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Abstract
Deep Neural Networks (DNNs) are widely used in various
applications and are typically deployed on hardware accel-
erators. Physical Side-Channel Analysis (SCA) on DNN im-
plementations is getting more attention from both industry
and academia because of the potential to severely jeopar-
dize the confidentiality of DNN Intellectual Property (IP) and
the data privacy of end users. Current physical SCA attacks
on DNNs are highly platform dependent and employ distinct
threat models for different attack objectives and analysis tools,
necessitating a general revision of attack methodology and
assumptions. To this end, we provide a taxonomy of previous
physical SCA attacks on DNNs and systematize findings to-
ward model extraction and input recovery. Specifically, we
discuss the dependencies of threat models on attack objectives
and analysis methods, for which we present a novel systematic
attack framework composed of fundamental stages derived
from various attacks. Following the framework, we provide
an in-depth analysis of common SCA attacks for each at-
tack objective and reveal practical limitations, validated by
experiments on a state-of-the-art commercial DNN accelera-
tor. Based on our findings, we identify challenges and suggest
future directions.

1 Introduction

Deep Neural Networks (DNNs) have been widely deployed in
various applications, e.g., robot vision [138], conversational
AI chatbots [96, 123], machine translations [111], and AI-
assisted medical imaging [77]. The effectiveness of DNNs
fuels their widespread deployment, rendering them prevalent
in production. The data-driven nature of DNNs necessitates
their dependency on the availability of extensive datasets and
computational resources, which demands dedicated hardware
accelerators, for which cloud and edge computing are typi-
cally being leveraged [3, 8]. However, various applications
that are overly reliant on DNNs also increases the adversary’s

∗Authors are listed in alphabetical order.

incentive to look at the vulnerabilities of DNN implementa-
tions.

Vulnerabilities of DNN implementations have been studied
in Privacy-Preserving Machine Learning (PPML) research [7,
46, 88], where training and inference are implemented on
hardware platforms from parties that do not trust each other.
Current research on PPML is partly conducted at the software
level. On the one hand, the data provider worries about data
privacy, concerning leakage of private data to the party that
conducts the computation. For example, the input to DNN
models could be considered as privacy-sensitive, e.g., input
to facial-recognition-enabled CCTV cameras [15], medical
images locating diseases in a preliminary stadium [103], or a
user’s prompt to an online conversational AI [96]. Examples
of attacks compromising the data privacy of end users are
membership inference [108] and attribute inference [131]
attacks. On the other hand, the service provider that owns
DNN models has concerns that malicious users will steal the
Intellectual Property (IP) of DNNs, i.e., the architecture and
trained parameters, especially when deploying them to edge
devices [11]. One representative attack is model extraction,
where the adversary can rebuild the model by querying the
DNN [66, 119]. Common ways to combat those threats for
PPML include differentially-private machine learning [35,
62], secure multi-party computation [67], and homomorphic
encryption [100].

Physical SCA attacks pose a substantial threat in the
PPML scenario, where they have a different threat model than
software-level attacks, hinting that guarantees provided by
current defenses against software-based attacks may not hold.
Dedicated hardware is being designed and optimized for DNN
inference, and widely used in production environments [4, 8].
Physical SCA attacks on DNNs assume that the adversary is
in the vicinity of the hardware device that runs DNN models
and could collect traces that represent the device’s physical
properties, such as electromagnetic (EM) leakage or power
consumption. Figure 1 provides an illustrative example show-
ing the SCA setup when a DNN is running on hardware. Input
data [12,125], hyperparameters [81], and parameters [41] can
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Figure 1: Illustration of physical SCA on a Multi-Layer Per-
ception (MLP), where the model is running on hardware for
image classification. In the first layer of the MLP, bias b1 is
added to the weighted sum of all input points (xi) with weights
(wi,1) to get an intermediate value c1. Under a specific threat
model, intermediate values can be exploited in the trace anal-
ysis to mount an SCA attack to extract inputs or models.

be extracted by analyzing the collected traces, rendering a
practical threat. Sometimes, the adversary does not even need
to have any information about the model [11]. It indicates
that anyone in the physical proximity of the hardware could
be considered a threat, which is a valid hypothesis for adver-
saries being providers of cloud computing or end users of
edge devices. For example, a hospital employee can install
an EM probe on a portable ultrasound machine [122] and
measure the leakage from the chip to steal the DNN models.

