
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Demystifying the Security Implications
in IoT Device Rental Services

Yi He and Yunchao Guan, Tsinghua University; Ruoyu Lun, China National Digital
Switching System Engineering and Technological Research Center; Shangru Song and

Zhihao Guo, Tsinghua University; Jianwei Zhuge and Jianjun Chen, Tsinghua University
and Zhongguancun Laboratory; Qiang Wei and Zehui Wu, China National Digital Switching

System Engineering and Technological Research Center; Miao Yu and Hetian Shi,
Tsinghua University; Qi Li, Tsinghua University and Zhongguancun Laboratory

https://www.usenix.org/conference/usenixsecurity24/presentation/he-yi

Demystifying the Security Implications in IoT Device Rental Services

Yi He†∗, Yunchao Guan†∗, Ruoyu Lun♮, Shangru Song†, Zhihao Guo†, Jianwei Zhuge†‡B, Jianjun Chen†‡,
Qiang Wei♮, Zehui Wu♮, Miao Yu†, Hetian Shi†, Qi Li†‡B

†Tsinghua University, Bzhugejw@tsinghua.edu.cn, ‡Zhongguancun Laboratory, Bqli01@tsinghua.edu.cn
♮China National Digital Switching System Engineering and Technological Research Center

Abstract
Nowadays, unattended device rental services with cellu-

lar IoT controllers, such as e-scooters and EV chargers, are
widely deployed in public areas around the world, offering
convenient access to users via mobile apps. While differing
from traditional smart homes in functionality and implementa-
tion, the security of these devices remains largely unexplored.
In this work, we conduct a systematic study to uncover secu-
rity implications in IoT device rental services. By investigat-
ing 17 physical devices and 92 IoT apps, we identify multiple
design and implementation flaws across a wide range of prod-
ucts, which can lead to severe security consequences, such as
forcing all devices offline, remotely controlling all devices, or
hijacking all users’ accounts of the vendors. The root cause
is that rentable IoT devices adopt weak resource identifiers
(IDs), and attackers can infer these IDs at scale and exploit
access control flaws to manipulate these resources. For in-
stance, rentable IoT products allow authenticated users to find
and use any device from the rentable IoT apps via a device
serial number, which can be easily inferred by attackers and
combined with other vulnerabilities to exploit remote devices
on a large scale. To identify these risks, we propose a tool,
called IDScope, to automatically detect the weak IDs in apps
and assess if these IDs can be abused to scale the exploitation
scope of existing access control vulnerabilities. Finally, we
identify 57 vulnerabilities in 28 products which can lead to
various large-scale exploitation in 24 products and affect mil-
lions of users and devices by exploiting three types of weak
IDs. The vendors have confirmed our findings and most issues
have been mitigated with our assistance.

1 Introduction

The sharing economy [10] is a new trend in cities, provid-
ing unattended IoT device rental services to consumers.By

∗The first two authors contributed equally to this paper.

integrating cellular Internet of Things (IoT) controllers into
useful tools such as e-scooters, chargers, and washing ma-
chines, these devices can be rented to users and billed based
on their usage duration in an unattended manner. Benefiting
from IoT controllers, these devices can be controlled remotely,
enabling operators to efficiently manage and monitor large
numbers of devices over cellular networks. Users can conve-
niently rent these devices on a self-service basis via the apps
to enhance their travel, entertainment and life experiences.
With an increasing number of rentable mobility and charging
devices deployed in cities, misuse of these devices can result
in serious consequences, such as property damage, and jeop-
ardizing public safety. However, the security implications of
these rentable IoT devices remain under-explored [59].

Previous work has demonstrated that smart home devices
face significant security challenges in multi-user scenar-
ios [53, 55, 69]. In contrast to traditional smart home de-
vices, where attackers can only affect a limited number of
devices [54, 69, 70] belonging to individual owners, IoT de-
vice rental scenarios involve a single vendor managing a large
number of devices accessible to all users, rendering them
more vulnerable to large-scale exploitation. Paid users can
rent devices by using the devices’ QR codes or serial num-
bers (SNs). This enables attackers to exploit remote devices
via their SNs. For instance, adversaries who can bypass the
payment can remotely abuse devices by obtaining their SN.
Unfortunately, this security risk is not fully understood by
device vendors, as many devices employ short serial numbers
to simplify the entry process for users, inadvertently allowing
attackers to infer these SNs, thereby facilitating widespread
remote attacks across numerous devices. As a result, vulnera-
bilities in these rentable devices can easily lead to large-scale
attacks affecting large numbers of devices and users.

Compared to existing smart home devices, rentable IoT de-
vices require different security analysis and methodologies to
address their unique security risks due to their different func-
tionality and implementation. Unlike Wi-Fi-connected smart
homes, rentable IoT devices utilize cellular networks, greatly
impeding the interception or analysis of device-to-server com-

USENIX Association 33rd USENIX Security Symposium 6579

munication. For smart home devices, insider attackers can
easily eavesdrop on the traffic [13] and send spoofing re-
quests [56, 67, 69] in smart homes, while targeting rentable
IoT devices with 4G/5G cellular networks requires deploying
fake base stations and exploiting vulnerabilities in the 4G/5G
protocols [32, 65]. The adaptation of cellular networks high-
lights the need for a dedicated study of new attack strategies
on emerging rentable IoT devices. Rather than adopt trigger-
action platforms [16, 19, 20] or mobile-as-a-gateway [70] to
control IoT devices, rentable IoT devices are directly con-
trolled by their backend services. Existing IoT researches
mainly focus on analyzing traditional IoT platforms (such as
SmartThings [19, 20] or AWS IoT [35, 67]), which typically
use HTTPS or MQTT protocols. Rentable devices usually
implement custom backends and protocols that require new
analysis methods.

To understand the security of these devices, we conduct
a systematic study on real-world IoT device rental services.
There are three challenges in efficiently identifying vulnera-
bilities in both the IoT controller and mobile apps of rentable
devices. First, some devices (e.g., chargers) do not use bat-
teries but work with high-voltage household or industrial al-
ternating current (AC). It is dangerous to test or debug these
devices to extract their firmware. Second, it is hard to analyze
the communication of these devices as they adopt cellular net-
works and customized protocols. Third, all of these products
are closed-source and it is difficult to identify threats such
as large-scale off-path attacks that exploit vulnerabilities in
multiple components. To address these challenges, we pro-
pose a general workflow for studying the devices and apps of
these products. First, we partially boot the necessary MCUs
of the devices by using jumper wires to provide extra power
supply under a safe voltage. Then, we propose a log-based
approach to efficiently reverse the protocols of these devices,
which capture cellular network traffic in plain text from the
cellular processor (CP) log. Finally, we perform black-box
API tests to identify vulnerabilities on both the devices and
the apps and propose a tool IDScope to effectively assess if
these vulnerabilities can large-scale exploit users and devices.

We investigate 17 physical devices and 92 apps of IoT de-
vice rental services by reversing the protocols of these devices
and apps, re-implementing their protocols, and testing their
APIs by impersonating these devices or apps to communicate
with their servers. We identify 23 vulnerabilities in 14 devices
and 34 vulnerabilities in 23 apps. Meanwhile, we identify
multiple products use weak IDs for both their devices and
users, which can lead to large-scale remote exploitation via
ID enumeration attacks. To assess this threat, we propose a dy-
namic analysis tool, called IDScope, which can automatically
identify the weak IDs, find the appropriate APIs to verify the
enumerated IDs, and assess the affected scope (e.g., numbers
of devices and users) of existing vulnerabilities. We find that
attackers can infer all device serial numbers of 60.9% (56/92)
products. 84% (48/57) of the vulnerabilities can lead to large-

scale exploitation of 24 rentable IoT products, resulting in
large-scale privacy leakage, account hijacking, free device
use, or device manipulation. Our findings have been assigned
with 18 CVE/CNNVD/NVDB numbers1 and can affect sev-
eral popular products (e.g., Teld, StartCharge, YuehuoCX)
with more than millions of users and 100K devices.
New Insights. Our study indicates that rentable IoT devices’
QR-code (containing the device serial number) can also be-
come an attack surface. This is because (1) paid users can
choose any device via the device serial number. However,
many rentable IoT devices only verify if a user is paid but do
not check which device he/she uses. This may allow unau-
thorized users to remotely activate or deactivate other users’
devices using their serial numbers. (2) The device serial num-
bers of many products are too short and have obvious patterns
(e.g., common prefixes). Therefore, attackers can easily infer
the serial numbers of new devices and verify these numbers
using the apps’ APIs. All they need is a QR code to obtain
an initial device serial number. They can then use the app
APIs to enumerate more serial numbers. By further exploit-
ing other vulnerabilities (e.g., payment bypass), attackers can
accomplish large-scale remote attacks on a product via the
apps without touching any real device.
Contributions. Our contributions are as follows:
• We conduct a systematic study to uncover the security im-

plications in rentable IoT devices. Moreover, we propose
a general workflow to analyze all kinds of rentable IoT
devices. Our approach successfully identifies 57 vulnera-
bilities affecting 28 real products.

• We find that most rentable IoT devices are severely vulner-
able to ID enumeration attacks, which can turn ordinary
access control flaws into high-risk attacks to remotely ex-
ploit devices at scale.

• We propose a tool dubbed IDScope to automatically detect
ID enumeration vulnerabilities on rentable IoT products
and show that 84% of the existing vulnerabilities can be
exploited to attack all devices or users of several vendors.

• We propose a mitigation solution to prevent ID enumeration
attacks and help vendors mitigate these vulnerabilities.

Ethics Consideration. We investigate the security of real-
world products crucial to users’ daily lives. To minimize im-
pact, testing is limited to our private devices2 or app accounts,
ensuring that both attacker and victim scenarios remain within
our private environments, avoiding disruption to vendors or
users. To identify large-scale exploitation, we need to confirm
if these products’ IDs are enumerable. IDScope eliminates
the need for brute-forcing all IDs, instead efficiently inferring
the valid ID range by sending only a few requests at a very
low rate, similar to web crawlers. The IDs we gather do not
include private information; for instance, device IDs are vis-
ible on devices, and user IDs are simply integers or strings.

1We track the vulnerabilities at https://vehicle-security.github.io.
2Some devices are also sold to individuals (see § 2.1).

6580 33rd USENIX Security Symposium USENIX Association

https://www.teld.cn/
https://www.starcharge.com/
http://yuehuocx.com/
https://vehicle-security.github.io/shared-iot.html

1. Find an idle shared
bike on the app map

2. Scan the bike's QR
code to unlock it

http://mobike.../?
b= 8645362556

Device Serial
Number

Figure 1: Users can access any device via the app.

During the research, we ensure that all of our approaches
comply with the vendor’s bug bounty plan [1], do not cause
DoS attacks, and do not compromise user privacy.

2 Background

2.1 IoT Device Rental Service
The rise of cellular IoT technologies has popularized IoT
device rental services in urban areas, allowing devices to
function and be placed anywhere without relying on Wi-Fi or
wired connections. As shown in Appendix A, various rental
devices operate unmanned in public areas of cities and are
managed unattended by cellular IoT controllers.
Cellular IoT Controllers for Rentable Device. The rentable
devices are equipped with a cellular IoT controller to receive
control commands from the server for manipulating the de-
vices. The cellular IoT controller usually has the following
components:
• 4G/5G MCU. This MCU is dedicated to communicating

with the cellular networks. It can also be used to process
simple tasks such as data collection or send commands via
Usart to control (e.g., turn on/off) physical devices (e.g.,
laundry machines). Thus, these devices’ IoT controllers
only contain the cellular MCU.

• Main MCU (optional). Some devices need to process
complex tasks, such as managing the charging process, and
adopt a dedicated MCU for real-time controlling the pe-
ripherals (e.g., DAC). We regard this task controlling MCU
as the main MCU, as it usually contains the entire control
logic of the devices. In devices with a main MCU, the cel-
lular MCU is used in pass-through mode, only forwarding
network packets to the server via the cellular network.

