limitations.

First, the investigations in these studies are preliminary and
lack a comprehensive analysis of the memory safety vulner-
abilities inherent to GPU programs. For example, unlike C
and C++, CUDA features multiple, distinct memory spaces,
aligning with the GPU’s specialized memory hierarchy. Data
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Figure 1: GPU architecture overview.

in different memory spaces have different scopes and are ac-
cessed in different manners. Prior studies have only shown
that buffer overflows can occur within individual memory
spaces. They have not explored whether a buffer overflow in
one memory space can directly affect data in another mem-
ory space. Second, these studies were conducted on earlier
NVIDIA GPUs, with older architectures (Pascal and earlier)
and CUDA compute capabilities (sm_60 and earlier). Notably,
NVIDIA has made significant changes to the GPU system
starting with the Volta architecture (sm_70), which was re-
leased in 2017. Thus, the conclusions made in prior studies
may not apply to modern GPU architectures.

In this work, we conduct a thorough examination of the
buffer overflow problem on modern NVIDIA GPUs. First, we
reverse engineer the mechanisms used to access various mem-
ory spaces. Specifically, we show how GPU hardware iden-
tifies memory references to each memory space and how it
conducts address translation for these memory spaces. Based
on the reverse engineering results, we demonstrate that an
out-of-bounds (OOB) operation on data in one memory space
can influence data in another, despite the fact that different
memory spaces utilize different instructions for access. Fur-
thermore, we reveal that OOB operations can be exploited
to access data beyond their legitimate scopes. For example,
one thread can access the local memory belonging to another
thread.

Then, we study potential GPU attack methodologies lever-
aging these buffer overflow vulnerabilities. We found that
modern NVIDIA GPUs are missing fundamental memory
protection mechanisms. As a result, traditional memory ex-
ploitation techniques (which have been mitigated on CPUs)
remain feasible on GPUs. For example, GPUs do not distin-
guish between code and data pages: data pages are executable,
and code pages are writable.

In addition, we analyze the mechanics of function calls
and returns on modern GPUs. Our investigation reveals that
code reuse attacks, such as return-oriented programming
(ROP) [50], can be employed against CUDA programs. We
further discover that the CUDA driver API library is linked for

each CUDA program; certain functions from this library are
loaded into GPU memory upon the execution of any CUDA
program. Importantly, this library code contains multiple ROP
gadgets, including several memory read/write gadgets, which
can enable powerful ROP-based attacks.

Finally, we show that the above memory exploitation tech-
niques can be used to attack modern GPU applications such
as deep neural network (DNN) inference. For example, by
modifying the DNN weights, the attacker can significantly
degrade the DNN inference accuracy, reducing it to the same
level of random guessing in the most severe cases.
Responsible disclosure. We disclosed our findings to
NVIDIA in October 2023, who acknowledged our work and
requested to be notified when the results become publicly
available.

2 Background

In this section, we provide an overview of the GPU archi-
tecture, programming models, and memory spaces. Note that
while the concepts we describe are general to GPU computing
platforms, we use NVIDIA’s terminology for our descriptions.

2.1 GPU Basics
GPU architecture. Figure 1 shows an architecture overview
of a typical GPU. The basic processing units in a GPU are
called streaming multiprocessors (SMs). Each SM has a set
of simple cores. With these cores, an SM can execute a group
of parallel threads (known as a warp) in a Single-Instruction
Multiple-Thread (SIMT) fashion. Modern GPUs usually have
tens to hundreds of SMs. With a typical warp size of 32, a
GPU can run thousands of threads simultaneously.

Each SM in a GPU contains its own register file, consisting
of general-purpose registers and special registers. The general-
purpose registers are partitioned among the threads that run on
the SM. For example, in NVIDIA Ampere GPUs, every thread
in an SM has its own 256 general-purpose registers, labeled
from R0 through R255 [12, 46]. These registers temporarily
store data that threads need immediate access to, such as
variables or intermediate computation results. On the other
hand, special registers have different roles and are used for
specialized tasks. For example, CLOCK provides the current
clock cycle count. Unlike general-purpose registers, some of
the special registers are shared among all threads in the SM.

To serve the memory bandwidth demands of a large amount
of threads, a GPU has its dedicated memory system, as shown
in Figure 1. Each SM has its own private L1 cache and shared
memory. SMs are connected to the shared L2 cache through
a hierarchical on-chip network; The L2 cache is further con-
nected to memory controllers which interface with the off-
chip device memory. Similar to host memory on the CPU side,
device memory is also based on DRAM. Currently, GDDR6
and HBM2 are the two most widely used DRAM types in
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client and server GPUs, respectively. Note that the memory
systems of the CPU and GPU are independent of each other.
Before a program starts running on the GPU, the GPU driver
loads the corresponding code into the device memory. Sim-
ilarly, the data required by the GPU program must also be
transferred to the device memory (before the data can be ac-
cessed). This is typically done through explicit operations in
the program, although there are instances where the driver
manages this data transfer implicitly [1].

1 / * * d e v i c e f u n c t i o n * * /
2 _ _ d e v i c e _ _ vo id add ( c h a r * d _ g l o b a l ) {
3 d _ g l o b a l [ 0 ] += 1 ;
4 }
5

6 / * * CUDA k e r n e l * * /
7 _ _ g l o b a l _ _ vo id mem_type ( c h a r * d _ g l o b a l ) {
8 c h a r d _ l o c a l [ 1 0 ] ;
9 d _ l o c a l [ 0 ] = d _ g l o b a l [ 0 ] ;

10 _ _ s h a r e d _ _ d _ s h a r e d [ 1 0 ] ;
11 d _ s h a r e d [ 0 ] = d _ g l o b a l [ 0 ] ;
12 add ( d _ g l o b a l ) ;
13 }
14

15 / * * CPU f u n c t i o n , c a l l i n g t h e cuda k e r n e l * * /
16 vo id k e r n e l _ l a u n c h ( c h a r * d_cpu ) {
17 c h a r * d _ g l o b a l ;
18 / * * A l l o c a t e a GPU b u f f e r * * /
19 cudaMal loc (& d _ g l o b a l , 1024) ;
20 cudaMemCpy ( d_cpu , d _ g l o b a l , 1024 ,
21 cudaMemcpyHostToDevice ) ;
22 mem_type <<<8,32>>> ( d _ g l o b a l ) ;
23 }

Listing 1: An example CUDA program that uses multiple
GPU memory spaces.

GPU virtual memory management. Modern GPU memory
is virtualized, operating on a paging system. When SMs gen-
erate virtual addresses, the memory management unit (MMU)
on the GPU performs virtual-to-physical address translation
using the GPU page tables. Each running GPU program (i.e.,
a GPU context) has one page table. These page tables (from
different active GPU contexts) are stored in the GPU memory
and are regulated by the GPU driver [58]1. Similar to CPU
page tables, a GPU page table also has multiple levels: given a
virtual memory address, the GPU MMU walks through these
levels to find the page table entry (PTE) that contains the de-
sired translation information. Prior work [58] has shown that
recent NVIDIA GPUs use 5-level page tables. During a page
table walk, a 49-bit virtual address is segmented, and its parts
are used to select the walking path through the hierarchy.

2.2 GPU Programming and Execution
GPU programming model. GPUs were originally designed
to accelerate graphics and multimedia processing; they could
only be programmed using certain APIs such as OpenGL [53]
and DirectX [36] to support 2D/3D graphics rendering. As
the demand for utilizing GPUs in non-graphics computing
tasks increases, various general-purpose GPU programming

1The GPU driver also maintains a copy of the page tables in host memory.

models have emerged. Of these, CUDA stands out as arguably
the most successful and broadly used [41]. Listing 1 presents
a simple CUDA program. Within the context of a CUDA
program, there are several specific terms:

- GPU kernel. A kernel (line 7) is a function that is executed
on the GPU and can be invoked from the host CPU. A
CUDA program may consist of one or more kernels. To
invoke a kernel, the GPU driver sends a corresponding
kernel launch command to the GPU. It will first create a
grid of thread blocks, with each block containing a certain
number of threads. These thread blocks are then scheduled
onto the available SMs on the GPU. When launching a
kernel, the host code needs to specify the desired number of
thread blocks and threads. For example, Listing 1 launches
a kernel with 8 thread blocks and 32 threads in each block
(line 22).

- Device function. A device function is a function that can
only be called from kernels or other device functions. It can
only be executed on the GPU (line 2).

NVIDIA PTX and SASS. PTX is an intermediate-level in-
struction set for NVIDIA GPUs that remains stable across
different GPU generations. CUDA code is first compiled into
PTX, and PTX is further compiled down to SASS, the low-
level assembly language for NVIDIA GPUs. SASS instruc-
tions directly execute on NVIDIA GPU hardware. These
instructions are tailored to the specific architecture of the
GPU; different GPU generations may use different SASS
instructions.

