
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Scalable Zero-knowledge Proofs for
Non-linear Functions in Machine Learning

Meng Hao, Hanxiao Chen, and Hongwei Li, School of Computer Science
and Engineering, University of Electronic Science and Technology of China;

Chenkai Weng, Northwestern University; Yuan Zhang and Haomiao Yang,
School of Computer Science and Engineering, University of Electronic Science
and Technology of China; Tianwei Zhang, Nanyang Technological University
https://www.usenix.org/conference/usenixsecurity24/presentation/hao-meng-scalable

Scalable Zero-knowledge Proofs for Non-linear Functions in Machine Learning

Meng Hao1,*, Hanxiao Chen1,*, Hongwei Li1, B, Chenkai Weng2, Yuan Zhang1, Haomiao Yang1, and
Tianwei Zhang3

1School of Computer Science and Engineering, University of Electronic Science and Technology of China
2Northwestern University

3Nanyang Technological University
{menghao303, chenhanxiao.chx}@gmail.com, {hongweili, zhangyuan, haomyang}@uestc.edu.cn,

chenkaiweng2024@u.northwestern.edu, tianwei.zhang@ntu.edu.sg

Abstract
Zero-knowledge (ZK) proofs have been recently explored

for the integrity of machine learning (ML) inference. How-
ever, these protocols suffer from high computational overhead,
with the primary bottleneck stemming from the evaluation
of non-linear functions. In this paper, we propose the first
systematic ZK proof framework for non-linear mathematical
functions in ML using the perspective of table lookup. The
key challenge is that table lookup cannot be directly applied
to non-linear functions in ML since it would suffer from in-
efficiencies due to the intolerably large table. Therefore, we
carefully design several important building blocks, including
digital decomposition, comparison, and truncation, such that
they can effectively utilize table lookup with a quite small
table size while ensuring the soundness of proofs. Based on
these building blocks, we implement complex mathemati-
cal operations and further construct ZK proofs for current
mainstream non-linear functions in ML such as ReLU, sig-
moid, and normalization. The extensive experimental evalua-
tion shows that our framework achieves 50∼ 179× runtime
improvement compared to the state-of-the-art work, while
maintaining a similar level of communication efficiency.

1 Introduction

Machine-learning-as-a-service (MLaaS) provides powerful
platforms for ML-based inference and prediction as a paid
service. However, the inference process is black-boxed to
clients and hence it is difficult to validate the service integrity,
e.g., the inference results are evaluated by legitimate ML
models with a correct inference specification. Recently, to
address this problem, several works explore to design zero-
knowledge (ZK) proofs in MLaaS, especially for the integrity
of ML inference [16, 22, 24, 34, 37, 40, 57, 63]. Generally
speaking, ZK proofs allow a prover P to convince a verifier V
that a public program (i.e., statement) is correctly evaluated on

*The authors contributed equally and conducted this work at NTU.
BCorresponding author.

P ’s secret input w (i.e., witness) without revealing additional
information about w. Correspondingly, the goal of ZK proofs
within MLaaS is to enable the service provider (as P) to
prove to clients (as V) that the service is of high quality and
inference is correctly evaluated by the particular model with
secret parameters (as w), while preserving the model’s privacy,
more seriously, the intellectual property.

Unfortunately, the advanced ZK protocols for ML [40, 57]
remain impractical and inefficient, particularly when ap-
plied to real-world complicated models such as convolu-
tional neural networks (CNNs) [28, 35] or recently promis-
ing Transformer-based large language models (LLMs) like
GPT [46, 53]. Upon meticulous examination, we identify that
the primary bottleneck lies in the computation cost, primarily
stemming from evaluating non-linear layers of ML1, because
the evaluation of those layers involves complex non-linear
mathematical functions like comparison, exponentiation, di-
vision, and reciprocal square root. As exemplified in Mys-
tique [57], the state-of-the-art ZK proofs for ML, the evalua-
tion of non-linear functions consumes about 8 minutes for one
inference on the ResNet-101 model, which accounts for more
than 80% of the total inference runtime. Therefore, it is critical
to design new techniques to solve the performance bottleneck
of ZK proofs for non-linear functions, thereby facilitating the
scalability and adoption of ZK protocols in ML. Furthermore,
these ZK proofs have significant value beyond the field of ML
and essentially can be used in any application involving non-
linear evaluation, e.g., software vulnerabilities [8], program
analysis [15] and database querying [39].

In this paper, we aim to address the above open problem
by designing efficient ZK proofs for non-linear functions.
Our key observation is that the adoption of heavy arithmetic-
Boolean conversion is the main root cause for the inefficiency.
In particular, current ZK proofs for ML evaluate linear layers
on arithmetic circuits in a prime field Fp. However, when eval-
uating non-linear functions, these arithmetic outputs have to

1ML is comprised of alternating linear and non-linear layers. The former
includes convolutional and fully connected layers, while the latter includes
ReLU, GELU, Softmax, Maxpooling, and batch/layer normalization.

USENIX Association 33rd USENIX Security Symposium 3819

be converted to Boolean values via various bit decomposition
techniques such as zk-edaBits [2, 57], so that the non-linear
functions can be evaluated using general Boolean circuits in
the ZK environment. Unfortunately, these conversion proofs
are high cost and cause at least O(log p) multiplication com-
plexity2, due to the invocation of modulo-addition circuits
in the Boolean field [57]. In addition, the subsequent func-
tion evaluation in Boolean circuits also causes a substantial
overhead (O(log p) with a big constant), e.g., 3∼11K multi-
plication gates are needed for exponentiation, division, and
reciprocal square root [57].

To tackle this issue, we propose a novel scalable ZK proof
framework for non-linear mathematical functions. Our main
insight is to explore table lookup-based ZK proofs. Building
upon this technique, our framework can avoid the expensive
arithmetic-Boolean conversion and Boolean circuit evalua-
tion, by building a table to map the input to the output over
arithmetic values. However, the key challenge is that table
lookup cannot be directly applied to non-linear functions in
ML since it would suffer from inefficiencies due to the over-
sized table (Section 2.1). Our solution starts by decomposing
inputs of large bitlength into several smaller digits to signif-
icantly reduce the table size. Nevertheless, it is non-trivial
to utilize these digits for function evaluation due to result
correctness and proof soundness issues. To this end, we de-
sign several important building blocks from scratch, such as
comparison and truncation, with new constructions. As a re-
sult, our building blocks have an asymptotic multiplication
complexity of O(1) in the amortized setting3 (Section 2.2).

Based on these efficient building blocks, we construct ZK
proofs for various non-linear mathematical functions in ML.
We conduct extensive experiments to evaluate these protocols
and the results show unprecedented efficiency breakthroughs
(Section 7). Compared to the state-of-the-art Mystique [57],
our protocols for widely used non-linear functions in ML,
such as ReLU, sigmoid, GELU, obtain 50 ∼ 179× runtime
improvement, while achieving 1.2∼ 4.8× better communica-
tion cost. Our contributions can be summarized as follows.

• We propose the first systematic ZK proof framework
for non-linear mathematical functions in ML using the
perspective of table lookup.

• We present several building blocks with newly proposed
table lookup-based techniques, which have O(1) multi-
plication complexity in the amortized setting.

• We apply these building blocks to various non-linear
mathematical functions of ML and conduct extensive
evaluation. The results show that our protocols achieve
50 ∼ 179× runtime improvement compared with the
state-of-the-art work while maintaining a similar level

2Note that multiplication gates, including both Boolean AND and arith-
metic multiplication, dominate the computation overhead of ZK proofs
[57–60].

3Similarly, the state-of-the-art ZK proofs [2,57] also design their protocols
in the amortized setting.

of communication efficiency.

2 Technical Overview

2.1 New perspective from table lookup

We explore using table lookup for ZK proofs of non-linear
functions. Our table lookup-based ZK proof works as fol-
lows. The prover P and the verifier V pre-compute a public
table that stores all legitimate input-output pairs of the eval-
uated non-linear function, and then P can prove to V that
the computed output along with its input exists in this ta-
ble. We instantiate our table lookup protocol by taking recent
techniques from ZK proofs of read-only memory (ROM) ac-
cess [10, 18, 60], which originally aimed to perform batched
memory accesses in a verifiable manner (Section 3.5).

However, constructing ZK protocols for non-linear func-
tions from table lookup is not straightforward and challeng-
ing. Specifically, to faithfully evaluate a non-linear function
y = f (x), the lookup table requires storing all possible input-
output pairs {xi,yi = f (xi)}xi∈Fp . Unfortunately, for a typi-
cally used arithmetic field Fp, e.g., a 61-bit prime p [2, 57],
the table size T ≈ 261 would become intolerably large. Such
a size will directly lead to an explosion in the number of arith-
metic multiplications, thereby a sharp drop in performance.

We address the above challenge by first decomposing in-
puts with large bitlength into a constant number of smaller
digits, e.g., 5∼ 12 bits. We note that the size of each resulting
table is only 25 ∼ 212 and it does not impose a burden on stor-
age costs. Nevertheless, it is non-trivial to utilize these small
tables for the ZK-based non-linear mathematical functions
due to result correctness and proof soundness issues. To solve
these problems, we further design a series of novel protocols
(Section 2.2), such as comparison and truncation, leveraging
the table lookup technique.

Remark. There are also some other potential methods
called lookup arguments [14,20,45,51,61,62], such as Caulk
[61] and Lasso [51], to instantiate the table lookup-based ZK
proofs. We currently choose the technique from ZK proofs
of ROM since they are computation-efficient, especially in
batched lookup settings. This is suitable for ML scenarios
that repeatedly evaluate a large number of mathematical func-
tions at each non-linear layer. We re-run the source code
of Caulk [61], and the results show that the ZK lookup pro-
tocol of Caulk costs 177.451ms for each amortized access
on a table of size 212, while our protocol from ZK-ROM
only requires 0.069ms (about 2571× better) for the same set-
ting. Lasso [51] is customized for restricted structured tables,
namely decomposability or low-degree extension structures
(refer to their paper for more details), which cannot be ex-
tended to our setting.

3820 33rd USENIX Security Symposium USENIX Association

ComparisonDigital decomposition Truncation Msnzb

(1) Building blocks

Exponential Division Reciprocal square root

(2) Mathematical functions

Softmax GELUNormalizationReLU Maxpooling

(3) Applications

Sigmoid

Figure 1: A high-level overview of our framework.

2.2 Novel table lookup-based protocols

Our framework can be summarized into three hierarchical
levels, as depicted in Figure 1. Below, we outline the proto-
cols inside in a bottom-up manner. (1) Fundamental build-
ing blocks. As the most important basis of our framework,
this level consists of four operations, i.e., digital decomposi-
tion, comparison, truncation, and most significant non-zero-bit
(Section 4). All enjoy an asymptotic multiplication complex-
ity of O(1) in the amortized setting, independent of the input
bitlength log p. (2) Complex mathematical functions. Build-
ing on the developed building blocks, we design efficient ZK
proofs for complex mathematical functions including expo-
nential, division, and reciprocal square root (Section 5). (3)
Comprehensive ML applications. Relying on the above ZK
proofs for mathematical functions as well as our building
blocks, we provide efficient ZK protocols for a lot of widely
used non-linear functions in ML (Section 6), including ReLU,
Maxpooling, Sigmoid, Normalization, Softmax, and GELU.

Due to being important and challenging, below we intro-
duce the insights of four fundamental building blocks.

