
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

CARDSHARK: Understanding and Stablizing Linux
Kernel Concurrency Bugs Against the Odds
Tianshuo Han, Xiaorui Gong, and Jian Liu, {CAS-KLONAT, BKLONSPT},

Institute of Information Engineering, Chinese Academy of Sciences;
School of Cyber Security, University of Chinese Academy of Sciences

https://www.usenix.org/conference/usenixsecurity24/presentation/han-tianshuo

CARDSHARK: Understanding and Stablizing
Linux Kernel Concurrency Bugs Against the Odds

Tianshuo Han, Xiaorui Gong, Jian Liu∗

{CAS-KLONAT †, BKLONSPT ‡}, Institute of Information Engineering, Chinese Academy of Sciences
School of Cyber Security, University of Chinese Academy of Sciences

{hantianshuo, gongxiaorui, liujian6}@iie.ac.cn

Abstract

Concurrency bugs in the Linux kernel are notoriously diffi-
cult to reproduce and debug due to their non-deterministic
nature. While they bring constant headaches to Linux kernel
developers, the reasons behind the non-determinism and how
to improve the efficiency in triggering concurrency bugs to
ease the debugging process still need to be studied.

This work aims to fill the gap. We comprehensively study
the concurrency bug stability problem in the Linux kernel,
dissect the factors behind the non-determinism, and system-
atize the insights into a model to explain the non-deterministic
nature of concurrency bugs.

Based on insights derived from the model, we identify an
under-studied factor, named misalignment, which plays a vital
role in triggering concurrency bugs. By controlling this factor,
we significantly reduce the randomness in the concurrency
bug-triggering process.

Inspired by this insight, we design a novel technique, named
CARDSHARK, that can significantly improve the efficiency
in triggering concurrency bugs when kernel instrumentation
is possible. A variant of CARDSHARK, named BLIND-
SHARK, enables developers to improve efficiency in trig-
gering concurrency bugs without knowing their root causes,
making the use of CARDSHARK practical.

In our evaluation of 12 real-world concurrency bugs,
CARDSHARK and BLINDSHARK significantly reduce the
needed time and the number of attempts to trigger concurrency
bugs in the Linux kernel. Notably, CARDSHARK can deter-
ministically trigger 10 out of the 12 concurrency bugs with
a single attempt. Our evaluation shows that CARDSHARK
significantly outperforms existing works in stabilizing con-
currency bugs, making it a potential great help to developers
in analyzing and fixing concurrency bugs.

*Corresponding author: liujian6@iie.ac.cn
†Key Laboratory of Network Assesment Technology, CAS
‡Beijing Key Baboratory of Network Security and Protection

1 Introduction

Concurrency significantly enhances the Linux kernel by en-
abling efficient resource utilization, rapid response to user
actions, and greater scalability, thus solidifying its role as the
backbone of modern computing infrastructure. However, it
also introduces unprecedented complexity, leading to a class
of bugs known as concurrency bugs. These bugs arise from
unexpected thread interleaving orders that developers often
do not anticipate, potentially causing severe damage to the
kernel’s stability and security.

In addition to undermining the kernel’s stability and lead-
ing to kernel panics, concurrency bugs are also known to open
doors to memory corruption vulnerabilities [4–6], such as out-
of-bound access, use-after-free, and double-free, which can
be exploited to compromise the whole system. Its severity
has been demonstrated by many successful concurrency bug-
based exploits [1–3] that bypass the latest Linux kernel pro-
tections and achieve local privilege escalation on real-world
devices in the past.

The non-deterministic nature of concurrency bugs poses
significant challenges in their analysis and fixing. Coupled
with the rapid evolution of fuzzing techniques, there are more
bugs than developers can handle. In Linux kernel drivers,
which is known to be a significant source of vulnerabili-
ties [41, 50], 19% of their bugs are concurrency bugs, which
leads to a substantial number of concurrency bugs [50]. This
overwhelming amount of hard-to-analyze concurrency bugs
leads to the delay in fixing severe concurrency bugs [18],
threatening the security and privacy of billions of Linux users.

In response to these challenges, it is imperative to develop
new methods to efficiently trigger and debug concurrency
bugs. Despite extensive research on detecting, reproducing,
and exploiting these bugs [11–14,22–24,49,51–53], little has
been done to understand the underlying factors contributing
to their non-deterministic nature and systematize how concur-
rency bugs manifest. The latest related study, EXPRACE [26],
suggests that increasing the time window size could improve
the success rate in triggering concurrency bugs. However,

USENIX Association 33rd USENIX Security Symposium 6203

our experiments indicate that, despite a larger time window,
the triggering of concurrency bugs still suffers from signif-
icant non-determinism (§ 6.2), suggesting a more complex
underlying nature.

In light of the need, we embarked on a comprehensive anal-
ysis of the manifestation process of concurrency bugs in the
Linux kernel. We manually analyzed 12 real-world concur-
rency bugs and systematized our insights into a model, which
we term as the Concurrency Bug Reproduction Model. This
model highlights misalignment—the deviation in execution
timing from the ideal timing required to trigger a bug—as
a vital yet unstudied factor. By manipulating the elements
that cause misalignment, we can improve the triggerability of
concurrency bugs.

Armed with these findings, we developed an intuitive yet
powerful technique, named CARDSHARK, that can substan-
tially increase the success rate of triggering concurrency bugs
by manipulating system call timing to minimize the misalign-
ment. As shown in Table 2, CARDSHARK significantly re-
duces the time and number of attempts required to trigger
concurrency bugs. Notably, CARDSHARK enables determin-
istic triggering of 10 out of 12 concurrency bugs in our dataset
with a single attempt.

We further explored the potential of CARDSHARK and im-
plemented a downstream application, named BLINDSHARK,
that can be seamlessly incorporated into proof-of-concept
programs of concurrency bugs to make them more efficient
without knowing the root causes. The method employs a two-
step approach: it first identifies an approximate align time
and then compensates for the misalignment with it, thereby
increasing the likelihood of achieving the desired execution
interleaving. As shown in Table 3, BLINDSHARK signifi-
cantly reduces the time and number of attempts needed to
trigger concurrency bugs without knowing their root causes.

We believe that our work is a solid step toward understand-
ing the intricacies of concurrency bug manifestation and de-
mystifying its non-deterministic nature. In summary, our pa-
per makes the following contributions:

• We comprehensively studied concurrency bugs and pro-
posed the Concurrency Bug Reproduction Model to ex-
plain the manifestation process of concurrency bugs.

• Based on the model, we pointed out the importance of
misalignment in the manifestation of concurrency bugs
and designed the CARDSHARK to improve the effi-
ciency of triggering concurrency bugs by manipulating
it.

• We developed BLINDSHARK, a downstream applica-
tion of CARDSHARK that can substantially increase
the efficiency in triggering concurrency bugs without
knowing vulnerability root causes or instrumenting the
kernel.

We release the implementations and the experiment dataset
at https://github.com/keymaker-arch/CARDSHARK. We
believe these artifacts will benefit the community by helping
with the evaluation of future concurrency bug stabilization
techniques and potentially providing new insights.

2 Background

2.1 Concurrency Bug in the Linux Kernel

Concurrency bugs in the Linux kernel, a significant secu-
rity concern, arise from the parallel execution of kernel func-
tions [8]. Unlike non-concurrency bugs, which are triggered
by reaching specific code paths, concurrency bugs require
particular interleavings of multiple execution paths, needing
events to occur in a precise sequence to manifest.

Typically, these bugs involve two paths: the racee, which
consists of two events, and the racer, with a single event, as
illustrated in Figure 1. A concurrency bug is triggered when
the racer’s event happens within the time window defined
by the racee’s events. While some concurrency bugs present
more intricate scenarios involving additional execution paths
or events, it is noteworthy that over half of these bugs involve
just two racing execution paths, with a total of three events
[26, 40]. This pattern underscores a typical structure in the
manifestation of concurrency bugs.

The triggering of a concurrency bug often results in ad-
verse outcomes like memory corruption, posing significant
security risks. Attackers can exploit such vulnerabilities to
conduct malicious attacks on the kernel, such as local privi-
lege escalation (LPE) [1–3], underlining the critical need for
a comprehensive understanding and effective management of
these bugs.

2.2 Concurrency Bug Stability Issue

The triggering of concurrency bugs is inherently non-
deterministic [9,12,23,26,49,51,53]. Unlike non-concurrency
bugs, their activation relies on a precise chronological se-
quence of events that is unpredictable and cannot be directly
controlled, making their occurrence random and difficult to
analyze or fix [15, 16].

Although inherently non-deterministic, the triggerability of
concurrency bugs varies. Some bugs can be easily triggered,
requiring fewer race attempts for successful manifestation.
The time window size is a recognized factor affecting this
triggerability - larger time windows typically mean higher
chances of bug occurrence. However, the exact reasons behind
this non-deterministic nature and the factors influencing trig-
gerability beyond the size of the time window remain largely
unknown.