MOVR2, 0xdeadbeef: 0x 003fde00 00000f00deadbeef 00027802

scheduling code constant opcode_low

opcode_high register index

Figure 2: The encoding of the MOV instruction on Volta GPUs.

SASS instruction encoding. NVIDIA GPUs use a fixed-
length instruction encoding format. Originally, the instruction
length was 8 bytes. Starting with the Volta generation (re-
leased in 2017), the instruction length has been extended to
16 bytes. Unlike CPUs that typically use hardware-based in-
struction scheduling, NVIDIA GPUs delegate this scheduling
task to the compiler. On Volta and later GPUs (with 16-byte
instructions), the scheduling codes are embedded into the
higher bits of each individual instruction, which specify the
minimum wait time between consecutive instructions to meet
dependency constraints. Figure 2 shows the encoding of the
MOV instruction on Volta GPUs.

2.3 GPU Memory Spaces
Most GPU programming models allow memory allocation
in different memory spaces, each of which has its unique
behavior. Listing 1 shows a CUDA program that uses global,
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local, and shared memory, which are the most frequently used
memory spaces in CUDA programs. The specific features
of these memory spaces are shown in Table 1. We omit the
discussion of other memory spaces, such as texture memory,
as they are not related to our study.

- Global memory is managed by the GPU driver. Buffers in
global memory can only be allocated by CPU code (before
kernel launches) through driver API calls (line 19 in List-
ing 1). Global memory resides in the GPU’s off-chip device
memory; it can be cached in both the L1 and L2 caches. A
buffer in global memory is accessible to all the threads in
all the kernels of the program, until the buffer is freed. The
load and store operations for global memory are usually
performed using the instructions LDG and STG, respectively.
In Listing 1, d_global is a buffer in global memory.

- Local memory is private to each thread. It is used to store
the stack of a thread and is thus also called stack memory.
Similar to global memory, local memory also resides in the
device memory (and the caches). However, unlike global
memory, data in local memory do not persist across kernels
(since they are thread-private). The instructions LDL and
STL are particularly used for local memory. d_local in
Listing 1 is a buffer stored in local memory.

- Shared memory is a scratchpad memory region. It is shared
among all the threads within the same thread block. As
shown in Figure 1, shared memory is on-chip. Developers
can place the data that is accessed frequently by threads in
the same block into shared memory, in order to avoid the
slow global memory access. Data in shared memory are not
backed up in the off-chip device memory. LDS and STS are
used for shared memory operations. d_shared in Listing 1
resides in shared memory.

In addition to the instructions mentioned above that are
used for each particular memory space, there are also generic
load and store instructions LD and ST, which can be used for
accessing all the memory spaces.

3 GPU Memory Safety

3.1 Prior Art
Since CUDA is an extension of C/C++, CUDA programs can
also have memory vulnerabilities similar to those in C/C++
programs. Several prior studies [19, 38, 48] have revealed that
some of the memory errors found in CPU programs, such as
buffer overflows, can also occur in CUDA programs. However,
these studies have some limitations, which we explain below.

First, the investigations presented in these studies are fun-
damental and do not delve deeply into the problems particular
to GPUs. For example, as explained in Section 2.3, CUDA
features multiple, distinct memory spaces (unlike C and C++).
Prior studies have only identified that buffer overflow errors
can occur within a specific memory space. For instance, an

Table 1: The specification of the pointers in Listing 1.

Pointer Memory type Storage Cached Load/store
instructions

Scope

d_global Global memory Device memory
(off chip)

Yes LDG/STG Process

d_local Local memory Device memory
(off chip)

Yes LDL/STL Thread

d_shared Shared memory Shared memory
(on chip)

No LDS/STS Thread
block

OOB operation on a local memory buffer can compromise
other data stored in that same local memory. However, they
have not explored whether such an OOB operation can affect
data in a different memory space.

Second, given that these studies were carried out several
years ago, they only examined older GPUs (before Volta).
However, NVIDIA has made significant changes to their
GPUs since the Volta architecture [25]. For example, a new
ISA has been introduced, where the instruction length was
changed from 8 bytes to 16 bytes. Therefore, conclusions
from these studies may not apply to newer GPU architectures.
For example, these prior studies have two common conclu-
sions. 1) Exploiting buffer overflow to hijack control flow in
CUDA is very difficult because the return address is stored in
an undisclosed memory location, not on the stack. 2) Tradi-
tional code injection attacks cannot be applied against CUDA
programs because code and data are separated in memory.
However, through our analysis (in Section 4), we found that
their conclusions do not hold.

3.2 Our Goal
As GPUs have become a major computing component these
days, it is important to understand the security problems that
exist in modern GPUs. Our objective is to present an in-depth
analysis of buffer overflow vulnerabilities on these computing
devices, shedding light on the hidden threats that have been
overlooked for years.

4 Demystifying GPU Memory

In this section, we provide a detailed analysis of GPU buffer
overflows, addressing the limitations mentioned in Section 3.
To gain a thorough understanding of the GPU memory model,
we develop a tool using Direct Memory Access (DMA) to
dump the content of device memory. We further manage to
recover the page tables stored in device memory. NVIDIA
has made their driver source code public. Therefore, from the
driver code section concerning GPU page management [2]
(and other NVIDIA documents [45]), we can obtain the over-
all format of the page table on NVIDIA GPUs. This allows
us to identify and reconstruct the page table from the ex-
tracted device memory. Note that unless specified otherwise,
all the experiments in this section are conducted on a system
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with an NVIDIA GeForce RTX 3080 GPU, NVIDIA driver
470.63.01, CUDA 11.4, and the Ubuntu 20.04 OS. To simplify
the analysis, we turn off CUDA ASLR.

4.1 Buffer Overflows across Memory Spaces
Here we study the buffer overflow issues in CUDA programs.
As explained in Section 3, prior studies (e.g., [38]) have al-
ready shown that buffer overflows can cause memory corrup-
tion within a single memory space. Thus, we focus more on
investigating the impact of buffer overflows across different
memory spaces. Specifically, we first explore this problem
between local and global memory, and then extend the study
to cover the problem between these two and shared memory.

4.1.1 Accesses to Global and Local Memory

Global memory accesses are relatively straightforward.
Global memory is indexed using a 49-bit virtual address
(which is stored as a 64-bit value). There are two primary
ways to access global memory: using the specialized LDG/STG
instructions or the generic LD/ST instructions (cf. Section 2.3).
These two pairs of instructions operate in a similar manner: as
demonstrated in Listing 2, the target virtual memory address
of the instruction is stored in a 64-bit register, which is formed
by combining two 32-bit registers. We are not aware of any
fundamental differences between accessing global memory
using these two pairs of instructions. The choice of which
pair to use appears to be based on the compiler’s preference.
Empirically, we observe that when the debugging option is en-
abled, the NVCC compiler always chooses LD/ST, otherwise
it prefers LDG/STG.

/** R6: 0xcda00000 **/
/** R7: 0x7fff **/
/** R6.64 means R7||R6 **/
LDG R8, [R6.64]
STG [R6.64], R8

LD R8, [R6.64]
ST [R6.64], R8

Listing 2: Code for accessing
global memory.

/** R6: 0xfffd80 **/
LDL R8, [R6]
STL [R6], R8

/** R6: 0xf2fffd80 **/
/** R7: 0x7fff **/
LD R8, [R6.64]
ST [R6.64], R8

Listing 3: Code for accessing
local memory.

As local memory is private to individual threads, local
memory accesses are more complicated than global memory
accesses, as detailed below.
Instructions. Much like global memory, there are also two
sets of instructions for accessing local memory, LDL/STL and
LD/ST. However, they work very differently. As shown in
Listing 3, LDL/STL uses a 24-bit address2 stored in a 32-bit
register. In contrast, as explained earlier, LD/ST requires a 49-
bit virtual address (from a 64-bit register). In fact, we found

2We found that the local memory for each thread is indexed with a 24-bit
address using CUDA-GDB. This observation aligns with the findings from
prior research [57].

that when LD/ST are used to access local memory, the 49-
bit address appears to be the 24-bit address prefixed with a
25-bit value (which is 0x7ffff2 on our system). Note that
virtual addresses belonging to other memory spaces never
begin with this prefix value on our machine. Unlike global
memory, the compiler always prefers to access local memory
with LDL/STL, even when the debug flag is on.

1 _ _ g l o b a l _ _ vo id l o c a l _ a r r ( ) {
2 u i n t 3 2 _ t a r r [ 1 0 ] ;
3 f o r ( i n t i = 0 ; i < 1 0 ; i ++)
4 a r r [ i ] = 0 xdead0000+ t h r e a d I d x . x ;
5 u i n t 3 2 _ t * p t r = a r r ;
6 p r i n t f ( " t h r e a d %u addr %p d a t a %u \ n " ,
7 t h r e a d I d x . x , p t r , p t r [ 0 ] ) ;
8 }
9 i n t main ( ) {

10 c u d a _ k e r n e l < < <1 ,32 > > >() ;
11 r e t u r n 0 ;
12 }

Listing 4: A simple CUDA program that allocates buffers in
local memory.