Digital decomposition. To address the prohibitively large
size of lookup tables as discussed in Section 2.1, a natural
idea is to decompose the input x into a constant number k
of small digits x0, . . . ,xk−1. We formalize this operation as
digital decomposition, which importantly runs throughout
our entire framework. Formally, given an input x ∈ Fp, this
operation outputs x0, . . . ,xk−1 ∈ Fp such that x= xk−1∥ . . .∥x0
and xi ∈ {0,1}di for i ∈ [0,k−1].

Unfortunately, a subtle issue arises. Specifically, the mali-
cious prover may provide incorrect x0, . . . ,xk−1 satisfying that
xk−1∥ . . .∥x0 = x+ p instead of x. This incorrect decomposi-
tion would be successfully verified because the verification
xk−1∥ . . .∥x0− x = 0 is performed in Fp, meaning that all op-
erations are taken over modulo p. The root of the problem
is that for an ℓ-bit prime p for Fp, the prover could decom-
pose x in a larger range [0,2ℓ−1] rather than [0, p−1], where
p < 2ℓ. Therefore, an additional effort is required to check
that xk−1∥ . . .∥x0 < p. This operation will be handled later by
our comparison protocol. Moreover, we also present a posi-
tive digital decomposition protocol, which is customized to
positive inputs, to bypass this issue.

Comparison. ZK proofs of comparison verification are
used to verify whether x < c holds, where x ∈ Fp is the
prover’s secret witness and c ∈ Fp is a public constant. Our
idea is to convert the comparison verification on the en-
tire x and c with large bitlength into a set of carefully de-
signed operations on smaller digits. We take inspiration from
the observation [21, 48]: 1{x < c} = 1{x1 < c1}+ 1{x1 =
c1}·1{x0 < c0}, where x = x1∥x0 and c = c1∥c0. Further, this
relation can be recursively invoked when x = xk−1∥ . . .∥x0
and c = ck−1∥ . . .∥c0.

With the above relation, our basic idea for ZK proofs of
comparison verification consists of two steps. (1) For each
i∈ [0,k−1], given the digits (xi,ci) with bitlength di, we eval-
uate zlt

i = 1{xi < ci} and zeq
i = 1{xi = ci} by calling two table

lookups. (2) 1{x < c} is verified by using zlt
i and zeq

i for i ∈
[0,k−1] according to the above relation. However, the compu-
tation cost of this solution is still large due to the requirement
of 2k table lookups and k multiplications. Therefore, we fur-
ther make two important improvements. First, rather than re-
cursively invoking k multiplications to verify 1{x < c} in step
(2), we use only one table lookup by carefully constructing
a table containing z = zlt

k−1∥ . . .∥zlt
0 ∥z

eq
k−1∥ . . .∥z

eq
0 ∈ {0,1}2k

and the corresponding result of 1{x < c} from z. Second,
with the first insight, we further reduce 2k invocations of table
lookup of step (1) into k times, by designing a compact encod-
ing method that combines zlt

i and zeq
i into one value. Totally,

our optimized proofs only invoke k+1 table lookups.
Truncation. Truncation on positive values x can be directly

evaluated by invoking our positive digital decomposition pro-
tocol. Namely, given the truncation bitlength t, it outputs x1
such that x = x1∥x0 and x0 ∈ {0,1}t . However, when we con-
sider the general case that supports arbitrary inputs in Fp, the
ZK proofs of truncation become challenging. The main rea-
son is that a negative value x is embedded in Fp as p−|x| and
hence given p−|x| = x1∥x0, the digit x1 decomposed from
p−|x| is not a correct truncation result.

To address this challenge, an important observation is that
the truncation operation conducts an arithmetic right shift on
the 2’s complement representation of the real value x, rather
than its embedded field representation. Hence our insight is
that we can convert the truncation on a negative x into the
positive one by flipping all bits of x in the 2’s complement.
Specifically, the result y below is still the correct output of
truncation on a negative x, if we (1) compute positive x̄ by
flipping all the bits of x in the 2’s complement, i.e., 0 to 1
and 1 to 0, (2) compute ȳ by performing positive truncation
on x̄, and (3) obtain y by flipping all the bits of ȳ in the 2’s
complement. Therefore, the ZK proofs of general truncation
can be achieved by invoking our comparison and positive
truncation protocols.

Msnzb. The most significant non-zero-bit (Msnzb) com-
putes the index y on a positive input x, such that if xy = 1 then
xi = 0 for all i > y. Alternatively, we have 2y ≤ x≤ 2y+1−1.
This function is currently explored in secure multi-party com-

USENIX Association 33rd USENIX Security Symposium 3821

putation (MPC) works [47]. In their protocol, the input x is
decomposed into several digits x0, . . . ,xk−1, and the Msnzb
is computed on each xi of these digits. Finally, the output
corresponds to y =Msnzb(xi)+ i ·d if xi ̸= 0 and x j > 0 for
all j > i, where d is the bitlength of each digit. Although this
method can be directly migrated to the ZK-based evaluation,
utilizing our digital decomposition and table lookup proto-
cols, the cost is significantly high due to the requirement of
multiple Msnzb, comparison, and multiplication operations.

We re-think this function and find that the property 2y ≤
x ≤ 2y+1− 1 is overlooked. We further observe that except
y, we could let the prover provide additional values z0 = 2y

and z1 = 2y+1−1, and then verify that z0 ≤ x≤ z1. This veri-
fication can be implemented via the table lookup technique,
where a table L is constructed containing (y,z0,z1) for all pos-
sible y. It is worth noting that the table L is quite small with
size ⌈log p⌉−1. However, simply constructing this table as
above is unreasonable, since when y is large, z1 will overflow
the range of positive values in Fp. We address this problem
by replacing the overflowed z1 with p−1

2 without affecting
correctness, based on a rigorous analysis.

3 Preliminaries

3.1 Notation
We use κ and λ to denote the computational and statistical
security parameters, respectively. For a,b ∈ Z with a < b,
we use [a,b] to denote {a, . . . ,b} and (a,b] to denote {a+
1, . . . ,b}. a := b denotes that a is assigned by b. We use
x ← S to denote sampling x uniformly at random from a
finite set S. negl(·) denotes a negligible function such that
negl(κ) = o(κ−c) for every positive constant c.

Fixed-Point Representation. Same as prior works [40,57],
we encode a real number x̂∈R as a field element x∈ Fp using
their fixed-point representation. The representation in Fp is
parameterized by a fixed scale variable, s, which refers to
the fractional bitlength. We define two mappings for mutual
conversion between reals and their field representation.

• R2F : R→ Fp. The mapping from reals to its field rep-
resentation is R2F(x, p,s) = ⌊x ·2s⌋ mod p.

• F2R : Fp→ R. The mapping from the field representa-
tion to reals is F2R(x, p,s) = (x− c · p)/2s, where the
operations are over R and c = 1{x > (p−1)/2}.

We sometimes omit s, meaning that s = 0, i.e., the conversions
are between signed integers and their field representation.
Hence, Fp can encode signed integers between [− p−1

2 , p−1
2].

3.2 Information-theoretic MACs
We commit values in Fp using information-theoretic mes-
sage authentication codes (IT-MACs) [4, 43]. Let ∆ ∈ Fp be
a uniform global key known only to the verifier V . A com-
mitment on a message x ∈ Fp is denoted by [x]p, meaning

Functionality FZK

This functionality is parameterized by a prime p such
that p≥ 2λ.

Input: On receiving (Input,x) from P , store x and send
[x]p to P and V .

Affine Combination: On receiving (Affine,c0,c1, . . . ,
cn, [x1]p, . . . , [xn]p) from P and V , check that [x1]p, . . . ,
[xn]p are valid and abort if not. Compute y = c0 +

∑i∈[1,n] ci · xi in Fp, store y, and send [y]p to P and V .

Multiply: On receiving (Mult, [x]p, [y]p) from P and V ,
check that [x]p, [y]p are valid and abort if not. Compute
z = x · y in Fp, store z, and send [z]p to P and V .

Output: On receiving (Output, [z]p) from P and V ,
check if [z]p is valid and abort if the check fails, oth-
erwise send z to V .

Figure 2: Ideal functionality for ZK proofs.

that the prover P holds x ∈ Fp and a MAC Mx ∈ Fp, and
the verifier V holds a uniform local key Kx ∈ Fp such that
Mx = Kx +∆ · x in Fp. When we say both parties hold [x]p, it
means that P holds (x,Mx) and V holds (∆,Kx). IT-MACs
are additively homomorphic, meaning that given public con-
stants c0,c1, . . . ,cn ∈ Fp and commitments [x1]p, . . . , [xn]p, P
and V can locally compute [y]p := c0 +∑i∈[1,n] ci · [xi]p. A
commitment [x]p can be opened by having P send (x,Mx)
to V , who checks Mx = Kx +∆ · x with the probability of
forging an incorrect x at most 1/|Fp|. When opening n all
zero values [x1]p, . . . , [xn]p, called CheckZero, P computes
h := H(Mx1 , . . . ,Mxn) and sends h to V , who checks whether
h = H(Kx1 , . . . ,Kxn), where H : {0,1}∗ → {0,1}κ is a hash
function modeled as a random oracle. The soundness error of
CheckZero is at most 1/|Fp|+q/2κ, where q is the number
of queries to the random oracle [9]. Random IT-MAC commit-
ments can be efficiently generated using the recent LPN-based
Vector Oblivious Linear Evaluation (VOLE) protocols [5, 49],
which have communication complexity sublinear in the num-
ber of commitments.

3.3 Zero-knowledge proofs

Zero-knowledge proofs (of knowledge) are interactive two-
party protocols that allow the prover P to convince a verifier
V that a certain statement is true on a private witness. Instead
of using the classical definition by Goldwasser et al. [27], we
define it as an ideal functionality FZK for circuit satisfiability
in Figure 2. It belongs to the commit-and-prove paradigm and
uses information-theoretic MACs as commitments. The func-
tionality directly implies the standard properties, i.e., com-

3822 33rd USENIX Security Symposium USENIX Association

pleteness, knowledge soundness, and zero knowledge. The
functionality can be instantiated using several existing ZK
protocols, but in our implementation, we use the recent VOLE-
based interactive designated-verifier ZK proofs [56–59] due
to their fast prover time and small memory footprint.

3.4 ZK proofs of read-only memory access
We introduce ZK proofs for read-only memory access (ROM)
[11, 18, 60], which are the basis of our table lookup. This
functionality allows the prover P to commit a size-T mem-
ory containing m0, . . . ,mT−1, and then when P accesses an
element at address i ∈ [0,T −1] from the memory, P proves
to the verifier V that the read value is mi. Note that recent
works are customized for batch ROM settings, meaning that
P proves that N accesses on a size-T memory are correct.

We review the state-of-the-art ZK ROM protocol in arith-
metic circuits [60]. The protocol contains three phases: setup,
access, and cleanup. (1) In the setup phase, P and V initial-
ize two triple vectors, reads and writes, in which each triple
consists of an access address, an access value, and a metadata
called version. Then, for the i-th element in memory, where
i ∈ [0,T −1], P and V append ([i]p, [mi]p, [0]p) to writes. (2)
The access phase can be performed N times. In each access of
the j-th element in memory for j∈ [0,T−1], P and V append
([j]p, [m j]p, [v j]p) to reads, where v j is the latest version of
m j in writes, while appending ([j]p, [m j]p, [v j +1]p) to writes.
(3) Finally, in the cleanup phase, for the i-th element in mem-
ory, where i ∈ [0,T − 1], P and V append ([i]p, [mi]p, [vi]p)
to reads, where vi is the latest version of mi in writes. The
insight is that each access to ROM is correct if and only if
reads is a permutation of writes. The permutation proof costs
2 · (T +N) multiplications. Note that this protocol can be gen-
eralized to support a key-value store (i.e., the address space
is an arbitrary set) and multiple values (i.e., the value space
includes an arbitrary number of values). We refer the reader
to Section 4 and Appendix C of the work [60] for detailed
protocols and soundness analysis.