Extensive research has been conducted in the area of phys-
ical SCA on DNNs over the past few years. Current SCA
attacks are highly platform dependent and employ distinct
threat models for different attack objectives and analysis tools,
demanding a general revision of attack methodology and
assumptions. In addition, existing surveys do not consider
the fundamental limitations introduced by model extraction
through physical side channels [79], but rather focus on the
wide scope of model extraction and discuss approaches only
at a high level [94].

In this paper, we revisit previous SCA attacks on DNN im-
plementations and provide a taxonomy where we systematize
findings toward model extraction and input recovery. Specifi-
cally, we discuss the dependencies of threat models on attack
objectives and analysis methods, motivated by which we also

present a novel systematic attack framework composed of fun-
damental stages derived from various attacks. Furthermore,
we provide an in-depth analysis of common SCA attacks for
each attack objective and discuss uncovered potential prac-
tice limitations, validated by experiments on a state-of-the-art
commercial Xilinx FPGA DNN accelerator.

Specifically, this SoK paper makes the following contribu-
tions:

• We taxonomize SCA attacks on DNNs that focus on ex-
tracting the architecture, parameters, and inputs exploit-
ing physical side-channel leakages. By breaking down
the attack into different stages, we provide a framework
that can be used to analyze and categorize all attacks
using side channels for model extraction and input re-
covery.

• Following our framework, we provide in-depth descrip-
tions and comparisons of SCA attacks, summarize the
common knowledge, and systematize the threat model.

• We demonstrate that strict assumptions that current ap-
proaches make for architecture extraction, can be relaxed
in some cases. This results in a larger search space for
architectural properties.

• We provide an analysis with simulations demonstrating
that the current approaches for parameter extraction of
DNNs are not efficient due to error propagation to dif-
ferent layers.

• We present a novel input recovery approach, in which at-
tributes of the input can be recovered without any knowl-
edge of the deployed DNN.

• We identify future challenges of physical SCA attacks
based on our framework and edge-case analysis. We sug-
gest future directions regarding hardware developments,
physical-SCA-based attacks, and countermeasures.

The rest of the paper is structured as follows. We start
the paper by providing background information on DNNs
(Section 2) and SCA (Section 3). Then we present the motiva-
tion towards model and input recovery attacks, together with
the generic threat model and our framework for current ap-
proaches (Section 4). We discuss existing approaches towards
architecture extraction (Section 5), parameter extraction (Sec-
tion 6), and input recovery (Section 7). Next, we provide an
outlook on the development of SCA, identify new potential
avenues for model and input recovery (Section 8). Finally,
we discuss broader related works (Section 9) and provide
concluding remarks (Section 10).

2 Deep Neural Networks and Hardware Accel-
erators

The flexibility and effectiveness of DNNs have made it the
de facto solution for various applications, e.g., facial recog-
nition [54]. Commonly used DNN architectures include,
Multi-Layer Perception (MLP) [120], Convolution Neural
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Networks (CNNs) [73], Generative Adversarial Networks
(GANs) [42], diffusion models [47], and Transformers [123].
Lightweight models, for example, Binary Neural Networks
(BNNs) [102] or compressed VGG-16 [109], can be deployed
on edge devices without overly relying on cloud computation
resources [43, 102].

For deployed DNNs, there are three main components of
interest to adversaries: the input, the architecture, and the
trained parameters. Depending on the application of the
model, the input can take different forms, e.g., an image or a
spoken sentence, for image and speech recognition, respec-
tively. The architecture of DNNs defines the types and con-
nections between the layers used in the network. Layers apply
different transformations on their input data and forward their
output to the subsequent layer(s). Each layer has a set of pa-
rameters, typically the weights and biases, that can be tuned
so that the DNN can solve a certain task.