Memory layout. We use the program in Listing 4 to explain
the local memory layout: the CUDA kernel (local_arr) is
launched with 32 threads per thread block and just one thread
block overall. In this kernel, every thread allocates a local ar-
ray (arr), resulting in 32 individual arrays in total. According
to NVIDIA, each thread is only able to access its own array,
but not the arrays that belong to other threads.

To understand how local memory is stored in the device
memory, we execute the program in Listing 4 and pause it at
line 6. Then, we dump the device memory content and identify
the location of arr within it (by the data pattern). Figure 3
(b) shows a segment of the dumped device memory where
arr resides. From this figure, we can observe that the local
memory of different threads appears interleaved in the device
memory. Specifically, the device memory sequentially stores
arr[0] from all threads, then arr[1] from all threads, and
so forth. We then conduct further experiments, adjusting the
total thread count and the array’s data type. These experiments
reveal that every 32 bits of local memory from threads in a
warp (comprising 32 threads) are always stored contiguously
within the device memory. For variables larger than 32 bits,
they are split into 32-bit segments and stored separately. Note
that this layout information can help an attacker deliberately
tamper with the local memory data, which we will show later.
Addressing. Given that each thread has its own private arr,
one might naturally expect that each arr would have a dis-
tinct virtual address, which is similar to the scenario on CPUs.
However, when we print the address of arr[0] (or ptr[0])
as done in line 6 of Listing 4, we have two interesting observa-
tions, as shown in Figure 4. First, arr[0] of different threads
actually have the same virtual address. This virtual address
is 0x7ffff2fffd80 on our machine (prefix+local memory
address, cf. Listing 3). Second, when performing a data access
using this address, each thread retrieves different data. More
specifically, for a given thread, the retrieved data corresponds
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/* *****************
(arr[0], thread 0) 
to 
(arr[0], thread 31)
*******************/
/* *****************
(arr[1], thread 0) 
to 
(arr[1], thread 31)
*******************/

7fffc4014000: 

7fffc4014004:

7fffc4014008: 
 

7fffc401400c: 

…
Virtual
PT addr

PA frame: 0x3ea                             VA frame: 0x7fffc40

00   00   ad   de 
(arr[0], thread 0)

01   00   ad   de
(arr[0], thread 1)

02   00   ad   de 
(arr[0], thread 2)

03   00   ad   de
(arr[0], thread 3)
...

Page table

:7ffff2fffd80
 

:7ffff2fffd84

…
Virtual 
local addr Physical memory

 xx   00   ad   de
(arr[0], thread x)

xx   00   ad   de
(arr[1], thread x)

...

(a) (b) (c)

Figure 3: The mapping details of local memory: (a) the translation between virtual local addresses and physical addresses; (b)
the layout of local memory (in device memory); (c) the translation between virtual PT addresses and physical addresses.

to arr[0] of that thread. With these results, we believe the
mapping between the virtual and physical addresses of lo-
cal memory aligns with the one depicted in Figure 3 (a) and
(b): the physical address that a virtual address points to may
vary, depending on the ID of the thread accessing this virtual
address.

A natural question here is how the same virtual address
is translated to different physical addresses (for different
threads). While the specifics of local memory address transla-
tion on NVIDIA GPUs remain undisclosed, we give a conjec-
ture here: there is likely a unique address translation mech-
anism for local memory, which is based on both the address
and the thread ID. Moreover, the GPU hardware is able to
recognize that a given memory operation is targeting the local
memory (instead of other memory spaces) based on the given
virtual address or the instruction. Specifically, it is considered
a local memory operation if 1) the instruction is LDL/STL
or 2) the instruction is LD/ST and the address begins with a
certain pattern (e.g., 0x7ffff2).

t h r e a d 0 add r 0 x 7 f f f f 2 f f f d 8 0 d a t a 0 xdead0000
t h r e a d 1 add r 0 x 7 f f f f 2 f f f d 8 0 d a t a 0 xdead0001
t h r e a d 2 add r 0 x 7 f f f f 2 f f f d 8 0 d a t a 0 xdead0002
. . .

Figure 4: The output of line 6 in Listing 4.

Upon examining the page table of the program in List-
ing 4, we have a very interesting observation. The afore-
mentioned virtual addresses for local memory data (e.g.,
0x7ffff2fffd80 for arr[0]) are not mapped to any valid
physical addresses, according to the page table.3 Instead,
for each data block in the local memory, a disparate vir-
tual address (e.g., 0x7fffc4014000 for thread 0’s arr[0])–
seemingly unrelated to the unmapped virtual address above–is

3This also confirms that there is a special address translation path for
local memory addresses.

mapped to the physical address of this data block, as shown in
Figure 3 (c). Importantly, when using this virtual address
to access local memory, every thread gets the same data
when accessing the same virtual address. For example, any
thread accessing the address 0x7fffc4014000 will retrieve
the value of thread 0’s arr[0] (0xdead0000), regardless of its
thread ID. Similarly, using the address 0x7fffc4014004, ev-
ery thread gets the value of thread 1’s arr[0] (0xdead0001).

From the above results, we have two conclusions. First,
for each physical address in local memory, there are two vir-
tual addresses that can be used to access this physical ad-
dress. Only one of them has a valid mapping in the page
table; we refer to this virtual address as the virtual PT ad-
dress (e.g., 0x7fffc4014000 in Figure 3 (c)), and refer to
the other virtual address as the virtual local address (e.g.,
0x7ffff2fffd80 in Figure 3 (a)). Second, as explained
above, when accessing a virtual local address, the GPU hard-
ware can recognize that this address is targeting the local
memory and triggers a special address translation routine for
it. This special routine takes the thread ID into account, and
thus ensures that each thread can only access its own local
memory. However, when accessing a virtual PT address, the
GPU hardware does not recognize it as a local memory access,
and therefore does not employ this special translation routine.
Once knowing this address, one thread can access/modify the
local memory of another thread in the program.

To further validate that both the virtual local address and
the virtual PT address point to the same physical address,
we conduct a read-after-write experiment. First, we write to
arr[0] of thread 0 using the virtual PT address. Then, we
read arr[0] of thread 0 using the virtual local address. We
found that we can only read out the previously written value if
we access another buffer whose size is at least 128B between
our write and read operations. Given that the L1 Dcache on
our GPU is 128B and L1 is indexed using virtual addresses
and tagged using physical addresses, we believe that these
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Table 2: Summary of the buffer overflow problem in CUDA; ✓ means the OOB operation can affect this memory space, while
✗ means it cannot.

OOB Global mem Local mem Shared mem
Same
thread

Same
thread block

Same
kernel

Same
program

Same
thread

Same
thread block

Same
kernel

Same
program

Same
thread

Same
thread block

Same
kernel

Same
program

Global LDG/STG ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
mem LD/ST ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗
Local LDL/STL ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
mem LD/ST ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗
Shared LDS/STS ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
mem LD/ST ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗

two virtual addresses are linked to the same physical address.

Takeaway 1: On NVIDIA GPUs, each data block in
local memory is linked to two virtual addresses; one
of these addresses allows a CUDA thread to access/-
modify the local memory of other threads.

4.1.2 Overflows across Global and Local Memory

OOB global memory references. Recall that global mem-
ory operations always use a 64-bit address, regardless of the
instruction used. Therefore, attackers could exploit a buffer
overflow vulnerability in global memory to influence any lo-
cation in the device memory, including the local memory.
Specifically, when accessing a global memory buffer with an
OOB index, the attacker can manipulate the index to direct
the target address (base address + index) towards either 1) the
virtual PT address or 2) the virtual local address of the data
in the local memory. Here we discuss the feasibility of these
two approaches:

- Accessing a virtual PT address. As mentioned earlier,
there are two sets of instructions for global memory ref-
erences, LD/ST and LDG/STG. From our experiments, pro-
viding any of these instructions with a virtual PT address
causes them to execute as expected, accessing the data in
the local memory (of any thread) with the given address.

- Accessing a virtual local address. When providing a vir-
tual local address to LDG/STG, it prompts a runtime error
citing an illegal memory access. In contrast, when pro-
viding such an address to LD/ST, the instruction executes
without any error. However, as explained before, using a vir-
tual local address prevents us from modifying or accessing
data belonging to other threads. We discuss this approach
only for completeness. In real-world scenarios, the attacker
would likely choose the former approach.

In short, a buffer overflow error in global memory may allow
an attacker to target a virtual PT address, granting the attacker
potential access to, or the ability to modify, the local memory
data of any active thread in the program.
OOB local memory references. We found that there is a
substantial gap between the virtual local addresses (of the lo-
cal memory) and the virtual addresses of the global memory.