3.5 ZK proofs of table lookup from ZK-ROM
Table lookup is our main insight to evaluate non-linear func-
tions, in which P and V pre-compute a public table storing
all legitimate input-output pairs of the evaluated non-linear
function, and then P proves to V that the computed output
along with its input exists in this table. We extend the ZK
functionality of Figure 2 with table lookup, and present the
augmented functionality in Figure 3. We also include the pro-
cedure of range check, which is a simplified variant of table
lookup with the exception that the output is empty.

We instantiate these protocols using ZK proofs from the
aforementioned ZK-ROM, where the access address and value
in ZK-ROM now respectively correspond to the input and out-
put. The detailed table lookup protocol is shown in the full

Functionality F Lookup
ZK

This functionality extends the instructions in FZK.

CheckLookup: On receiving (Lookup,L, [x]p, [y]p)
from P and V , check if [x]p, [y]p are valid and (x,y) ∈ L,
and output abort to V if the check fails, otherwise output
success.

CheckRange: On receiving (Range,R, [x]p) from P and
V , check if [x]p is valid and x ∈ R, and output abort to
V if the check fails, otherwise output success.

Figure 3: Ideal functionality for ZK proofs of table lookup
and range check.

version. For N lookups on a size-T table, the computation
complexity is T +2 ·N multiplication gates, reducing T mul-
tiplications compared to the original ZK-ROM. The reason is
that our table is always public, and hence in the setup phase,
we can append T tuples in plaintext into writes. In our ML
application, it holds N≫ T , thus the amortized computation
complexity per lookup is 2 multiplications. We emphasize
that batch lookup is very reasonable in ML, since ML repeat-
edly evaluates non-linear functions a large number of times,
e.g., 800K ReLUs in a layer of ResNet50 [28, 48].

4 Building Blocks

In this section, we present several crucial building blocks and
outline their ideal functionalities in Figure 4. These compo-
nents serve as the foundational elements for ZK proofs of
non-linear mathematical functions introduced later.

4.1 Digital decomposition

As discussed in Section 2.1, to avoid the oversized lookup
table, a natural idea is decomposing the input x into k small
digits x0, . . . ,xk−1 before employing table lookup. Formally,
the digital decomposition operation decomposes x ∈ Fp into
x0, . . . ,xk−1 ∈ Fp such that x = xk−1∥ . . .∥x0 and xi ∈ {0,1}di

for i ∈ [0,k−1]. This operation can be viewed as a general-
ized form of bit decomposition [40, 57] when all di’s are set
as 1. However, it is worth noting that the number k of output
digits is a constant, rather than the prime bitlength ⌈log p⌉
in bit decomposition. This advantage effectively ensures a
constant asymptotic multiplication complexity of our proto-
cols. In the following, we first detail how to perform digital
decomposition specific to positive inputs, and then discuss
general digit decomposition for arbitrary values.

Positive digital decomposition. To decompose an input
x∈ [0, p−1

2], we ask the prover to provide the decomposed dig-

USENIX Association 33rd USENIX Security Symposium 3823

Functionality F BuildBlock
ZK

This functionality extends the instructions in FZK.

Positive digital decomposition: On input (DigitDec,
[x]p, d0, . . . ,dk−1) from P and V , where x ∈ [0, p−1

2],
check that [x]p is valid and abort if not. Decompose x to
(x0, . . . ,xk−1) such that x= xk−1∥ . . .∥x0 and xi ∈ {0,1}di

for i ∈ [0,k−1]. Then, for i ∈ [0,k−1], store xi and send
[xi]p to P and V .

Comparison verification: On input (VrfyCmp, [x]p,c)
from P and V , where x ∈ Fp, check that [x]p is valid and
abort if not. Check whether x < c, and output abort to V
if the check fails, otherwise output success.

Comparison: On input (Cmp, [x]p,c) from P and V ,
x ∈ Fp, check that [x]p is valid and abort if not. Compute
y = 1{x < c}, store y and send [y]p to P and V .

Positive truncation: On input (PosTrunc, [x]p, t) from
P and V , where x ∈ [0, p−1

2], check that [x]p is valid and
abort if not. Compute y = R2F(F2R(x, p)/2t , p), store y,
and send [y]p to P and V .

General truncation: On input (Trunc, [x]p, t) from P
and V , where x ∈ Fp, check that [x]p is valid and abort
if not. Compute y = R2F(F2R(x, p)/2t , p), store y, and
send [y]p to P and V .

Most significant non-zero-bit: On input (Msnzb, [x]p)
from P and V , where x∈ (0, p−1

2], check that [x]p is valid
and abort if not. Compute y such that 2y ≤ x≤ 2y+1−1,
store y, and send [y]p to P and V .

Figure 4: Ideal functionality for ZK proofs of our building
blocks.

its {x0, . . . ,xk−1} of x. Then the protocol verifies that (1) for
i ∈ [0,k−1], xi ∈ {0,1}di , by invoking the CheckRange pro-
cedure of functionality F Lookup

ZK , and (2) {x0, . . . ,xk−1} con-
stitute the digit decomposition of x, by determining whether
x0 +∑i∈[1,k−1] 2

∑ j∈[0,i−1] d j xi = x based on the CheckZero pro-
cedure. The detailed protocol ΠDigitDec is illustrated in Figure
5. The dominant cost of this protocol is k range checks, which
consume 2k multiplication gates.

General digital decomposition. Before presenting a gen-
eral digital decomposition construction, it is essential to ad-
dress why protocol ΠDigitDec cannot be directly applied to
arbitrary values in Fp. For an ℓ-bit prime p, where p< 2ℓ obvi-
ously, a malicious prover could decompose x in a larger range
[0,2ℓ−1] instead of [0, p−1] such that xk−1∥ . . .∥x0 = x+ p,
rather than x. Nonetheless, these results would still pass the
verification strategy in protocol ΠDigitDec mainly because the
CheckRange procedure is taken over modulo p. This mali-

Protocol ΠDigitDec

Parameters: A finite field Fp, a constant k.

Input: P and V have an authenticated value [x]p and
digital bitlengths d0, . . . ,dk−1, where x ∈ [0, p−1

2].

Protocol execution: P and V compute [x0]p, . . . , [xk−1]p
such that x = xk−1∥ . . .∥x0 and xi ∈ {0,1}di for i∈ [0,k−
1] as follows:

1. P decomposes x into (x0, . . . ,xk−1) such that x =
xk−1∥ . . .∥x0 and xi ∈ {0,1}di for i ∈ [0,k−1].

2. P sends (Input,x0, . . . ,xk−1) to functionality FZK,
which returns ([x0]p, . . . , [xk−1]p) to P and V .

3. For i∈ [0,k−1], P and V send (Range,Ri, [xi]p) to
functionality F Lookup

ZK , where Ri = {0,1}di , to verify
that xi ∈ {0,1}di .

4. P and V compute [z]p = [x0]p +

∑i∈[1,k−1] 2
∑ j∈[0,i−1] d j [xi]p − [x]p and execute

the CheckZero procedure on [z]p.
5. If any of the above checks fails, V aborts. Other-

wise, P and V output [x0]p, . . . , [xk−1]p.

Figure 5: Protocol for positive digital decomposition.

cious behavior does not occur in the positive case. The reason
is that xk−1∥ . . .∥x0 should be represented by at most ℓ− 1
bits, namely xk−1∥ . . .∥x0 < 2ℓ−1 due to x ≤ p−1

2 < 2ℓ−1. It
is a contradiction that xk−1∥ . . .∥x0 = x+ p since p > 2ℓ−1

and should be represented by ℓ bits. To address this issue,
it is necessary to add an extra check to ensure that the out-
put digits xk−1∥ . . .∥x0 < p. This is precisely addressed with
our comparison verification protocol detailed in Section 4.2.
Consequently, the ZK proofs of general digital decomposition
can be straightforwardly derived by integrating our positive
digital decomposition protocol in Figure 5 and comparison
verification protocol in Figure 6. Note that we only provide
the positive digital decomposition protocol here because it
suffices for our work.

Observe that the main cost of protocol ΠDigitDec is domi-
nated by the CheckRange procedure on [xi]p with bitlength
di. This overhead can be optimized when di is large. Briefly,
instead of directly performing CheckRange on [xi]p for large
di, we can iteratively invoke the digital decomposition func-
tionality on [xi]p. For convenience, we set an upper bound B
(e.g., B = 12) and perform CheckRange only when di ≤ B.

Theorem 1. Protocol ΠDigitDec UC-realizes the DigitDec
command of functionality F BuildBlock

ZK against static and mali-
cious adversaries in the (FZK,F Lookup

ZK)-hybrid model.

The proof of this theorem can be found in Appendix B.1.

3824 33rd USENIX Security Symposium USENIX Association

4.2 Comparison
We consider two useful ZK proofs of comparison. One is
the comparison verification to verify that x < c holds, where
x ∈ Fp is the prover’s secret witness and c ∈ Fp is a public
constant. The other is the general comparison operation that
computes y = 1{x < c}. These proofs can be directly used to
compute whether x is positive by setting c = p+1

2 . Existing
comparison proofs either utilize heavy bit decomposition [57]
or introduce strong assumptions about the input range [2, 40].
We explore using the table lookup technique to address the ef-
ficiency problem without introducing additional assumptions.
Below, for clarity, we focus on verifying that x < c holds, and
defer the general comparison in the full version.

Basic solution. As illustrated in Section 2.2, our solution
recursively exploits the observation [21, 48]:

1{x < c}= 1{x1 < c1}+1{x1 = c1} ·1{x0 < c0}, (1)

where x = x1∥x0 and c = c1∥c0. Thus, given x = xk−1∥ . . .∥x0
and c = ck−1∥ . . .∥c0, a straightforward protocol to verify
1{x < c} is as follows. (1) For i∈ [0,k−1], given (xi,ci) with
bitlength di, the prover and verifier evaluate zlt

i = 1{xi < ci}
and zeq

i = 1{xi = ci} by calling table lookups. (2) After ob-
taining all zlt

i and zeq
i , we can compute 1{x < c} recursively

based on Equation 1 by calling functionality FZK. Note that
the corrupted server could provide an incorrect decomposition
from x+ p instead of x. In this case, the verification will abort
since x+ p< c must not be held. The overhead of this solution
remains costly, primarily stemming from 2k evaluations of
table lookup in step (1) and k multiplication gates in step (2).
In the following, we show how to improve the basic method
via two important insights.

Improved construction. The first insight is that in step
(2), rather than recursively evaluating Equation 1 based
on zlt

i and zeq
i for i ∈ [0,k − 1], we utilize table lookup

by constructing a table L containing (z,y), where z =
zlt

k−1∥ . . .∥zlt
0 ∥z

eq
k−1∥ . . .∥z

eq
0 ∈ {0,1}2k and y is computed

based on z according to Equation 1. Note that z is obtained
via z = 22k−1 · zlt

k−1 + . . .+2k · zlt
0 +2k−1 · zeq

k−1 + . . .+20 · zeq
0 .

Intuitively, the table L consists of 22k entries, including all
possible z ∈ {0,1}2k. However, it is important to emphasize
that the number of entries in L is explicitly 3k. The reason is
that for each pair (zlt

i ,z
eq
i), there can only be three possible

cases, namely, {(0,0),(0,1),(1,0)}, since xi < ci and xi = ci
can not hold simultaneously. If we overlook this point, these
incorrect but still considered values might be maliciously ma-
nipulated to compromise soundness.