6204 33rd USENIX Security Symposium USENIX Association

https://github.com/keymaker-arch/CARDSHARK

3 Overview

Problem Statement. Our research centers on enhancing the
stability of triggering concurrency bugs in the Linux kernel.
We aim to delve into this non-deterministic nature of con-
currency bugs, dissect its causes, and subsequently improve
concurrency bug-triggering stability.
Problem Scope. This study dissects the underlying causes of
non-determinism in concurrency bugs. It develops user-level
techniques to trigger these bugs more effectively without re-
quiring modification of the kernel source code. We assume
that an initial, though unstable, reproducer for the concur-
rency bugs is available. Moreover, our scope does not cover
concurrency bugs involving more complex scenarios, such
as multiple (more than two) execution paths or numerous
(more than three) racing events, as these represent a minor-
ity according to existing studies [26, 40] and present distinct
challenges.

4 Concurrency Bug Reproduction

The triggering of concurrency bugs is known to be inherently
non-deterministic. While the time window size is a critical
factor in this process, as highlighted in EXPRACE [26], it is
not the sole determinant. This is exemplified by cases such
as CVE-2022-1729 [47], where even a substantial time win-
dow does not guarantee deterministic triggering, as evidenced
in Section 6.2. Often, hundreds of attempts are required to
trigger such vulnerabilities once successfully, indicating that
additional factors contribute to their non-deterministic nature.

In this section, we delve into the mechanics of concurrency
bug reproduction and unravel the factors contributing to their
non-determinism.

4.1 Concurrency Bug In The Vacuum
Triggering of a concurrency bug hinges on a specific inter-
leaving during the parallel execution of kernel functions. This
section delves into an idealized scenario, wherein this inter-
leaving is reliably reproducible, to discern the critical ele-
ments for deterministic concurrency bug triggering.

Time

CPU1

CPU2

sys_racer()

sys_racee()

racing
point

time window
open

time window
close

sys_racer()
return

sys_racee()
return

Figure 1: In an ideal environment where the racing point
always falls into the middle of the time window, concurrency
bugs can reproduce consistently.

Figure 1 depicts a typical concurrency bug pattern, char-
acterized by two racing system calls, termed sys_racer and
sys_racee. The bug is triggered when these system calls exe-
cute simultaneously, with the racing point of sys_racer align-
ing chronologically within sys_racee’s time window.

A race attempt is defined as a concurrent execution of
sys_racer and sys_racee. In each race attempt, two threads
(or processes) are spawned, each invoking a respective system
call. Under ideal conditions, these two system calls commence
synchronously, ensuring the racing point falls within the time
window, as depicted in Figure 1. In such an ideal scenario,
every race attempt leads to the specific execution interleaving
necessary to trigger the concurrency bug, thereby enabling
consistent bug triggering.

The inference drawn from this scenario is clear: determin-
istic triggering of a concurrency bug hinges on the racing
point occurring within the time window for each race attempt
consistently. However, this synchronicity of events remains
a theoretical construct in this idealized setup and only some-
times translates to real-world situations. The following section
will explore the challenges of reproducing concurrency bugs
in real-world scenarios and why this idealized assumption
often fails to materialize.

4.2 Concurrency Bug in Practice

In real-world scenarios, the racing point seldom consistently
aligns within the time window in every race attempt. This
non-determinism arises from the fact that user space programs
have no precise control over the commence timing of racing
point and the time window in real-world conditions. As a
result, the racing point may randomly fall within or outside
the time window in one race attempt. This issue is rooted in
several functional aspects of the Linux kernel.

When a system call is invoked, it transitions the execution
flow from user space to kernel space. The kernel then requires
a certain duration to process the call. This indicates a fact that
there is a time span from the invocation of sys_racer to the
execution of racing point, and similarly, from the invocation
of sys_racee to the time window midpoint. We term this
duration as the path time of a system call.

The path time of a system call is an inherent property of that
call. Thus, for any combination of sys_racer and sys_racee,
their path times are inherently unequal. This difference in path
time is referred to as path disparity. As the specific sys_racer
and sys_racee differ in each concurrency bug context, path
disparity becomes a unique characteristic of each bug. In real-
world scenarios, the existence of path disparity often leads
to the racing point not aligning with the time window, as
illustrated in Figure 2.

Moreover, invocation disparity also plays a significant role
in this context. This disparity emerges because parallel invo-
cation of racing system calls typically requires the creation
of two distinct threads (or processes). However, due to the

USENIX Association 33rd USENIX Security Symposium 6205

Time

CPU1

CPU2

sys_racer()

sys_racee()

racing
point

time window
open

time window
close

sys_racer()
return

sys_racee()
return

Path Disparity

Figure 2: In reality, path disparity is one of the reasons why
racing point does not always fall into the time window.

nature of the Linux kernel’s scheduling policy, new threads
do not start executing immediately after spawned [27]. An
unpredictable delay between thread spawning and the com-
mencement of execution is expected. Hence, when spawning
two threads for racing system calls, a random disparity in
their actual invocation timings is inevitable. This can lead to
the racing point being misaligned with the time window, as
shown in Figure 3.

Time

CPU1

CPU2

sys_racer()

sys_racee()

racing
point

time window
open

time window
close

sys_racer()
return

sys_racee()
return

Invocation Disparity

Figure 3: Random invocation disparity also introduces ran-
domness to the concurrency bug reproduction process.

In summary, the existence of path disparity along with in-
vocation disparity can lead to a timing difference between the
racing point and the time window in a race attempt. Specif-
ically, we define the timing difference between the racing
point and the midpoint of the time window as race timing
misalignment, or simply misalignment, as demonstrated in
Figure 4.

4.3 Concurrency Bug Reproduction Model
Refining our understanding from previous sections, it is evi-
dent that racing point does not consistently align within the
time window in real-world scenarios due to misalignment,
a consequence of both path disparity and invocation dispar-
ity. While path disparity and the size of the time window
(Twin) are intrinsic characteristics of a concurrency bug, invo-
cation disparity introduces a variable element, manifesting as
a random value in each race attempt.

Time

CPU1

CPU2

sys_racer()

sys_racee()

racing
point

time window
open

time window
close

sys_racer()
return

sys_racee()
return

Misalignment

Figure 4: We define misalignment as the time difference be-
tween the racing point and the midpoint of the time window.

We formalize these concepts in this section. We represent
the misalignment in a single race attempt as M, the path dis-
parity as P, and the invocation disparity as E. The relationship
between these factors is mathematically represented as:

M = E +P

As we define it, misalignment measures the time distance
between the racing point and the midpoint of the time window.
Specifically, misalignment takes a positive value when the
racing point occurs before the midpoint of the time window
and a negative value otherwise. As detailed in Section 4.1,
a race bug is triggered when the racing point is positioned
within the time window, meaning the distance between the
racing point and the time window’s midpoint does not exceed
half of the time window’s span. This condition can be formally
expressed through the following inequality:

|M|< Twin

2
This inequality serves as the success criterion for a race

attempt. It implies that a race attempt will successfully trigger
the bug if the misalignment is not substantial enough to dis-
place the racing point outside the time window. Essentially,
this criterion serves as a quantifiable measure, guiding us in
evaluating the likelihood of a race attempt to successfully
trigger a concurrency bug, taking into account the interplay
between misalignment and the time window.

This criterion succinctly delineates the difference between
the idealized and practical scenarios, as detailed in Sec-
tions 4.1 and 4.2, respectively, and sits at the core of our
Concurrency Bug Reproduction Model.

In the idealized setup of Section 4.1, we postulate syn-
chronous execution of racing system calls (E = 0) and a
consistent alignment of the racing point at the midpoint of
the time window (P = 0). This scenario leads to a consis-
tently null misalignment (M = 0), ensuring the criterion is
perpetually satisfied. Consequently, each race attempt reliably
triggers the concurrency bug.

In contrast, real-world conditions yield non-zero path dis-
parity and invocation disparity. The stochastic nature of invo-
cation disparity bestows an element of randomness upon the

6206 33rd USENIX Security Symposium USENIX Association

misalignment. Given the fixed time window length intrinsic
to the bug, this criterion is only sometimes achievable. Hence,
a race attempt triggers the bug in real-world conditions only
when a fortuitous invocation disparity incidentally satisfies
the success criterion.

The criterion also clarifies why bugs with larger time win-
dows (Twin) are more prone to triggering yet lack deterministic
certainty. A more extensive Twin increases the likelihood of
a misalignment aligning with the criterion. This principle
underpins techniques like EXPRACE [26], which extends
Twin by injecting interrupts, enhancing the chance of crite-
rion fulfillment. However, due to the inherent randomness
of misalignment, even an enlarged Twin does not guarantee
consistent bug triggering.