On the tested system, the minimum difference between such
addresses is 0x10000000. With this discrepancy, whether an
OOB operation on local memory can affect global memory
actually depends on the specific instruction handling the op-
eration: when using LDL/STL, which operates with a 24-bit
address (the lower 24 bits of the virtual local address), OOB
operations on local memory cannot affect global memory. In
contrast, if LD/ST which takes the full 64-bit virtual local ad-
dress is used, an OOB operation on local memory has the
potential to fetch/modify data in global memory.

4.1.3 Overflows across Shared Memory and Local/-
Global Memory

Data in shared memory is accessed in a similar manner to data
in local memory. Specifically, shared memory can be accessed
with either 1) the specialized instructions LDS/STS, using a
24-bit address, or 2) the generic instructions LD/ST using a
49-bit address. Again, the 49-bit address is formed by adding
a prefix to the 24-bit address, which is 0x7ffff4 on the tested
system. Consequently, when using the LD/ST instructions, an
OOB operation on data in shared memory may affect the data
in global or local memory. In addition, an OOB operation
on data in global or local memory (with LD/ST) can affect
the data in shared memory. Note that, unlike local memory,
shared memory does not have a virtual PT address, since it is
not part of the device memory. This means, accesses to shared
memory remain confined to their legitimate scope (within
the thread block). We cannot utilize virtual PT addresses to
perform out-of-scope shared memory accesses (as done for
local memory).

4.1.4 Summary

We provide a comprehensive summary of the overflow prob-
lem in CUDA in Table 2. First, with respect to the memory
space, when using the generic memory instructions LD/ST,
the problem can occur within a single memory space or across
different spaces. In contrast, when using the specialized in-
structions (e.g., LDL/STL), the problem is restricted to a single
memory space. An exception is that, OOB global memory
references with LDG/STG can influence local memory.

Second, in terms of memory scope (i.e., visibility), when
targeting local memory, an overflow error can result in ac-
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cesses beyond the intended scope. This is due to the use of
virtual PT addresses. In other scenarios, memory accesses are
always confined to the legitimate scope.

Notice that the conclusions presented in this section, par-
ticularly those related to how GPU memory accesses are
managed, are based on extensive reverse engineering efforts.
While they are supported by thorough experimentation, we
cannot claim with absolute certainty that our findings are en-
tirely accurate. However, it is crucial to note that the primary
objective of our reverse engineering analysis is not to perfectly
reconstruct the GPU memory access functionality, but rather
to investigate the potential for buffer overflow vulnerabilities
in CUDA programs. Despite any potential inaccuracies in
our reverse engineering results, we have conclusively demon-
strated that buffer overflows on GPUs can be exploited to
access/modify data across different memory spaces and be-
yond legitimate scopes (Table 2).

/** Start of the func **/
/** RZ is always 0 **/
IADD3 R1, R1, -0x70, RZ ;
STL [R1+0x68], R25 ;
STL [R1+0x64], R24 ;
STL [R1+0x60], R23 ;
STL [R1+0x5c], R22 ;
STL [R1+0x58], R21 ;
STL [R1+0x54], R20 ;
STL [R1+0x50], R19 ;
STL [R1+0x4c], R18 ;
STL [R1+0x48], R17 ;
STL [R1+0x44], R16 ;
STL [R1+0x40], R2 ;

/** End of the func **/
LDL R2, [R1+0x40] ;
LDL R16, [R1+0x44] ;
LDL R17, [R1+0x48] ;
LDL R18, [R1+0x4c] ;
LDL R19, [R1+0x50] ;
LDL R20, [R1+0x54] ;
LDL R21, [R1+0x58] ;
LDL R22, [R1+0x5c] ;
LDL R23, [R1+0x60] ;
LDL R24, [R1+0x64] ;
LDL R25, [R1+0x68] ;
IADD3 R1, R1, 0x70, RZ ;
RET.ABS.NODEC R20 0x0 ;

Figure 5: Assembly code when entering/leaving the device
function; the 64B local array in the device function is stored
in [R1] to [R1+0x3c].

4.2 Return Address Corruption
Return address corruption is a severe security threat as it al-
lows an attacker to hijack a program’s control flow, potentially
leading to arbitrary code execution. On CPUs, an attacker can
exploit a stack buffer overflow vulnerability to overwrite the
return address on the stack. However, prior studies [38, 48]
suggest that such exploitation is not feasible on GPUs: they
claim that on GPUs the return address is stored in an undis-
closed location in the device memory, rather than on the stack
(local memory). We reexamine this claim in this section.

4.2.1 Stack Management

To understand the management of the return address on GPUs,
we launch a simple CUDA kernel whose only task is to call
a device function. The device function allocates a 64B local
array and fills it with 0xdeadbeef. Figure 5 shows assembly
code snippets of this device function, illustrating the stack
management at the beginning and end of the function. When
the function starts, certain registers that the function intends

to modify are pushed to the stack to be later restored upon the
function’s completion. Conversely, after the function finishes,
these registers are popped from the stack and restored. These
code snippets provide two key insights into CUDA’s stack
management:

- The role of R1. In CUDA, R1 is a general-purpose register,
not a special register [44]. However, the above code implies
that R1 can be used as the stack pointer. In fact, by further
examining common CUDA libraries such as libcudnn, we
found that R1 is the only register that has been used as the
stack pointer. Notably, NVIDIA’s list of special registers
does not contain any register for stack pointer [44].

- Stack commands. Similar to the RISC-V architecture,
NVIDIA GPUs do not have dedicated push/pop instruc-
tions. Instead, a push operation is achieved through a local
memory write together with a decrement of the stack pointer.
Conversely, a pop operation is achieved by a local memory
read and an increment of the stack pointer.

Return address. In Figure 5, the return instruction (RET) uses
R20 as an operand. This register is pushed to the stack upon
entering the function, and retrieved right before the RET in-
struction. Intuitively, the value in R20 should be related to the
return address. To validate this, we run the program in CUDA-
GDB and we found that the value of R20.64 (i.e., R21||R20)4

is the same as the expected return address (which in our spe-
cific case is 0x7fffd6fad8e0). To better understand this, we
extract the device memory (before RET is executed) and show
the local memory section in Figure 6. We can see that the
value of R20.64 is located in the local memory, near the local
array (filled with 0xdeadbeef). This observation confirms
that the return address, represented by R20.64, is stored to-
gether with the local variables on the stack, in contradiction
to the conclusions of previous studies.
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/* arr[0-16] */

/* ************ 

Other data
on the stack

**************/
/* ************
Return addr
**************/
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Figure 6: Part of the local memory in the dumped device
memory; the local array and R20.64 (i.e., R21||R20) are
highlighted; “*” means the data is the same with above.

4While not explicitly specified in the instruction, RET appears to always
retrieve the return address from R20.64 rather than just R20.
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We further perform an OOB operation on the local array to
overwrite the return address, pointing it into another function
in the program. As anticipated, when the function returns, it
proceeds with the overwritten address, executing the code lo-
cated there, rather than returning to the original caller address.
Similar behavior occurs when we perform an OOB operation
on global memory (or shared memory) to overwrite the return
address (cf. Table 2).

Takeaway 2: In CUDA, exploiting a buffer overflow
vulnerability allows an attacker to modify the return
address stored in the local memory (stack), and there-
fore redirect the control flow of the program.

4.2.2 Return Address on the Stack

In Section 4.2.1, we focus on the scenarios where the return
address register (e.g., R20 in Figure 5) is pushed to the stack
during the execution of the function. However, the NVCC
compiler does not always opt for this approach. Rather than
pushing the return address register to the stack, the compiler
often avoids using that register throughout the function. It only
chooses to push this register if it is challenging (or infeasible)
to ensure that this register remains untouched in the function.
Below are some scenarios where the return address register is
pushed to the stack.

1. The device function is recursive.

2. The device function has a substantial number of local vari-
ables, resulting in insufficient registers (i.e., register spill-
out).

4.3 Code Injection
Executing data pages. With the capability to overwrite the
return address, the attacker can redirect the execution to a data
page which they have filled with shellcode. Then, when the
function returns, the execution is diverted to this malicious
code, resulting in a code injection attack. Such attacks have
already been mitigated on CPUs: for example, most CPU
systems have the WˆX policy implemented, which mandates
that every memory page can be either writable or executable,
but not simultaneously both. This prevents the shellcode from
being directly executed. However, we found that this policy
is not implemented on modern GPUs.