The architecture of a DNN consists of multiple layers, i.e.,
the building blocks that process and transform input data. The
model part of Figure 1 provides an illustrative example of
MLP and shows the calculation of one intermediate value in
the first layer. While the various types of networks differ in ar-
chitecture, the modules they use often overlap and share many
similarities [45, 53, 58, 105]. Some common modules of these
networks are used in different types of DNNs. By changing
the variables in the configuration of these common modules,
known as the hyperparameters, different DNN structures can
be established.
Convolution layers and pooling layers are critical and fun-
damental building blocks in several types of Neural Networks,
which are primarily employed for image recognition [72]. A
convolution layer contains small kernels (also known as fil-
ters) that have trainable parameters and a predefined shape.
During the forward pass, kernels convolve across the whole
input with a certain step size, known as the stride. Pooling
layers help control the number of parameters to control over-
fitting and reduce computational load.
Fully-connected layers (FC layers) have hidden nodes and
each node applies a weighted sum over all inputs. The outputs
of the layer are the weighted sums of each node, so the output
size is determined by the number of nodes in the layer.
Activation functions introduce non-linearity into the DNN,
enabling it to solve complex problems. Different types of ac-
tivation functions are designed to increase efficiency [91] or
reduce the vanishing gradient problem [44]. Typically used ac-
tivation functions are ReLU, Tanh, Softmax, and Sigmoid [32].
Computational resource limit. Powerful DNNs require large
computational resources, especially during training. There-
fore, large DNNs are usually trained on GPUs, which by de-
sign greatly support parallel processing, to make this process
more efficient. The inference latency of DNNs is critical for
many applications, especially for resource-constrained envi-
ronments such as embedded devices [74]. To this end, many
accelerators have been developed, e.g., TPUs [65], and DPUs

on FPGAs [8].
Implementations of DNNs on edge devices are further lim-

ited by available resources. To resolve this issue, resource-
aware architectures have been designed, e.g., MobileNet [53]
and EfficientNet [115]. Another solution is to quantize reg-
ular DNNs to reduce resource consumption during imple-
mentation, e.g., XILINX FPGA-based accelerators [8], and
BNNs [102]. Hardware-wise, FPGAs are also used for edge
applications where resources are limited. Due to their low
computation overhead, low latency, and flexibility, FPGAs
are popular choices for model inference [8, 112, 136].

3 Background on Side-Channel Analysis

Due to their physical implementation, electronic devices emit
unintentional information about their state via side channels.
Side-Channel Analysis (SCA) can be applied to obtain infor-
mation about the executed operations and data processed by
the device. Side channels can be either physical (e.g., timing,
power, electromagnetic emanation) or logical (e.g., memory
access patterns), based on the measured properties. In ad-
dition, SCA attacks are non-invasive, passive attacks where
the adversary does not tamper with the normal execution of
the device, just observes information, as opposed to fault at-
tacks [13] which induce errors in the device’s execution. In
this work, we only consider passive physical SCA attacks that
exploit timing, power or EM emanations as side channels.
Timing analysis exploits the variations in an algorithm’s
execution time where the amount of variation depends on
the instruction executed or some other secret information.
Variations in timing can occur for various reasons, e.g., non-
constant time instruction, cache hit/miss, or branching [68].
In the context of neural networks, changing hyperparameters
that alter the structure of a neural network can result in large
variations in execution times [11].
Power analysis leverages the dependency of dynamic power
consumption of an electronic device while processing and
the data used in executed operations [69]. There are different
flavors of power analysis of which we will focus on Simple
Power Analysis (SPA) and Differential Power Analysis (DPA).
SPA analyses a few, or even just a single collected trace to ex-
tract information about the operations executed by the device
or the used (secret) data. DPA and its variants, e.g., Correlation
Power Analysis [16], recover secret data exploiting the data
dependency of power consumption [83]. These dependencies
can allow an adversary to perform statistical tests between
the set of collected traces T and the hypothetical power con-
sumption of secret data-dependent intermediate values of the
algorithm, by using a leakage model, e.g., Hamming-weight
(HW) or Hamming-distance (HD). In the context of neural
networks, secret data are considered to be the parameters (i.e.,
the weights and biases) of the models in contrast to keys for
crypto implementations.
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Electromagnetic analysis takes advantage of electromag-
netic (EM) emanations occurring due to moving charges that
produce and change magnetic fields. Therefore, the EM em-
anations of a device executing an operation of interest can
be measured by using an antenna to collect near- or far-field
emanations from the target device. Since EM emanations de-
pend on current flowing through components in a device, the
concepts of SPA and DPA can also be used on EM emanations
and they are called Simple EM Analysis (SEMA) and Corre-
lation EM Analysis (CEMA), respectively. EM analysis has
proven effective in eavesdropping on display units and break-
ing cryptographic implementations [36, 38, 50, 71, 80, 121].
Defenses against Side-Channel Analysis Thanks to the ex-
tensive research in the field, a broad range of different de-
fenses can be used to protect devices against SCA. First of
all, timing vulnerabilities can be mitigated by making imple-
mentations constant time with using, e.g., non-variable time
instructions and only non-secret data-dependent branches. De-
fending against power analysis can be done both in hardware
and software. In hardware, different logic styles than CMOS
such as e.g. dual-rail [118] can be used for the hardware de-
sign (and production) of the device. In software, one can use
masking, making the power dependent on other (masked) data,
instead of actual data [24, 83, 101]. Finally, for EM analysis,
specific hardware countermeasures, such as shielding, can
prevent sensitive electromagnetic emanations leaking from
the device [25].