As will be demonstrated in Section 6.1, the ability to derive
observable and verifiable properties evidence the correctness
of the Concurrency Bug Reproduction Model.

5 CARDSHARK

In light of the Concurrency Bug Reproduction Model (§ 4.3),
there are two ways to increase the likelihood of triggering a
concurrency bug: 1) enlarging the size of the time window,
and 2) decreasing the misalignment. While the existing con-
currency bug stabilizing technique EXPRACE [26] focuses
on enlarging the time window, we explore the possibility of
stabilizing concurrency bugs by controlling misalignment.

5.1 Technique Overview
As previously discussed in Section 4.2, misalignment is con-
tributed by two factors: invocation disparity and path dispar-
ity. Controlling misalignment therefore involves addressing
both its contributing factors.

The invocation disparity stems from the timing variance in
the invocations of the racing system calls. This is because a
newly created thread (or processes) does not commence exe-
cution immediately after it is spawned, and a random timing
disparity appears when we create two threads to invoke the
racing system calls in parallel. Thus, invocation disparity can
be nullified by precisely synchronizing the invocation timing
of racing system calls in parallel threads.

We synchronize two system calls by inserting an execution
barrier before them, ensuring the precisely synchronized in-
vocation timing. The detailed implementation can be found
in the Appendix 11.1.

Addressing the path disparity presents a more intricate
challenge. As an intrinsic property of system calls, path time
can not be directly altered by user space programs. Nonethe-
less, we can strategically manipulate the invocation timing of
the racing system call precisely in user space to compensate
for its influence. Specifically, as shown in Figure 5, we insert
a precise delay before the invocation sys_racer to ensure that
the racing point will fall into the time window. Conversely,

we insert a delay before sys_racee in case racing point falls
behind the time window.

Theoretically, if this delay precisely equals the path dis-
aprtiy, it can offset the racing point within the time window
and achieve consistent concurrency bug triggering. We refer
to this delay as align time. However, in reality, path disparity
cannot be precisely measured without knowing the root cause
of the concurrency bugs. As a result, we can only significantly
increase the chance of triggering concurrency bugs but not
reproduce them consistently in practice.

To summarize, our control over misalignment consists of
two steps:

1. Precisely synchronizing the invocation timing of racing
system calls to eliminate random invocation disparity.

2. Injecting a delay equal to the path disparity into the
system call invocation process to compensate for the
path time dispartiy.

We have termed this method of manipulating misalignment
as CARDSHARK. Implementing CARDSHARK theoreti-
cally nullifies misalignment, leading to consistent alignment
of the racing point within the time window, as illustrated in
Figure 5.

Time

CPU1

CPU2

sys_racer()

sys_racee()

racing
point

time window
open

time window
close

sys_racer()
return

sys_racee()
return

Synchronize

Delay

Figure 5: CARDSHARK injects a delay to racing system calls
to increase the chance of racing point falling into the time
window, thus triggering concurrency bugs.

5.2 Algorithmic Implementation of CARD-
SHARK With Presumed Align Time

For clarity in this section, we assume that the align time has
already been accurately determined, allowing us to focus on
the principle of CARDSHARK. In the following section, we
will demonstrate the efficacy of CARDSHARK without this
assumption.

As established before, CARDSHARK controls misalign-
ment by addressing its two contributors. This is achieved
by meticulously manipulating the invocation timings of the
racing system calls. The specific steps of this approach are
detailed in Algorithm 1.

CARDSHARK operates by precisely controlling the in-
vocation timing of system calls to manipulate misalignment

USENIX Association 33rd USENIX Security Symposium 6207

Algorithm 1 CARDSHARK Algorithm
1: Global Variable: delay_racee, delay_racer
2: function THR_RACEE
3: SYNCHRONIZE
4: DELAY(delay_racee)
5: SYS_RACEE
6: end function
7: function THR_RACER
8: SYNCHRONIZE
9: DELAY(delay_racer)

10: SYS_RACER
11: end function
12: function RACE_ATTEMPT(delay1, delay2)
13: PIN_CPU(0)
14: THREAD_CREATE(thr_racee)
15: PIN_CPU(1)
16: THREAD_CREATE(thr_racer)
17: PIN_CPU(2)
18: THREAD_JOIN
19: end function
20: function CARDSHARK(align_time)
21: delay_racee← 0
22: delay_racer← 0
23: if align_time > 0 then
24: delay_racer← align_time
25: else
26: delay_racee← -align_time
27: end if
28: RACE_ATTEMPT
29: end function

using a predetermined align time, as outlined in Algorithm 1.
If misalignment is positive, the align time is applied when in-
voking sys_racer; if negative, it is applied to sys_racee (lines
21 to 27).

At its core, CARDSHARK relies on the RACE_ATTEMPT
function (lines 12 to 19) to launch two threads for the racing
system calls. The main thread sets its CPU affinity with the
PIN_CPU primitive before creating the two threads to ensure
that they commence execution in parallel (lines 12 to 19). The
threads, executing thr_racer and thr_racee functions, syn-
chronize using the SYNCHRONIZE primitive for coordinated
execution. Following synchronization, one thread waits for
the align time before calling its system call, while the other
executes its call immediately.

This algorithm’s prototype, including the implicated primi-
tives, is presented in pseudo-C code in the appendix11.1.

The efficacy of CARDSHARK under this assumption is
assessed in Section 6.2. To overcome this assumption and en-
hance CARDSHARK’s practical applicability, the following
section outlines the methodology for identifying a feasible
align time.

5.3 BLINDSHARK: CARDSHARK with Apr-
poximated Align Time

The practical application of CARDSHARK hinges on a viable
align time. This section explores methodologies for determin-
ing this parameter for a concurrency bug.

A straightforward approach to identify align time involves
calculating the path time difference between the racing sys-
tem calls. This method necessitates measuring the path time
of each racing system call and the time window, achievable
through kernel instrumentation. For sys_racer, the path time is
determined by the interval between its invocation and the rac-
ing point, both pinpointed via instrumentation. Likewise, the
path time and the time window for sys_racee are ascertained
through similar kernel instrumentations.

While this direct measurement approach to determine align
time is conceptually straightforward, its real-world applica-
tion faces complexities. It involves complex steps, including
understanding the root cause of the concurrency bug to iden-
tify the racing point and the time window, which defeats the
purpose of stabilizing the triggering of concurrency bugs for
analysis and fixing.

We propose a brute-force BLINDSHARK method as an
alternative, which obviates the need for deep insights into the
concurrency bug’s root cause or kernel code instrumentation.
This approach is premised on the fact that the range of align
time can be determined quickly, and it is feasible to test for
all possible align time to determine a viable one.

The principle behind BLINDSHARK is that path time does
not surpass the total execution time of the racing system calls
since racing point and the time window are integral to the
execution path. Consequently, the difference in path times,
or misalignment, will not exceed the bounds of the execution
time of the system calls.

BLINDSHARK methodically determines align time by it-
erating through all possible values. Initially, it measures the
execution times of sys_racer and sys_racee, then introduces
incremental delays to each, monitoring for kernel crashes.
By testing every potential align time, a kernel crash at a
specific align time indicates a viable candidate. The algo-
rithm of BLINDSHARK, as shown in Algorithm 2, efficiently
navigates through all possible align times, leveraging kernel
crashes as indicators for a feasible align time.

BLINDSHARK begins by measuring the execution times
of racing system calls with the MEASURE function (defined in
lines 1 to 6). The READTIME primitive reads high-resolution
timers like time stamp counters [20, 26, 35] or HPET devices
[37]. Next, from lines 10 to 21, BLINDSHARK systemati-
cally explores potential align times by incrementally applying
them to sys_racee and sys_racer during race attempts, utiliz-
ing the CARDSHARK function (Algorithm 1). Appendix 11.2
provides a prototype implementation in pseudo-C code.

It is worth mentioning that the feasible align time is not a
single, fixed value; rather, it encompasses a range. An align

6208 33rd USENIX Security Symposium USENIX Association

Algorithm 2 BLINDSHARK Algorithm
1: function MEASURE(syscall)
2: start← READTIME
3: SYSCALL
4: end← READTIME
5: return end - start
6: end function
7: function BLINDSHARK
8: T_racer← MEASURE(sys_racer)
9: T_racee← MEASURE(sys_racee)

10: for t in [0, T_racer] do
11: CARDSHARK(-t)
12: if CRASH then
13: return -t
14: end if
15: end for
16: for t in [0, T_racee] do
17: CARDSHARK(t)
18: if CRASH then
19: return t
20: end if
21: end for
22: end function

time is considered suitable if it adjusts the racing point to
fall within the defined time window. Due to the inherent
non-deterministic elements of CARDSHARK, as will be elab-
orated in Section 5.4, the ideal align time would place the
racing point at the midpoint of the time window. However,
BLINDSHARK does not explicitly aim to locate this exact
align time. It terminates its search upon the occurrence of
the first kernel crash, offering the associated align time as the
output. This resulting align time can shift the racing point to
a position within the time window but does not necessarily
align it with the window’s center unless the path disparity for
the concurrency bug is zero.