Our results show that by manipulating the return address,
we can redirect the control flow to a global memory address
and execute the data there (as code). We can also change the
control flow to point to a local memory address and execute
the data on the stack.5 These findings suggest that GPUs do

5The control flow cannot be redirected to a shared memory address,
meaning we cannot execute the data stored in shared memory as if it were
code.

not make the writable data pages non-executable. We also
found that according to the page table format [2, 45] released
by NVIDIA, there is not an “executable bit” (nor a “dirty bit”)
in the PTE. This implies that GPUs do not check whether
an address is a legitimate code address before executing its
content. Note that prior studies claim that executing a data
buffer is infeasible on GPUs; they believe that this is either
because the code and data addresses are separated, or because
the data pages are not executable [38, 48]. We found that
neither of these hypotheses is accurate.
Modifying code pages. Given that data pages are executable,
a natural question that arises is whether code pages are modi-
fiable. In fact, prior work has already shown that it is possible
to modify code pages on older GPUs. We further verify this
on modern GPUs by examining the device memory before
and after writing to a code page. Additionally, when inspect-
ing the GPU page table format, we notice a “read-only bit” in
the PTE. However, after analyzing the page table (extracted
from the device memory), we found that this bit consistently
remains unset, even for code pages.

Takeaway 3: NVIDIA GPUs do not differentiate be-
tween code and data pages.

4.4 CUDA ROP

Return address corruption can also lead to code reuse attacks,
of which ROP is a primary example. ROP has proven to be
highly effective on CPUs, with numerous ROP gadgets found
in commonly used library code, such as libc. Here we study
the feasibility of ROP on modern GPUs.
CUDA library code. Upon inspecting the content of the de-
vice memory during the execution of a CUDA program, we
found that, besides the application-specific code, there is ad-
ditional code loaded into the device memory. This additional
code is the same for every CUDA program. We compare this
code with the machine code of common CUDA libraries and
found that this code is part of libcuda. NVIDIA describes
libcuda as the CUDA driver API library, which handles
tasks related to direct interaction with the GPU, such as mem-
ory management, error handling, and stream management.
Functions within this library include (but are not limited to)
printf, cuMemcpy, and cuMemFree. In addition, our experi-
ments show that after redirecting the control flow of a CUDA
program to an address within this driver API code, we can
execute this code without triggering any errors.
CUDA ROP gadgets. We examine this driver API code and
found 190 return instructions (RET). Out of these RET instruc-
tions, only 52 are accompanied by an instruction that pops the
return address. This means, there are only 52 possible ROP
gadgets in this drive API code, consisting of 7 memory cor-
ruption gadgets and 45 others. Listing 7 shows two example
gadgets: the first one writes data from a register to a mem-
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ST.E.64 [R28.64], R4 ; /** Store gadget **/
BSYNC B7 ;
LDL R0, [R1] ;
BMOV.32 B6, R27 ;
LDL R20, [R1+0x18] ;
LDL R21, [R1+0x1c] ;
LDL R2, [R1+0x4] ;
LDL R16, [R1+0x8] ;
LDL R17, [R1+0xc] ;
LDL R18, [R1+0x10] ;
LDL R19, [R1+0x14] ;
LDL R22, [R1+0x20] ;
LDL R23, [R1+0x24] ;
LDL R24, [R1+0x28] ;
LDL R25, [R1+0x2c] ;
LDL R26, [R1+0x30] ;
LDL R27, [R1+0x34] ;
LDL R28, [R1+0x38] ;
LDL R29, [R1+0x3c] ;
IADD3 R1, R1, 0x40, RZ ;
BMOV.32 B7, R0 ;
RET.ABS.NODEC R20 0x0 ;

LD.E.STRONG.GPU R5, [R6.64+0x5c] ; /** Load-and-store gadget **/
LOP3.LUT R0, R0, 0xffff, RZ, 0xc0, !PT; /** Logic operation **/
IADD3 R0, R0, 0x4, RZ ;
IMAD R4, R5, 0x20000, R0 ;
IMAD.MOV.U32 R5, RZ, RZ, RZ ;
ST.E.64 [R28.64], R4 ; /** Store **/
BSYNC B7 ;
LDL R0, [R1] ;
BMOV.32 B6, R27 ;
IMAD.MOV.U32 R4, RZ, RZ, R2 ;
LDL R20, [R1+0x18] ;
LDL R21, [R1+0x1c] ;
LDL R2, [R1+0x4] ;
LDL R16, [R1+0x8] ;
LDL R17, [R1+0xc] ;
LDL R18, [R1+0x10] ;
LDL R19, [R1+0x14] ;
LDL R22, [R1+0x20] ;
... /** Pop R23 to R29 **/
IADD3 R1, R1, 0x40, RZ ;
BMOV.32 B7, R0 ;
RET.ABS.NODEC R20 0x0 ;

Figure 7: CUDA ROP gadgets.

ory address, while the second one reads data from a memory
address and then writes it to another address. Unfortunately,
our analysis suggests that this CUDA gadget set is not Turing
complete. However, later in Section 5 we show that even with
these limited gadgets, the attacker can significantly reduce the
performance of DNN-based applications on GPUs. In addi-
tion, using the memory corruption gadgets, we might be able
to modify the CUDA code (which is not write-protected) to
create a Turing-complete collection of gadgets, thus achieving
arbitrary computation.

Note that it is difficult to have unintended ROP gadgets,
since all the GPU instructions must be 8B aligned. In addition,
including other common CUDA libraries, such as libcublas
and libcudnn, does not really bring more ROP gadgets: these
libraries are so optimized that the return address is almost
never pushed to the stack; it is typically stored in a register
instead.

Takeaway 4: ROP can be used to read or write the
memory on NVIDIA GPUs.

Generality. In this section, we discuss and present the in-
vestigations using the platform specified at the beginning
of this section. However, the conclusions drawn from these
investigations, including the feasibility of memory corrup-
tion across memory spaces (cf. Table 2), and the potential
for code injection and code reuse attacks, are applicable to
other modern NVIDIA GPUs as well.6 We have verified these
vulnerabilities on multiple NVIDIA GPUs spanning several
recent architectures, including Volta, Turing, Ampere, and
Ada Lovelace; we conduct experiments on these GPUs with
various NVIDIA drivers ranging from version 470.63 (re-
leased in July 2021) to version 550.67 (released in March
2024), and multiple CUDA toolkits ranging from version

6The specific details, such as the number of ROP gadgets, may vary
slightly depending on the CUDA version.

11.2 to version 12.4. The results consistently demonstrate that
these vulnerabilities exist across all tested GPUs, regardless
of the driver/CUDA version used. The complete list of the
tested GPUs is provided in Appendix A.

5 Case Study: Corruption Attacks on DNN

In this section, we demonstrate how the GPU memory corrup-
tion vulnerabilities discussed in Section 4 can pose significant
security risks for DNN-based applications, which are one of
the most common GPU applications.

5.1 Threat Model

Victim. The victim is a DNN-based application running on
a server equipped with a modern NVIDIA GPU. This appli-
cation receives requests from remote users, processes these
requests using a DNN model, and sends the responses back.
We assume that some of the CUDA kernels involved in the
process of DNN inference have memory corruption vulner-
abilities, (the vulnerability examples will be discussed later
in Section 5.2). As a common practice, model parameters,
such as weights, are loaded into the device memory during
application initialization. To minimize response latency, these
parameters persist in memory across user requests, rather
than being reloaded for each new request or removed after
processing a request.
Attacker. The attacker is a remote user who can send requests
to the victim application. By crafting a malicious request (de-
tailed in Section 5.2), the attacker is able to exploit a buffer
overflow vulnerability in the GPU kernels used by the vic-
tim application. The primary goal of the attacker is to alter
the model parameters, such as the weights, through this vul-
nerability. Consequently, the inferences for future requests
from other users will be compromised. We assume that the
attacker has knowledge of the layout of the victim’s DNN
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1 / * * Device func f o r max t r ix − v e c t o r m u l t i p l i c a t i o n * * /
2 / * * T : t h e i n p u t m a t r i x * * /
3 / * * V: t h e i n p u t v e c t o r * * /
4 / * * R : t h e r e s u l t v e c t o r * * /
5 / * * m: t h e number o f rows i n T * * /
6 / * * n : t h e number o f columns i n T * * /
7 _ _ d e v i c e _ _ vo id matvecmul ( s c a l a r _ t * T , s c a l a r _ t * V,

s c a l a r _ t * R , i n t m, i n t n )
8 {
9 s c a l a r _ t a r r _ l o c a l [ 6 4 ] ;

10 i n t n c o l s = n / ( blockDim . y*blockNum ) ;
11 i n t c o l 0 = b l o c k I d x . y* blockDim . y+ t h r e a d I d x . y ;
12 f o r ( i n t k =0; k< n c o l s ; k +=1)
13 a r r _ l o c a l [ k ] = R[ c o l 0 * n c o l s +k ] ;
14 . . .
15 }

Listing 5: The device function for matrix-vector
mulpiclication with a buffer overflow vulnerability.

model weights.