Devices Rental. All rentable devices are available to every
user. Taking the popular shared bicycle as an example (see
Figure 1), users can find idle bicycles on the map of the
companion app and they can choose any of these bicycles
(step 1). To rent a bicycle, they first need to make an order on
the app by scanning the bicycle’s QR code (step 2). The app
then resolves the QR code’s content (e.g., a URL or an ID) and
sends requests to the server to remotely activate this device.
After users complete the trip, they can lock the bicycle and
immobilize the wheels via the apps. The cost is automatically
charged on the app.

Device ID + Keys

1.Scan QR code to
rent a device

WIFI or 4G/5G

Companion App IoT Server

4G/5G

Rentable Device

User ID +
Access Token

2.Server remotely
active the device

Device
Serial Number

Locate Device Control DeviceAuthenticate User

Figure 2: The workflow of device rental service.

Device Management. Mobility devices, such as e-scooters
and e-bikes, are predominantly managed by large vendors who
operate thousands of these units across various regions. These
vendors are responsible for periodic inspections, repairs, and
the strategic relocation of devices to meet the demand influ-
enced by population density and usage patterns. In contrast,
stationary devices like EV chargers and laundry machines
necessitate fixed installations and a continuous power supply.
These devices are purchased by individual operators, who own
a few devices and strategically position them at their stores,
parking facilities, or other suitable locations. This setup allows
operators to rent out the devices to customers, neighbors, or
others in need, generating profit while leveraging the vendor’s
backend systems for control and billing.

2.2 ID Enumeration Attacks

ID enumeration attacks [12] involves attackers discovering
valid resource identifiers (IDs) on web or app APIs to gain
unauthorized access to restricted resources by manipulating
or guessing these IDs in URLs or request parameters. We find
that rentable IoT devices are particularly vulnerable to ID
enumeration attacks as large numbers of users and devices are
managed by the same backend. As depicted in Figure 2, when
the user scans a QR code to initiate a device rental request,
the device’s serial number is transmitted to the server. The
server then authenticates the user’s credentials. Subsequently,
it retrieves the corresponding device information based on
the provided device serial number. Once the target device is
identified, the server transmits control commands to it via the
cellular network connection. This process involves authenti-
cating multiple resource identifiers (IDs):
• User ID is used by the apps to identify various users. Many

rentable products automatically assign an increasing num-
ber as the user ID for the new user during registration.

• Device Serial Number is used by the apps to distinguish
devices, which is usually very short (6-9 digits) as users
sometimes need to manually enter it into the app when the
QR code is abraded by malicious users 3.

• Device ID is stored in the firmware and used for device-
server authentication. Some devices may reuse the device
serial number as the device ID for simplicity.

3The shared bicycle market in China used to be highly competitive, re-
sulting in frequent cases of bicycle vandalism.

USENIX Association 33rd USENIX Security Symposium 6581

We find that in multiple rentable products, the enumeration
of three types of IDs can lead to severe consequences. First,
user ID enumeration can lead to large-scale data breaches or
account hijacking, when attackers can compromise access to-
kens. Second, harvesting device serial numbers can facilitate
the large-scale exploitation of remote devices. For instance,
if attackers can circumvent payment systems or exploit privi-
lege escalation vulnerabilities [45], they can manipulate all
devices identified by the enumerated serial numbers. Further-
more, we have observed that numerous devices share common
authentication keys or lack proper device authentication, al-
lowing server connections solely based on device IDs. These
vulnerabilities make these devices susceptible to large-scale
impersonation attacks using enumerated device IDs. We pro-
vide real-world examples of such attacks and illustrate how
attackers can remotely exploit users or devices from various
vendors in sections § 6.3 and § 6.4.

3 Overview

3.1 Threat Model
We consider rentable IoT devices and their smartphone apps
as potential attack targets and focus on remote exploits that
do not require attackers to have physical access to the victim
devices.The attacker’s goal is to use devices for free or do
damage to the device (e.g., DoS) or other users (e.g., informa-
tion stealing, account hijacking). To achieve this goal, they
may try to exploit the communication between the devices
and the server, or communication between the app and the
server to affect the devices or other users. Meanwhile, attack-
ers may try to reverse-engineer and dynamic/static analyze
both the device firmware and the apps. After attackers grasp
the devices’ and apps’ credentials and protocols, they may
off-path exploit the server APIs by impersonating the devices
or apps to send spoofed requests to the server.

Our only assumption is that attackers can analyze both
devices and apps. This is reasonable because rentable IoT
devices are usually deployed unattended in public spaces,
making it easy for attackers to illegally acquire one. Note
that they only need one device4 to explore the firmware and
extract the secrets. IoT apps are also publicly available on app
markets or can be accessed in WeChat. Attackers can readily
manipulate these apps from malicious mobile devices, such
as rooted Android phones, using their own accounts.

3.2 Methodology
As shown in Figure 3, we developed a semi-automated work-
flow to analyze rentable IoT devices. We first combine reverse
engineering and black-box API testing to find vulnerabilities
in apps or devices. Then, we use IDScope to assess if these

4In our study, we use two devices, one acting as the attacker and the other
as the victim, to avoid ethical issues.

2. Blackbox
API test

IDScope

Buggy
APIs

1. Reverse the
protocols and APIs

Enumerating
ID

3. Large-Scale Exploits
via ID Enumeration

Device Protocol
Reverse Engineer

App API Extraction

Figure 3: The workflow of identifying large-scale exploitation
vulnerabilities in devices and apps of the rentable products.

vulnerabilities can be scaled to remotely exploit more devices
at a large scale. The detailed steps are as follows:
S1: Reverse Engineering Protocols and APIs. This step
aims to reverse-engineer the APIs and extract the credentials
(e.g., crypto keys and access tokens) for further testing these
APIs. The companion apps usually use HTTPS and can be
easily analyzed via MitM. However, most rentable IoT devices
adopt custom binary protocols to communicate with the IoT
server. Besides capturing their network traces, we also need
to further analyze their firmware to extract the cryptographic
algorithms and keys (illustrated in § 4.1).
S2: Black-Box API Testing. In this step, we focus on identi-
fying vulnerabilities that can affect the current devices or app
users. We use a semi-automated approach to identify insecure
server APIs when they communicate with apps or devices.
For the physical devices, we manually check their server con-
nection protocols to verify if the devices are correctly au-
thenticated by the servers. For instance, some devices do not
encrypt the messages or do not use unique keys to authenticate
different devices. For the companion Apps, we automatically
replay the existing requests and substitute the identifier (e.g.,
uid, Device Serial Number) fields to check if the server
can correctly authenticate and authorize [72] these APIs. By
checking the return code, we can identify the vulnerable APIs
and then manually check their impacts. The analysis results
are illustrated in § 4.2 and § 5.
S3: Large-Scale Exploits via ID Enumeration. Many sim-
ple vulnerabilities can be scaled to attack many other devices
remotely when attackers can enumerate devices’ or Users’
IDs. This is because some devices have weak authentications
(discussed in § 4) such as sharing the same cryptographic
keys, which allows the attackers to large-scale impersonate
any device if they know other devices’ IDs. The same situa-
tion occurs in the apps, as some APIs do not strictly validate
the users, and attackers can exploit these vulnerable APIs to
misuse devices. We propose IDScope to assess large-scale
exploitation of the devices or the apps in § 6.

3.3 Common Weakness in Rentable Products

We systematically study the common vulnerabilities in the
design and implementation of IoT device rental services by
investigating 17 devices and 92 apps. More than 50 vulnerabil-
ities are identified in the devices or apps, leading to large-scale

6582 33rd USENIX Security Symposium USENIX Association

Table 1: Common weakness in rental services’ IoT devices or apps.

#Products # Common Weakness Security Impacts #Vul Devices

Device
(17, see Table 2)

D1 The log port of cellular chips is unprotected Intra/Inter-Chip network traffic capture 17 (100%)
D2 No protection for MCU debug interfaces Debug and extract the firmware 9 (52.9%)
D3 Unstripped firmware with log strings Facilitate protocol analysis 14 (82.4%)
D4 Insecure authentication implementation Device impersonate (see Table 3) 8 (47.1%)
D5 Multiple devices share the same secrets Device impersonate (see Table 3) 4 (23.5%)
D6 Device ID is enumerable Large-Scale device impersonate (see Table 6) * 11 (64.7%)

App
(92, see Table 8)

A1 Vulnerable payment implementation Free device usage (see Table 7) 5 (5.4%)
A2 Improper permission checks of app APIs Privacy leakage, Free device usage (see Table 4) 15 (16.3%)
A3 User ID is enumerable Large-Scale exploits other users (see Table 7) * 14 (15.2%)
A4 Device Serial Number (SN) is enumerable Large-Scale exploits other devices (see Table 7) * 56 (60.9%)

* Without other vulnerabilities, ID enumeration is only a security risk. For large-scale attacks, D6 relies on D4/D5 and A3/A4 relies on A1/A2.

privacy leakage, device manipulation, and free device usages,
which are detailed in § 4, § 5, and § 6. We summarize the
underlying weaknesses that lead to these vulnerabilities in
Table 1.
Weakness in Device Hardware and Firmware (D1-D3).
Rentable IoT devices lack detection for hardware tampering
via software (D1), fail to secure the chips’ debug modes (D2),
and retain log printing code in their release version (D3). Al-
though these vulnerabilities cannot lead to direct exploitation,
attackers can employ them to dynamically analyze these de-
vices to grasp their communication with the servers for further
identifying remote exploitation vulnerabilities.
Weakness in Device-Server Interactions (D4-D6). We iden-
tify several devices that use insecure authentication (D4) or en-
cryption (D5). Devices with these vulnerabilities are only dis-
tinguished and authenticated by the server using their unique
device identifiers [64, 69]. If the attackers can gain other de-
vices’ identifiers, they can impersonate all these devices. We
identify several devices’ identifiers that can be enumerated
by attackers (D6), allowing attackers to remotely exploit as
many devices as they can enumerate.
Weakness in App-Server Interactions (A1-A4). We find that
several companion apps have logic bugs in their payments
allowing users to rent the devices without paying (A1). Some
devices have APIs with improper permission checks, allowing
unauthorized access (A2). These vulnerabilities can be scaled
to all devices when attackers can enumerate (A3) all devices’
serial numbers (i.e., QR codes). Some products’ user IDs
can also be enumerated and expand the scope of horizontal
privilege escalation to exploit all users (A4).

4 Analyzing Vulnerabilities of Devices

4.1 Workflow for Studying Rentable Devices

To investigate device security, it is essential to have physical
access to real rentable devices and disassemble their IoT con-
trollers to perform tasks such as connecting jumper wires [24]
to chips for network and firmware analysis. However, most
rentable devices are owned by vendors or operators (e.g., all

Uber e-scooters belong to Uber), making it challenging to ac-
quire devices for research purposes. Fortunately, some devices
(e.g., Teld EV-Charger) are available for individual purchase,
allowing users to participate in the vendor’s IoT rental service
and rent out devices for profit. Ideally, our approach requires
only two devices for each product, one acting as the attacker
and the other as the victim.We buy 16 rentable IoT devices
(shown in Table 2) and cooperate with a vendor to gain an
extra device (i.e., Meituan bicycle).

We employ protocol reverse-engineering and black-box
API tests to identify vulnerabilities in rentable IoT devices.
As shown in Figure 4, the steps of our workflow are as follow:

S1: Capture Network Traces and Extract Firmware. Many
rentable devices (e.g., EV chargers) are unsafe for hardware
tampering because they run on high-voltage household (e.g.,
220V) or industrial alternating current (AC) power, not bat-
teries. We disassemble these devices and use bench power
supplies to partially boot [58] and run the core chips, such
as cellular chips and controller chips (e.g., STM32F4, see
Table 2). After booting up the system, we can perform further
analysis (e.g., dump logs, or debug) by connecting jumper
wires to these chips’ pin-outs.