To sum up, we do not claim that the viable align time ob-
tained by Algorithm 2 is the optimal align time. Instead, it
finds a viable or approximated align time that can improve
stability in triggering concurrency bugs. Nonetheless, as ev-
idenced in Section 6.3, the approximated align time deter-
mined by BLINDSHARK proves to be significantly effective
in increasing the stability of triggering concurrency bugs.

5.4 Non-determinism Factors in CARD-
SHARK

While CARDSHARK is conceptually capable of eliminating
misalignment to deterministically trigger concurrency bugs,
achieving this in practical scenarios is hampered by inherent
non-determinism factors. This section delves into these fac-
tors and assesses their impact on deploying CARDSHARK
in real-world settings.

As delineated in Section 5, CARDSHARK endeavors to
control misalignment by meticulously addressing its two con-
tributors. The first contributor, invocation disparity, arises
due to the variable timing of racing system call invocations in
user space. Since this disparity originates within user space,
it can be effectively eliminated with precise synchronization
primitives implemented in user space.

However, addressing the second contributor, path disparity,
is not as straightforward. This disparity arises due to varia-
tions in path time of the racing system calls. Since path time
is inherent to the system call and can not be directly altered
by user space programs, the resulting path disparity can not
be directly manipulated or seamlessly eliminated.

In CARDSHARK, path disparity is not eliminated directly;
instead, its influence on the concurrency bug triggering is mit-
igated by strategically introducing a delay in the user space.
This indirect approach to managing path disparity unfortu-
nately adds a layer of non-determinism to CARDSHARK,
primarily due to the inherent variability of path times for
racing system calls in real-world scenarios.

By definition, path time refers to the duration from invok-
ing a system call in user space to the execution of a specific
point in kernel space (for sys_racer, this point is the race
point, and for sys_racee, it is the midpoint of the time win-
dow). This duration encompasses the transition from user to
kernel state and the execution of specific kernel functions.
During any given race attempt, the path time may extend due
to non-deterministic occurrences such as interrupts [26] or
scheduling processes [25, 27]. These events necessitate ad-
ditional handling by the kernel, thereby prolonging the path
time.

Despite the absence of non-deterministic events, path time
remains variable. Various factors can influence its duration.
Notably, hardware characteristics such as memory cache and
CPU frequency scaling significantly impact the execution
time of instructions. For instance, the time to execute a given
set of instructions increases if a memory cache miss occurs or
when the CPU operates at a lower frequency [19, 34, 38]. Fur-
thermore, kernel utilities, like memory allocators and locking
mechanisms, exhibit variability in their execution times. For
example, the SLUB memory allocator demands more time
to allocate a memory chunk when it needs to request a new
page from the buddy system [25, 55]. Similarly, the duration
for acquiring locks within the kernel can also vary.

As such, the actual path disparity in race attempts under
real-world conditions is inconsistent. Consequently, pinpoint-
ing an exact align time that ensures the complete mitigation
of its effects proves challenging. Nonetheless, the strategy of
diminishing its impact by injecting a delay, as implemented in
CARDSHARK, effectively addresses its influence on the trig-
gering of concurrency bugs. As will be demonstrated in Sec-
tion 6.2, CARDSHARK can adeptly manage misalignment
and enhances the stability of concurrency bug triggerings,
even when the path disparity is inconsistent.

USENIX Association 33rd USENIX Security Symposium 6209

Vulnerability Race Attempts Racee Path Racer Path Path Disparity Time Window

CVE-2017-2636 [43] 262 6824 1120 5704 11398
CVE-2017-7533 [45] 147 35486 36411 925 7983

CVE-2021-26708 [44] 17 7031 2006 5025 10061
CVE-2021-32606 [46] >10000 4076 2408 1668 17899
CVE-2022-1729 [47] 379 134674 52400 82274 77731

CVE-2023-31083 [48] >10000 4397 3372 1025 1207
CVE-2017-15265 [42] >10000 4027 16391 12364 1878

423ecfea77 [30] 47 141132 52886 88246 262551
3c4f8333b5 [29] 2 306635 5852 300783 608908
20f2e4c228 [28] >10000 13279 4218 9061 1292
458c15dfbc [31] 967 53005 40207 12798 5180
4ccf11c4e8 [32] 481 41591 8675 32916 65832

Table 1: Precise timing evaluation of 12 real-world concurrency bugs. The time unit in the table is TSC. The path disparity in the
table are absolute values for simplicity. The result shows that the time window size is not the only factor contributing to the
randomness of the concurrency bug reproduction process.

6 Evaluation

In this section, we evaluate the effectiveness of CARD-
SHARK technique by answering the following research ques-
tions:
RQ1: Is it true that the larger the race time window is, the
more stable concurrency bugs can be reproduced? Moreover,
is it the only factor behind the non-determinism of concur-
rency bug reproduction?
RQ2: How much improvement does CARDSHARK offer in
enhancing the efficiency of triggering concurrency bugs by
manipulating misalignment?
RQ3: Without a thorough analysis of the root causes of con-
currency bugs (hence, without knowing the ideal alignment
time), is BLINDSHARK capable of determining an effective
align time and successfully stabilizing concurrency bugs?
RQ4: How does the performance of CARDSHARK com-
pare with the existing concurrency bug stabilizing technique
EXPRACE [26]?

To address these questions empirically, we devised a set of
experiments focusing on real-world concurrency bugs.

Experimental Setup. Our experiment framework was estab-
lished on a machine with an Intel i5-8700 CPU and 32GB of
memory.

Instead of running the experiments in virtual machines,
we ran all the experiments on the physical machine to avoid
unexpected influence introduced by virtual machines. We
use a separate Raspberry Pi 4B+ to automate the experiment
process by enabling serial console communication between
the physical test machine and the Raspberry Pi controller.
The controller sends commands to the physical machine to

boot into target kernels, run exploits, and restore the physical
machine’s state when exploits succeed (causing kernel panic)
or fail (after more than 10,000 race attempts).

In each experiment, a concurrency bug that succeeds in
triggering or fails to trigger is run 50 times to ensure the
statistical significance of the result.

Dataset. We diligently collected concurrency bug reproducers
from existing works [26, 49, 55], syzbot [7], and Linux kernel
commits [36]. Note that EXPRACE is another work in stabi-
lizing concurrency bugs, and their work was evaluated on 10
real-world bugs. We contacted the authors for bug reproducers
used in their evaluation but did not obtain the complete set of
functional reproducers. Eventually, we obtained 12 real-world
concurrency bugs for our evaluation.

Among the concurrency bugs, some had publicly available
reproducers. These existing reproducers merely attempt to
invoke the racing system calls repetitively without any form
of stabilization. We use them as the baseline in our evaluation.
For bugs lacking a public reproducer, we conducted root cause
analysis and developed the corresponding reproducers by
ourselves.

To ensure the triggerability of real-world concurrency bugs
and minimize the influence of extraneous kernel features, we
compiled the last known vulnerable kernel version for each
concurrency bug based on default configurations (defconfig)
for the experiment.

6.1 Empirical Verification of the Model
We first designed an experiment to empirically verify the
correctness of the Concurrency Bug Reproduction Model to

6210 33rd USENIX Security Symposium USENIX Association

Vulnerability
Time To Reproduce Race Attempts

Baseline CARDSHARK Baseline CARDSHARK

CVE-2017-2636 [43] 0.1 0.1 262 1
CVE-2017-7533 [45] 0.1 0.1 147 1

CVE-2021-26708 [44] 0.1 0.1 17 1
CVE-2021-32606 [46] 61.1 0.1 >10000 1
CVE-2022-1729 [47] 1.1 0.1 379 1

CVE-2023-31083 [48] 10.2 0.1 >10000 1
CVE-2017-15265 [42] 5.2 0.2 >10000 2524

3c4f8333b5 [29] 0.1 0.1 2 1
423ecfea77 [30] 0.1 0.1 47 1
20f2e4c228 [28] 26.8 1.1 >10000 5152
458c15dfbc [31] 0.1 0.1 967 1
4ccf11c4e8 [32] 0.2 0.2 481 1

Table 2: The time cost (in second) and race attempts for CARDSHARK and baseline approach to trigger concurrency bugs.
CARDSHARK significantly reduces the number of needed race attempts to trigger concurrency bugs by manipulating misalign-
ment, indicating the correctness of the Concurrency Bug Reproduction Model.

answer RQ1.
In this experiment, we analyzed the root causes of all the

concurrency bugs in our dataset and instrumented the kernels
at the racing point and the time window to record the exact
execution timing of the baseline bug reproducer (the ones with
no stabilization techniques) to verify our model. We use time
stamp counter (TSC) [20, 35] as a precise time measurement,
which is also used in existing research works needing precise
timing control [55].