4 Reverse Engineering Neural Networks

A trained DNN has multiple valuable facets that an adversary
might try to acquire after the model is deployed:

1. the inputs during inference,

2. the architecture of the deployed model,

3. the parameters of the deployed model.

Inputs to DNNs can contain valuable or privacy-sensitive
information, such as in medical applications [103]. The ex-
act DNN architecture is IP and often kept secret because
many cutting-edge models are closed-source and are usually
modified versions of common architectures. For example,
ChatGPT-4 [96] is a proprietary IP based on the Transformer
architecture [123]. More importantly, the training of closed-
source models can also include proprietary training data that
an adversary may not be able to access. Furthermore, train-
ing a model requires a high level of expertise that the adver-
sary may be lacking. Therefore, the parameters of the trained
model are also of a paramount importance.

In this paper, we consider works whose objective is to
recover one or more of these facets by exploiting physical
side channels requiring proximity to the target device.

4.1 Threat Model
We decompose the threat model into generic capabilities and
objective-specific knowledge to taxonomize previous SCA
attacks. The generic capabilities are used across all inves-
tigated attacks, whereas the adversary may have additional
knowledge, depending on the objective of the attack. These
additional capabilities that an adversary may have are listed
here as objective-specific knowledge.
Generic capabilities:
G1: Physical proximity to the hardware device, for which no

countermeasures are implemented.
G2: Capability to collect and analyze power and EM traces.
G3: The attacker has access to a profiling device, identical to

the device under attack.
Objective-specific knowledge:
Inputs:
I1: The input dimensions.
I2: The architecture of the DNN.
I3: The parameters used in the DNN.

Architecture:
A1: The input dimensions and values.
Parameters:
P1: The input dimensions and values.
P2: The architecture.
P3: The hardware design of the device under attack.

4.2 Taxonomy
We provide a taxonomy in Table 1 for all existing research
works on reverse engineering DNNs via physical side chan-
nels to our best knowledge. Specifically, different SCA attacks
are categorized by the objective and intermediate objectives
of the attack, objective-specific knowledge of the adversary,
the model type, the platform on which they are deployed, the
SCA methods, and the attack path.
Objectives and dependencies. Objectives of adversaries are
three-fold, namely input, architecture, and parameters, which
are not always independent. The architecture of a DNN is the
first secret that adversaries would like to extract, and hence
the foundation to extract the parameters. As seen in Table 1,
all parameter extraction methods need access to architectures
either conducting architecture extraction or assuming that the
architecture is known. Input recovery is less dependent on the
other objectives, where only a two known approaches take
parameters into account [82, 125].
Intermediate Objectives. The intermediate objective speci-
fies the key intermediate results to achieve the final objective.
For architecture extraction, the intermediate objective can be
either component-level (layer and activation types, the num-
ber of layers (#layers) or number of neurons (#neurons), and
kernel size) or model-level (candidate model ranking from
known architectures). For parameter extraction and input re-
covery, the intermediate objective is often the ranking of the
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Table 1: Taxonomy for reverse-engineering DL implementations with physical SCA.
Paper Objective Intermediate Specific Attack Scenario

Arch. Params. Input Objective Knowledge Model Type Platform Analysis Attack Path

Hu, et al. (2020) [56] Layer Type and #Layers – CNN GPU CP 2a

Takatoi, et al. (2020) [114] Activation Type – MLP CPU SPA, CP 1 2a

Xiang, et al. (2020) [127] Candidate Model Ranking A1 CNN CPU CP 2a

Yu, et al. (2020) [135] Layer Type and #Layers A1 BNN FPGA SPA, CP 1 2a

Chmielewski, et al. (2021) [22] Layer and Activation Types, #Neurons A1 MLP GPU SPA, CP 1 2a