We capture the network traces of these devices to reverse
engineer [17, 21, 66] their communication protocols.Due to
the high cost of hijacking cellular network communications
through fake 4G base stations, we chose to capture the inter-
nal network traces of cellular chips, which are not encrypted
by the SIM card’s cryptographic keys. We find that all cel-
lular chips allow developers to enable the debug log via AT
commands [3], which enables us to extract the cellular chips’
internal payloads from the logs. By exploiting this vulnera-
bility (D1 in § 3.3), we can capture the network traces of all
target devices (see Table 2) from the pinouts of the cellular
chips (see Figure 8). However, Meituan bicycle is quickly
disconnected by their server and we fail to gain enough logs.

For several devices (e.g., Teld, Starcharge), simply cap-
turing their network traces is not enough because the traces
cover only a few commands or the messages are encrypted.
We need to debug further and analyze the firmware to extract
extra commands and retrieve the hard-coded encryption keys.

USENIX Association 33rd USENIX Security Symposium 6583

Table 2: The physical devices studied in this work and their hardware details. (∅: no such module/feature, -: unknown)

Device
Type Device #Device

Deployed Main MCU 4G MCU OS #Func Encryption
Algorithm Protocol #CMD/

Traces
Can

Debug
Extract

Firmware
Phantom

Client

EV
Charger

Teld 100k+ STM32F207 EC200N Baremetal 1884 AES Binary 68/50 ✓ ✓ ✓
Starcharge 100k+ LPC1778FBD144 ME3630 FreeRTOS 1030 3DES Binary 66/63 ✓ ✓ ✓
Potevio 30k+ GD32F407 N58 µC/OS-II 1325 ∅ Binary 56/73 ✓ ✓ ✓

Charger

Xlvren (Charger) 100k+ HC32F460 A7670 ZephyrOS 1718 ∅ MQTT 34/79 ✓ ✓ ✓
Lvcc (Charger) 100k+ FM15F366 CUIoT Baremetal 711 ∅ Binary 42/88 ✓ ✓ ✓
Xlvren (Cabinet) 100k+ STM32F407 SIM-7600CE eCos 1899 ∅ Binary 46/68 ✓ ✓ ✓
Lvcc (Cabinet) 100k+ FM15F366 EC200N Baremetal 726 ∅ Binary 36/44 ✓ ✓ ✓
Lvcc (Socket) 100k+ ∅ Air720UH FreeRTOS - ∅ Binary 18/60 ✗ ✗ ✓
JieDian 1,000k+ S34ML02G2 N58 Linux - TLS HTTPS 7/288 ✗ ✗ ✗

Mobility QiXin 50k+ ∅ EC200U - 1645 ∅ Binary 24/40 ✓ ✓ ✓
MeiTuan 10M+ STM32F401 EC200N FreeRTOS - AES Binary 2/6 ✗ ✗ ✗

Entertainment
YFLe 10k+ ∅ EC100N-CN - - ∅ Binary 7/25 ✗ ✗ ✓
BDT 50k+ ∅ SIM-A7670C - - ∅ JSON 10/32 ✗ ✗ ✓
WeiPeng 100k+ ∅ Air724UG FreeRTOS - ∅ Binary 15/48 ✓ ✗ ✓

Tools
AnSheng 10k+ ∅ Air780E FreeRTOS - ∅ Binary 8/22 ✓ ✗ ✓
AnKong 10k+ ∅ ML307A - - ∅ MQTT 8/28 ✗ ✗ ✓
WZ-Cloud 5k+ ∅ Air724UG FreeRTOS - ∅ Binary 6/25 ✓ ✗ ✓

As shown in Table 2, 8 devices usually have no firmware
protection (D2 in § 3.3) and we can easily extract or debug
their firmware via the JTAG port. Note that many firmware
appear to be the debug versions and the plain text log prints
are not removed (D3 in § 3.3). By examining these log strings,
we can easily understand the message dispatching approaches
in the binary code and get more commands (CMD in Table 2).
Only 4 devices encrypt their messages, and we successfully
crack the encryption of 3 devices. The fail case is JieDian,
as we are unable to analyze their firmware. We successfully
debug 11 devices to facilitate protocol reverse engineering.

S2: Re-implement Protocols and Perform API Tests. In
real-world scenarios, impersonating a server and sending
spoofed 4G messages to devices over the air is exceedingly
difficult, as it necessitates exploiting zero-day vulnerabilities
in 4G networks [15, 33, 47]. Consequently, our focus shifts to
exploring how adversaries can impersonate valid clients and
send malicious messages to servers via alternative network
connections.

We develop phantom clients [69] that replicate original de-
vices by using the same protocols and reusing their credentials
to reconnect with servers. To achieve this goal, we analyze
network traces and firmware (detailed in Appendix B) to dis-
sect protocol message sequences, structures, and encryption,
and then reimplement these protocols in Python. To ensure
the correctness of our phantom clients, we compare their mes-
sages with those of real clients and verify the server responses
at each protocol step, confirming their functional equivalence.

We successfully develop phantom clients for 15 devices,
while failing for Meituan and JieDian due to insufficient
network traces. We then use black-box API testing to deter-
mine whether attackers can manipulate device states through
spoofed requests. Similar to AuthScope [72], we begin by
identifying and altering critical message fields, such as IDs
and commands, to probe server vulnerabilities through unau-
thorized requests. We then examine server responses and

1.Partially boot the chips for network
trace capture and firmware extraction

2.Protocol reverse engeering and
reimplement to perform API tests

Firmware

Network
Traces

Disassemble
the device

3

4

2

1

log_print("start charge")

 Binary
Analysis

IDA Pro

79 00 13 03 02 ...
79 00 13 06 03 ...
79 00 23 06 01 ...

Dissect
MSG Type

Reverse the protocol

Extract
Secrets

Cellular IoT Module

Power Supply

Phantom
Clients

Server

API
Tests

Jumper
Wires

Jumper
Wires

Figure 4: The workflow for studying the rentable IoT device.
Table 3: Device impersonation attacks on local devices.

Device Type State Spoofing (14) DoS (5) Free Use (4)

EV Charger
Teld, Starcharge

Potevio
Teld, Starcharge

Potevio Teld

Charger
Lvcc (Socket)

Lvcc (Charger), Xlvren (Charger)
Lvcc (Cabinet), Xlvren (Cabinet)

Xlvren (Cabinet)

Mobility QiXin QiXin QiXin, MeiTuan

Entertainment BDT, WeiPeng

Tools
AnKong, AnSheng

WZ-Cloud AnKong

check the status of devices and apps to assess whether these
crafted requests can successfully manipulate the states of
other devices, which indicates potential remote exploits.

4.2 Security Implications in Devices
By testing 15 devices with phantom clients, we identify that
14 devices are vulnerable to device impersonation attacks.
Hazards of Device Impersonation Attacks. The phantom
clients can reconnect to the server using the devices’ cre-
dentials, which can lead to two outcomes: sending spoofed
messages to the server to change the devices’ states, or replac-
ing the original devices’ server connections and preventing
them from receiving server messages. With these tactics, we
find that 4 devices can be exploited for free use.

6584 33rd USENIX Security Symposium USENIX Association

(1) Device State Spoofing. Rentable devices typically upload
their health states, including cellular signal strength and op-
erational condition (good or faulty), to the server. However,
attackers can easily manipulate these states using phantom
clients. For example, they can make offline devices appear
online, misleading users into paying for unavailable services.
Conversely, they can present functional devices as faulty,
prompting unnecessary maintenance checks and deterring
rentals. We identified 14 devices vulnerable to such state
spoofing attacks (shown in Table 3). While some devices at-
tempt to restore their correct states through periodic updates,
attackers can override these data more frequently, making the
devices continuously display false states. The only exception
is YFLe, which adds nonce and signature to their messages,
and we fail to craft valid messages to change their states.
(2) DoS by Remotely Forcing Devices Offline. For several de-
vices, when we reconnect to the server using the victim de-
vice’s identifier and credentials, the original devices are forced
offline. The server releases the existing connection upon ac-
cepting a new connection from the same device. This happens
on 5 out of the 15 devices, while the remaining 10 devices
maintain both the original connections and the new connec-
tions established by our phantom clients. Although the 5
offline devices continue attempting to reconnect to the server,
conversely causing the phantom client to disconnect, attack-
ers can persistently attempt to knock the real devices offline,
leading to device DoS attacks.
(3) Free Use of Device. Rentable devices are deactivated by
server commands; however, attackers can intercept these com-
mands, allowing devices to continue operating beyond the
rental period. We identify 3 devices that are vulnerable to this
attack. For the Teld charger and QiXin bicycle, attackers can
finalize the rental in the app and then use phantom clients
to force the real devices offline. This redirects the device
stop commands to the phantom clients instead of the actual
devices, enabling free use of the devices. For the Meituan
bicycle, we can make a local bicycle offline by removing its
cellular antenna, which causes the server to process the or-
der as completed normally, but leaves the bicycle unlocked,
allowing continued unauthorized use.

For the AnKong washing machine, we discovered that
clients can publish MQTT messages to each other without
restrictions due to the lack of a server MQTT ACL policy [60].
This vulnerability allows attackers to send fake device activa-
tion commands to other devices’ MQTT topics based on their
device IDs. These spoofed messages are then transmitted to
the actual devices by the MQTT server, leading to their unau-
thorized activation. By acquiring device IDs from the devices’
QR codes, attackers can freely utilize any device through this
attack vector.
Case Study for Attacking Various Devices. All rentable
devices share a common architecture managed by their IoT
controllers and communicate remotely with the server via
a cellular network. However, the analysis and attack details

vary across different devices.
(1) Mobility Devices and Stationary Devices. Based on the
trust model, existing rentable devices fall into two categories:
mobility devices such as e-scooters and e-bikes, which users
can take with them, and stationary devices like EV charg-
ers, which are immovable and can only be used at specific
locations. Both types of devices offer basic controls for acti-
vation and deactivation, and they provide updates on device
states, including 4G signal strength (RSSI) and health sta-
tus. Mobility devices additionally need periodic GPS updates.
When devices move outside of approved areas, the server
shuts down power, preventing operation beyond designated
zones. Attackers may exploit this feature to halt devices using
GPS spoofing attacks. Stationary devices are immune to such
attacks as they are not restricted by GPS location.
(2) Reverse-Engineering Different Protocols. Except for the
3 devices using MQTT or HTTPS protocols, all others utilize
custom binary protocols. Among these devices, EV chargers
exhibit a diverse array of commands, including querying the
grid status, individual charging channel information (voltage,
current, charging status, and energy consumption), control-
ling the start and stop of charging for specific channels, and
exchanging keep-alive messages for both devices and active
charging sessions. Each command has a corresponding re-
quest and response packet, resulting in a substantial number
of distinct command pairs that should be sent in the correct
sequence. This extensive command set significantly increases
the reverse-engineering effort required for EV charger proto-
cols, making them more difficult to analyze than other devices
with simpler protocols, such as e-bicycles and rentable tools,
which are typically controlled by simple device start or stop
commands. Due to the large number of variable fields in EV
charger protocols, extracting and analyzing their firmware
from the STM32 MCU is essential to fully understand their
protocols.

Note that all of the vulnerabilities discussed in this section
can be exploited remotely without touching the physical de-
vices if knowing the victim device’s login credentials. Given
that many devices share the same hard-coded authentication
keys or have no authentication, we further explore the pos-
sibility of exploiting more devices on a large scale via ID
enumeration attacks in § 6.3.