The results in Table 1 indicate that reproducing concurrency
bugs becomes challenging with significantly small racing time
windows. This finding aligns with prior research suggesting
that larger time windows increase the likelihood of bug repro-
duction [26]. Nonetheless, this pattern does not hold univer-
sally to all cases, suggesting that time window size is not the
sole determinant of concurrency bug non-determinism.

6.2 CARDSHARK Efficacy

We structured another experiment to evaluate if controlling
misalignment enhances the efficiency of triggering concur-
rency bugs, directly addressing RQ2.

The experiment consists of two distinct phases. In the first
phase, we reused the kernel instrumentation infrastructure
from the last experiment and used the measured path disparity
as the precise align time to be used in CARDSHARK. In the
second phase, we apply the precise align time delay to trigger
the concurrency bug, launching CARDSHARK technique.
Here, we inject the precise DELAY by injecting a busy loop
before the system call invocation and constantly monitoring

the elapse of time by constantly reading TSC, similar to what
is used in the Context Conservation technique in existing
works [55].

In this experiment, we modified the baseline exploits by
incorporating invocation synchronization and align time in-
jection to create CARDSHARK reproducers. Each version,
whether baseline or CARDSHARK, was tested 50 times on a
physical machine to determine success or failure. Specifically,
for some bugs like CVE-2021-32606 [46], the baseline group
required an exceptionally high number of attempts to trigger
the bugs. For simplicity, we capped the maximum number of
attempts at 10,000 for these baseline experiments.

The results are detailed in Table 2. As shown in the ta-
ble, CARDSHARK significantly reduces the average time
and number of attempts required to trigger concurrency bugs.
This substantial improvement strongly suggests that misalign-
ment is a key factor contributing to the non-determinism of
concurrency bugs.

Notably, CARDSHARK enables deterministic triggering
of 10 out of the 12 bugs in our dataset with just one attempt.
However, CVE-2017-15265 [42] and 20f2e4c228 [28] are
not deterministically triggered by CARDSHARK. As Ta-
ble 1 shows, these two bugs have very narrow time win-
dows combined with relatively large path time, indicating
that the non-deterministic factors, which are not addressed
by CARDSHARK as discussed in Section 5.4, still signif-
icantly influence the triggering of some concurrency bugs.
This is particularly evident in cases like CVE-2017-15265
and 20f2e4c228, where a large path time are more likely to
be influenced by the non-deterministic factors that can offset

USENIX Association 33rd USENIX Security Symposium 6211

Vulnerability
Time To Reproduce Race Attempts

Baseline BLINDSHARK Baseline BLINDSHARK

CVE-2017-2636 [43] 0.1 0.1 262 10
CVE-2017-7533 [45] 0.1 0.1 147 5
CVE-2021-26708 [44] 0.1 0.1 17 10
CVE-2021-32606 [46] 61.1 0.1 >10000 22
CVE-2022-1729 [47] 1.1 0.1 379 9
CVE-2023-31083 [48] 10.2 0.1 >10000 37
CVE-2017-15265 [42] 5.2 0.3 >10000 3037

3c4f8333b5 [29] 0.1 0.1 2 1
423ecfea77 [30] 0.1 0.1 47 2
20f2e4c228 [28] 26.8 1.2 >10000 7963
458c15dfbc [31] 0.1 0.1 967 4
4ccf11c4e8 [32] 0.2 0.2 481 2

Table 3: The time cost (in second) and attempt number for BLINDSHARK and baseline approach to trigger concurrency bugs.
BLINDSHARK can significantly stabilizing conrrency bugs without knowing their root causes or performing modifications to
kernel source code.

the racing point outside of the narrow time window. Future
improvements in CARDSHARK should aim to handle these
non-determinism factors, as will be discussed in Section 7.4.
Nonetheless, the overall efficacy of CARDSHARK supports
the validity of our Concurrency Bug Reproduction Model.

6.3 BLINDSHARK Efficacy

In this section, we assess BLINDSHARK’s ability to iden-
tify an approximated align time without prior knowledge of
the concurrency bug’s root causes or kernel instrumentation,
addressing RQ3.

The experiment utilizes the same set of concurrency bugs
as in Section 6.2 but with a realistic setting. Specifically, here,
BLINDSHARK determines the align time without kernel
instrumentation or knowing the root cause, and it uses this
approximated align time for bug triggering. The experimental
setup remains consistent as before.

We detail the evaluation result in Table 3. As shown in the
table, even without knowing the root causes or kernel instru-
mentation, BLINDSHARK can still significantly reduce the
time and number of attempts required to trigger the concur-
rency bugs.

BLINDSHARK’s performance improvement over the base-
line is less pronounced compared to CARDSHARK’s. This
is attributed to the less accurate approximation of align time,
stemming from the absence of precise kernel instrumentation.
Nonetheless, BLINDSHARK offers a practical solution for
developers to reproduce, analyze, and fix concurrency bugs
in real-world scenarios.

6.4 Evaluation Against Existing Work

In this section, we evaluate the performance of our tech-
nique against the existing concurrency bug stabilization tech-
nique EXPRACE [26] on our dataset to answer RQ4. As
discussed in Section 4, EXPRACE is primarily designed for
non-inclusive multi-variable data races, but its underlying
principles apply to the concurrency bugs analyzed in this
paper.

EXPRACE offers four distinct variant implementations:
reschedule, membarrier, TLB-shootdown, and HW-interrupt.
According to EXPRACE’s evaluation, the HW-interrupt vari-
ant, which extends the time window by receiving network
packets, is the most performant one over all variants in sta-
bilizing non-inclusive data races. However, the performance
of HW-interrupt variant significantly depends on the network
latency, yet the information is not available in the paper. Con-
sequently, we implemented the membarrier variant, which
operates by sending memory barrier signals from user space
to the local CPU, and should thus provide relatively consistent
and good performance across different experimental settings.
While we do not claim these values precisely represent EX-
PRACE’s performance, they are our best effort to reproduce
their results.

Results are presented in Table 4. The result illustrates that
while membarrier reproducers can improve the reproducibil-
ity of concurrency bugs, the improvement does not apply to
all bugs. In other cases, membarrier achieves comparable
performances with the baseline reproducers. This observation
conforms with what they reported in the original EXPRACE
paper. EXPRACE’s limitation arises because the success of

6212 33rd USENIX Security Symposium USENIX Association

Vulnerability
Time To Reproduce Race Attempts

Baseline Membarrier BLINDSHARK Baseline Membarrier BLINDSHARK

CVE-2017-2636 [43] 0.1 0.1 0.1 262 10 10
CVE-2017-7533 [45] 0.1 0.1 0.1 174 5 5

CVE-2021-26708 [44] 0.1 0.1 0.1 17 10 10
CVE-2021-32606 [46] 61.1 39.3 0.1 >10000 >10000 22
CVE-2022-1729 [47] 1.1 0.4 0.1 379 331 9

CVE-2023-31083 [48] 10.2 58.7 0.1 >10000 >10000 37
CVE-2017-15265 [42] 5.2 2.1 0.3 >10000 >10000 3037

3c4f8333b5 [29] 0.1 0.1 0.1 2 2 1
423ecfea77 [30] 0.1 0.1 0.1 47 32 2
20f2e4c228 [28] 26.8 9.2 1.2 >10000 >10000 7963
458c15dfbc [31] 0.1 0.1 0.1 967 1077 4
4ccf11c4e8 [32] 0.2 0.2 0.2 481 494 2

Table 4: The time cost (in second) and the attempt number for each tool to trigger concurrency bugs. BLINDSHARK performs
the best in reproducing concurrency bugs compared to baseline and EXPRACE’s membarrier variant.

triggering concurrency bugs depends on both misalignment
and the size of the time window. While injecting membarrier
into reproducers can probabilistically increase the size of the
time window, it does not eliminate the impact of misalign-
ment.

On the other hand, while working on the same condi-
tion (not knowing the root cause and no instrumentation),
BLINDSHARK can significantly stabilize all concurrency
bugs, which further outlines the accuracy of the Concurrency
Bug Reproduction Model compared to EXPRACE’s time-
window-centric model.

7 Discussion

7.1 Limitation of CARDSHARK

While CARDSHARK offers a robust solution, its effective-
ness is not uniform across all concurrency bugs. This section
explores the limitations of CARDSHARK and identifies sce-
narios where its application may be less effective or impracti-
cal, explaining the reasons behind these constraints.