The second insight is that in step (1), for i ∈ [0,k−1], we
can employ table lookup only once by combining zlt

i and zeq
i

into a single value. To this end, we design a compact encoding
as follows

zi = 0 . . .0∥

i+1︷ ︸︸ ︷
zlt

i ∥0 . . .0︸ ︷︷ ︸
k

∥0 . . .0∥

i+1︷ ︸︸ ︷
zeq

i ∥0 . . .0︸ ︷︷ ︸
k

, (2)

where zi consists of two parts, each has k bits. Except for
the i-th position in each part where zlt

i or zeq
i is placed, the

remaining k−1 bits are all 0. This encoding has two advan-
tages. First, with this encoding, we can reduce 2k invocations
of table lookup into k times. Second, when generating z as
input of table lookup in the first optimization, P and V only
need simple summations with this encoding, without constant
multiplications. Note that zi will not exceed the range of Fp
by appropriately setting the value of k.

Based on the above discussion, we provide the detailed
comparison verification protocol ΠVrfyCmp in Figure 6. This
protocol mainly consists of k+1 table lookups, which con-
sume 2k+2 multiplication gates.

Theorem 2. Protocol ΠVrfyCmp UC-realizes the VrfyCmp
command of functionality F BuildBlock

ZK against static and mali-
cious adversaries in the (FZK,F Lookup

ZK)-hybrid model.

The proof of this theorem can be found in Appendix B.2.

4.3 Truncation
Truncation (also known as arithmetic right shift) is widely
used in fixed-point operations, especially after multiplication
to maintain the fixed fractional precision. Given an input x
and truncation bitlength t, the truncation operation outputs
y = R2F(F2R(x, p)/2t , p). Below we provide two truncation
protocols for positive and arbitrary values, respectively.

Positive truncation. We first present the truncation proto-
col on positive inputs. Our insight is that for a positive value
x ∈ [0, p−1

2], a t-bit truncation can be achieved by directly
dropping out x0 with t-bit and outputting x1, where x = x1∥x0.
Thus, as illustrated in Figure 7, we can instantiate this proto-
col by simply leveraging the functionality of positive digital
decomposition. Observe that this protocol has the same cost
as positive digital decomposition, and hence requires 2k mul-
tiplication gates. We emphasize that this positive protocol
is useful in several non-linear functions, in which there is
some prior knowledge about the input domain. For exam-
ple, the outputs of exponential are always positive and their
multiplication can directly invoke this positive truncation.

General truncation. We further extend the positive trunca-
tion protocol into the general case to support arbitrary inputs
x ∈ Fp. This is challenging because a negative value x is
embedded in Fp as p−|x|, and hence given x1∥x0 = p−|x|,
the digit x1 decomposed from x is an incorrect result. Ex-
isting works do not address this challenge effectively. They
either utilize expensive Boolean circuits [57] to evaluate this
operation or only support positive values [40].

Building upon the insight illustrated in Section 2.2, we
provide a novel protocol for general truncation in Figure 8.
Specifically, we first invoke our comparison protocol to de-
termine whether x is positive or negative. This is done to
execute different operations for negative and positive values
separately. For clarity, we below focus on the truncation of

USENIX Association 33rd USENIX Security Symposium 3825

Protocol ΠVrfyCmp

Parameters: A finite field Fp, a constant k.

Input: P and V have an authenticated value [x]p and a
constant c, where x,c ∈ Fp.

Protocol execution: P and V verify that x < c holds as
follows:

1. P decomposes x into (x0, . . . ,xk−1) such that x =
xk−1∥ . . .∥x0 where xi ∈ {0,1}di for i ∈ [0,k− 1].
P sends (Input,x0, . . . ,xk−1) to FZK, which returns
([x0]p, . . . , [xk−1]p) to P and V .

2. P and V compute [t]p = [x0]p +

∑i∈[1,k−1] 2
∑ j∈[0,i−1] d j [xi]p − [x]p, and execute

the CheckZero procedure on [t]p.
3. P and V locally decompose c into (c0, . . . ,ck−1)

such that c = ck−1∥ . . .∥c0 and ci ∈ {0,1}di . For i ∈
[0,k− 1], P computes zi = 2k+i · 1{xi < ci}+ 2i ·
1{xi = ci} , and sends (Input,z0, . . . ,zk−1) to FZK,
which returns ([z0]p, . . . , [zk−1]p) to P and V .

4. For i ∈ [0,k − 1], P and V send (Lookup,Li,

[xi]p, [zi]p) to functionality F Lookup
ZK , where Li =

{(xi,2k+i ·1{xi < ci}+2i ·1{xi = ci})}xi∈{0,1}di .
5. P compute y0 = 1{x0 < c0} and yi = 1{xi < ci}+

1{xi = ci} · yi−1 for i ∈ [1,k−1], and set y = yk−1.
P sends (Input,y) to FZK, which returns [y]p to P
and V .

6. P and V compute [z]p = ∑i∈[0,k−1][zi]p and send
(Lookup,L, [z]p, [y]p), where L = {(∑i∈[0,k−1] 2k+i ·
1{xi < ci}+ 2i · 1{xi = ci},yk−1)}xi∈{0,1}di . Here,
y0 = 1{x0 < c0} and yi = 1{xi < ci}+1{xi = ci} ·
yi−1 for i ∈ [1,k−1].

7. P and V execute the CheckZero procedure on
[y]p−1.

8. If any of the above checks fails, V aborts, otherwise
V outputs success.

Figure 6: Protocol for comparison verification.

negative values. For each negative x ∈ [− p−1
2 ,−1], we first

compute x̄ =−1 · x−1, which is the value that flips the bits
of x in the 2’s complement. Then, we compute ȳ by invok-
ing our positive truncation on x̄. Note that x̄ ∈ [0, p−1

2 − 1]
lies in the range of positive values, and hence it is correct
for the positive truncation evaluation. Finally, we compute
y =−1 · ȳ−1 that corresponds to flipping the bits of ȳ in the
2’s complement. This protocol mainly consists of comparison,
multiplications, and positive truncation, which totally costs
4k+4 multiplication gates.

Theorem 3. Protocol ΠPosTrunc UC-realizes the PosTrunc
command of functionality F BuildBlock

ZK against static and mali-

Protocol ΠPosTrunc

Parameters: A finite field Fp.

Input: P and V have an authenticated value [x]p and a
truncation bitlength t, where x ∈ [0, p−1

2].

Protocol execution: P and V compute [y]p such that
y = R2F(F2R(x, p)/2t , p) as follows:

1. P and V send (DigitDec, [x]p, t,m− t) to function-
ality F BuildBlock

ZK , which returns ([x0]p, [x1]p) such
that x = x1∥x0, x0 ∈ {0,1}t and x1 ∈ {0,1}m−t ,
where m = ⌈log p⌉−1.

2. P and V output [y]p = [x1]p.

Figure 7: Protocol for positive truncation.

cious adversaries in the (FZK,F Lookup
ZK)-hybrid model.

The proof of this theorem can be found in Appendix B.3.

Theorem 4. Protocol ΠTrunc UC-realizes the Trunc com-
mand of functionality F BuildBlock

ZK against static and malicious
adversaries in the (FZK,F BuildBlock

ZK)-hybrid model.

The proof of this theorem can be found in Appendix B.4.

4.4 Most significant non-zero-bit
Given a positive input x ∈ (0, p−1

2], the most significant non-
zero-bit (Msnzb) outputs y such that if xy = 1 then xi = 0 for
all i > y, namely 2y ≤ x≤ 2y+1−1. This operation is neces-
sary to normalize the inputs of our ZK-based mathematical
functions detailed in Section 5, such as division and reciprocal
square root. Our initial idea for Msnzb is to directly use the
inequality 2y ≤ x ≤ 2y+1− 1 to check the correctness of y.
Specifically, we ask the prover to provide additional values
z0 and z1, and then the protocol verifies that (1) z0 = 2y and
z1 = 2y+1−1, and (2) x∈ [z0,z1]. The former can be achieved
via table lookup with a table L containing (y,2y,2y+1− 1)
for y ∈ (0,⌈log p⌉−2]4. The latter can be regarded as check-
ing whether x− z0 <

p+1
2 and z1− x < p+1

2 by invoking our
comparison verification protocol.

The above solution seems correct since it verifies all the
conditions that y should satisfy. However, we found that the
construction of table L in step (1) is unreasonable based on
the following observation. Given ℓ = ⌈log p⌉, let’s pay at-
tention to the last entry (ℓ−2,2ℓ−2,2ℓ−1−1) in the table L.
We observe that 2ℓ−1− 1 may exceed the range of positive
values in Fp, because 2ℓ−1− 1 ≥ p−1

2 . This can be demon-
strated by a contradiction, that is, assuming 2ℓ−1−1 < p−1

2
we have p > 2ℓ− 1, which contradicts the definition of an

4Since the input x is positive, the (⌈log p⌉−1)-th bit of x is always 0.

3826 33rd USENIX Security Symposium USENIX Association

Protocol ΠTrunc

Parameters: A finite field Fp.

Input: P and V have an authenticated value [x]p and a
truncation bitlength t, where x ∈ Fp.

Protocol execution: P and V compute [y]p such that
y = R2F(F2R(x, p)/2t , p) as follows:

1. P and V send (Cmp, [x]p,
p+1

2) to functionality
F BuildBlock
ZK , which returns [b]p such that b = 1{x <

p+1
2 }.

2. P and V compute [x̄]p = (2 · [b]p − 1) · [x]p −
(1− [b]p) by calling functionality FZK, and send
(PosTrunc, [x̄]p, t) to functionality F BuildBlock

ZK ,
which returns [ȳ]p.

3. P and V compute [y]p = (2 · [b]p−1) · [ȳ]p− (1−
[b]p) by calling functionality FZK.

4. P and V output [y]p.

Figure 8: Protocol for general truncation.

ℓ-bit prime p. In this case, when we need to check z1− x
given z1 = 2ℓ−1− 1 in step (2), the result of z1− x is either
negative or incorrectly overflows to a positive value. To ad-
dress this issue, we carefully set the last entry of the table L
to (ℓ−2,2ℓ−2, p−1

2), because x is restricted to be positive and
cannot exceed p−1

2 . The soundness is guaranteed, because all
z0 and z1 are positive. Overall, our complete Msnzb proto-
col is detailed in Figure 9. This protocol mainly consists of
comparison verification and table lookup, which totally costs
4k+6 multiplication gates.

Theorem 5. Protocol ΠMsnzb UC-realizes the Msnzb com-
mand of functionality F BuildBlock

ZK against static and malicious
adversaries in the (FZK,F Lookup

ZK)-hybrid model.

The proof of this theorem can be found in Appendix B.5.

5 Mathematical Functions

In this section, we detail efficient ZK protocols for complex
mathematical functions based on the above building blocks,
including exponential, division, and reciprocal square root.
The ideal functionalities are summarized in Figure 10.

5.1 Exponential
The exponential operation y = (1

e)
x is widely used in various

ML functions, such as softmax and GELU. A straightforward
approach to evaluate this function is to directly invoke ta-
ble lookup once, where the table includes all possible inputs
and their exponential results. However, such a table would

Protocol ΠMsnzb

Parameters: A finite field Fp.

Input: P and V have an authenticated value [x]p, where
x ∈ (0, p−1

2].