Maia, et al. (2021) [81] Layer Type and #Layers A1 CNN GPU SPA, HO 1 2b

Wolf, et al. (2021) [126] Candidate Model Ranking A1 CNN CPU CP 2a

Buzer (2022) [17] Candidate Model Ranking A1 CNN FPGA SPA, CP 1 2a

Liang, et al. (2022) [76] Layer Type and #Layers – CNN GPU SPA 1 2c

Joud et al. (2023) [64] Layer Type and #Layers – MLP & CNN CPU SPA, CP 1 2a

Sharma et al. (2023) [107] Candidate Model Ranking A1 CNN FPGA CP 2a

Horvath et al. (2024) [52] Candidate Model Ranking – CNN GPU SPA, CP 1 2a

Batina, et al. (2019) [11] Layer and Activation Types, #Neurons,
#Layers, Float-32 Ranking (7 Bits)

A1, P1 MLP CPU SPA, CP, DPA 1 2a 3

Regazzoni, et al. (2020) [104] Layer Type, #Layers, Binary Ranking (1 Bit) P1 BNN FPGA SPA, CP, DPA 1 2a 3

Yli-Mäyry, et al. (2021) [132] Layer Type, #Layers, Kernel Size, Binary
Ranking (1 Bit)

P1 BNN FPGA SPA, CP, DPA 1 2a 3

Gongye et al. (2023) [41] Hardware Architecture, Layer Type, #Layers,
Kernel Size, Integer Ranking (8 Bits)

P1 CNN FPGA SPA, CP, DPA 1 2a 3

Dubey, et al. (2020) [29] Binary Ranking (1 Bit) P1, P2 BNN FPGA DPA 3

Joud, et al. (2022) [63] Float-32 Ranking (8 Bits) P1, P2 MLP CPU DPA 3

Yoshida, et al. (2020) [133] Integer Ranking (8 Bits) P1, P2, P3 MLP FPGA DPA 3

Yoshida, et al. (2021) [134] Integer Ranking (8 Bits) P1, P2, P3 MLP FPGA DPA 3

Li, et al. (2022) [75] Integer Ranking (8 Bits) P1, P2 MLP FPGA DPA 3

Horvath, et al. (2023) [51] Float-16 Ranking P1, P2 CNN GPU DPA 3

Maji, et al. (2021) [82] Float-32 Ranking (7 Bits), Binary Ranking (1
Bit)

I1, I2, I3, P1, P2 CNN & BNN FPGA DPA 3 4a

Wei, et al. (2018) [125] Image Silhouette, Integer Ranking (8 Bits) I1, I2 CNN FPGA SPA, SA, DPA 4a 4b

Batina, et al.(2019) [12] Float-32 Ranking (7 Bits) I1, I2, I3 MLP CPU DPA 4a

Dong, et al. (2019) [27] Image Silhouette I1 MLP CPU SA 4b

Thu, et al.(2023) [116] Image Silhouette I2 BNN FPGA SA 4b

target value, determined by e.g. applying DPA on the obtained
power traces [16]. This ranking is distinguished by the preci-
sion of the parameters or pixels and the actual number of bits
that were recovered are stated in brackets.
Platforms. Side-channel leakage is hardware-dependent:
each platform processes DNNs differently, resulting in dif-
ferent leakage patterns. Microcontrollers, CPUs, FPGAs, and
GPUs are the primary devices used to deploy DNNs for in-
ference. Knowing the properties and specifications of the
hardware platform, the adversary can decide on the side chan-
nel, i.e., EM- or power-based side channel, and collect the
respective traces.
Analysis. When the adversary obtains the traces through the
desired side channel, the SCA approach needs to be deter-
mined. For each of the different properties of a DNN, different
analysis methods can be leveraged to analyze the obtained
traces. Figure 2 shows the different flows of analysis methods
that are currently used for extracting the architecture, parame-
ters, and recovery of the input. From Figure 2 it can be seen
that there is a finite number of combinations of attack paths
that can be used to obtain a certain subset of objectives, of
which the known combinations are shown in the attack path
column of Table 1. For architecture extraction, we consider
1 SPA, 2a Common Patterns (CP), 2b Hyperparameter

Optimization (HO), and 2c hyperparameter derivation. Sec-

Hyperparams.

Power
Traces

DPA
(Parameters)
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Figure 2: Physical SCA attack framework for model extrac-
tion and input recovery. Different attack stages are marked
with different numbers, where a combination of different
stages leads to an attack path. It should be noted that the three
different targets require different inputs to the flow, where
for both the parameters and input, the architecture should be
provided.
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ondly, for parameter extraction, we only consider 3 DPA.