5.2 Application Setups
Under the aforementioned threat model, we choose four
widely used vision models as potential victims for our eval-
uation: ResNet-18 [26], ResNet-50 [26], VGGNet [54], and
Vision Transformer (ViT) [35].7 We implement these models
with popular DNN frameworks in cloud environments, such
as PyTorch [49].

We host the DNN inference application (i.e., the victim
application) in a virtual machine on a cloud system equipped
with a server-grade GPU, which is different from the system
used for the experiments in Section 4. We utilize NVIDIA’s
virtual GPU (vGPU) technology to virtualize the GPU [13].
This is a common configuration for DNN inference in cloud
environments [7, 8]. The detailed specifications of this sys-
tem can be found in Appendix D. Note that vGPU does
not support CUDA ASLR; with vGPU, addresses are not
randomized even when ASLR is activated. We keep CUDA
ASLR activated in our configuration as it is the default set-
ting. However, it has no effect. We discuss CUDA ASLR in
non-virtualized environments later in Section 6.2.

Previous work [18] has suggested that modern DNN frame-
works may be vulnerable to GPU buffer overflow issues, but
has not disclosed any specific instances. Similarly, we have
not identified any overflow vulnerabilities in these frame-
works. However, the goal of this paper is not to uncover such
vulnerabilities; we leave that task for future research. Instead,
for the purpose of our evaluation, we intentionally introduce
buffer overflow vulnerabilities into the DNN frameworks.
Buffer overflow vulnerability. We include a CUDA device
function for matrix-vector multiplication (with an overflow
vulnerability) in the victim application, as shown in Listing 5.
Matrix-vector multiplication is important and commonly used
in DNN inference. This code uses multiple CUDA threads
for each row in the matrix to calculate the partial sums, and

7We also test the memory corruption attacks on several large language
models (LLMs) which we obtain from Hugging Face [10], the details can be
found in Appendix E.

each thread transfers the necessary portion of the vector from
global memory to its local memory prior to the calculation.
We deliberately introduce a vulnerability in this kernel: it
lacks proper checks to ensure that the size of the vector por-
tion handled by each thread does not exceed the capacity of
the thread’s local array. Consequently, a stack overflow can
occur when the vector size, which is controlled by the user
(explained below), is larger than expected.
Triggering the buffer overflow vulnerability. In order to
trigger the vulnerability in Listing 5, we assume that the size
of the vector (n) is controlled by the users. An example of this
situation occurs during the data preprocessing stage. Specifi-
cally, the size of the input data provided by the user may not
always match the required input size of the DNN model. For
example, a user might provide an image of size 512×1024
pixels, while the DNN model is designed to process images of
only 256×512 pixels. To handle such discrepancies, a convo-
lution layer might be used to preprocess the user input before
feeding it into the DNN model. This convolution layer often
employs matrix-vector multiplication for performance opti-
mization [16]. In this preprocessing convolution layer, the
dimensions of the matrix and vector (m and n) are determined
by the size of the user input. This potentially allows a user
to trigger the vulnerability in Listing 5, if the input size is
significantly larger than the size expected by the DNN model.

5.3 Attack Methods and Results
In this section, we examine the two strategies that an attacker
can employ to modify the weights: code injection and ROP
attacks. We discuss the specific steps an attacker must take to
launch these attacks, as well as the resulting outcomes.

5.3.1 Code Injection Attack

We implement the code injection attack as a controlled weight
attack: the attacker has control over the data written to mem-
ory and can modify the weights to any desired value. Specifi-
cally, the attacker prepares a data buffer with shellcode that
writes specific values to given addresses, and uses a stack over-
flow vulnerability to redirect the control flow to this buffer
(cf. Listing 5). Details of the shellcode can be found in Ap-
pendix C. There are three steps in the attack:

Step 1: The attacker prepares a data buffer whose size is
large enough to trigger the buffer overflow error in
the victim (cf. Listing 5) when this buffer is sent to
the victim for DNN inference.

Step 2: The attacker manipulates the data in the buffer to
achieve two critical objectives: 1) the local array of
each thread (arr_local in Listing 5) is filled with
expected shellcode after this buffer is copied to the
local memory; 2) the return address of each thread
is overwritten with the address of this local array
(where the shellcode resides), after the data copy.
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Table 3: The DNN inference accuracy with the weight modification attacks (only for weights in the first layer).

DNN model Clean acc. Weight modification (controlled) Weight modification (uncontrolled)
10% 20% 50% 100% 10% 20% 50% 100%

ResNet-18 (CIFAR-10) 87.37% 10.00% 10.00% 10.00% 10.00% 87.14% 87.32% 81.65% 10.83%
VGG-19 (CIFAR-10) 83.56% 13.46% 13.46% 11.19% 9.66% 74.90% 62.77% 59.01% 10.00%
ResNet-50 (ImageNet-1K) 84.97% 58.21% 55.21% 54.75% 44.35% 84.93% 84.27% 80.64% 65.33%
ViT (ImageNet-1K) 93.64% 0.09% 0.08% 0.12% 0.09% 92.78% 90.56% 90.33% 88.54%

These preparations are crucial to ensure that when the
buffer overflow is triggered, it leads to the expected
code injection attack.

Step 3: The attacker initiates a DNN inference request using
this data buffer as the input.

5.3.2 ROP Attack

We implement the ROP attack as an uncontrolled weight
modification attack: the attacker repeatedly executes a single
memory write gadget to modify the weights. The attacker
controls the register providing the address used in the write
operation, but does not control the register that supplies the
data to be written. Details of the gadget are in Appendix B.
Similar to the code injection attack introduced in Sec-
tion 5.3.1, this ROP attack also has three steps, which are
very similar to those in the code injection attack. However,
the objectives in the second step, preparing the data buffer,
are slightly different. Specifically, the attacker needs to ma-
nipulate the data in the input buffer to ensure that, after the
data copy, 1) the return address on the stack is overwritten
with the address of the ROP gadget, and 2) certain registers,
which will be used by the ROP gadget, receive the expected
values when popped from the stack.

5.3.3 Address of the Malicious Code

In the aforementioned two types of attacks, in order to modify
the DNN weights, the attacker needs to know the address
of the malicious code (either the ROP gadgets or the shell-
code). As explained in Section 5.2, CUDA ASLR has no effect
when using vGPU, making this address predictable and stable
across executions. As a result, it is rather straightforward for
the attacker to determine the address of the shellcode/ROP
gadgets. For example, once the attacker profiles the memory
of one NVIDIA GPU and identifies the addresses of the ROP
gadgets, it can launch ROP attacks on all NVIDIA GPUs of
the same generation and using the same CUDA toolkit, since
these gadgets are loaded at fixed addresses. We discuss the
scenarios in which ASLR takes effect (in native environments
without virtual machines) in Section 6.2.

5.3.4 Results

We test the accuracy of the model after modifying the weights
in the first layer of each model, using the attack methods in
Section 5.3.1 and Section 5.3.2. Table 3 shows the accuracy
results after modifying 10%, 20%, 50%, and 100% of the

weights. In the code injection attack where the attacker can
specify the desired weight value, we choose a large value
for each weight. This is because most weight values in DNN
models are very small; using a large value is expected to
substantially impact the model performance. As shown in
the table, this approach significantly reduces the accuracy
across all tested models. ResNet-18 and ViT are especially
affected, with the accuracy nearly mirroring random guesses.
In contrast, in the ROP attack where the attacker does not
have control over the modified weight value, the accuracy
remains largely unaffected. This is because the ROP gadget
used in the attack happens to change the weights to a small
value, rather than a large value, which is close to the original
values of the weights.

6 Discussion

6.1 BSYNC in CUDA ROP Gadgets

Usage of BSYNC. CUDA provides synchronization mecha-
nisms at different levels. The BSYNC instruction is specifically
used for intra-warp synchronization. Although threads in a
warp are intended to execute the same instruction simulta-
neously, some scenarios, such as conditional branches, can
lead to thread divergence. BSYNC and BSSY are used to man-
age such situations: BSSY signals the hardware to prepare for
divergence and specifies the address for re-convergence [25].
BSYNC serves as the synchronization barrier: when a thread in
the warp reaches BSYNC, it waits for other threads in the warp.

We found that BSYNC and BSSY always appear together (in
a pair) in CUDA binaries. However, this pairing might not
be maintained in ROP gadgets. For example, the gadgets in
Figure 7 contain only BSYNC but not BSSY. This means, the
re-convergence address is not specified when BSYNC executes,
which may cause an error. Interestingly, our analysis reveals
that if the threads in a warp do not diverge, BSYNC does not
influence the execution. Thus, as long as threads remain in
sync when executing a ROP gadget, the gadget will function
as expected without being affected by BSYNC. This is a feasi-
ble condition, especially for DNN-based applications, where
thread divergence rarely occurs.