Protocol execution: P and V compute [y]p such that
2y ≤ x≤ 2y+1−1 as follows:

1. P computes y such that 2y ≤ x ≤ 2y+1 − 1 and
z0 = 2y, and set z1 = p−1

2 if y = ⌈log p⌉− 2, oth-
erwise z1 = 2y+1− 1. P sends (Input,y,z0,z1) to
functionality FZK, which returns ([y]p, [z0]p, [z1]p)
to P and V .

2. P and V send (Lookup,L, [y]p, [z0]p, [z1]p) to func-
tionality F Lookup

ZK , where L consists of (y,2y,2y+1−
1) for y ∈ [0,⌈log p⌉− 3] and (y,2y, p−1

2) for y =
⌈log p⌉−2.

3. P and V send (VrfyCmp, [x]p − [z0]p,
p+1

2)

and (VrfyCmp, [z1]p − [x]p,
p+1

2) to functionality
F BuildBlock
ZK .

4. If any of the above checks fails, V aborts. Other-
wise, P and V output [y]p.

Figure 9: Protocol for most significant non-zero-bit.

be exceedingly large as discussed in Section 2.1, resulting in
poor performance in the check phase. To tackle this problem,
inspired by [47], our main idea is to first decompose x into
several smaller digits x0, . . . ,xk−1 using our digital decompo-
sition protocol, such that x = xk−1∥ . . .∥x0, and then perform
exponential on each of these digits using table lookup. Finally,
the outputs are multiplicatively combined to recover the real
result. The detailed protocol is provided in Figure 11, where
the input x is assumed to be non-negative.

Note that we can reduce the number of truncations in step 4
of Figure 11. The observation is that each yi ∈ [0,2s] is small
due to the range of exponential, and hence we can perform
truncation after multiple multiplications only when the result
is about to exceed p.

5.2 Division

The division operation y = 1
x is typically used in softmax

and sigmoid in ML. There are mainly two categories of algo-
rithms for this operation [7, 47, 57]: general Boolean circuits
and functional iterations. The state-of-the-art ZK proof [57]
employs the former method, but its performance is undesir-
able as described in Section 1. In our framework, we explore
the functional iterations, more specifically Goldschmidt’s al-
gorithm [26], following prior secure multi-party computation
works [7, 47, 54]. Note that this algorithm has not been pre-

USENIX Association 33rd USENIX Security Symposium 3827

Functionality F Math
ZK

This functionality extends the instructions in FZK.

Exponential: On input (Exp, [x]p) from P and V , where
x∈ [0, p−1

2], check that [x]p is valid and abort if not. Com-
pute y = PtExp(x), store y, and send [y]p to P and V .

Division: On input (Div, [x]p) from P and V , where x ∈
(0, p−1

2], check that [x]p is valid and abort if not. Compute
y = PtDiv(x), store y, and send [y]p to P and V .

Reciprocal square root: On input (RSqrt, [x]p) from P
and V , x ∈ (0, p−1

2], check that [x]p is valid and abort if
not. Compute y = PtRSqrt(x), store y, and send [y]p to
P and V .

Figure 10: Ideal functionality for our mathematical func-
tions. The three plaintext procedures, i.e., PtExp, PtDiv, and
PtRSqrt, are defined in the full version of our work.

viously adopted in ZK proofs, because its operations and
verification are complex in general arithmetic or Boolean cir-
cuits. Fortunately, with the help of our building blocks and
table lookup techniques, we can naturally construct the ZK
proofs of division based on Goldschmidt’s algorithm.

Our division protocol is detailed in Figure 12, which con-
sists of four steps. (1) Normalize the input. This algorithm
needs to iterate on a good initial approximation, which re-
quires the input x ∈ [1,2). Thus, we normalize x to z that satis-
fies this constraint, by invoking our Msnzb and CheckLookup
protocols. (2) Compute the initial approximation. The ini-
tial approximation y′ can be expressed as y′ = a−b · z0 [32],
where z = z1∥z0 and (a,b) are coefficients determined by z1.
We utilize the table lookup technique where a table L is con-
structed containing all possible pairs (a,b) corresponding to
z1. (3) Perform Goldschmidt’s iteration. The initial approxi-
mation is further tuned to optimize the result’s accuracy [26].
This step can be iteratively achieved by invoking multiplica-
tion and the proposed truncation protocol. (4) Normalize the
output. The output’s range is adjusted to compensate for the
normalization of the input in step (1).

5.3 Reciprocal square root

The reciprocal square root y = 1√
x with x > 0 is used in the

normalization layer of ML models. Same as the division pro-
tocol, we still choose Goldschmidt’s algorithm iterating on
a precise initial approximation [47] to evaluate this function.
Due to space limitations, we provide this protocol in the full
version.

Protocol ΠExp

Parameters: A finite field Fp, a constant k, and scale s.

Input: P and V have an authenticated value [x]p, where
x ∈ [0, p−1

2].

Protocol execution: P and V compute [y]p such that
y = PtExp(x) as follows:

1. P and V send (DigitDec, [x]p,d0, . . . ,dk−1)
to functionality F BuildBlock

ZK , which returns
[x0]p, . . . , [xk−1]p such that x = xk−1∥ . . .∥x0 and
xi ∈ {0,1}di for i ∈ [0,k−1].

2. P computes yi = R2F((1
e)

2∑ j∈[0,i−1] d j ·x̂i , p,s) for i ∈
[1,k−1] and yi = R2F((1

e)
x̂i , p,s) for i = 0, where

x̂i = F2R(xi, p,s), and sends (Input,yi) to function-
ality FZK, which returns [yi]p to P and V .

3. For i ∈ [0,k − 1], P and V send (Lookup,
Li, [xi]p, [yi]p) to functionality F Lookup

ZK , where

Li = {xi,R2F((
1
e)

2∑ j∈[0,i−1] d j ·x̂i , p,s)}xi∈{0,1}di for
i∈ [1,k−1] and Li = {xi,R2F((

1
e)

x̂i , p,s)}xi∈{0,1}di

for i = 0, with x̂i = F2R(xi, p,s).
4. P and V set [z0]p = [y0]p. For i ∈ [1,k−1], P and

V compute [zi]p = [zi−1]p · [yi]p by calling function-
ality FZK and send (PosTrunc, [zi]p,s) to function-
ality F BuildBlock

ZK , which returns [zi]p to P and V .
5. If the above check fails, V aborts; otherwise, P and

V output [y]p = [zk−1]p.

Figure 11: Protocol for exponential.

6 Machine Learning Applications

To explore the applicability of the proposed ZK protocols, in
this section, we apply them to mainstream non-linear func-
tions of ML models, including ReLU, maxpooling, sigmoid,
softmax, GELU, and normalization. Due to space limitations,
the detailed protocols are provided in the full version.

ReLU. ReLU is a widely used non-linear activation func-
tion, especially in CNNs. Given an input x, ReLU computes

y =Max(x,0) = x ·1{x≥ 0}. (3)

Hence, the ZK proofs of this function can be implemented by
invoking our comparison protocol.

Maxpooling. Maxpooling is an essential operation in
CNNs to reduce the spatial dimensions of feature maps and
select the most relevant features. Given inputs (x0, . . . ,xn−1),
maxpooling computes

y =Max(x0, . . . ,xn−1). (4)

In this protocol, the prover is required to provide the re-
sult y, and then the protocol verifies that (1) y− xi ≥ 0

3828 33rd USENIX Security Symposium USENIX Association

Protocol ΠDiv

Parameters: A finite field Fp, upper bound of input bitlength n, scale s, number of iterations I, and bitlength m for lookup.

Input: P and V have an authenticated value [x]p, where x ∈ (0,2n−1].

Protocol execution: P and V compute [y]p such that y = PtDiv(x) as follows:

Step 1. Normalize the input:
1. P and V send (Msnzb, [x]p) to functionality F BuildBlock

ZK , which returns [k]p such that 2k ≤ x≤ 2k+1−1.
2. P computes d = 2n−1−k and sends (Input,d) to functionality FZK, which returns [d]p to P and V .
3. P and V send (Lookup,L, [k]p, [d]p) to functionality F Lookup

ZK , where L = {k,2n−1−k}k∈[0,n−1].
4. P and V compute [z]p = [x]p · [d]p by calling functionality FZK.

Step 2. Compute the initial approximation:
1. P and V send (DigitDec, [z]p,n−1−m,m+1) to functionality F BuildBlock

ZK , which returns [z0]p, [z1]p such that z= z1∥z0,
z0 ∈ {0,1}n−1−m, and z1 ∈ {0,1}m+1.

2. P computes a = R2F(
2−m−1+

√
ẑ1·(ẑ1+2−m)

ẑ1·(ẑ1+2−m)
, p,s+n−1) ∈ {0,1}s+n−1 and b = R2F(1

ẑ1·(ẑ1+2−m)
, p,s) ∈ {0,1}s, where

ẑ1 = F2R(z1, p,m), and sends (Input,a,b) to functionality FZK, which returns [a]p, [b]p to P and V .

3. P and V send (Lookup,L, [z1]p, [a]p, [b]p) to functionality F Lookup
ZK , where L = {z1,R2F(

2−m−1+
√

ẑ1·(ẑ1+2−m)

ẑ1·(ẑ1+2−m)
, p,s+n−

1),R2F(1
ẑ1·(ẑ1+2−m)

, p,s)}z1∈{0,1}m+1 with ẑ1 = F2R(z1, p,m).
4. P and V compute [t ′]p = [a]p− [b]p · [z0]p by calling functionality FZK and send (PosTrunc, [t ′]p,n−1) to functionality

F BuildBlock
ZK , which returns [t]p to P and V .

Step 3. Perform Goldschmidt’s iteration:
1. P and V compute [a′0]p = 2n−1+s− [z]p · [t]p, and send (PosTrunc, [a′0]p,n− 1) to functionality F BuildBlock

ZK , which
returns [a0]p to P and V . P and V set [b0]p = 2s +[a0]p and [c0]p = [b0]p.

2. For i ∈ [1, I], P and V (1) compute [a′i]p = [ai−1]p · [ai−1]p by calling functionality FZK and send (PosTrunc, [a′i]p,s)
to functionality F BuildBlock

ZK , which returns [ai]p, (2) compute [bi]p = 2s− [ai]p, (3) compute [c′i]p = [ci−1]p · [bi]p by
calling functionality FZK and send (PosTrunc, [c′i]p,s) to functionality F BuildBlock

ZK , which returns [ci]p.

Step 4. Normalize the output:
1. P computes e = 2n−k and sends (Input,e) to functionality FZK, which returns [e]p to P and V .
2. P and V send (Lookup,L, [k]p, [e]p) to functionality F Lookup

ZK , where L = {k,2n−k}k∈[0,n−1].
3. P and V compute [y′]p = [cI]p · [e]p by calling functionality FZK, and send (PosTrunc, [y′]p,n− s) to functionality

F BuildBlock
ZK , which returns [y]p to P and V .

4. If the above check fails, V aborts; otherwise, P and V output [y]p.

Figure 12: Protocol for division.

for i ∈ [0,n− 1], to ensure that y is the maximum value
of (x0, . . . ,xn−1), and (2) ∏

n−1
i=0 (y− xi) = 0, to ensure that

y∈ {x0, . . . ,xn−1}. The former can be achieved using our com-
parison verification protocol while the latter is implemented
through the CheckZero procedure.