5 Analyzing Vulnerabilities of Apps

In this section, we perform a semi-automated API black-box
test to detect vulnerable app APIs that can exploit other de-
vices or users.
App Collection.We identify IoT companion apps for rentable
devices by searching for product names as keywords across
various App markets. In China, most devices prefer WeChat
mini-programs over native Android or iOS apps, as the con-
venience of accessing these mini-programs directly within
the WeChat platform, which eliminates the need for users to

USENIX Association 33rd USENIX Security Symposium 6585

Table 4: Vulnerabilities in IoT companion apps.
Attacking Users Abusing DevicesDevice Type

Privacy Leakage Account Hijack Payment Bypass Manipulate Device
EV Charger Sunmue, Potevio Teld

Charger
LuLuChong, NBLinks

ZhouDian
LuLuChong, NBLinks

Mobility
YueHuoCX, YueShiJi

GXRongYi
YueHuoCX, YueShiJi

GXRongYi,DFPV
QiXin, GO-ON

YueHuoCX, YueShiJi
GXRongYi, Hozonauto

DFPV, Lime, Helbiz
Tools AnSheng HQJL

Entertainment BDT QSMX, Dadaball

install separate mobile apps. Note that not all of these apps (or
mini-programs) can be selected for research since we cannot
find valid QR codes for them, which are necessary to rent the
devices. As a result, we only find Android apps for 6 Chinese
devices. For the devices without mobile apps, we focus on
their WeChat mini-programs. We also identify 21 apps that
service in countries outside of China, such as Lime e-scooters
in the US and Europe. However, we only successfully regis-
ter for 11 of them. As listed in Appendix A, finally, we get
apps for a total of 81 Chinese rentable products (including
75 WeChat mini-programs and 6 Android apps), and 11 iOS
apps for Europe/US products.
Analysis Methodology. We focus on identifying payment
and API access control vulnerabilities that can result in unau-
thorized device control or access to other users’ resources.
We propose a semi-automated approach to test the native An-
droid/iOS apps and WeChat mini-program apps. First, we
prepare accounts and login to these apps, which can only be
done manually, as rentable IoT apps typically require real-
name registration and a deposit before use. While processing
the deposit, we manually check if the payment arguments can
be manipulated. Then we manually trigger the core logic of
the apps by scanning their QR codes and selecting the ap-
propriate UIs to rent and return a physical rentable device.
Simultaneously, all requests can be captured by the Burp-
suite proxy [2]. After these manual steps, the remaining tasks
are black-box API testing, where requests are automatically
mutated and replayed in BurpSuite. Specifically, we utilize
multiple accounts, with some acting as attackers to gain unau-
thorized access to the resources of other victim accounts. If
the forged requests are accepted by the server (e.g., return
HTTP 200), we continue to manually check for access control
violations in these APIs. We further validate if these vulnera-
ble APIs can be further exploited by ID enumeration attacks
to cause large-scale damage to other devices or users, which
is discussed in § 6.4. We discover 34 vulnerabilities in 23
IoT apps, which can be divided into two types based on the
victim:
Attacking App Users. As shown in Table 4 (attacking user
column), we identify multiple authentications or access con-
trol vulnerabilities in mobile apps that allow attackers to steal
other users’ personal information or hijack others’ accounts.
(1) Privacy Leakage. We identified 9 vulnerable IoT apps
that leak the users’ most sensitive data, such as users’ real
names, identity card numbers, phone numbers, etc. 8 of the
9 products (excluding Sunmue) contain vulnerable APIs that

mistakenly return all user fields stored in the same database
column, failing to exclude sensitive data from the response,
even though not all of these fields are required to be displayed
in the UI. Note that HuoYueCX E-Bike has added ∗ to mask
some sensitive data but still leaks users’ home addresses.
Sunmue provides a super account whose uid is 0 and can
access all users’ orders. By retrieving the order information,
we can get other users’ phone numbers and vehicle license
plate numbers.
(2) Account Hijacking. We identify 6 apps that contain hor-
izontal privilege escalation vulnerabilities, which permit at-
tackers to hijack other user accounts to access devices. For 3
of them, attackers can directly modify the device activation
request’s uid making the charging order to other users’ ac-
counts Specifically, YueHuoCx possesses a vulnerable API
that inadvertently exposes other users’ access tokens. For 2
apps, i.e., the Potevio EV charger and DFPV rentable EV,
attackers can steal other users’ accounts if they acquire the
victim’s phone numbers. Similar to previously documented
insecurities in face verification system [68], the Potevio EV
charger app exposes a vulnerable login API that is only locally
authenticated with a user’s fingerprint or face identification.
Once the local biometric authentication is bypassed, attackers
can substitute the authenticated phone number with that of the
victim, effectively seizing control of the account. The DFPV
rentable EV app’s login API mistakenly returns the SMS one-
time password (OTP) [41] to the app and attackers, allowing
attackers to gain unauthorized access to any accounts and con-
trol them by stealing the SMS verification code. Additionally,
Ankong app exposes vulnerable device binding APIs, which
attackers exploit to elevate their privileges to device adminis-
trators using device IDs, thus gaining unfettered access to the
devices.
Abusing Devices via Apps. As shown in Table 4 (abusing
device column), we identify multiple vulnerabilities that allow
attackers to exploit devices via payment bypass or device
manipulation APIs.
(1) Payment Bypass for Free Device Usage. We identify 4
apps on WeChat that can manipulate the payment parameters
to alter the transaction amounts. For instance, the QSMX app,
which offers various vehicles, such as the E-Car, E-Boat, and
E-Bicycle for sightseeing, enables all orders directly via its
WeChat mini-programs. When a user chooses a product, the
app communicates the type and associated cost of the product
to the server, which then initiates a payment transaction based
on the cost data received from the app. By employing Man-
in-the-Middle (MitM) attacks, we demonstrate the feasibility
of altering payment requests, such as changing ¥10 to ¥0.01,
for nearly free renting of these products. This vulnerability
also allows attackers to alter the payment of deposits, which
can significantly reduce their attack costs. Furthermore, the
GO-ON e-scooter iOS app in South America has vulnerabil-
ities in its membership plan API that expose test accounts,
allowing free use of any e-scooter.

6586 33rd USENIX Security Symposium USENIX Association

https://li.me
https://apps.apple.com/us/app/go-on/id1542474260

(2) Manipulating Remote Devices via Apps. We identify 9
apps that can be abused to control remote devices via horizon-
tal privilege escalation. For the 3 e-bikes (includes HuoYueCX,
YueShiJi, and GXRongYi) and 2 e-bike chargers (includes Lu-
LuChong and NBLinks) apps, we can only disable active de-
vices, such as stopping the charging process or immobilizing
the bicycles. These apps lack APIs for activating devices,
which are instead automatically activated post-payment. Re-
motely stopping a moving e-bike can cause it to gradually
slow down and halt, potentially injuring the user. Note that
the remote stop device poses a significantly greater risk to
rentable bicycles equipped with locks, as it suddenly locks
and immobilizes the bicycles. We can fully control others’
devices for the two rentable EV apps, i.e., Hozonauto and
DFPV. Their vehicle control APIs only validate whether the
user is valid and whether the vehicle identification number
(VIN) is valid, without confirming the user’s access to the
current vehicle. Attackers can replace the VIN in the requests
to activate or deactivate other vehicles illegally.

We identified three vulnerable e-scooter apps operated in
Europe/US. The Lime app restricts users to renting or reserv-
ing a maximum of five e-scooters via its group ride feature.
However, we discovered a vulnerability in the device rent-
ing API that allows attackers to bypass this restriction and
use more than five scooters. We identified 2 vulnerable trip
management APIs in the Helbiz app that enable device manip-
ulation. One allows attackers to retain control over returned
devices, and the other permits attackers to alter the state of an
unlocked device to locked, while the physical device remains
unlocked and usable.

6 Scaling Attack Scope via IDScope

Large numbers of rentable devices in the same type and con-
figuration are deployed and maintained by the same owner,
and these devices automatically connect to the vendor’s pri-
vate cloud, which makes them tend to adopt shared keys or
weak authentication implementations. As a result, attackers
can impersonate these devices and send spoofed requests to
the server by manipulating the device ID in vulnerable APIs,
leading to large-scale exploitation of users or devices. We
propose IDScope to automatically identify and efficiently in-
fer the affected scopes of such large-scale exploitation in the
devices and apps of IoT rentable products.

6.1 IDScope Design

Although previous approaches, such as AuthScope [72], can
also detect vertical privilege escalation in apps by enumerat-
ing resource IDs.Rather than identifying these vulnerabilities,
we need to efficiently collect all valid IDs to prove that it is
practical for attackers to launch large-scale remote attacks by
inferring their device serial number (SN) without getting the

https://api.ebike.com/123001002/unlock
Vunlerable API

1.Scan the QR code (ID: 123001002)
 to use a device and trigger the APIs

APIs

123 001 002 Verify
 IDs

101001001 123012001 133015299

101-133 001-015 001-299

3. Pattern-based binary search to identify
ID ranges and enumerate IDs

101001001

Enumerate Valid IDs

Confirm Ranges of Each Section

2. Automatically identify ID verification
APIs from massive requests ID Verification

APIs

City(3) Batch(3) Number(3)

4. Use these IDs to confirm horizontal
privilege escalation vlunerabilities

Figure 5: The design of IDScope.

QR code of these devices. However, AuthScope only supports
brute-force ID enumeration and is inefficient at inferring IDs.

To fill this gap, we propose an ID enumeration tool called
IDScope to quickly infer valid resource IDs (e.g., user ID, de-
vice serial number) and assess the affecting scopes of existing
authentication, access control, and payment vulnerabilities
discussed in § 4.1 and § 5. Figure 5 shows the design of
IDScope. The basic idea is to find the ID verification APIs
that can validate whether a resource ID is associated with real
resources, and validate the guessed ID based on those APIs.
It then replaces the IDs in existing requests to visit the vulner-
able APIs and check whether the requests with spoofed IDs
are accepted by the server. To efficiently guess IDs, IDScope
has two key designs:
Automatically Verify Resource IDs. To bootstrap the anal-
ysis, we first need to manually scan a QR code to activate
and deactivate a device in the rentable IoT apps to trigger
device rental requests. By examining these requests, IDScope
can automatically identify ID strings and match these strings
in various API URLs and parameters. When the ID strings
appear in both the payload and response of certain APIs, it
means that these APIs may serve as resource verification
IDs. We further confirm these APIs by checking keywords
(e.g., resource not existing) in their response to exclude the
false positive cases. After finding out the ID verification APIs,
IDScope can automatically guess new IDs by mutating IDs
based on the seed ID (in the QR code) and verifying these
IDs using the verification APIs.
Efficiently Enumerating IDs. Since rentable IoT products
typically have integer-based resource IDs, employing binary
search to guess their ranges is much more efficient than brute-
force number enumeration. We observe that device serial
numbers often exhibit identifiable patterns, with specific sec-
tions representing distinct information. For instance, certain
initial digits indicate the device model, while the concluding

USENIX Association 33rd USENIX Security Symposium 6587

https://li.me
https://helbiz.com/

Table 5: IDScope’s success rate in enumerating different IDs.

#App Service
Area

Device Serial Number User ID

#Enumerable #Pattern #Enumerable #Pattern

81 China 48 (59.2%) 32 (39.5%) 14 (17.3%) 7 (8.6%)

11 Europe/US 8 (72.7%) 6 (54.5%) - * 1 (9%)
* Fail to enumerate IDs due to not finding ID verification APIs.

5 6 7 8 9 10 12 >12
ID Length

0

10

D
ev

ic
e

N
um

1 2 3

13 14

8
5

17

50

100

E
ffi

ci
en

cy
Figure 6: Device serial number length and their enumeration
efficiency (how many IDs can be guessed by each search).

digits denote the serial number. IDScope first tries to identify
such patterns and confirm the ranges of each section. Then,
it applies binary search on each section. This approach can
significantly reduce the search space on pattern strings.

Finally, IDScope verifies whether the existing vulnerable
APIs can access the resources with the enumerated IDs. For
instance, by replacing the user IDs, IDScope can check if the
APIs can access the profiles of other users. APIs with horizon-
tal privilege escalation flaws [45] can potentially be exploited
to target all users or devices if attackers can enumerate all IDs.
In such cases, rate-limiting measures are ineffective in block-
ing the attackers, as they can easily switch between different
user IDs.
IDScope Implementation. We prototype IDScope as a Burp-
Suite [2] plugin in about 1200 lines of Python code. Note that
IDScope can also work as a standalone Python program to
off-path send requests to the servers by reusing the access
tokens. IDScope sends multiple requests to quickly infer the
valid ranges of ID values. These requests are sent in a single
PC at a very slow frequency and do not lead to a DoS attack.
We empirically specify several ID patterns and first check
whether the ID follows these patterns. For the IDs that do not
match any pattern, we cannot use the pattern-based binary
search and fall back to the normal binary search.