For certain concurrency bugs in the Linux kernel, one (or
even both) of the racing execution paths may not be initi-
ated via a system call in the user space. For instance, the
concurrency bug fd3d91ab1c [33] emerges from the concur-
rent execution of a system call in user space and a process
triggered by the physical detachment of a USB device. The
strength of CARDSHARK lies in its ability to meticulously
manage the initiation timing of system calls from user space.
Consequently, it becomes inapplicable for concurrency bugs
where a racing path is not initiated by a user-space system

call.
Moreover, CARDSHARK’s reliability diminishes in sce-

narios involving complex concurrency bugs with more than
three interdependent events and in non-inclusive data races,
as described in some existing studies [26,40]. While applying
the CARDSHARK in these situations is technically feasi-
ble, the outcome is uncertain. CARDSHARK allows for the
satisfaction of some, but not necessarily all, interleaving con-
straints. Fully enforcing all the interleaving is challenging due
to the inherently random nature of the interleaving between
the two execution flows.

In essence, the comprehensive applicability and effective-
ness of CARDSHARK for addressing all types of concurrency
bugs in the Linux kernel remain unclear, and its performance
on certain bugs has not yet been thoroughly evaluated.

7.2 Mitigation

Although CARDSHARK and BLINDSHARK are designed
to facilitate analysis and debugging of concurrency bugs, they
could theoretically be incorporated into concurrency bug ex-
ploitations and improve their success rate. To mitigate this
exploitation risk, two approaches are proposed: (1) detect-
ing abnormal frequencies of system call invocations, and
(2) restricting non-root users from directly accessing high-
resolution timers.

The first approach involves monitoring system call invo-
cations at the kernel level, as exploiting concurrency bugs
requires frequent system calls with identical parameters. By
introducing small random delays to these system calls, the ker-
nel can disrupt the precise timing control required by CARD-

USENIX Association 33rd USENIX Security Symposium 6213

SHARK and BLINDSHARK, impairing their functionality.
The second approach restricts access to high-resolution

timers, which CARDSHARK and BLINDSHARK rely on
to inject precise delays and mitigate misalignment. Limiting
access would straightforwardly render these tools ineffective.
However, on some specific hardware platforms, there are high-
resolution timers provided at the hardware level (such as the
Time Stamp Counter on modern x86 platforms). Restricting
these timers may require corresponding hardware-specific
patches.

7.3 Combination of EXPRACE and CARD-
SHARK

As suggested by the Concurrency Bug Reproduction Model,
we can further improve CARDSHARK’s ability to stabilize
concurrency bugs because CARDSHARK focuses on reduc-
ing misalignment while EXPRACE tries to increase the race
time window.

However, unfortunately, these two techniques are not com-
patible. This is because EXPRACE treats interrupt injections
as random occurrences, not ensuring deterministic injection
within the time window. Even if CARDSHARK injects a pre-
cise align time to synchronize the system call invocation and
compensate for the path disparity, EXPRACE can still inject
an interrupt before the racing event or time window, destroy
the precise timing control.

7.4 Future Work

Enhancing CARDSHARK’s Capabilities: Section 5.4
points out that CARDSHARK does not resolve all non-
determinism factors in concurrency bugs, making determinis-
tic triggering a complex challenge. Identifying and managing
these non-deterministic factors is a critical direction for future
research.

Furthermore, as Section 7.1 discusses, the effectiveness
of CARDSHARK varies when applied to specific types of
concurrency bugs. A detailed evaluation of CARDSHARK’s
applicability and potential refinements for specific bug cate-
gories is a priority for future investigations.

Additionally, it is worth noting that CARDSHARK cur-
rently represents a basic application of our Concurrency Bug
Reproduction Model. The model’s broader capabilities still
need to be explored. We plan to develop and introduce more
refined techniques based on a deeper understanding of it.
Enhancing align time Search Algorithm: As discussed in
Section 5.3, BLINDSHARK can determine a viable align
time, not the optimal one. We plan to improve the algorithm
of BLINDSHARK to automatically determine the optimal
align time in the future.
Integration with Syzkaller: Syzkaller [17] is the state-of-
the-art kernel fuzzer aiming to discover kernel bugs, including

concurrency bugs. However, many concurrency bugs uncov-
ered by Syzkaller are not reproducible. Many of these bugs
cause a kernel crash during the fuzzing process and never
reproduce [15, 16]. Analyzing the root cause of such concur-
rency bugs without a reproducer is highly challenging, leaving
many concurrency bugs delayed in fixing or even unfixed.

As an open-source project, we examined Syzkaller’s bug
reproduction mechanism. We noted its approach to reproduc-
ing concurrency bugs: it repetitively and blindly makes race
attempts, similar to the baseline settings in our evaluation
experiments (see Section 6.2). Given that CARDSHARK can
be fully automated with the align time determined by BLIND-
SHARK, we propose that CARDSHARK can be integrated
into Syzkaller to enhance its ability to generate concurrency
bug reproducers.
Expanding CARDSHARK to Other Systems: While
CARDSHARK is primarily designed for addressing concur-
rency bugs in the Linux kernel, its underlying principles are
not exclusive to this context. The core foundation of CARD-
SHARK, the Concurrency Bug Reproduction Model, is ver-
satile and not inherently limited to the context of the Linux
kernel. Consequently, we plan to broaden the scope of CARD-
SHARK, applying it to other operating systems and user space
programs in the future.

8 Related Works

Concurrency Bug Triggering. The latest work in this field,
EXPRACE [26], focuses on enhancing the triggerability of
non-exclusive data races by utilizing interrupts. EXPRACE
initially noted that certain data race bugs are difficult to trig-
ger due to a smaller time window for the racee compared to
the racer. It categorized these as non-exclusive data races. EX-
PRACE’s findings suggest that without expanding the racee’s
time window, these non-exclusive data races remain untrigger-
able. To address this, EXPRACE increases the racee’s time
window by introducing interrupts.

While EXPRACE is designed for non-exclusive data races,
its principles apply to broader concurrency bug contexts. The
approach highlighted the significant influence of time window
size on triggering concurrency bugs. EXPRACE’s model cor-
relates the success rate of triggering non-exclusive data races
with the ratio of the time window sizes. However, as analyzed
in our study, the triggering of concurrency bugs depends on
the interplay between misalignment and time window size.
This implies that EXPRACE presupposes a constant align-
ment of time windows between the racer and racee (misalign-
ment equals zero). According to our analysis in Section 4.2,
this assumption is not a natural occurrence.

In essence, while EXPRACE’s method of invoking
interrupts can increase the triggerability of non-exclusive
concurrency bugs, it does not fully address the fundamental
aspect of misalignment. This oversight limits their understand-
ing of the root causes behind the observed improvements in

6214 33rd USENIX Security Symposium USENIX Association

bug triggerability.

Concurrency Bug Discovering. Many research efforts have
been dedicated to identifying concurrency bugs in the Linux
kernel, employing diverse methodologies ranging from static
to dynamic analysis. Works like those by Erickson et al. [14],
Engler and Ashcraft [13], Vojdani et al. [51], Ryan et al. [49],
Deligiannis et al. [12], Voung et al. [52], and Xu et al. [53]
adopt static analysis approaches. These methods scrutinize
the code without executing it, aiming to pinpoint potential
concurrency issues. In contrast, dynamic analysis techniques,
as used in works like SEGFUZZ [23], Razzer [22], PACER
[11], and DRDDR [24], involve analyzing the code during its
execution to uncover bugs that manifest at runtime.

Among these contributions, Ryan et al. [49] introduced
the innovative Probabilistic Lockset Analysis (PLA), which
utilizes memory access patterns to predict and rank the like-
lihood of kernel races. This approach adds a probabilistic
dimension to race detection, offering insights into race condi-
tions’ potential severity and frequency. Deadline [53] brings
a different perspective by precisely defining and pinpointing
double-fetch bugs in OS kernels. It employs symbolic check-
ing, systematically identifying and detecting vulnerabilities
involving multiple reads, enhancing the reliability of kernel
operations.

On the dynamic analysis front, SEGFUZZ [23] dissect
thread interleavings into manageable segments, paving the
way for exploring new interleavings and identifying poten-
tial race conditions. Razzer [22] merges static analysis with
deterministic thread interleaving, effectively locating and trig-
gering data races that might otherwise remain undetected.

Additionally, Syzkaller [17] holds a unique position as it
not only detects concurrency bugs in the Linux kernel but
also automates the generation of reproducers. This feature is
particularly valuable as it aids in subsequent bug verification
and analysis steps.