Lastly, for input recovery, we consider 4a DPA and 4b Sig-
nal Analysis (SA). The attack paths shown in Figure 2 can be
combined to improve the threat model. For example, Gongye,
et al. [41] use 2a to extract the kernel size, similar to Xiang,
et al. [127], which is then used to extract the parameters of the
network. Detailed explanations for framework components
can be found in corresponding sections.

5 Architecture Extraction

The first objective is to recover the architecture of the de-
ployed model. The architecture of a model refers to the hy-
perparameters of a network, e.g., the number of layers in a
network and their types. There are two main motivations for
an adversary to extract the architecture of a network. First
of all, the adversary may assume that the deployed model
is a more general architecture and uses publicly available,
pre-trained parameters. Therefore, knowing the architecture,
the adversary could use pre-trained parameters to function as
a substitute for the originally deployed model [5]. Secondly,
the architecture itself could be a stepping stone towards the re-
covery of either the input or the trained parameters, as shown
in Figure 2. For extraction of the architecture of a deployed
DNN, a black-box scenario is being considered, i.e., the ad-
versary has no knowledge of the deployed model, including
the family of networks to which it belongs. The adversary
only possesses the generic capabilities G1-G3 as described in
Section 4.1 and may assume that the input is known (A1).

5.1 Current Approaches of Architecture Ex-
traction

5.1.1 Simple Power Analysis

Some hyperparameters have shown to have very distinctive
patterns for different values [11, 64]. These characteristics oc-
cur due to, e.g., the same operation having to be executed sev-
eral times, or operations having varying execution times. The
adversary can already extract information from the obtained
traces by using SPA. Moreover, for most approaches towards
architecture extraction, listed in Table 1, SPA is required as a
first step, as shown in Figure 2. For example, Yu et al. first use
SPA to recover the layer types, and then apply this knowledge
to recover the remaining hyperparameters [135]. On the other
hand, Xiang et al. [127] use a classifier trained on common
configurations to extract information of the hyperparameters
directly from the power trace, and hence do not use SPA. Due
to the small resource footprint and proven effectiveness, SPA
is in most cases preferred over more computationally-heavy
approaches to extract hyperparameters. However, on more
developed platforms, traces typically are less distinguishable,
making SPA impractical.

Different types of layers in a DNN all consume power in a
distinctive way, which is observed as variations in the power
traces [41, 64, 76, 81, 135]. These patterns originate from
the varying way in which the different types of layers access
data [76]. Due to the differences in the power traces, the adver-
sary is able to determine the type of layer that was executed,
based solely on the observation of the recorded traces.
The number of layers can be determined from simply count-
ing the different types of layers, in case of less powerful
CPUs [81]. Due to the distinctive patterns, adjacent layers
can be identified from the raw traces. These patterns can then
be counted to determine the number of layers in the DNN. It
should be noted that due to high parallelization in FPGAs and
GPUs, simply counting the layers is often not possible.
Activation functions have a high variation in execution time,
depending on their input. This varying execution time already
makes it possible for an adversary to distinguish between
the ReLU and Softmax activation function. However, for the
Sigmoid and Tanh activation functions, the execution times
are similar and not easily distinguished [11]. Nevertheless,
the characteristic differences in power consumption of the
Sigmoid and Tanh activation functions, allow them to be dis-
tinguished after all [114]. Therefore, the four most common
activation functions, ReLU, Softmax, Sigmoid, and Tanh, can
be often distinguished using SPA only.
The number of neurons in MLPs can also be determined
from SPA, by observing the execution time. The execution
time of each layer is dependent on the number of neurons
in the layers of an MLP. From observing the execution time
of MLPs, one can determine number of neurons in the net-
work [11]. However, the measurement noise and re-alignment
make it difficult to distinguish a single perceptron change [22].