6.2 The Effectiveness of IDScope

We evaluate the effectiveness and efficiency of IDScope using
75 rentable IoT apps collected in § 5.
Experiment Setup. We run IDScope on real products and
ID datasets granted by the vendors. We first check how many
rentable IoT apps are successfully processed by IDScope to
correctly identify the ID verification APIs and fully enumerate
the valid ID ranges of real devices or users. Rather than dump
all their device IDs, we get a precise range of these devices as
the IDs of these devices are usually continuously incremented.

0 25000 50000 75000 100000
0.0

0.2

0.4

0.6

0.8

1.0

AuthScope
IDScope

Pe
rc

en
t

Search Times

(a) IDScope vs Brute Force on Lu-
LuChong Dataset (5 digits)

0. 5 × 105 106
0.0

0.2

0.4

0.6

0.8

1.0

2 × 1010 4 × 1010

AuthScope
Binary Search
IDScope

Search Times

(b) IDScope vs Binary Search on
QSMX Dataset (11 digits)

Figure 7: The CDF of enumerated IDs and search times.

IDScope can further precisely verify if each number in this
range is a real device. We only do this under the grant of the
vendors. Furthermore, we obtain several device ID datasets
from the vendors to evaluate the performance of IDScope.
Enumeration Results. As presented in Table 5, IDScope
succeeds in enumerating the device serial number (SN) of
56 products, and the rest 36 products’ SN are too long and
lack discernible patterns, making enumeration impossible.
However, some of these apps leak their SN in the map APIs,
enabling attackers to easily steal all the device SNs (§ 6.3).
Specifically, IDScope successfully identifies the ID patterns
for the device serial numbers of 28 products. IDScope suc-
cessfully enumerates user IDs for 14 products only, as most
lack accessible user ID verification APIs, requiring both an
access token and the user ID to construct valid requests.
Enumeration Performance. Figure 6 shows the enumeration
efficiency of IDScope on products with different ID lengths.
Figure 7 shows a comparison of different enumeration ap-
proaches. IDScope’s pattern-based binary search approach is
4 magnitudes faster than AuthScope’s brute-force approach
for products with sequential IDs. For IDs longer than 6 (e.g.,
QSMX adopts 11 digits with patterns), AuthScope cannot in-
fer their ranges within a reasonable timeframe. While naive
binary search could be employed, it would require sending
tens of thousands of requests, taking several hours to com-
plete. IDScope can achieve a performance improvement of
3 to 4 orders of magnitude over naive binary search and is
10 orders of magnitude faster than AuthScope. Consequently,
IDScope can identify all devices of a vendor with much fewer
requests.

6.3 Scale Device Side Exploits via IDScope

In § 4.2, we identify 14 devices that are vulnerable to device
impersonation attacks. Since some of them lack secure au-
thentication and attackers can impersonate them using their
device IDs, we further leverage IDScope to validate whether
these vulnerabilities can be exploited at scale to attack all
devices via ID enumeration attacks.
Large-Scale Obtaining Device ID. We identify two attacks
that can lead to large-scale device ID leakage. As shown in

6588 33rd USENIX Security Symposium USENIX Association

Table 6: Device vulnerabilities that can be exploited at scale.

Device Type Device Obtain ID State
Spoofing DoS Free Use

EV Charger
Teld A1 A2 ✓ ✓ ✓

Starcharge A1 A2 ✓ ✓
Potevio A2 ✓ ✓

Charger

Xlvren(Charger) A1 A2 ✓
Lvcc(Charger) A1 A2 ✓

Xlvren(Cabinet) A1 A2 ✓ ✓
Lvcc(Cabinet) A1 A2 ✓
Lvcc(Socket) A1 A2 ✓

Mobility QiXin A2 ✓ ✓ ✓

Entertainment BDT A1 ✓

Tools
AnKong A1 ✓ ✓
AnSheng A1 ✓

WZ-Cloud A1 ✓

Table 2, we can get the ID of every device for 13 products.
(1) Enumerating Weak ID with IDScope (A1). Some devices
reuse the device serial numbers (in QR codes) as device IDs in
the firmware. We obtain these devices’ serial numbers by ap-
plying IDScope on their companion apps. These enumerated
IDs can be abused to exploit vulnerable APIs.
(2) Exploiting the App API to Leak Device ID (A2). Rentable
IoT products need to display the user’s nearby devices in their
apps. To implement this feature, the server provides device
profile retrieval APIs to the app, which fetches nearby devices
and displays them on the map using these APIs. We identify
multiple vulnerable app APIs that mistakenly return all of a
device’s fields reading from the databases, including sensitive
data like the device ID, while only a few of these fields are
actually displayed in the app. By modifying the GPS location,
we can abuse these APIs to leak the IDs of all devices.
Remotely Exploiting Devices at Scale. As shown in Table 6,
for 13 of the 14 vulnerable devices, attackers can replace the
device ID to connect to their server and perform various at-
tacks. These devices use weak authentication, and attackers
can easily bypass authentication and authorization and send
spoofed requests to affect other devices. Specifically, 3 of
them hard-coded common keys in all their devices, and 10
devices do not authenticate the devices. Theoretically, attack-
ers can get all device IDs and remotely exploit any device.
For MeiTuan bicycle, we fail to reverse their protocol and
do not identify any APIs with access control vulnerabilities.
WeiPeng uses unique keys for each device. As a result, we can
only exploit their vulnerabilities on local devices.

6.4 Scale App Side Exploits via IDScope

We adopt IDScope to confirm if the app vulnerabilities dis-
cussed in § 5 can lead to the large-scale exploitation of users
or devices. The results are shown in Table 7.
User ID enumeration. IDScope succeeds in enumerating
all the user IDs of 9 products, which with ID length of 5
to 11. In particular, IDScope can identify the ID pattern of

Table 7: App vulnerabilities that can be exploited at scale

Device Type Vendor ID Emueration Large-Scale
Privacy
Leakage

Large-Scale Device Free Usage

Uid (Len) SN (Len) Account
Hijack

Payment
Bypass

Manipulate
Devices

EV Charger Teld ✗(14) ✗(13) ✓ 1

Sunmue ✗(15) ✓(10) ✓ 1

Charger
LuLuChong ✓(11) ✓(5) ✓ ✓
NBLinks ✓(9) ✓(9) ✓ ✓
ZhouDian ✓(7) ✓(13) ✓

Mobility

YueHuoCX ✓(7) ✓(10) ✓ ✓ ✓
GXRongYi ✗(24) ✓(9) ✓
YueShiJi ✗(24) ✓(9) ✓
Hozonauto ✗(11) ✓(17) ✓
DFPV ✗(11) ✓(17) ✓

QiXin ✓(7) ✗(12) ✓ 2

GO-ON ✗(16) ✓(6) ✓

Tools
HQJL ✓(7) ✓(8) ✓
Ansheng ✓(9) ✓(9) ✓
Dadaball ✓(5) ✓(8) ✓

Entertainment QSMX ✓(32) ✓(11) ✓
BDT ✓(6) ✗(16) ✓

1 Besides enumerate IDs, attackers can exploit the super accounts (vertical privilege escalation).
2 QiXin’s device SN cannot be enumerated and is leaked by map API.

LuLuChong and NBLinks, which contain common alignment
prefixes making it easy to find out all valid user IDs. Using
only 7 digits as user IDs seems inadequate for accommodating
the increasing number of users in two products. For example,
YueHuoCX [11] has millions of users but relies on just 7
integers for user identification.

The failed cases include two devices that use the phone
number (11-digit) as user IDs, which are inefficient to be
enumerated by IDScope. However, for popular products, the
phone numbers may still be enumerated, as attackers can
get hits by matching the rentable IoT deployment cities with
the guessed phone number’s registration cities. The other 4
products utilize IDs consisting of 14 to 24 irregular numbers
or strings, which can resist the enumeration of IDScope.
Device ID enumeration. IDScope can efficiently guess 15
vulnerable devices’ serial numbers and identify their ID pat-
terns. For example, the QSMX rentable e-bike/boat uses 9-
digit IDs, but they have a pattern of 3-4, where the first 3
digits refer to the city code and the last 4 digits are the de-
vice numbers. Attackers can easily infer the valid ranges of
these 3-digit sections. The VIN number also has a similar
structure [9] that cars of the same vendors only vary in some
sections of the whole string. The failed cases (e.g., QiXin)
are devices that use a long random string containing both
numbers and characters.
Large-Scale Exploitation on Users and Devices. For 9 prod-
ucts susceptible to user ID enumeration, attackers can ex-
ploit vulnerable APIs using the victim users’ IDs, leading
to large-scale privacy leakage and unauthorized access to
private user data. In addition, five products exhibit account
hijacking vulnerabilities, enabling attackers to seize control
of user accounts on a large scale. Once these accounts are
compromised, attackers are positioned to manipulate asso-
ciated devices via their serial numbers. For 5 products with
payment bypass vulnerabilities and 7 products with device
manipulation vulnerabilities, attackers leverage enumerated
device SNs to access or rent devices without cost, leading to
extensive unauthorized usage. Notably, the Teld EV-charger

USENIX Association 33rd USENIX Security Symposium 6589

has another vulnerable API allowing users to be added to a
free-charge whitelist, which can be exploited to enable free
charging on any device after gaining device SNs from the
app’s map APIs.

Although the 3 vulnerable e-scooters (discussed in § 5)
apps’ device SN can all be enumerated, Lime and Helbiz still
require attackers to pay for their orders, while GO-ON allows
attackers to large-scale unlock all e-scooters for free. Com-
bined with credit card fraud, attackers can unlock unlimited
Lime e-scooters and manipulate all devices of Helbiz.

7 Responsible Disclosure and Mitigation

7.1 Responsible Disclosure
From 2022 to 2023, we identify 28 vulnerabilities in 19 apps
and 18 vulnerabilities in 11 devices of rentable products. We
inform vendors of our findings via email, phone, or WeChat,
with communications typically lasting one to two months.
All vulnerabilities are confirmed by the vendors, resulting in
15 CVE/CNNVD entries and 3 NVDB entries. The vendors
promptly resolve the 28 vulnerabilities in apps. The 18 vul-
nerabilities on devices are addressed in their new devices but
some (e.g., hardcoded keys) remain in their legacy devices.

In 2024, we investigate 6 new Chinese rentable devices
(including AnSheng, AnKong, WeiPeng, YFLe, and BDT) and
find 5 vulnerabilities across 3 physical devices and 2 vulner-
abilities within two apps from 3 different vendors. To date,
only Ankong has confirmed its 3 vulnerabilities and we are
continuing discussions with the remaining 2 vendors. In addi-
tion, for the 11 e-scooter/e-bike operating in other countries,
we discovered 4 vulnerabilities in the iOS apps of Lime, GO-
ON and Helbiz. We inform the affected vendors of the vul-
nerabilities via email. They have acknowledged forwarding
the information to their technology teams for further confir-
mation. We track vendor feedback online at https://vehicle-
security.github.io.

7.2 Mitigating ID Enumeration Attack
The root cause of ID enumeration attacks is that some APIs
lack proper access control, and attackers can illegally access
unauthorized resources via the resource ID. Before being
detected by the server, they can attack as many devices as
possible by large-scale enumerating the resource IDs. It is
impossible to eliminate all these vulnerabilities to make ID
enumeration harmless. A straightforward way to mitigate
this attack is to append random characters to the ID string
and increase its length to make it much harder to enumerate.
However, some products need to retain a simple ID to make
it easier for users to manually type in the ID if the QR code is
broken. Also, some resources may use the auto-incrementing
fields of the database (e.g. primary key) as IDs, which are
expensive to change due to the complexity of the backend.