Concurrency Bug Diagnosing. Diagnosing concurrency
bugs is challenging due to the complex thread interleavings.
RAProducer [54] addresses this by dissecting the execution
trace of a concurrency bug’s Proof of Concept (PoC), pro-
viding insightful backtracing. ConCrash [10] efficiently navi-
gates the vast space of test codes using advanced search prun-
ing strategies, pinpointing failure-inducing codes. AITIA [21]
clarifies kernel race issues by defining and tracing causality
chains, illuminating the root causes of concurrency bugs. ER-
ACE [39] combines dynamic and static analysis to streamline
the exploration and exploitation of kernel race vulnerabili-
ties, offering a comprehensive approach to diagnosing these
complex issues.

9 Conclusion

In our research, we spotlighted misalignment, a critical but
previously underappreciated factor influencing the triggering
of Linux kernel concurrency bugs. This insight reshapes our
understanding of concurrency bug triggering, revealing that
the intricate interplay between the time window and misalign-
ment dictates bug triggering. We encapsulated this concept
in the Concurrency Bug Reproduction Model, a predictive
tool for assessing the success probability of a race attempt
in triggering a bug. Leveraging this model, we introduced
CARDSHARK, a strategy to enhance the probability of trig-
gering concurrency bugs by manipulating misalignment. We
believe that our insights into the concurrency bug-triggering
process represent a significant step toward unraveling the
unpredictable nature of concurrency bugs. Furthermore, the
introduction of CARDSHARK could significantly improve
the stability of concurrency bug triggering to ease concurrency
bug fixing and analyzing.

10 Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd for their insightful comments. This work was sup-
ported by the research on vulnerability discovery and impact
assessment for desktop operating system from Ascent Project
of Institute of Information Engineering, Chinese Academy of
Sciences.

USENIX Association 33rd USENIX Security Symposium 6215

References

[1] [CVE-2022-1786] a journey to the dawn | kyle-
bot’s blog. https://blog.kylebot.net/2022/10/
16/CVE-2022-1786/.

[2] CVE-2022-29582 - computer security and related top-
ics. https://ruia-ruia.github.io/2022/08/05/
CVE-2022-29582-io-uring/.

[3] Lexfo’s security blog - cve-2017-11176: A
step-by-step linux kernel exploitation (part 1/4).
https://blog.lexfo.fr/cve-2017-11176-linux-
kernel-exploitation-part1.html.

[4] Linux kernel < 4.10.15 - race condition privilege es-
calation - linux local exploit. https://www.exploit-
db.com/exploits/43345.

[5] NVD - CVE-2016-8655. https://nvd.nist.gov/
vuln/detail/CVE-2016-8655.

[6] NVD - CVE-2017-15649. https://nvd.nist.gov/
vuln/detail/cve-2017-15649.

[7] syzbot. https://syzkaller.appspot.com/
upstream.

[8] Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid
Eldh, and Hans Hansson. Concurrency bugs in open
source software: a case study. Journal of Internet Ser-
vices and Applications, 8(1):1–15, 2017.

[9] Jia-Ju Bai, Julia Lawall, and Shi-Min Hu. Effective de-
tection of sleep-in-atomic-context bugs in the linux ker-
nel. ACM Transactions on Computer Systems (TOCS),
36(4):1–30, 2020.

[10] Francesco A Bianchi, Mauro Pezzè, and Valerio Ter-
ragni. Reproducing concurrency failures from crash
stacks. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 705–
716, 2017.

[11] Michael D Bond, Katherine E Coons, and Kathryn S
McKinley. Pacer: Proportional detection of data races.
ACM Sigplan Notices, 45(6):255–268, 2010.

[12] Pantazis Deligiannis, Alastair F Donaldson, and Zvon-
imir Rakamaric. Fast and precise symbolic analysis of
concurrency bugs in device drivers (t). In 2015 30th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 166–177. IEEE, 2015.

[13] Dawson Engler and Ken Ashcraft. Racerx: Effec-
tive, static detection of race conditions and deadlocks.
ACM SIGOPS operating systems review, 37(5):237–252,
2003.

[14] John Erickson, Madanlal Musuvathi, Sebastian Burck-
hardt, and Kirk Olynyk. Effective {Data-Race} detec-
tion for the kernel. In 9th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 10),
2010.

[15] Google. Syzbot invalid bugs. https:
//syzkaller.appspot.com/upstream/invalid.

[16] Google. Syzbot open bugs. https:
//syzkaller.appspot.com/upstream.

[17] Google. Syzkaller. https://github.com/google/
syzkaller.

[18] Zunchen Huang, Shengjian Guo, Meng Wu, and Chao
Wang. Understanding concurrency vulnerabilities in
linux kernel. arXiv preprint arXiv:2212.05438, 2022.

[19] Intel. Intel speedstep technology. https:
//download.intel.com/design/network/papers/
30117401.pdf.

[20] Intel. Time stamp counter. https://www.intel.com/
content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-
developer-vol-3b-part-2-manual.pdf.

[21] Dae R Jeong, Minkyu Jung, Yoochan Lee, Byoungyoung
Lee, Insik Shin, and Youngjin Kwon. Diagnosing kernel
concurrency failures with aitia. In Proceedings of the
Eighteenth European Conference on Computer Systems,
pages 94–110, 2023.

[22] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, By-
oungyoung Lee, and Insik Shin. Razzer: Finding kernel
race bugs through fuzzing. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 754–768. IEEE, 2019.

[23] Dae R Jeong, Byoungyoung Lee, Insik Shin, and
Youngjin Kwon. Segfuzz: Segmentizing thread inter-
leaving to discover kernel concurrency bugs through
fuzzing. In 2023 IEEE Symposium on Security and Pri-
vacy (SP), pages 2104–2121. IEEE Computer Society,
2023.

[24] Yunyun Jiang, Yi Yang, Tian Xiao, Tianwei Sheng, and
Wenguang Chen. Drddr: a lightweight method to detect
data races in linux kernel. The Journal of Supercomput-
ing, 72:1645–1659, 2016.

[25] Yoochan Lee, Jinhan Kwak, Junesoo Kang, Yuseok Jeon,
and Byoungyoung Lee. Pspray: Timing {Side-Channel}
based linux kernel heap exploitation technique. In 32nd
USENIX Security Symposium (USENIX Security 23),
pages 6825–6842, 2023.

6216 33rd USENIX Security Symposium USENIX Association

https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.html
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.html
https://www.exploit-db.com/exploits/43345
https://www.exploit-db.com/exploits/43345
https://nvd.nist.gov/vuln/detail/CVE-2016-8655
https://nvd.nist.gov/vuln/detail/CVE-2016-8655
https://nvd.nist.gov/vuln/detail/cve-2017-15649
https://nvd.nist.gov/vuln/detail/cve-2017-15649
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream/invalid
https://syzkaller.appspot.com/upstream/invalid
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://download.intel.com/design/network/papers/30117401.pdf
https://download.intel.com/design/network/papers/30117401.pdf
https://download.intel.com/design/network/papers/30117401.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf

[26] Yoochan Lee, Changwoo Min, and Byoungyoung Lee.
{ExpRace}: Exploiting kernel races through raising in-
terrupts. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2363–2380, 2021.

[27] Linux. CFS. https://www.kernel.org/doc/html/
latest/scheduler/sched-design-CFS.html.

[28] Linux. commit log 20f2e4c228. https:
//github.com/torvalds/linux/commit/
20f2e4c228c712158113583947f4e16691e951f6.

[29] Linux. commit log 3c4f8333b5. https:
//github.com/torvalds/linux/commit/
3c4f8333b582487a2d1e02171f1465531cde53e3.

[30] Linux. commit log 423ecfea77. https:
//github.com/torvalds/linux/commit/
423ecfea77dda83823c71b0fad1c2ddb2af1e5fc.

[31] Linux. commit log 458c15dfbc. https:
//github.com/torvalds/linux/commit/
458c15dfbce62c35fefd9ca637b20a051309c9f1.

[32] Linux. commit log 4ccf11c4e8. https:
//github.com/torvalds/linux/commit/
4ccf11c4e8a8e051499d53a12f502196c97a758e.

[33] Linux. commit log fd3d91ab1c. https:
//github.com/torvalds/linux/commit/
fd3d91ab1c6ab0628fe642dd570b56302c30a792.

[34] Linux. CPU performance scaling. https://
docs.kernel.org/admin-guide/pm/cpufreq.html.

[35] Linux. Linux clock source. https://www.kernel.org/
doc/Documentation/timers/timekeeping.txt.

[36] Linux. Linux github repository. https://github.com/
torvalds/linux.

[37] Linux. Linux HPET device. https:
//docs.kernel.org/timers/hpet.html.

[38] Linux. Linux intel_pstate cpu performance scaling
driver. https://docs.kernel.org/admin-guide/
pm/intel_pstate.html.