5.1.2 Advanced Analysis

In practice, deployed models are part of a limited set of com-
mon DNN models [52,76,127,135]. Therefore, the likelihood
that a deployed model adopts a common architecture is higher
than a custom-made architecture. Moreover, upon recovery
of a limited number of hyperparameters, the remaining hyper-
parameters can be determined by applying the knowledge of
the most common configurations for DNNs, depicted as the
hyperparameter derivation step 2c in Figure 2 [41,56,64,81].
However, direct derivation of the remaining hyperparameters
may not always be possible due to the lack of equations with
unique solutions. To resolve this, an adversary can set fixed
values for some of the unknown hyperparameters or use more
advanced techniques to acquire these hyperparameters via
physical SCA.
Common patterns are created to take into account the de-
sign philosophy of commonly used DNN models, from which
assumptions can be made about the hyperparameter values.
First of all, there is a common order in which layers can occur
throughout a network, i.e., the type of layer i+1 can be de-
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termined, provided the type of layer i by using knowledge of
default layer combinations [56]. Secondly, hyperparameters
such as the kernel size can be approximated when the layer
type is known [76, 135]. For example, when considering a
convolution layer, the used filter sizes in the most common
models are either 1×1, 3×3, 5×5, or 7×7 [135]. For square
kernels in BNNs, one could additionally observe the size of
the kernel by executing a T-test on the input to distinguish be-
tween different filter sizes [104,132]. Additionally, a classifier
can be made, based on the common patterns, to determine di-
rectly from the power traces to which of the standard hyperpa-
rameter combinations the trace belongs [17,52,107,126,127].
Therefore, the correct hyperparameters can be extracted from
the observed power traces, given common patterns.
Hyperparameter optimization can also help to fine-tune an
estimate from commonly used hyperparameters. Typically, an
initial estimation based on commonly used patterns of hyper-
parameters is not very accurate. It could be that, e.g., a wrong
value for the stride has been chosen which causes the derived
model to deviate from the original target model. Therefore,
Maia et al., decided to jointly optimize all hyperparameters
“seeking values that best fit their initial estimates, subject to
consistency constraints” [81]. The technique of Maia et al.,
minimizes the convex quadratic form

min
xi∈Z0+ ∑

i∈X
(xi − x∗i )

2 , (1)

where X is the set of all hyperparameters, and x∗i and xi are
the initial and optimal value for the ith hyperparameter [81].
Hence, optimization techniques could be used to extract a
more accurate approximation of the target architecture [81].

5.1.3 Assumptions on Architecture Extraction

For all of the architecture recovery methods in Table 1, it is
assumed that target models are common DNN configurations.
Moreover, assumptions for single hyperparameters can also
have consequences for other hyperparameters, e.g., restrict-
ing the output size of a layer inherently restricts the input
size of the next layer [41]. Therefore, putting restrictions on
architecture configurations reduces the search space for the
hyperparameters, making it easier to recover the architecture
of the target DNN.
Only four activation functions are assumed to be used in
common DNNs, i.e., only ReLU, Sigmoid, Tanh, and Softmax
are typically considered for activation functions [11, 22, 64,
114]. In theory, there exist more activation functions than only
these four, e.g., ELU or the binary step function [23, 32]. In
practice, because of the popularity, it is a valid assumption
that the activation function used in a DNN is ReLU, Sigmoid,
Tanh, or Softmax [32].
Only limited layer types are considered when extracting
the hyperparameters of a DNN. For BNNs, the only two
layer types that are used, are the pooling and convolution

layers, which also reduces the search space of the hyperpa-
rameters [104, 132]. Additionally, the combination of layer
types can be reduced based on common DNN implementa-
tions. For instance, it is unlikely that a convolution layer is
followed by an FC layer, since it does not make sense to have
two consecutive linear transformations in a DNN [56]. Addi-
tionally, the combination of layer types can be reduced based
on common DNN implementations [56]. For instance, it is
unlikely that a convolution layer is followed by an FC layer,
since it does not make sense to have two consecutive linear
transformations in a DNN. Hence, assumptions made about
the layer types can also simplify the extraction of the entire
network architecture.
The kernel is considered a square in all of the approaches
listed in Table 1, that aim to extract the architecture. Since
almost all publicly deployed models, in fact, use a square
kernel, this assumption is valid. Nevertheless, there exist con-
figurations in which the kernel is not a square [113], which
are not considered in the discussed architecture extraction
papers. Moreover, most papers listed in Table 1, limit the size
of the filter to typically odd dimensions between 1 and 11.
Due to the limited set of filter dimensions that is currently
being deployed, it is reasonable to assume for an adversary
that the filter dimension is also part of this limited set.
The stride is assumed to be 1 or 2 in most papers attempting
to extract the architecture [41, 56, 76, 81]. Due to the limited
size of the kernels that are being considered, a bigger stride
could result in skipping input values during the convolutions,
or the model not being feasible at all. Therefore, an increment
of the stride on a DNN that has a small filter size could result
in a lower accuracy of the overall model. Moreover, the most
common DNN implementations also rarely use a stride that
is bigger than 2 [76]. Hence, assuming the stride is limited
to either 1 or 2 is a valid assumption that further reduces the
search space for hyperparameters.