Simply adopting a rate limit is also inadequate as the apps
may also frequently invoke these APIs to query devices via
their IDs.

To enhance the security of using short digits as IDs, we
propose a decoy ID-based solution [37] to quickly detect the
ID enumeration attack. The basic idea is to mix the real IDs
with fake IDs, and the fake IDs are not actually used by the
devices, but can only be accessed by attackers who try to craft
requests to enumerate IDs. Apps typically do not access these
fake IDs unless users mistakenly input incorrect IDs, which
occurs at a very low rate. If a client consistently triggers fake
IDs at a high frequency, it strongly indicates the adversaries
are attempting to enumerate IDs. The server can then block
these clients.
Security Analysis. We assume that attackers can change their
IPs and user IDs to bypass the rate limit. The defense goal is
to prevent them from exploiting the devices with continuous
serial numbers. We choose to shuffle the real IDs and mix
them uniformly with the decoy ID. By studying the ID distri-
bution in real products, we notice that the real device numbers
are about 5% to 45% of all the ID space. That is, for a 5-digit
ID, there can be 5000 (5%) to 45K (45%) consecutive device
numbers ranging from 0 to 5000/45000. This allows us to
insert 3 to 8 fake IDs in every 10 IDs, which is enough to pre-
vent enumeration in any range of device numbers. By setting
a threshold of three fake IDs that a malicious user can trigger,
attackers can be detected within 10 enumeration requests.

7.3 Mitigating Other Vulnerabilities
We correspond with multiple vendors via email to facilitate
the mitigation of vulnerabilities.
(1) Mitigate Physical Devices’ Threats. Local exploits, al-
though limited in scope, typically begin with attackers an-
alyzing the hardware of devices by extracting firmware [24],
injecting intra-board messages [3], and creating phantom
clients [69]. Such methods require disassembling the devices
and exploiting weaknesses in the MCUs [58]. To counter these
tactics, vendors are advised to redesign the physical structures
of their products to hinder disassembly and reassembly ef-
forts, enhance the security of MCU firmware [5], and integrate
anti-tamper mechanisms that can detect any disassembly at-
tempts [57]. One plausible measure to protect MCU firmware
involves implementing one-time programmable eFuses [6],
which can permanently disable JTAG and SWD interfaces,
thus securing the hardware from unauthorized modifications.
Additionally, installing hardware that monitors and records
the device’s internal status [57] can help servers identify hard-
ware tampering or falsified device states. However, these hard-
ware updates can be extremely time-consuming due to the
vast number of devices involved, presenting a significant chal-
lenge in large-scale implementations. Therefore, we suggest
vendors deploy server abnormal detection [43] for frequent
invalid requests to identify and ban compromised devices.

6590 33rd USENIX Security Symposium USENIX Association

https://vehicle-security.github.io/shared-iot.html
https://vehicle-security.github.io/shared-iot.html

Currently, only the Meituan shared bicycle uses special phys-
ical structures to automatically disconnect devices when they
are disassembled.
(2) Mitigate the Device-Side Remote Threats.Among 15 re-
motely exploitable products analyzed, only 2 employed mes-
sage encryption, sharing keys across devices, while the oth-
ers lacked encryption or robust authentication methods. De-
vice IDs, often simplistic and predictable, were consistently
exposed via app APIs, facilitating potential large-scale at-
tacks [24]. Notably, in our work five of these devices em-
ployed easily guessable, sequential IDs, increasing their vul-
nerability to enumeration attacks.

While some vendors have begun issuing firmware updates
since October 2022 to implement unique device passwords,
significant challenges persist, especially for products like
LVCC that lack support for OTA updates. Recommended
mitigation strategies include the implementation of TLS for
secure communication, the use of unique device passwords,
the deployment of session-specific tokens, and the strength-
ening of ID security measures to enhance overall device-side
protection. Although plaintext passwords can still be extracted
from firmware, large-scale remote exploitation is impractical
as attackers can only access limited local devices.
(3) Mitigate the App-Side Remote Threats.Companion apps
often handle payment or device control requests, which can
be compromised by attackers due to insecure implementations.
This includes vulnerable server APIs that fail to properly man-
age authorization or inadvertently expose sensitive data [72].
Such vulnerabilities pose a risk to a vast number of devices.
Vendors have responded swiftly by rectifying these flaws. Fur-
thermore, they are enhancing the security of device IDs by
lengthening them, incorporating decoy IDs, and implementing
abnormal activity detection systems.

8 Related Work

EV Charger and E-Scooter Security. Our study includes
nearly 40% of the devices that are rentable chargers for e-
bikes or EVs. We specifically investigate the security vulner-
abilities in the firmware and apps of these rentable devices.
While previous research has addressed physical layer secu-
rity [14] and communication security within charging stan-
dard protocols [23], these areas are orthogonal to our focus,
which centers on issues arising from the shared nature of these
devices. Previous work [59] focuses on the privacy issues in
e-scooter rental apps, we systematically study the exploitation
of their apps and devices.
Enumeration Attacks. Existing works focus on detect-
ing enumeration attacks on cloud environments, usernames,
etc. [12,28] Enumeration attacks specifically targeting IoT de-
vices remain unexplored. In our work, we uncover and demon-
strate novel types of enumeration attacks that exploit various
resource IDs of rentable IoT devices, presenting unique chal-

lenges and requiring distinct enumeration strategies tailored
to the rentable device context.
IoT Access Control. Multiple users and devices [55, 56] can
lead to significant authorization and usage coordination chal-
lenges in a smart home ecosystem. Kratos+ [54,55] addresses
these challenges by implementing a system of partial autho-
rization, which ensures normal operation while mitigating the
risks associated with excessive permissions, which not only
maintains normal operations but also prevents the risks of
excessive permissions that could lead to device tampering.
To further enhance the security of the Smart Home System
(SHS), Aegis framework [13, 52, 53] supports various net-
work communication protocols and enhances threat detection
capabilities. It effectively monitors both encrypted and un-
encrypted traffic, identifies potential threats from integrated
sensors in-home devices, and deploys defensive strategies to
mitigate these vulnerabilities. However, it still needs to ex-
plore how to adapt these solutions to rentable IoT devices as
they have a different backend architecture.
IoT Authentication Security. Existing works [18, 34, 35, 51,
69] mainly focus on the interactions between smart home IoT
devices and clouds. rentable IoT devices represent new re-
search problems as they communicate directly with the cloud,
while smart home devices may use the companion app [46,70]
as gateways or IoT hubs [69] to connect to the IoT cloud.
The MITM attacks (e.g., OTA hijack) on smart homes de-
vices [18, 70] cannot be applied to cellular IoT devices as
their communication is over the LTE cellular network. Simi-
larly, the large-scale weak authentication found in cellular IoT
devices by our study is unlikely to happen in smart homes,
which are usually managed separately by users [34, 35]. Note
that there are also some approaches [26, 64] that propose
new mechanisms for securing IoT authentication, which can
help to mitigate the weak authentication problem and device
impersonation attacks discussed in our work.
IoT Reverse Engineering. Reverse engineering is widely
used [18, 62, 69] for researching the risks in closed-source
IoT products. Our work focuses on reversing the customized
binary protocols of cellular IoT devices. The existing protocol
reverse engineering efforts can be divided into two categories:
binary analysis based approaches [22, 25, 42] which dynami-
cally or statically analyze the binary code and memory data
of protocol processing, and network message traces based
approaches [38, 39, 66] which distinguish the message types
and identify their formats by message cluster and alignment.
Only adopting firmware analysis [22] is inadequate for retriev-
ing message formats due to their complex, variable-length
parameters. The challenge in reversing cellular IoT device
protocols lies in understanding the semantic of all commands,
not just clustering messages [66] to identify format, as net-
work traces can only cover a few commands of the devices.
We address this problem by analyzing the firmware to extract
new commands from the strings of the log print code.
IoT Firmware Security Extensive research efforts are pro-

USENIX Association 33rd USENIX Security Symposium 6591

posed to identify the vulnerabilities [27, 29, 44, 63] or en-
hance the security in IoT devices [31, 49]. HEAPSTER [29]
discovers the vulnerable heap allocators in IoT firmware.
DICE [44], P2IM [27], and Jetset [36] improve the firmware
rehosting [30] to facilitate the firmware fuzzing test. Our work
do not exploit the vulnerabilities in firmware but extract se-
crets from them. HERA [49] and RapidPatch [31] address the
challenge of hotpatching real-time IoT devices for timely bug
fixes. These works are orthogonal to our study.
IoT Cloud and Companion App Security. Existing works
focus on smart homes’ cloud access control security [35, 69]
and protocol security [34, 60]. Jia et al. [34] and MPInspec-
tor [60] focus on MQTT based IoT devices, while most cel-
lular IoT devices use customized binary protocols. Multiple
works [46, 50, 61, 70] choose to study IoT security from the
perspective of the companion apps. MaaG [70] identify the
vulnerable access controls between IoT devices and their
companion apps. BLESCOPE [71] discovers attackers can fin-
gerprint the BLE based IoT devices by obtaining their static
UUIDs from the companion apps. DIANE [50] analyzes the
companion apps to efficiently generate valid inputs to fuzz IoT
firmware. Our study reveals new consequences of large-scale
exploiting the users and devices by abusing app APIs.

9 Discussion

We talk to vendors to identify the root causes of their vul-
nerabilities and learn from their mistakes to establish best
practices for securing rentable IoT devices.
The Root Causes of Using Weak IDs and Common Keys.
As discussed in § 2, rentable IoT products commonly utilize
three resource IDs: the user ID, the device serial number,
and the device ID. Vendors choose simple IDs like auto-
incrementing user IDs for their easy implementation and hu-
man readability, ignoring the security risks, which have been
underreported until now. Using common keys is also a trade-
off in device manufacturing. The device serial number is often
printed on the physical device to allow manual entry, favor-
ing shorter IDs for ease of use. Additionally, because of the
large number of devices, to streamline device provisioning
and communication processes, vendors often employ com-
mon keys across multiple devices and use continuous integers
as serial numbers.
Limitation and Future Works. Our work has two primary
limitations, and we leave them for future work.
(1) Investigating More IoT Products. Two key factors restrict
the number of products studied. First, it is extremely expen-
sive for us to get more devices or apps for research. We can
only buy very few devices as a limited number of vendors
sell shared IoT devices to individual operators. It is also time-
consuming to obtain devices from the vendors by cooperating
with them. However, attackers face little hindrance in acquir-
ing these devices, as they can illegally obtain (e.g., steal or

rob) a device, given the huge number of devices operating
unmanned. Furthermore, accessing the QR codes of rentable
IoT apps presents another challenge, as they are typically
only available on physical devices deployed across various
cities. It is interesting to extensively study all the components
of rentable IoT devices, such as EV charger’s management
website [48] and charging standard [40].

Second, testing rentable IoT products is labor intensive.
Many rentable IoT apps adopt real-name registration and
need to pay a deposit before use. These processes cannot
be automated now. Reverse engineering IoT firmware and
Android apps also require sophisticated hacking skills. In the
future, we plan to study a wider range of rentable IoT products
in a more efficient way.
(2) In-depth Study of the Cellular Network and Chips. We
believe that the vulnerabilities outlined in this paper may also
be present in other cellular IoT devices. Unfortunately, our
attempts to crack the secure boot of cellular MCUs have been
unsuccessful, hindering further exploration of their firmware.
Additionally, the absence of professional cellular network se-
curity analysis tools and environments, which are often costly
and must be operated within strictly controlled conditions as
mandated by laws in many countries, including China, has
limited our ability to delve deeper into cellular network se-
curity. This restricts our capability to experiment with and
analyze cellular networks safely and legally. If attackers can
intercept the 4G/5G cellular network, they can use our vulner-
abilities to manipulate multiple physical devices by forging
server commands.