Sigmoid. Sigmoid is a commonly used activation function
in ML models, which maps any input value to a range between
0 and 1. Given an input x, sigmoid computes

y =
1

1+ e−x . (5)

It can be written as y = 1
1+e−x if x ≥ 0 and y = e−|x| · 1

1+e−|x|
if x < 0 [47]. Hence, this ZK proof can be built by invoking

our comparison, exponential, and division protocols.
Softmax. Softmax plays a fundamental role in ML mod-

els. In CNNs, it is used for generating a probability distribu-
tion over different classes. In LLMs, it is used for computing
language attention scores and text generation. Given inputs
(x0, . . . ,xn−1), softmax computes (y0, . . . ,yn−1) such that for
i ∈ [0,n−1], it holds

yi =
exi−xmax

∑ j∈[0,n−1] ex j−xmax
, (6)

where xmax =Max(x0, . . . ,xn−1). Note that we can utilize the
known input range to reduce the overhead of division. The
real input ∑i∈[0,n−1] ex j−xmax to division is bounded by n, and

USENIX Association 33rd USENIX Security Symposium 3829

hence the maximum input bitlength is s+ ⌈logn⌉. For exam-
ple, when n = 256 and s = 12, it only requires performing
division on 20 bits.

GELU. GELU activation is used in LLMs. Given an input
x, GELU computes

y = 0.5 · x ·
(

1+Tanh
[√

2/π ·
(
x+0.044715 · x3)]) , (7)

where Tanh(x) = 2 · Sigmoid(2x)− 1. Thus, this ZK proof
can be implemented by invoking the Sigmoid protocol.

Normalization. Normalization, e.g., batch normalization
and layer normalization, plays a crucial role in CNNs and
LLMs to stabilize training and improve model generaliza-
tion. Given inputs (x0, . . . ,xn−1), normalization computes
(y0, . . . ,yn−1) such that for i ∈ [0,n−1], it holds

yi = γ · xi−µ√
σ

+β, (8)

where (γ,β) are trained affine transform parameters, µ =
∑i∈[0,n−1] xi

n and σ =
∑i∈[0,n−1](xi−µ)2

n . We observe that this func-
tion can be evaluated by invoking our reciprocal square root
protocol.

Other applications beyond ML. Our ZK proofs for math-
ematical functions are general and essentially can be used in
any application involving the evaluation of non-linear func-
tions. Specifically, not only well-known ZK proofs for ML
inference but also some other applications can benefit from
our constructions, such as software vulnerabilities [8], pro-
gram analysis [15], and database querying [39]. For exam-
ple, the ZK proof of conditional statements, e.g., if else, in
the programming language [15] could be realized utilizing
our comparison protocol. Also, database querying contains
a series of set operations like sort, disjoint, and aggregation.
The ZK-based set sort and disjoint relies on the set equality
check and the generic comparison circuits [39], which can
be instantiated by our comparison protocol. The ZK proof
of aggregation can be easily implemented by invoking our
division construction.

7 Evaluation

7.1 Experiment setup
We implemented our framework built on top of the EMP
toolkit [55] in C++. Same as Mystique [57], we simulate
the network connection with different bandwidths, including
200Mbps, 500Mbps, and 1Gbps. Unless otherwise specified,
the bandwidth is set to 500Mbps. All experiments are per-
formed using a single thread on AWS c5.9xlarge instances
with Intel Xeon 8000 series CPUs at 3.6GHz.

Implementation details. Following prior works [56, 57,
59], our implementations set the computational security pa-
rameter κ = 128 and the statistical security parameter λ≥ 40

Table 1: Runtime (µs) and communication (KB) overhead of
our building blocks in the amortized setting.

Protocol
Runtime (µs) on different bandwidths

Comm. (KB)
200 Mbps 500 Mbps 1 Gbps

DigitDec 10.320 9.058 8.946 0.159

VrfyCMP 15.862 14.314 14.358 0.230

CMP 20.662 18.918 18.569 0.301

PosTrunc 10.352 8.990 8.951 0.159

Trunc 32.488 28.899 28.814 0.475

Msnzb 34.806 30.360 30.224 0.508

over a 61-bit field where p = 261− 1 is a Mersenne prime.
The default number of instances is 105 and the scale is 12 in
our evaluation. When constructing a lookup table, we decom-
pose the original input into multiple smaller digits, each with
12 bits except for the most significant digit.

Baselines. Our baseline is Mystique [57], the state-of-the-
art ZK proofs for ML. Mystique provides comprehensive ZK
protocols of non-linear functions in ML. The implementation
of its protocols is provided in the EMP toolkit [55]. For a fair
comparison, we re-run these protocols under the same net-
work environment and experimental setup as our framework.

7.2 Performance evaluation
We evaluate the performance of our framework from the three
hierarchical levels as shown in Figure 1.

Results of building blocks. We test the performance of
our key building blocks, and report the runtime and commu-
nication overhead under varying network bandwidths in the
amortized setting in Table 1. We can observe that all of our
building blocks are highly efficient. For example, when the
bandwidth is 200Mps, our building blocks only take around
10 ∼ 34 µs. Moreover, the communication performance is
also satisfactory. As the bandwidth reduces from 1Gbps to
200Mbps, the runtime only slightly increases, due to the high
communication efficiency of our protocols. In Table 2, we ex-
plore the impact of different numbers of instances on runtime
and communication performance. Although our protocols are
better suited to the amortized setting, we observe that they are
still highly efficient even with a small number of evaluations.
For example, evaluating 103 instances requires only 8∼ 33
ms. Further, we study the impact of different scales in Table
3. We can observe that the scale only affects the performance
of truncation operations, i.e., PosTrunc and Trunc, since it
only represents the truncation bitlength. In addition, there
is a notable increase in runtime from the scale of 12 to 14.
The reason is that each lookup table in our building blocks
contains 212 items associated with a 12-bit digit, as detailed in
Section 7.1. Thus, when the scale is 14 or 16 in our evaluation,
two lookup tables are required to complete the protocols.

Results of mathematical functions. In Table 4, we report

3830 33rd USENIX Security Symposium USENIX Association

Table 2: Runtime (sec) and communication (MB) overhead
of our building blocks with the different number of instances
(103, 104, 105).

Protocol
103 104 105

Time Comm. Time Comm. Time Comm.
DigitDec 0.008 0.215 0.113 1.588 0.906 15.571

VrfyCMP 0.023 0.599 0.164 2.591 1.431 22.504

CMP 0.008 0.217 0.109 2.140 1.892 29.374

PosTrunc 0.008 0.215 0.115 1.588 0.899 15.571

Trunc 0.017 0.448 0.204 3.881 2.890 46.471

Msnzb 0.033 0.868 0.327 5.262 3.036 49.586

Table 3: Runtime (sec) and communication (MB) overhead
of our building blocks with different scales (12, 14, 16).

Protocol
12 14 16

Time Comm. Time Comm. Time Comm.
DigitDec 0.906 15.571 0.906 15.571 0.906 15.571

VrfyCMP 1.431 22.504 1.431 22.504 1.431 22.504

CMP 1.892 29.374 1.892 29.374 1.892 29.374

PosTrunc 0.899 15.571 1.157 18.576 1.158 18.565

Trunc 2.890 46.471 3.118 49.476 3.130 49.465

Msnzb 3.036 49.586 3.036 49.586 3.036 49.586

the performance of our mathematical functions and give the
comparison with Mystique [57]. In our protocols, we set the
parameters following the prior work [47], i.e., the number of
iterations I = 0 for division and I = 1 for reciprocal square
root, and the lookup bitlength m = 5 for division and m = 6
for reciprocal square root. We can observe that our protocols
achieve significant performance gains from 61∼ 130× on the
runtime. Furthermore, our communication cost is at a similar
level as Mystique, and precisely, it is 1.4∼ 2.9× better.

Results of ML applications. We apply the proposed pro-
tocols to widely used non-linear functions in ML models,
and the performance is reported in Table 5. We can observe
that the runtime of our non-linear function evaluation is ef-
ficient. For example, for the ReLU activation in CNNs, we
can complete 105 evaluations in 2 seconds with the band-
width 1Gbps, outperforming Mystique by about 100×. For
the GELU activation in LLMs, we achieve 77 ∼ 86× im-
provement. What’s more, for the softmax function, we even
obtain a 179× gain. The main reason is that as discussed
in Section 1, in Mystique, the ZK proofs of these functions
require multiple arithmetic-Boolean conversions, as well as
heavy Boolean circuit evaluation. In addition, we also achieve
1.2∼ 4.8× better communication performance.

Table 4: Comparison with the state-of-the-art Mystique [57]
on runtime (sec) and communication (MB) overhead of math-
ematical functions.

Protocol
Runtime (sec) on different bandwidths

Comm. (MB)
200 Mbps 500 Mbps 1 Gbps

Exponential

Ours 9.877 8.696 8.652 99.020

Mystique
1184.240

(119.901×)
1130.020

(129.948×)
1118.570

(129.280×)
291.435
(2.943×)

Division

Ours 10.378 9.837 9.798 110.684

Mystique
636.038

(61.287×)
617.690

(62.792×)
619.162

(63.193×)
160.428
(1.449×)

Reciprocal square root

Ours 13.406 11.836 11.804 147.903

Mystique
836.267

(62.379×)
824.639

(69.674×)
823.949

(69.803×)
212.211
(1.435×)

8 Related Works

There has been advanced progress in the efficiency and scala-
bility of ZK protocols derived from various techniques, such
as zk-SNARKs [44, 50], ZK protocols based on vector obliv-
ious linear evaluation (VOLE) [3, 12, 13, 56, 59], privacy-
free garbled circuits [19, 29, 33], and the MPC-in-the-head
paradigm [31]. Benefiting from this, several recent works
have explored devising verifiable ML services based on vari-
ous ZK proofs. Most of these studies focus on verifying the
integrity of inference [17, 25, 36, 38, 40, 57, 63] on various
ML models, including shallow fully-connected neural net-
works, decision trees, and CNNs. Some recent works have
also attempted the possibility of applying ZK proofs for rela-
tively simple ML training tasks, such as training of logistic
regression model [23], fairness of training decision trees [52].
Different from our solution, the above works do not specif-
ically focus on complex non-linear functions. However, as
shown in Section 1, ZK proofs for non-linear mathematical
functions are the main bottleneck especially when applied in
reasonably complicated neural network models [57].

We further discuss related works on ZK proofs of non-
linear functions. The most relevant work is Mystique [57],
which is the state-of-the-art ZK proof for ML inference. Mys-
tique innovatively designed zk-edaBits for converting be-
tween arithmetic and Boolean domains within ZK proofs,
and then enabled the evaluation of non-linear functions us-
ing general Boolean circuits. Moreover, Mystique provides
implementations of comprehensive mathematical functions,
serving as the baseline for comparison with our work. How-
ever, as illustrated in Section 1, the conversion and evaluation
with Boolean circuits are expensive and require heavy invoca-
tion of multiplication gates. Our evaluation demonstrates im-
provements of up to two orders of magnitude over Mystique.
Moreover, zkCNN [40] also presented efficient ZK proofs

USENIX Association 33rd USENIX Security Symposium 3831

Table 5: Comparison with the state-of-the-art Mystique [57]
on runtime (sec) and communication (MB) overhead of
widely used non-linear functions in ML models.