6.2 CUDA ASLR

In non-virtualized environments, CUDA supports ASLR for
both data and code. In addition, the activation of CUDA ASLR
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depends on the ASLR settings in the OS. If ASLR is enabled
in the OS, CUDA ASLR is also enabled (by the GPU driver),
reflecting a similar level of randomization (e.g., no, conserva-
tive, or full randomization [11]) as the one in the OS. Note
that, as mentioned in Section 5.2, CUDA ASLR does not
function in virtualized environments with the vGPU technol-
ogy [13].

CUDA ASLR, when functioning, makes it more difficult
for the attacker to obtain the address of the shellcode and
thus can help mitigate code injection attacks. However, the at-
tacker may be able to bypass CUDA ASLR through GPU side
channels (e.g., [58]). In addition, we found that the CUDA
driver API library mentioned in Section 4.4 is always loaded
at a fixed address, even when full randomization is applied.
Therefore, we cannot rely on CUDA ASLR to completely stop
the attacker from exploiting the ROP gadgets in this library.

6.3 CUDA JOP
Similar to ROP, jump-oriented programming (JOP) [15] is
also an advanced code reuse attack technique. Instead of
chaining gadgets that end in a return, JOP makes use of gad-
gets that end in an indirect jump. These jumps use registers to
determine the destination address. To chain the JOP gadgets
we need a “dispatcher” (also called “dispatcher gadget”). Its
role is to load the address of the next gadget into the appro-
priate register and then jump to it.

On NVIDIA GPUs, the indirect jump instruction is BRX
(e.g., “BRX R3, 0xa0”). With this instruction, it is possible
to form JOP on GPUs. As mentioned in Section 4.4, we did
not find any ROP gadgets in common CUDA libraries such as
libcudnn and libcublas. However, we found that some of
these libraries do use BRX and therefore contain JOP gadgets.
Unfortunately, after analyzing these gadgets, we found that
they can only perform limited functionality. For example, the
libcuda.so.470.63.01 library contains 156 JOP gadgets,
but 151 of these are merely for shifting register values. Similar
observations have been made with other common CUDA li-
braries, such as libcudnn_cnn_infer.so.8.2.2. However,
we may combine the ROP and JOP gadgets to achieve more
functionality. More details of this can be found in Appendix F.

6.4 Memory Errors in Real-World GPU Appli-
cations

Memory errors, especially buffer overflow errors, have been
identified in existing GPU applications. First, a previous
study [22] analyzed 175 commonly used GPU programs in
16 benchmark suites and found 13 buffer overflow errors in
7 of these programs; some of these errors are very similar to
the one we assumed in the ML attacks. Second, buffer over-
flow errors have also been found in web browsers that utilize
GPUs to accelerate rendering tasks. For example, in 2022,
researchers discovered a buffer overflow error in Chrome

that occurs during the data transfer between CPU and GPU
memory [3]. This allows a remote attacker to escape the sand-
box through a crafted HTML page. In addition, in 2023, it
was demonstrated that buffer overflows can also occur within
WebGL programs running on GPUs, causing the browser to
crash [4].

Furthermore, previous studies on fuzzing ML frameworks
(e.g., [18]) have identified significant bugs in their GPU ker-
nels. These include computation bugs, which lead to inac-
curate results, and crash bugs, which can cause the entire
application to crash. However, these preliminary fuzzing stud-
ies have not yet revealed any exploitable memory errors in
these frameworks, which we leave for future work. Note that
given the similar programming model between CUDA and
C/C++, we believe it is likely that exploitable memory bugs
exist in these frameworks.

6.5 CUDA Heap Exploitation
CUDA supports dynamic memory allocation: buffers dynam-
ically allocated in CUDA kernels (using the malloc() func-
tion) reside in the GPU’s heap memory.8 The heap mem-
ory is persistent during the lifetime of a GPU process and
is shared among the kernels in this process. NVIDIA has
not released the specific memory allocator used in CUDA.
However, our experimental results suggest that this allocator
follows policies similar to those in CPU memory allocators
(e.g., ptmalloc [14]). Consequently, CUDA programs may
also be vulnerable to spatial/temporal heap exploits, similar
to those found in CPU programs. However, the use of dy-
namic memory allocation on GPUs is generally discouraged
due to its significant performance overhead [33]. After an-
alyzing common CUDA applications and benchmarks, we
did not find any scenario where dynamic buffer allocation is
used. Thus, we believe that this issue is much less significant
compared to overflows in memory that is statically allocated
(local/global/shared memory).

6.6 Countermeasures
OOB detection tools. There have been many tools to statical-
ly/dynamically detect buffer overflow errors in GPU programs.
First, NVIDIA Compute Sanitizer [40], a tool for GPU mem-
ory safety checks, is based on dynamic binary instrumenta-
tion: it intercepts every program instruction at runtime before
the execution. While effective, this approach introduces con-
siderable performance overhead. Second, cuCatch [57] is a
compile-time tool that can help detecting both spatial and
temporal memory errors during the execution of a CUDA
program. It stores the necessary metadata for memory safety

8Heap memory is different from global memory. Global memory buffers
can only be allocated by the CPU code (prior to a kernel launch, cf. Sec-
tion 2.3), while heap buffers can be allocated by the GPU code during the
execution of a CUDA kernel.
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checks in a table, with one entry for each allocation. Given
a pointer, the correpsonding table entry index can be either
embedded in the upper bits of the pointer (if possible), or
stored in the shadow memory. cuCatch introduces much less
performance overhead compared to NVIDIA Compute San-
itizer. However, it is important to note that neither of these
tools can achieve a 100% detection rate.
Stack cookies. Stack canaries or stack cookies are secret val-
ues that are placed between a buffer and control data on the
stack to monitor for stack overflows. Unfortunately, NVIDIA
has not adopted this technique on their GPUs. In addition, it
is important to note that previous studies have already shown
that the attacker might be able to determine the value of
the stack cookies, thus bypassing the detection mechanism
(e.g., [51]).

In fact, several canary-based detection tools (for GPU
buffer overflows) have been proposed by researchers, such as
GMOD [21], GMODx [20], and clARMOR [22]. They insert
a canary before and after every GPU buffer (not just stack
buffers) and detect buffer overflows by periodically verifying
the integrity of these canaries. These tools have minimal per-
formance overhead. However, they cannot detect OOB read
operations or non-adjacent OOB read/write operations.
ASLR and PIE. Both Position Independent Executable (PIE)
and ASLR are supported on NVIDIA GPUs. However, we
found that the CUDA driver API library that contains pow-
erful ROP gadgets is not compiled as PIE and is loaded at
a fixed address even with CUDA ASLR activated (cf. Sec-
tion 6.2). As a result, ASLR cannot thwart ROP attacks on
GPUs. It is not clear why NVIDIA has chosen this design
approach. To effectively prevent ROP attacks, it is crucial for
NVIDIA to compile this library as PIE and ensure that it is
subject to ASLR. In addition, ASLR makes it more difficult
for the attacker to launch code injection attacks. However, the
attacker might be able to bypass ASLR through side-channel
attacks (cf. Section 6.2).
WˆX policy. Differentiating between code and data pages is
critical for counteracting code injection attacks. As mentioned
in Section 4, there is already a read-only bit in the PTE. To
understand whether this bit takes effects, we modified the bit
through IOMMU during the execution of a CUDA program,
and found that setting this bit effectively prohibits any mod-
ifications to the page. Thus, the GPU driver can set this bit
for code pages to prevent code modification. In addition, an
executable bit needs to be included in order to prevent the
execution of data pages.

6.7 Related Work

Research in memory vulnerabilities on GPUs has been very
limited. First, in 2016, Miele conducted a preliminary ex-
ploration into buffer overflow vulnerabilities in CUDA [38].
This research shows that, on a GTX TITAN Black GPU (Ke-
pler architecture with sm_30), it is possible to exploit a stack

overflow to overwrite function pointers, therefore redirect-
ing the execution flow. It further shows that the function call
and return mechanism on these GPUs is based on a PRET in-
struction followed eventually by a RET instruction. The PRET
instruction stores the return address in an unknown location,
making the traditional ROP impractical on these GPUs. In
addition, this research concludes that code and data address
spaces are separated and thus executing data buffers is not
possible. Note that this work also confirmed the feasibility
of CUDA heap overflows, although heaps are rarely used in
CUDA programs [33].

Second, in the same year, Di et al. conducted similar exper-
iments on a GeForce GTX 750Ti GPU (Maxwell architecture
with sm_50) [19], reaching conclusions that align with those
from Miele. However, compared to Miele’s study, this work
provides a much more detailed analysis on GPU heap over-
flows.