10 Conclusion

In this paper, we conduct the first study to introduce the ar-
chitecture and uncover the security implications of rentable
IoT products. By investigating 17 physical devices and 92
IoT apps, we find that rentable IoT devices exhibit multiple
common design and implementation vulnerabilities in both
their local devices and companion apps. To validate these
findings in real products, we first propose a semi-automated
approach to test the APIs of rentable IoT devices and apps,
successfully identifying 23 vulnerabilities across 14 physical
devices and 34 vulnerabilities within 23 apps, which can af-
fect 28 products. Moreover, we also find these devices utilize
weak IDs across multiple resources, posing a risk of large-
scale exploitation to users or devices. To assess the scope of
affected devices, we then propose an automated ID enumera-
tion detection tool, called IDScope, which confirms that 13
devices and 17 apps are vulnerable to large-scale attacks that
can affect all users or devices from the same vendor for 24
products. Our work elucidates the root causes of these vulner-
abilities, enabling effective vendor mitigation and resulting in
18 CVE/CNNVD/NVDB numbers.

6592 33rd USENIX Security Symposium USENIX Association

Acknowledgment

We would like to thank our shepherd and the anonymous re-
viewers for their valuable comments. This work is in part sup-
ported by the National Natural Science Foundation of China
(62272265, 62132011, and U1936121). Qi Li and Jianwei
Zhuge are the corresponding authors of the paper.

References

[1] Bug Bounty Plan for Lime E-Scooter. https://bugc
rowd.com/lime.

[2] BurpSuite. https://portswigger.net/burp.

[3] Enable cellular chip’s logs. https://doc.openluat
.com/wiki/29?wiki_page_id=3371.

[4] Potevio Charger for vehicle. http://www.evcard.p
tne.cn.

[5] Protect MCU firmware. https://hackmag.com/secu
rity/protec-stm32/.

[6] Secure JTAG. https://www.digi.com/resources
/documentation/digidocs/90001546/concept/t
rustfence/c_secure_jtag.htm.

[7] Starcharge Charger for vehicle. https://www.starch
arge.com/en.

[8] Teld Charger for vehicle. https://www.teld.cn.

[9] The ISO 3779 standard of Vehicle identification number.
https://en.wikipedia.org/wiki/Vehicle_iden
tification_number.

[10] The rise and fall of OFO. https://www.scmp.com
/tech/start-ups/article/3114932/rise-and-f
all-mobike-and-ofo-chinas-bike-sharing-twi
n-stars.

[11] The website of YueHuoChuXing shared E-Bike. http:
//yuehuocx.com/.

[12] What are User Enumeration Attacks? https://www.vi
rtuesecurity.com/kb/username-enumeration/.

[13] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Ku-
mar Sikder, Markus Miettinen, Hidayet Aksu, Mauro
Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac. Peek-
a-boo: i see your smart home activities, even encrypted!
WiSec, 2020.

[14] Richard Baker and Ivan Martinovic. Losing the car keys:
Wireless phy-layer insecurity in EV charging. In Nadia
Heninger and Patrick Traynor, editors, USENIX Security,
2019.

[15] David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa
Radomirovic, Ralf Sasse, and Vincent Stettler. A formal
analysis of 5g authentication. In CCS, 2018.

[16] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. If
this then what?: Controlling flows in iot apps. In CCS,
2018.

[17] I. Bermudez, A. Tongaonkar, M. Iliofotou, M. Mellia,
and M. M. Munafo. Automatic protocol field inference
for deeper protocol understanding. In IFIP Networking,
2015.

[18] Marco Casagrande, Eleonora Losiouk, Mauro Conti,
Mathias Payer, and Daniele Antonioli. Breakmi: Re-
versing, exploiting and fixing xiaomi fitness tracking
ecosystem. CHES, 2022.

[19] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder,
Hidayet Aksu, Gang Tan, Patrick D. McDaniel, and
A. Selcuk Uluagac. Sensitive information tracking in
commodity iot. In USENIX Security, 2018.

[20] Z. Berkay Celik, Gang Tan, and Patrick Mcdaniel. Iot-
guard: Dynamic enforcement of security and safety pol-
icy in commodity iot. NDSS, 2019.

[21] Jared Chandler, Adam Wick, and Kathleen Fisher. Bina-
ryinferno: A semantic-driven approach to field inference
for binary message formats. In NDSS, 2023.

[22] Lucian Cojocar, Jonas Zaddach, Roel Verdult, Herbert
Bos, Aurélien Francillon, and Davide Balzarotti. Pie:
Parser identification in embedded systems. In ACSAC,
2015.

[23] Mauro Conti, Denis Donadel, Radha Poovendran, and
Federico Turrin. Evexchange: A relay attack on elec-
tric vehicle charging system. In Vijayalakshmi Atluri,
Roberto Di Pietro, Christian Damsgaard Jensen, and
Weizhi Meng, editors, ESORICS, 2022.

[24] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and
Davide Balzarotti. A large-scale analysis of the security
of embedded firmwares. In USENIX Security, 2014.

[25] Weidong Cui, Jayanthkumar Kannan, and Helen J. Wang.
Discoverer: Automatic protocol reverse engineering
from network traces. In USENIX, Security, 2007.

[26] Jingwen Fan, Yi He, Bo Tang, Qi Li, and Ravi Sandhu.
Ruledger: Ensuring execution integrity in trigger-action
iot platforms. In INFOCOM, 2021.

[27] Bo Feng, Alejandro Mera, and Long Lu. P2IM: scalable
and hardware-independent firmware testing via auto-
matic peripheral interface modeling. In USENIX Secu-
rity, 2020.

USENIX Association 33rd USENIX Security Symposium 6593

https://bugcrowd.com/lime
https://bugcrowd.com/lime
https://portswigger.net/burp
https://doc.openluat.com/wiki/29?wiki_page_id=3371
https://doc.openluat.com/wiki/29?wiki_page_id=3371
http://www.evcard.ptne.cn
http://www.evcard.ptne.cn
https://hackmag.com/security/protec-stm32/
https://hackmag.com/security/protec-stm32/
https://www.digi.com/resources/documentation/digidocs/90001546/concept/trustfence/c_secure_jtag.htm
https://www.digi.com/resources/documentation/digidocs/90001546/concept/trustfence/c_secure_jtag.htm
https://www.digi.com/resources/documentation/digidocs/90001546/concept/trustfence/c_secure_jtag.htm
https://www.starcharge.com/en
https://www.starcharge.com/en
https://www.teld.cn
https://en.wikipedia.org/wiki/Vehicle_identification_number
https://en.wikipedia.org/wiki/Vehicle_identification_number
https://www.scmp.com/tech/start-ups/article/3114932/rise-and-fall-mobike-and-ofo-chinas-bike-sharing-twin-stars
https://www.scmp.com/tech/start-ups/article/3114932/rise-and-fall-mobike-and-ofo-chinas-bike-sharing-twin-stars
https://www.scmp.com/tech/start-ups/article/3114932/rise-and-fall-mobike-and-ofo-chinas-bike-sharing-twin-stars
https://www.scmp.com/tech/start-ups/article/3114932/rise-and-fall-mobike-and-ofo-chinas-bike-sharing-twin-stars
http://yuehuocx.com/
http://yuehuocx.com/
https://www.virtuesecurity.com/kb/username-enumeration/
https://www.virtuesecurity.com/kb/username-enumeration/

[28] Samira Eisaloo Gharghasheh and Tim Steinbach. Detec-
tion of enumeration attacks in cloud environments using
infrastructure log data. Handbook of Big Data Analytics
and Forensics, pages 41–52, 2022.

[29] Fabio Gritti, Fabio Pagani, Ilya Grishchenko, Lukas
Dresel, Nilo Redini, Christopher Kruegel, and Giovanni
Vigna. HEAPSTER: analyzing the security of dynamic
allocators for monolithic firmware images. In IEEE
S&P, 2022.

[30] Eric Gustafson, Marius Muench, Chad Spensky, Nilo
Redini, Aravind Machiry, Yanick Fratantonio, Davide
Balzarotti, Aurélien Francillon, Yung Ryn Choe, Christo-
pher Kruegel, and Giovanni Vigna. Toward the analysis
of embedded firmware through automated re-hosting. In
RAID, 2019.

[31] Yi He, Zhenhua Zou, Kun Sun, Zhuotao Liu, Ke Xu,
Qian Wang, Chao Shen, Zhi Wang, and Qi Li. Rapid-
Patch: Firmware hotpatching for Real-Time embedded
devices. In USENIX Security, 2022.

[32] Syed Rafiul Hussain, Omar Chowdhury, Shagufta
Mehnaz, and Elisa Bertino. Lteinspector: A system-
atic approach for adversarial testing of 4g lte. In NDSS,
2018.

[33] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim,
Omar Chowdhury, and Elisa Bertino. 5greasoner: A
property-directed security and privacy analysis frame-
work for 5g cellular network protocol. In CCS, 2019.

[34] Yan Jia, Luyi Xing, Yuhang Mao, Dongfang Zhao, Xi-
aoFeng Wang, Shangru Zhao, and Yuqing Zhang. Bur-
glars’ iot paradise: Understanding and mitigating secu-
rity risks of general messaging protocols on iot clouds.
In IEEE S&P, 2020.

[35] Yan Jia, Bin Yuan, Luyi Xing, Dongfang Zhao, Yifan
Zhang, XiaoFeng Wang, Yijing Liu, Kaimin Zheng, Pey-
ton Crnjak, Yuqing Zhang, Deqing Zou, and Hai Jin.
Who’s in control? on security risks of disjointed iot
device management channels. CCS ’21, 2021.

[36] Evan Johnson, Maxwell Bland, Yifei Zhu, Joshua Ma-
son, Stephen Checkoway, Stefan Savage, and Kirill
Levchenko. Jetset: Targeted firmware rehosting for
embedded systems. In USENIX Security, 2021.

[37] Ari Juels and Ronald L. Rivest. Honeywords: Making
password-cracking detectable. In CCS, 2013.

[38] Stephan Kleber, Frank Kargl, Milan State, and Matthias
Hollick. Network message field type clustering for re-
verse engineering of unknown binary protocols. In DSN
Workshops (DSN-W), 2022.

[39] Stephan Kleber, Henning Kopp, and Frank Kargl.
NEMESYS: network message syntax reverse engineer-
ing by analysis of the intrinsic structure of individual
messages. In WOOT, 2018.

[40] Sebastian Köhler, Richard Baker, Martin Strohmeier,
and Ivan Martinovici. Brokenwire: Wireless disruption
of ccs electric vehicle charging. In NDSS, 2023.

[41] Zeyu Lei, Yuhong Nan, Yanick Fratantonio, Antonio
Bianchi, and Cisco Talos. On the insecurity of sms
one-time password messages against local attackers in
modern mobile devices. In NDSS, 2021.

[42] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu
Zhang. Automatic protocol format reverse engineering
through context-aware monitored execution. In NDSS,
2008.

[43] Yongxin Liu, Jian Wang, Jianqiang Li, Shuteng Niu, and
Houbing Song. Machine learning for the detection and
identification of internet of things devices: A survey.
IEEE Internet of Things Journal, 2022.

[44] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda.
Dice: Automatic emulation of dma input channels for
dynamic firmware analysis. In IEEE S&P, 2021.

[45] Maliheh Monshizadeh, Prasad Naldurg, and V. N.
Venkatakrishnan. Mace: Detecting privilege escalation
vulnerabilities in web applications. In CCS, 2014.

[46] Yuhong Nan, Xueqiang Wang, Luyi Xing, Xiaojing Liao,
Ruoyu Wu, Jianliang Wu, Yifan Zhang, and XiaoFeng
Wang. Are you spying on me? large-scale analysis on
iot data exposure through companion apps. In USENIX
Security, 2023.

[47] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ah-
mad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang,
Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao,
Feng Qian, and Zhi-Li Zhang. A variegated look at 5g
in the wild: performance, power, and qoe implications.
In SIGCOMM, 2021.