Protocol
Runtime (sec) on different bandwidths

Comm. (MB)
200 Mbps 500 Mbps 1 Gbps

ReLU

Ours 2.107 1.906 1.898 30.137

Mystique
200.433

(95.113×)
193.797

(101.655×)
192.360

(101.336×)
58.244

(1.933×)

Sigmoid

Ours 19.544 17.706 17.715 189.899

Mystique
1918.970
(98.188×)

1847.300
(104.332×)

1830.750
(103.344×)

463.862
(2.443×)

GELU

Ours 37.628 32.696 32.528 338.182

Mystique
2719.110
(72.264×)

2711.700
(82.936×)

2627.300
(80.769×)

654.685
(1.936×)

Maxpooling, dim = 4

Ours 10.439 9.310 9.136 95.611

Mystique
804.715

(77.084×)
774.942

(83.240×)
776.658

(85.011×)
184.554
(1.930×)

Softmax, dim = 10

Ours 87.131 78.289 78.015 816.330

Mystique
14973.300
(171.849×)

14049.600
(179.457×)

13998.800
(179.436×)

3972.490
(4.866×)

Normalization, dim = 16

Ours 192.826 176.140 175.439 1787.067

Mystique
9667.060
(50.134×)

9642.600
(54.744×)

9279.420
(52.893×)

2219.737
(1.242×)

for CNNs and designed new protocols for maxpooling and
ReLU non-linear functions. Their protocols are specialized
and may not be readily extended to more complex functions
addressed in our paper. Besides, concurrent with Mysitque,
Baum et al. [2] also presented zk-edaBits and designed cus-
tomized protocols for truncation and comparison. However,
their protocols assume a gap between the field size and the
size of real inputs.

In addition, there is also a line of secure inference work
[1, 30, 41, 42, 48] based on secure multi-party computa-
tion (called PPML for short). We clarify that ZK-based ML
(ZKML) and PPML have significant differences as below.
Specifically, (1) Objective: While both ZKML and PPML
aim to secure ML inferences without revealing model pa-
rameters, ZKML particularly enables the server to prove to
clients that the inference is correctly evaluated by the claimed
model, which is beyond the scope of PPML. (2) Threat model:
ZKML protocols are always secure against malicious adver-
saries. However, most PPML protocols [30, 41, 48] in the
client-server setting only achieve security against semi-honest
adversaries. (3) Application: ZKML is typically applied to
verifiable scenarios to guarantee integrity. PPML is typically
used in privacy-preserving scenarios to guarantee privacy.

9 Conclusion

In this paper, we effectively overcome the runtime bottleneck
of non-linear function evaluation in current research, by pre-
senting a scalable ZK proof framework. Based on the new
perspective from table lookup and novel protocol designs, our
framework achieves up to two orders of magnitude of runtime
improvement compared to the state-of-the-art work, while
maintaining a similar level of communication efficiency. All
of our protocols are performed in the arithmetic field, allow-
ing for seamless integration with ZK-based linear layers in
ML to accomplish the whole inference task.

We discuss the potential limitations of our protocols and
future works. The main limitation is that our protocols use
the fixed-point-based mathematical function evaluation and
may result in a slight loss of accuracy compared to the float-
point-based protocols [57]. Although this causes a negligible
impact on ML tasks [30,48], it may have limitations for other
accuracy-sensitive scenarios. Therefore, it is an interesting
future work to address this issue, while maintaining concrete
efficiency. In addition, our protocols are general and essen-
tially can be used in any application involving the evaluation
of non-linear functions as discussed in Section 6. Thus, ex-
ploring the generalized applicability of our protocols is also
an interesting future work.

Acknowledgments

We would like to express our deepest gratitude for the invalu-
able help provided by our shepherd as well as all the review-
ers for their constructive comments. This work is supported
by the National Key R&D Program of China under Grant
2022YFB3103500, the National Natural Science Foundation
of China under Grant 62020106013, the Sichuan Science and
Technology Program under Grant 2023ZYD0142, the Fun-
damental Research Funds for Chinese Central Universities
under Grants ZYGX2020ZB027 and Y030232063003002, the
National Research Foundation, Singapore, the Cyber Security
Agency under its National Cybersecurity R&D Programme
(NCRP25-P04-TAICeN), the Singapore Ministry of Educa-
tion (MOE) AcRF Tier 2 MOE-T2EP20121-0006, and the
Nanyang Technological University (NTU)-DESAY SV Re-
search Program under Grant 2018-0980.

References

[1] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J Kusner,
and Adrià Gascón. Quotient: two-party secure neural
network training and prediction. In Proceedings of ACM
CCS, 2019.

[2] Carsten Baum, Lennart Braun, Alexander Munch-
Hansen, Benoit Razet, and Peter Scholl. Appenzeller to
brie: efficient zero-knowledge proofs for mixed-mode

3832 33rd USENIX Security Symposium USENIX Association

arithmetic and z2k. In Proceedings of ACM CCS, pages
192–211, 2021.

[3] Carsten Baum, Alex J Malozemoff, Marc B Rosen, and
Peter Scholl. Mac’n’cheese: Zero-knowledge proofs for
boolean and arithmetic circuits with nested disjunctions.
In Proceedings of CRYPTO, pages 92–122, 2021.

[4] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and
Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In Proceedings of EURO-
CRYPT, 2011.

[5] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
Lisa Kohl, Peter Rindal, and Peter Scholl. Efficient
two-round ot extension and silent non-interactive secure
computation. In Proceedings of ACM CCS, pages 291–
308, 2019.

[6] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings
of FOCS, pages 136–145, 2001.

[7] Octavian Catrina and Amitabh Saxena. Secure compu-
tation with fixed-point numbers. In Proceedings of FC,
pages 35–50, 2010.

[8] Santiago Cuéllar, Bill Harris, James Parker, Stuart Pern-
steiner, and Eran Tromer. Cheesecloth: Zero-Knowledge
proofs of real world vulnerabilities. In Proceedings of
USENIX Security, 2023.

[9] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen,
and Samuel Ranellucci. The tinytable protocol for 2-
party secure computation, or: Gate-scrambling revisited.
In Proceedings of CRYPTO, pages 167–187, 2017.

[10] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini,
Titouan Tanguy, and Michiel Verbauwhede. Efficient
proof of ram programs from any public-coin zero-
knowledge system. In Proceedings of SCN, pages 615–
638, 2022.

[11] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini,
Titouan Tanguy, and Michiel Verbauwhede. Efficient
proof of ram programs from any public-coin zero-
knowledge system. In Proceedings of SCN, pages 615–
638, 2022.

[12] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Os-
trovsky. Improving line-point zero knowledge: Two
multiplications for the price of one. In Proceedings of
ACM CCS, pages 829–841, 2022.

[13] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-
point zero knowledge and its applications. In Proceed-
ings of ITC, 2021.

[14] Liam Eagen, Dario Fiore, and Ariel Gabizon. cq:
Cached quotients for fast lookups. ePrint 2022/1763,
2022.

[15] Zhiyong Fang, David Darais, Joseph P Near, and Yupeng
Zhang. Zero knowledge static program analysis. In
Proceedings of ACM CCS, 2021.

[16] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding,
and Shumo Chu. Zen: An optimizing compiler for veri-
fiable, zero-knowledge neural network inferences. Cryp-
tology ePrint Archive 2021/087, 2021.

[17] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding,
and Shumo Chu. Zen: An optimizing compiler for veri-
fiable, zero-knowledge neural network inferences. Cryp-
tology ePrint Archive, 2021.

[18] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Os-
trovsky, Xiao Wang, and Chenkai Weng. Constant-
overhead zero-knowledge for ram programs. In Pro-
ceedings of ACM CCS, pages 178–191, 2021.

[19] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Clau-
dio Orlandi. Privacy-free garbled circuits with appli-
cations to efficient zero-knowledge. In Proceedings of
Eurocrypt, pages 191–219, 2015.

[20] Ariel Gabizon and Zachary J. Williamson. plookup: A
simplified polynomial protocol for lookup tables. ePrint
2020/315, 2020.

[21] Juan Garay, Berry Schoenmakers, and José Villegas.
Practical and secure solutions for integer comparison.
In Proceedings of PKC, pages 330–342, 2007.

[22] Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahlou-
jifar, Mohammad Mahmoody, Guru-Vamsi Policharla,
and Mingyuan Wang. Experimenting with zero-
knowledge proofs of training. In Proceedings of ACM
CCS, 2023.

[23] Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahlou-
jifar, Mohammad Mahmoody, Guru-Vamsi Policharla,
and Mingyuan Wang. Experimenting with zero-
knowledge proofs of training. In Proceedings of CCS,
2023.

[24] Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and
Yinuo Zhang. Succinct zero knowledge for floating
point computations. In Proceedings of ACM CCS, pages
1203–1216, 2022.

[25] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safe-
tynets: Verifiable execution of deep neural networks on
an untrusted cloud. In Proceedings of NeurIPS, 2017.

USENIX Association 33rd USENIX Security Symposium 3833

[26] Robert E Goldschmidt. Applications of division by con-
vergence. PhD thesis, Massachusetts Institute of Tech-
nology, 1964.

[27] S Goldwasser, S Micali, and C Rackoff. The knowledge
complexity of interactive proof-systems. In Proceedings
of ACM STOC, pages 291–304, 1985.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of IEEE CVPR, pages 770–778, 2016.

[29] David Heath and Vladimir Kolesnikov. Stacked garbling
for disjunctive zero-knowledge proofs. In Proceedings
of Eurocrypt, pages 569–598, 2020.

[30] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jian-
sheng Ding. Cheetah: Lean and fast secure two-party
deep neural network inference. In Proceedings of the
USENIX Security, 2022.

[31] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Zero-knowledge from secure multiparty
computation. In Proceedings of ACM STOC, pages 21–
30, 2007.

[32] Masayuki Ito, Naofumi Takagi, and Shuzo Yajima. Ef-
ficient initial approximation for multiplicative division
and square root by a multiplication with operand modi-
fication. IEEE Transactions on Computers, 46(4):495–
498, 1997.

[33] Marek Jawurek, Florian Kerschbaum, and Claudio Or-
landi. Zero-knowledge using garbled circuits: how to
prove non-algebraic statements efficiently. In Proceed-
ings of ACM CCS, pages 955–966, 2013.

[34] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and
Yi Sun. Scaling up trustless dnn inference with zero-
knowledge proofs. arXiv:2210.08674, 2022.

[35] Andrej Karpathy, George Toderici, Sanketh Shetty,
Thomas Leung, Rahul Sukthankar, and Li Fei-Fei.
Large-scale video classification with convolutional neu-
ral networks. In Proceedings of CVPR, 2014.

[36] Julien Keuffer, Refik Molva, and Hervé Chabanne. Effi-
cient proof composition for verifiable computation. In
Proceedings of ESORICS, pages 152–171, 2018.

[37] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok
Oh. vcnn: Verifiable convolutional neural network based
on zk-snarks. Cryptology ePrint Archive 2020/584,
2020.

[38] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok
Oh. vcnn: Verifiable convolutional neural network based
on zk-snarks. Cryptology ePrint Archive, 2020.

[39] Xiling Li, Chenkai Weng, Yongxin Xu, Xiao Wang, and
Jennie Rogers. Zksql: Verifiable and efficient query
evaluation with zero-knowledge proofs. In Proceedings
of VLDB, 2023.

[40] Tianyi Liu, Xiang Xie, and Yupeng Zhang. Zkcnn: Zero
knowledge proofs for convolutional neural network pre-
dictions and accuracy. In Proceedings of ACM CCS,
pages 2968–2985, 2021.

[41] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
A cryptographic inference service for neural networks.
In Proceedings of USENIX Security, 2020.

[42] Payman Mohassel and Yupeng Zhang. Secureml: A
system for scalable privacy-preserving machine learning.
In Proceedings of IEEE S&P, 2017.

[43] Jesper Buus Nielsen, Peter Sebastian Nordholt, Clau-
dio Orlandi, and Sai Sheshank Burra. A new approach
to practical active-secure two-party computation. In
Proceedings of CRYPTO, pages 681–700, 2012.