[39] Danjun Liu, Pengfei Wang, Xu Zhou, and Baosheng
Wang. Erace: Toward facilitating exploit genera-
tion for kernel race vulnerabilities. Applied Sciences,
12(23):11925, 2022.

[40] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics. In Proceedings
of the 13th international conference on Architectural
support for programming languages and operating sys-
tems, pages 329–339, 2008.

[41] Aravind Machiry, Chad Spensky, Jake Corina, Nick
Stephens, Christopher Kruegel, and Giovanni Vigna.
{DR}.{CHECKER}: A soundy analysis for linux kernel
drivers. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1007–1024, 2017.

[42] MITRE. CVE-2017-15265. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-15265.

[43] MITRE. CVE-2017-2636. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-2636.

[44] MITRE. CVE-2017-26708. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-26708.

[45] MITRE. CVE-2017-7533. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-7533.

[46] MITRE. CVE-2021-32606. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-32606.

[47] MITRE. CVE-2022-1729. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2022-1729.

[48] MITRE. CVE-2023-31083. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2023-31083.

[49] Gabriel Ryan, Abhishek Shah, Dongdong She, and
Suman Jana. Precise detection of kernel data races with
probabilistic lockset analysis. In 2023 IEEE Symposium
on Security and Privacy (SP), pages 2086–2103. IEEE
Computer Society, 2023.

[50] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot
Heiser. Dingo: Taming device drivers. In Proceed-
ings of the 4th ACM European conference on Computer
systems, pages 275–288, 2009.

[51] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut
Seidl, Varmo Vene, and Ralf Vogler. Static race detection
for device drivers: the goblint approach. In Proceed-
ings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pages 391–402, 2016.

[52] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Re-
lay: static race detection on millions of lines of code.
In Proceedings of the the 6th joint meeting of the Eu-
ropean software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering, pages 205–214, 2007.

[53] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable detection
of double-fetch bugs in os kernels. In 2018 IEEE Sym-
posium on Security and Privacy (SP), pages 661–678.
IEEE, 2018.

USENIX Association 33rd USENIX Security Symposium 6217

https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://github.com/torvalds/linux/commit/20f2e4c228c712158113583947f4e16691e951f6
https://github.com/torvalds/linux/commit/20f2e4c228c712158113583947f4e16691e951f6
https://github.com/torvalds/linux/commit/20f2e4c228c712158113583947f4e16691e951f6
https://github.com/torvalds/linux/commit/3c4f8333b582487a2d1e02171f1465531cde53e3
https://github.com/torvalds/linux/commit/3c4f8333b582487a2d1e02171f1465531cde53e3
https://github.com/torvalds/linux/commit/3c4f8333b582487a2d1e02171f1465531cde53e3
https://github.com/torvalds/linux/commit/423ecfea77dda83823c71b0fad1c2ddb2af1e5fc
https://github.com/torvalds/linux/commit/423ecfea77dda83823c71b0fad1c2ddb2af1e5fc
https://github.com/torvalds/linux/commit/423ecfea77dda83823c71b0fad1c2ddb2af1e5fc
https://github.com/torvalds/linux/commit/458c15dfbce62c35fefd9ca637b20a051309c9f1
https://github.com/torvalds/linux/commit/458c15dfbce62c35fefd9ca637b20a051309c9f1
https://github.com/torvalds/linux/commit/458c15dfbce62c35fefd9ca637b20a051309c9f1
https://github.com/torvalds/linux/commit/4ccf11c4e8a8e051499d53a12f502196c97a758e
https://github.com/torvalds/linux/commit/4ccf11c4e8a8e051499d53a12f502196c97a758e
https://github.com/torvalds/linux/commit/4ccf11c4e8a8e051499d53a12f502196c97a758e
https://github.com/torvalds/linux/commit/fd3d91ab1c6ab0628fe642dd570b56302c30a792
https://github.com/torvalds/linux/commit/fd3d91ab1c6ab0628fe642dd570b56302c30a792
https://github.com/torvalds/linux/commit/fd3d91ab1c6ab0628fe642dd570b56302c30a792
https://docs.kernel.org/admin-guide/pm/cpufreq.html
https://docs.kernel.org/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/Documentation/timers/timekeeping.txt
https://www.kernel.org/doc/Documentation/timers/timekeeping.txt
https://github.com/torvalds/linux
https://github.com/torvalds/linux
https://docs.kernel.org/timers/hpet.html
https://docs.kernel.org/timers/hpet.html
https://docs.kernel.org/admin-guide/pm/intel_pstate.html
https://docs.kernel.org/admin-guide/pm/intel_pstate.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15265
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15265
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26708
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26708
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7533
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7533
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32606
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32606
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1729
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1729
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-31083
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-31083

[54] Ming Yuan, Yeseop Lee, Chao Zhang, Yun Li, Yan Cai,
and Bodong Zhao. Raproducer: efficiently diagnose and
reproduce data race bugs for binaries via trace analysis.
In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 593–
606, 2021.

[55] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing,
Adam Doupé, Yan Shoshitaishvili, and Tiffany Bao.
Playing for {K (H) eaps}: Understanding and improving
linux kernel exploit reliability. In 31st USENIX Security
Symposium (USENIX Security 22), pages 71–88, 2022.

11 APPENDIX

11.1 CARDSHARK
The demonstration of CARDSHARK is provided below in
pseudo-C code. The SYNCHRONIZE primitive refered in
Algorithm 1 is achieved by busy waiting on global variables.
The DELAY primitive relies on continuously checking the
time stamp counter within an infinite loop for timing delays.
Finally, the PIN_CPU functionality is achieved through the
sched_setaffinity system call to bind a thread to a specific
CPU.

1 unsigned long long racer_delay, racee_delay;
2 unsigned char flag1, flag2, flag3;
3

4 static void delay(unsigned long long interval)
5 {
6 unsigned long long end;
7

8 end = rdtsc() + interval;
9 while (1) {

10 if (rdtsc() > end)
11 return;
12 }
13 }
14

15 static void pin_cpu(int cpu)
16 {
17 cpu_set_t cset;
18

19 CPU_ZERO(&cset);
20 CPU_SET(cpu, &cset);
21 }
22

23 void* thr_racee(void* arg)
24 {
25 flag1 = 1;
26 while(!flag3);
27 delay(racee_delay);
28 sys_racee();
29 }
30

31 void* thr_racer(void* arg)
32 {
33 flag2 = 1;
34 while(!flag3);
35 delay(racer_delay);
36 sys_racer();

37 }
38

39 void race_attempt(void)
40 {
41 pthread_t thrs[2];
42

43 pin_cpu(0);
44 pthread_create(&thrs[0], NULL, thr_racee, NULL);
45 pin_cpu(1);
46 pthread_create(&thrs[1], NULL, thr_racer, NULL);
47 pin_cpu(2);
48 while (!flag1 || !flag2);
49 flag3 = 1;
50

51 pthread_join(thrs[0], NULL);
52 pthread_join(thrs[1], NULL);
53 }
54

55 void cardshark(long long align_time)
56 {
57 if (align_time > 0)
58 racer_delay = align_time;
59 else
60 racee_delay = -align_time;
61

62 race_attempt();
63 }

11.2 BLINDSHARK
Below is a sample implementation of BLINDSHARK in
pseudo-C code. The MEASURE primitive measures execution
time by reading the time stamp counter immediately before
and after the system call invocation.

1 unsigned long long measure(void (*syscall)())
2 {
3 unsigned long long start, end;
4 start = rdtsc();
5 syscall();
6 end = rdtsc();
7

8 return end-start;
9 }

10

11 void blindshark(void)
12 {
13 unsigned long long racer_len, racee_len;
14 long long i;
15

16 racer_len = measure(sys_racer);
17 racee_len = measure(sys_racee);
18

19 for (i=0; i<racer_len; i+=100) {
20 cardshark(-i);
21 }
22

23 for (i=0; i<racee_len; i+=100) {
24 cardshark(i);
25 }
26 }

6218 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Concurrency Bug in the Linux Kernel
	Concurrency Bug Stability Issue

	Overview
	Concurrency Bug Reproduction
	Concurrency Bug In The Vacuum
	Concurrency Bug in Practice
	Concurrency Bug Reproduction Model

	CARDSHARK
	Technique Overview
	Algorithmic Implementation of CARDSHARK With Presumed Align Time
	BLINDSHARK: CARDSHARK with Aprpoximated Align Time
	Non-determinism Factors in CARDSHARK

	Evaluation
	Empirical Verification of the Model
	CARDSHARK Efficacy
	BLINDSHARK Efficacy
	Evaluation Against Existing Work

	Discussion
	Limitation of CARDSHARK
	Mitigation
	Combination of EXPRACE and CARDSHARK
	Future Work

	Related Works
	Conclusion
	Acknowledgments
	APPENDIX
	CARDSHARK
	BLINDSHARK