Third, later in 2021, Park et al. performed a deeper analysis
of GPU memory exploitation techniques. They presented
the first attack on DNN frameworks based on GPU memory
manipulation [48]. The experiments in this work were carried
out on a GTX 950 GPU (Maxwell architecture with sm_50)
and a GTX 1050 GPU (Pascal architecture with sm_60). This
work reached several conclusions that are the same as prior
work, such as the hidden return address. However, it also
made a new discovery that the code pages are writable on
NVIDIA GPUs.

7 Conclusion

In this paper, we present a comprehensive study of the buffer
overflow issues in CUDA programs. First, we reverse engi-
neered the mechanisms used to access various GPU memory
spaces, demonstrating that buffer overflow errors can cause
memory corruption across memory spaces and exceed data’s
legitimate scopes. Second, we explored the code and data man-
agement policies on GPUs, revealing that traditional code in-
jection attacks remain functional on GPUs. We also analyzed
the mechanics of function returns and proved the feasibility
of CUDA ROP. Finally, we demonstrated that the vulnerabili-
ties discovered in this paper pose significant security risks to
DNN applications running on GPUs. The Proof-of-Concept
for CUDA code injection and CUDA ROP is available at
https://github.com/SecureArch/gpu_mem_attack.
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A GPU List

Table 4 lists all the GPUs on which we have verified the
conclusions presented in Section 4.

Table 4: The complete list of tested GPUs.

Architecture GPU Model
Volta Tesla V100
Turing GeForce RTX 2070
Ampere GeForce RTX 3080
Ampere A100
Ada Lovelace GeForce RTX 4090

B ROP Gadgets

An example of the ROP gadget in Section 5 is shown in
Listing 6. Each execution of this gadget modifies a weight
value, and we execute it repeatedly to modify multiple weights.
Specifically, we prepare the stack so that each time the gadget
executes, two conditions are met: 1) the address of the first
instruction in the gadget is stored at [R1+0x18] and is thus
loaded into R20; 2) the address of the next weight is stored at
[R1+0x38] and is thus loaded into R28. Consequently, each
execution of this gadget first modifies a weight value using
the ST instruction, then updates R28 to the address of the next
weight, and finally returns to the start of the gadget to modify
the subsequent weight. If there are a large number of weights
to modify and the stack size is insufficient to support the
repeated execution of this gadget, we use multiple malicious
user requests—and thus multiple ROP attacks—to complete
the task.

ST.E.64 [R28.64], R4 ;
BSYNC B7 ;
LDL R0, [R1] ;
BMOV.32 B6, R27 ;
LDL R20, [R1+0x18] ;
LDL R21, [R1+0x1c] ;
LDL R2, [R1+0x4] ;
LDL R16, [R1+0x8] ;
...
LDL R19, [R1+0x14] ;
LDL R22, [R1+0x20] ;
...
LDL R29, [R1+0x3c] ;
IADD3 R1, R1, 0x40, RZ ;
BMOV.32 B7, R0 ;
RET.ABS.NODEC R20 0x0 ;

Listing 6: An example ROP gadget.

C Shellcode

An example of the shellcode used in the code injection at-
tack is shown in Table 7. It writes the value 0xffffffff
to a range of memory addresses, from 0x7fffdeadbeef to
0x7fffdeadbeef+0xaaaa.

D System Specifications

The cloud system used for the experiments in Section 5 is
specified in Table 5.
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Table 5: Platform details.
CPU Intel Xeon Silver 4114
Hypervisor KVM on Ubuntu 20.04
Virtual machine Ubuntu 20.04
GPU NVIDIA A100
GPU architecture Ampere
vGPU version 15.4
vGPU license vWS
vGPU memory 40GB
CUDA version 12.4

E LLM Attacks

We test the memory corruption attacks, including the code
injection attack and the ROP attack, on three LLMs, Flan-T5-
Small, Flan-T5-Base, and Flan-T5-Large [5]. We assume a
buffer overflow vulnerability in the data pre-processing stage
(e.g., for noise removing [6]), similar to the one assumed in
Section 5.

Table 6: The LLM inference accuracy (with MMLU [27])
after the weight modification attacks.

DNN Model Clean acc. Uncontrolled Weight modification
10% 20% 50% 100%

Flan-T5-Small 29.5% 29.2% 28.6% 28.3% 28.2%
Flan-T5-Base 34.2% 33.2% 32.6% 28.9% 29.5%
Flan-T5-Large 42.0% 41.3% 40.5% 39.1% 35.0%

Similar to the attacks on the vision models (cf. Section 5),
the code injection attack (with controlled written values) can
reduce the accuracy of the LLMs to the same level of random
guessing. However, as shown in Table 6, the ROP attack,
where the written value is not controlled by the attacker, has
a limited effect on the accuracy of the LLMs.

F JOP+ROP Attack

An example of combining JOP and ROP gadgets is shown in
Figure 8. Here we assume that R4 contains the address of the
helper gadget, which is used to chain the JOP gadgets (with
the ROP gadgets). Every time after executing a JOP gadget,
it jumps to the helper gadget, which then pops the address of
the next gadget from the stack and returns to it.

LDL R20, [R1+0x10] ;
LDL R21, [R1+0x14] ;

...
IADD R1, R1, 0x30, RZ ;

RET.ABS.NODEC R20 0x0 ;

/*payload*/
LDL R20, [R1+0x18] ;
LDL R21, [R1+0x1c] ;

…
IADD R1, R1, 0x40, RZ ;

RET.ABS.NODEC R20 0x0 ;

/*payload*/
BRX R4 0x0 ;

/*payload*/
BRX R4 0x0 ;

/*payload*/
LDL R20, [R1+0x10] ;
LDL R21, [R1+0x14] ;

…
IADD R1, R1, 0x30, RZ ;

RET.ABS.NODEC R20 0x0 ;

helper gadget

Figure 8: An example of combining JOP and ROP, assuming
that R4 contains the address of the helper gadget.

Table 7: An example shellcode.

/* 0000 */ MOV R0, 0xffffffff ;
/* 0xffffffff00007802 */
/* 0x003fde0000000f00 */

/* 0010 */ MOV R4, 0xdeadbeef ;
/* 0xdeafbeef00047802 */
/* 0x003fde0000000f00 */

/* 0020 */ MOV R5, 0x7fff ;
/* 0x00007fff00057802 */
/* 0x003fde0000000f00 */

/* 0030 */ MOV R3, RZ ;
/* 0x000000ff00037202 */
/* 0x003fde0000000f00 */

/* 0040 */ MOV R6, R3 ;
/* 0x0000000300067202 */
/* 0x003fde0000000f00 */

/* 0050 */ MOV R3, R6 ;
/* 0x0000000600037202 */
/* 0x003fde0000000f00 */

/* 0060 */ ISETP.LT.AND P0, PT, R3, 0xaaaa, PT ;
/* 0x0000aaaa0300780c */
/* 0x003fde0003f01270 */

/* 0070 */ PLOP3.LUT P0, PT, P0, PT, PT, 0x8, 0x0 ;
/* 0x000000000000781c */
/* 0x003fde000070e170 */

/* 0080 */ @P0 BRA 0x150 ;
/* 0x000000c000000947 */
/* 0x003fde0003800000 */

/* 0090 */ MOV R6, R3 ;
/* 0x0000000300067202 */
/* 0x003fde0000000f00 */

/* 00a0 */ SHF.R.S32.HI R7, RZ, 0x1f, R6 ;
/* 0x0000001fff077819 */
/* 0x003fde0000011406 */

/* 00b0 */ SHF.L.U64.HI R7, R6, 0x2, R7 ;
/* 0x0000000206077819 */
/* 0x003fde0000010207 */

/* 00c0 */ SHF.L.U32 R6, R6, 0x2, RZ ;
/* 0x0000000206067819 */
/* 0x003fde00000006ff */

/* 00d0 */ MOV R10, R4 ;
/* 0x00000004000a7202 */
/* 0x003fde0000000f00 */

/* 00e0 */ MOV R11, R5 ;
/* 0x00000005000b7202 */
/* 0x003fde0000000f00 */

/* 00f0 */ IADD3 R6, P0, R10, R6, RZ ;
/* 0x000000060a067210 */
/* 0x003fde0007f1e0ff */

/* 0100 */ IADD3.X R7, R11, R7, RZ, P0, !PT ;
/* 0x000000070b077210 */
/* 0x003fde00007fe4ff */

/* 0110 */ ST.E [R6.64], R0 ;
/* 0x0000000006007985 */
/* 0x0033de000c101904 */

/* 0120 */ IADD3 R6, R3, 0x1, RZ ;
/* 0x0000000103067810 */
/* 0x003fde0007ffe0ff */

/* 0130 */ MOV R7, R6 ;
/* 0x0000000600077202 */
/* 0x003fde0000000f00 */

/* 0140 */ BRA 0x160 ;
/* 0xffffff0000007947 */
/* 0x003fde000383ffff */

/* 0150 */ EXIT ;
/* 0x000000000000794d */
/* 0x003fde0003800000 */
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