[48] Tony Nasr, Sadegh Torabi, Elias Bou-Harb, Claude
Fachkha, and Chadi M. Assi. Chargeprint: A frame-
work for internet-scale discovery and security analysis
of ev charging management systems. In NDSS, 2023.

[49] Christian Niesler, Sebastian Surminski, and Lucas Davi.
HERA: hotpatching of embedded real-time applications.
In NDSS, 2021.

[50] Nilo Redini, Andrea Continella, Dipanjan Das, Giulio
De Pasquale, Noah Spahn, Aravind Machiry, Antonio
Bianchi, Christopher Kruegel, and Giovanni Vigna. Di-
ane: Identifying fuzzing triggers in apps to generate

6594 33rd USENIX Security Symposium USENIX Association

under-constrained inputs for iot devices. In IEEE S&P,
2021.

[51] Hetian Shi, Yi He, Qing Wang, Jianwei Zhuge, Qi Li,
and Xin Liu. Laser-based command injection attacks on
voice-controlled microphone arrays. IACR Transactions
on Cryptographic Hardware and Embedded Systems
(CHES), 2024.

[52] Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Ulu-
agac. 6thSense: A context-aware sensor-based attack
detector for smart devices. In USENIX Security, 2017.

[53] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu,
and A. Selcuk Uluagac. Aegis: a context-aware security
framework for smart home systems. In ACSAC, 2019.

[54] Amit Kumar Sikder, Leonardo Babun, Z Berkay Celik,
Abbas Acar, Hidayet Aksu, Patrick McDaniel, Engin
Kirda, and A Selcuk Uluagac. Kratos: Multi-user multi-
device-aware access control system for the smart home.
In WiSec, 2020.

[55] Amit Kumar Sikder, Leonardo Babun, Z. Berkay Ce-
lik, Hidayet Aksu, Patrick McDaniel, Engin Kirda, and
A. Selcuk Uluagac. Who’s controlling my device?
multi-user multi-device-aware access control system for
shared smart home environment. ACM Trans. Internet
Things, 2022.

[56] Amit Kumar Sikder, Giuseppe Petracca, Hidayet Aksu,
Trent Jaeger, and A. Selcuk Uluagac. A survey on sensor-
based threats and attacks to smart devices and applica-
tions. IEEE Communications Surveys & Tutorials, 2021.

[57] Paul Staat, Johannes Tobisch, Christian T. Zenger, and
Christof Paar. Anti-tamper radio: System-level tamper
detection for computing systems. IEEE S&P, 2021.

[58] Sebastian Vasile, David F. Oswald, and Tom Chothia.
Breaking all the things - a systematic survey of firmware
extraction techniques for iot devices. In CARDIS, 2018.

[59] Nisha Vinayaga-Sureshkanth, Raveen Wijewickrama,
Anindya Maiti, and Murtuza Jadliwala. An investigative
study on the privacy implications of mobile e-scooter
rental apps. In WiSec, 2022.

[60] Qinying Wang, Shouling Ji, Yuan Tian, Xuhong Zhang,
Binbin Zhao, Yuhong Kan, Zhaowei Lin, Changting
Lin, Shuiguang Deng, Alex X. Liu, and Raheem Beyah.
Mpinspector: A systematic and automatic approach for
evaluating the security of iot messaging protocols. In
USENIX Security, 2021.

[61] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and Xi-
aoFeng Wang. Looking from the mirror: Evaluating
iot device security through mobile companion apps. In
USENIX Security, 2019.

[62] Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. Fir-
mxray: Detecting bluetooth link layer vulnerabilities
from bare-metal firmware. In CCS, 2020.

[63] Yuhao Wu, Jinwen Wang, Yujie Wang, Shixuan Zhai,
Zihan Li, Yi He, Kun Sun, Qi Li, and Ning Zhang. Your
firmware has arrived: A study of firmware update vul-
nerabilities. In USENIX Security, 2024.

[64] Yue Xiao, Yi He, Xiaoli Zhang, Qian Wang, Renjie Xie,
Kun Sun, Ke Xu, and Qi Li. From hardware fingerprint
to access token: Enhancing the authentication on iot
devices. In NDSS, 2024.

[65] Hojoon Yang, Sangwook Bae, Mincheol Son, Hongil
Kim, Song Min Kim, and Yongdae Kim. Hiding in plain
signal: Physical signal overshadowing attack on LTE.
In USENIX Security, 2019.

[66] Yapeng Ye, Zhuo Zhang, Fei Wang, Xiangyu Zhang, and
Dongyan Xu. Netplier: Probabilistic network protocol
reverse engineering from message traces. In NDSS,
2021.

[67] Bin Yuan, Yan Jia, Luyi Xing, Dongfang Zhao, Xi-
aoFeng Wang, Deqing Zou, Hai Jin, and Yuqing Zhang.
Shattered chain of trust: Understanding security risks in
cross-cloud iot access delegation. In USENIX Security,
2020.

[68] Xiaohan Zhang, Haoqi Ye, Ziqi Huang, Xiao Ye, Yinzhi
Cao, Yuan Zhang, and Min Yang. Understanding the
(in)security of cross-side face verification systems in
mobile apps: A system perspective. In IEEE S&P, 2023.

[69] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan,
Yuhang Mao, Peng Liu, and Yuqing Zhang. Discovering
and understanding the security hazards in the interac-
tions between iot devices, mobile apps, and clouds on
smart home platforms. In USENIX Security, 2019.

[70] Xin’an Zhou, Jiale Guan, Luyi Xing, and Zhiyun Qian.
Perils and mitigation of security risks of cooperation in
mobile-as-a-gateway iot. In CCS, 2022.

[71] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yin-
qian Zhang. Automatic fingerprinting of vulnerable
BLE iot devices with static uuids from mobile apps. In
CCS, 2019.

[72] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin.
Authscope: Towards automatic discovery of vulnerable
authorizations in online services. CCS, 2017.

USENIX Association 33rd USENIX Security Symposium 6595

Table 8: A full list of IoT-based device rental products studied in this work. (The mobility devices with gray backgrounds are
e-scooters/e-bikes operated in Europe/US, and other devices with Chinese names are products only operated in China. Products
with bold name have mobile apps, and the rest only provide WeChat mini-programs)

Device Type Vendor

EV Chager Teld(特来电) Potevio(普天新能源) StarCharge(星星充电) EVChargeNetwork(电动车充电网) Sunmue(尚e充电)

Charger

ShanKaiCharge(闪开来电) UUCharge(UU充电) MamCharge(猛犸充电) YunAn(世纪云安) NBLinks(涌鑫充电)
EnergyMonster(怪兽充电）Dian(小电充电) DailyCharge(天天充电) BlueCatCharge(蓝猫共享充电)
PisenPower(闪葱共享充电宝) QuQingTingCharge(趣蜻蜓共享充电) HeiQingTingCharge(黑蜻蜓充电)
XiaoXunCharge(小巡共享充电) LuLuChong(路路充) TowerEnergy(铁塔充电) FlyPower(飞天鹰扫码充电器)
QQCharging(千牛充电) DingDingCD(叮叮充电) Lvcc(驴充充) JieDian(街电) Xlvren(小绿人充电)
BaJieCharge(八戒充电) DuDuBox(嘟嘟充电) BeiDian(倍电科技) ZhouDian(昼电共享)

Lyft Lime Bird Spin Dott Voi TIER Helbiz Neuron GO-ON Bolt

Mobility

XiaoYuCX(小雨出行) KVCOOGO(快趣出行) XiaoMaCX(小玛电单) DiDiCX(滴滴出行) HelloBike(哈罗单车)
MeiTuanBike(美团) FeiYueTu(飞跃兔出行) BossGo(Boss行) LeGeCX(乐哥出行) Liubike(小遛出行)
LetFunGo(雷风出行) BaQiCX(巴骑出行) SunlightGo(阳光共享智行)MiMaDD(觅马出行QIQI(骑骑共享)
XiaoHuangYaCX(小黄鸭共享) GongChi(共驰电单车) XiaoBeiCX(小呗畅行) XianLvGo(闲驴出行)
Hozonauto(哪吒新能源) DFPV(东风新能源) QiXin(齐信共享单车) XiaoBinBike(小彬科技) ModaCX(摩达出行)
YueHuoCX(月火出行) KeNaDianCX(克哪点出行) GXRongYi(共享荣熠惠行) YueShiJi(粤世纪共享)

Tools
Penguin Technology(企鹅共享) XiaoLianHB(智慧笑联) XiaoIZhiNengXiYi(小I智能洗衣) Smile-Iot(思迈尔智能)
HQJL(华清捷利) Xiao-V(小v共享设备) AiPei(爱陪共享) WZ-Cloud(微众云) AnSheng(安圣科技) AnKong(安控)

Entertainment AnMoJianKangGo(按摩健康GO) LeMoBar(乐摩吧) QSMX(骑思妙想) WeiPeng(微鹏) YFLe(易付乐) BDT(便电通)

A Real World Rentable Cellular IoT Products

Table 8 shows the IoT-based device rental products studied
in this work. It falls into four usage categories: charging,
mobility, entertainment, and daily tools.
• Chargers. With the proliferation of electric vehicles,

rentable chargers are emerging in cities for people to charge
everywhere. Some leading operators in China such as
Teld [8], StartCharge [7], and Potevio [4] have deployed
millions of rentable chargers. We also investigate many
other rentable charging services, such as rentable power
banks for mobile, smart sockets, and battery charging cabi-
nets for electric bicycles.

• E-Scooter/E-Bicycle/Car. Compared to traditional rental
services, e-scooters, bicycles, and cars have gained popular-
ity due to their convenience. They can meet urban residents’
flexible short-distance travel needs as massive unmanned
devices are deployed everywhere, and people can rent them
anytime in a pay-per-use mode via mobile apps.

• Entertainment Devices. Public entertainment devices such
as massage chairs, billiards, and Mahjong tables can reduce
management costs through IoT-based device rental services.
With cellular IoT and companion apps, consumers can self-
serve the process of paying, renting, and returning these
devices.

• Tools. Facilities such as laundry machines and hair dryerss,
are frequently used in our daily life. Using cellular IoT,
these tools can be deployed and maintained unmanned in
hotels or dormitories at low cost.

B Capturing Cellular Chip’s Inner Traffic

As shown in Figure 8, we connect jumper wires to the IoT
chips for power supply, message trace capture, and debugging.
Some devices contains two chips and utilizing a cellular chip
to relay messages from the control chip (i.e., main MCU).
Their inter-chip traffic can be easily captured by using USB-
TTL serial cables to monitor the messages between two chips.

For devices equipped with a single cellular chip, there are
no inter-chip messages and the network traces come directly
from the cellular chip itself. By enabling the debug log feature
on these chips, we can access the unencrypted, raw messages
from the cellular process log (CP log). We can efficiently
capture these logs and retrieve the internal messages of the
cellular chips by attaching jumper wires to the appropriate
pinouts.

Control

(a) single
chip

Capture cellular
chips' intra/inter-

chip traffic

(b) dual
chips

USB-TTL

Figure 8: Capture cellular chips’ inner traffic by connecting
jumper wires to the logging pinouts.

6596 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background
	IoT Device Rental Service
	ID Enumeration Attacks

	Overview
	Threat Model
	Methodology
	Common Weakness in Rentable Products

	Analyzing Vulnerabilities of Devices
	Workflow for Studying Rentable Devices
	Security Implications in Devices

	Analyzing Vulnerabilities of Apps
	Scaling Attack Scope via IDScope
	IDScope Design
	The Effectiveness of IDScope
	Scale Device Side Exploits via IDScope
	Scale App Side Exploits via IDScope

	Responsible Disclosure and Mitigation
	Responsible Disclosure
	Mitigating ID Enumeration Attack
	Mitigating Other Vulnerabilities

	Related Work
	Discussion
	Conclusion
	Real World Rentable Cellular IoT Products
	Capturing Cellular Chip's Inner Traffic