[44] Alex Ozdemir and Dan Boneh. Experimenting with
collaborative {zk-SNARKs}:{Zero-Knowledge} proofs
for distributed secrets. In Proceedings of USENIX Secu-
rity, pages 4291–4308, 2022.

[45] Jim Posen and Assimakis A. Kattis. Caulk+: Table-
independent lookup arguments. ePrint 2022/957, 2022.

[46] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

[47] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Ki-
ran Goli, Divya Gupta, Rahul Sharma, Nishanth Chan-
dran, and Aseem Rastogi. Sirnn: A math library for
secure rnn inference. In Proceedings of IEEE S&P,
2021.

[48] Deevashwer Rathee, Mayank Rathee, Nishant Kumar,
Nishanth Chandran, Divya Gupta, Aseem Rastogi, and
Rahul Sharma. Cryptflow2: Practical 2-party secure
inference. In Proceedings of ACM CCS, 2020.

[49] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert,
and Mariana Raykova. Distributed vector-ole: Improved
constructions and implementation. In Proceedings of
ACM CCS, pages 1055–1072, 2019.

[50] Srinath Setty. Spartan: Efficient and general-purpose
zksnarks without trusted setup. In Proceedings of
CRYPTO, pages 704–737, 2020.

[51] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking
the lookup singularity with lasso. Cryptology ePrint
Archive, 2023.

3834 33rd USENIX Security Symposium USENIX Association

[52] Ali Shahin Shamsabadi, Sierra Calanda Wyllie, Nicholas
Franzese, Natalie Dullerud, Sébastien Gambs, Nicolas
Papernot, Xiao Wang, and Adrian Weller. Confidential-
profitt: Confidential proof of fair training of trees. In
Proceedings of ICLR, 2023.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Proceedings of NeurIPS, 2017.

[54] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal
Kushilevitz, Prateek Mittal, and Tal Rabin. Falcon:
Honest-majority maliciously secure framework for pri-
vate deep learning. Proceedings on Privacy Enhancing
Technologies, 1:188–208, 2021.

[55] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz.
EMP-toolkit: Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit, 2016.

[56] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao
Wang. Wolverine: fast, scalable, and communication-
efficient zero-knowledge proofs for boolean and arith-
metic circuits. In Proceedings of IEEE S&P, 2021.

[57] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz,
and Xiao Wang. Mystique: Efficient conversions for
zero-knowledge proofs with applications to machine
learning. In Proceedings of USENIX Security, 2021.

[58] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie,
and Xiao Wang. Antman: Interactive zero-knowledge
proofs with sublinear communication. In Proceedings
of ACM CCS, 2022.

[59] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao
Wang. Quicksilver: Efficient and affordable zero-
knowledge proofs for circuits and polynomials over any
field. In Proceedings of ACM CCS, 2021.

[60] Yibin Yang and David Heath. Two shuffles make a ram:
Improved constant overhead zero knowledge ram. In
Proceedings of USENIX Security, 2024.

[61] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich,
Mary Maller, Anca Nitulescu, and Mark Simkin. Caulk:
Lookup arguments in sublinear time. In Proceedings of
ACM CCS, pages 3121–3134, 2022.

[62] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich,
Mary Maller, and Carla Ràfols. Baloo: Nearly optimal
lookup arguments. ePrint 2022/1565, 2022.

[63] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and
Dawn Song. Zero knowledge proofs for decision tree
predictions and accuracy. In Proceedings of ACM CCS,
pages 2039–2053, 2020.

A Security model

We use the universal composability (UC) framework [6] to
prove security in the presence of a probabilistic polynomial
time (PPT), static, malicious adversary A . We use the standard
simulation-based security definition. Generally, a protocol is
said to UC realize an ideal functionality if the process of
running the protocol amounts to emulating the ideal process
for that ideal functionality.

Definition 1. Let F be an ideal functionality and let Π be a
protocol. We say that Π UC realizes F if for any adversary
A there exists an ideal-process adversary S such that for any
environment Z,

IDEALF ,S ,Z ≈c REALΠ,A ,Z . (9)

Here, IDEALF ,S ,Z denotes the ensemble
{IDEALF ,S ,Z(κ,x)}κ,x, which is the output of environ-
ment Z after interacting in the ideal process with adversary S
and ideal functionality F on security parameter κ and input
x. REALΠ,A ,Z denotes the ensemble {REALΠ,A ,Z(κ,x)}κ,x,
which is the output of environment Z when interacting with
adversary A and parties running protocol Π on security
parameter κ and input x. Besides, we prove the security of our
protocols in the G-hybrid model, where the parties execute a
protocol with real messages and also have access to an ideal
functionality G .

B Proof of ZK Building Blocks

We provide the security proof for our ZK proofs of building
blocks. Similar to the previous ZK works [18,60], the verifier
in these protocols does not have any input and only receives
messages from the functionalities. Therefore, it is straight-
forward to prove security for a corrupted verifier, and hence
we only focus on the case of a corrupted prover below. In
this case, we construct a simulator S , which runs an adver-
sary A as a subroutine. We then show that no environment Z
can distinguish the real-world execution from the ideal-world
execution.

B.1 Proof of Theorem 1
Proof. S interacts with adversary A as follows:

1. S emulates FZK by recording ([x0]p, . . . , [xk−1]p), sent to
FZK by A .

2. S emulates F Lookup
ZK with A . On receiving (Ri, [xi]p) for

i ∈ [0,k− 1], if F Lookup
ZK aborts, then S sends abort to

F BuildBlock
ZK and aborts.

3. S locally computes [z]p = [x0]p +

∑i∈[1,k−1] 2
∑ j∈[0,i−1] d j [xi]p − [x]p. Note that [x]p has

been recorded by S in previous interactions with A .

USENIX Association 33rd USENIX Security Symposium 3835

https://github.com/emp-toolkit

4. S executes the CheckZero procedure with A . If the re-
ceived values are not equal to [z]p in the above step, then
S sends abort to F BuildBlock

ZK and aborts.
5. S sends ([x]p, [x0]p, . . . , [xk−1]p) to F BuildBlock

ZK .

The view of adversary A simulated by S is perfect, except
for the CheckZero procedure. In the real protocol execution,
if the value opened by A is not a valid [z]p in the CheckZero
procedure, then the honest verifier would abort except with
probability at most 1/p+negl(κ), according to the analysis
in Section 3.2. In the ideal world, S outputs would abort once
[z]p is not valid. Therefore, the view of adversary A that is
simulated by S is computationally indistinguishable from the
view of A in the real protocol execution.

B.2 Proof of Theorem 2
Proof. S interacts with adversary A as follows:

1. S emulates FZK by recording ([x0]p, . . . , [xk−1]p), sent to
FZK by A .

2. S locally computes [t]p = [x0]p +

∑i∈[1,k−1] 2
∑ j∈[0,i−1] d j [xi]p − [x]p. Note that [x]p has

been obtained by S in previous interactions of A with
FZK.

3. S executes the CheckZero procedure with A . If the re-
ceived values are not equal to [t]p in the above step, then
S sends abort to F BuildBlock

ZK and aborts.
4. S emulates FZK by recording ([z0]p, . . . , [zk−1]p), sent to

FZK by A .
5. S emulates F Lookup

ZK with A . On receiving (Li, [xi]p, [zi]p)

for i ∈ [0,k−1], if F Lookup
ZK aborts, then S sends abort to

F BuildBlock
ZK and aborts.

6. S emulates FZK by recording [y]p, sent to FZK by A .
7. S locally computes [z]p = ∑i∈[0,k−1][zi]p. S emulates

F Lookup
ZK with A . On receiving (L, [z]p, [y]p), if F Lookup

ZK

aborts, then S sends abort to F BuildBlock
ZK and aborts.

8. S executes the CheckZero procedure with A . If the re-
ceived values are not equal to [y]p− 1 in the above step,
then S sends abort to F BuildBlock

ZK and aborts.

The view of adversary A simulated by S is perfect, except
for the CheckZero procedure. Same as the analysis in Ap-
pendix B.1, the view of adversary A that is simulated by S is
computationally indistinguishable from the view of A in the
real protocol execution.

B.3 Proof of Theorem 3
Proof. S interacts with adversary A as follows:

1. S emulates the DigitDec command of F BuildBlock
ZK with A .

On receiving ([x]p, t,m− t), S aborts if F BuildBlock
ZK aborts

and sends [x0]p, [x1]p to A otherwise, where x = x1∥x0,
x0 ∈ {0,1}t and x1 ∈ {0,1}m−t with m= ⌈log p⌉−1. Here,
[x]p is held by S from previous interactions with A .

2. S sends [x]p, [x1]p to F BuildBlock
ZK .

The view of adversary A simulated by S is perfect. There-
fore, the view of adversary A that is simulated by S is identical
to the view of A in the real protocol execution.

B.4 Proof of Theorem 4
Proof. S interacts with adversary A as follows:

1. S emulates the Cmp command of F BuildBlock
ZK with A . On

receiving ([x]p,
p+1

2), S aborts if F BuildBlock
ZK aborts and

sends [b]p to A otherwise, where b = 1{x < p+1
2 }. Here,

[x]p has been recorded by S in previous interactions with
A .

2. S emulates FZK by receiving ([x]p, [b]p) from A . S aborts
if FZK aborts and sends [x̄]p to A otherwise, where x̄ =
(2 ·b−1) · x− (1−b).

3. S emulates the PosTrunc command of F BuildBlock
ZK

with A . On receiving ([x̄]p, t), S aborts if F BuildBlock
ZK

aborts and sends [ȳ]p to A otherwise, where ȳ =
R2F(F2R(x̄, p)/2t , p).

4. S emulates FZK by receiving ([ȳ]p, [b]p) from A . S aborts
if FZK aborts and sends [y]p to A otherwise, where y =
(2 ·b−1) · ȳ− (1−b).

5. S sends [x]p, [y]p to F BuildBlock
ZK .

The view of adversary A simulated by S is perfect. There-
fore, the view of adversary A that is simulated by S is identical
to the view of A in the real protocol execution.

B.5 Proof of Theorem 5
Proof. S interacts with adversary A as follows:

1. S emulates FZK by recording ([y]p, [z0]p, [z1]p), sent to
FZK by A .

2. S emulates F Lookup
ZK with A . On receiving

(L, [y]p, [z0]p, [z1]p), if F Lookup
ZK aborts, then S sends

abort to F BuildBlock
ZK and aborts.

3. S emulates the VrfyCmp command of F BuildBlock
ZK with

A . On receiving ([x]p− [z0]p,
p+1

2) and ([z1]p− [x]p,
p+1

2),
if F BuildBlock

ZK aborts, then S aborts. Here, [x]p has been
obtained by S in previous interactions with A in FZK.

4. S sends [x]p, [y]p to F BuildBlock
ZK .

The view of adversary A simulated by S is perfect. There-
fore, the view of adversary A that is simulated by S is identical
to the view of A in the real protocol execution.

3836 33rd USENIX Security Symposium USENIX Association

	Introduction
	Technical Overview
	New perspective from table lookup
	Novel table lookup-based protocols

	Preliminaries
	Notation
	Information-theoretic MACs
	Zero-knowledge proofs
	ZK proofs of read-only memory access
	ZK proofs of table lookup from ZK-ROM

	Building Blocks
	Digital decomposition
	Comparison
	Truncation
	Most significant non-zero-bit

	Mathematical Functions
	Exponential
	Division
	Reciprocal square root

	Machine Learning Applications
	Evaluation
	Experiment setup
	Performance evaluation

	Related Works
	Conclusion
	Security model
	Proof of ZK Building Blocks
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