Aside from the most common assumptions listed above,
there are additional assumptions that are still worth mention-
ing. One obvious assumption is that for image classification
applications there are only three input channels used in the
first layer [56]. With most input images being of color, all of
them have red, green, and blue (RGB) channels representing
the pixels. Aside from RGB images one could also consider
only grayscale images, in which only one channel is consid-
ered. Secondly, in some scenarios it can be assumed that for
the same layers in the network, the same configuration is be-
ing used, i.e., the first convolutional layer uses the same filter
size as all other convolutional layers in the network [135].

5.2 Discussion on Architecture Extraction
Within the assumption spaces of each work, the full architec-
tures of deployed DNNs can be extracted. Most of the works
listed in Table 1 have a number of assumptions, hence con-
sidering only a subset of all the possible configurations for
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the architecture. We argue that these assumptions are, in most
cases, correct and can help simplify the attack process, but
may fall short in less common but nevertheless, appropriate
use cases. In particular, this section provides experimental
analysis on the well-acknowledged assumption that the kernel
shape in convolutional layers is always considered to be a
square. Even though the square-shaped kernel is efficient to
implement and is heavily used for image filtering in computer
vision research, non-square convolution kernels are still being
widely used [113].

If a deployed model has a non-square shaped kernel but the
adversary classifies it as being a square, the recovery of the
architecture will fail. Consequently, further extraction of the
model may fail as well and result in a non-functioning model.
In Figure 3, traces related to a 224×224 input convolved
with a 1×4 and a 2×2 kernel are collected on a Xilinx Zynq
UltraScale+ ZCU 104 board [9]. As can be seen from Figure 3,
the traces for both square and non-square kernel are very
similar; it is hard to distinguish them at first glance. If the
adversary assumes that the kernel is of a square shape, and
observes a trace for a non-square kernel, as shown in Figure 3,
it may result in the adversary incorrectly classifying the kernel
as a square. Therefore, if a limited set of configurations is
considered, but the deployed model is in fact a corner-case it
may result in an unsuccessful recovery of the architecture.

However, if one closely observes the traces in Figure 3
it can be seen that there is in fact a slight timing difference
between the two traces. This timing difference between the
traces can be used for distinguishing between the two different
kernels. Therefore, if the adversary has the capacity obtain a
pattern for multiple kernel configurations, it would be possible
to distinguish between different kernel configurations.

Note that the traces in Figure 3 represent the execution
time and the power consumption during the convolution. The
power consumption and execution time of the observed traces
are related to the number of operations that are being exe-
cuted [127, 135]. For convolution layers, these operations are
mainly the number of multiplications and loading of the val-
ues required for multiplication. The latter is dependent on the
number of convolutions that are being executed. Therefore,
the shape of the traces is not only dependent on the number
of multiplications, but also on the number of convolutions.
Given a kernel of height kh and width kw and an input of
height ih and width iw, the number of convolutions C can be
described by

C =
iw − kw +1

s
· ih − kh +1

s
, (2)

where s is the stride. Consequently, the total number of multi-
plications M in a convolution layer can be described by

M = kh · kw ·C. (3)

It can be seen from eq. (2) and (3) that {C,M} is not unique,
i.e., there are different values for kh, kw, and s that will result

in the same {C,M}. Therefore, theoretically different kernel
configurations could result in similar power traces.

An example of different configurations for which the same
number of convolutions and multiplications are used is when
a kernel has a size of k1 = (kh1,kw1) and the second kernel
has a size of k2 = (kw1,kh1). Figure 4 shows the power traces
of a convolution layer with a 28×28 input convolved with
both a 3×4 and 4×3 kernel. For both kernel configurations
in Figure 4 it holds that both the number of convolutions and
the number of multiplications are equal. However, Figure 4
shows that even with same number of multiplications and
convolutions, the observed EM traces allow the adversary to
distinguish between the two configurations.

Since equivalent configurations in terms of convolutions
and multiplications can be distinguished through power traces,
including additional configurations allows for the architecture
extraction method to extract a bigger set of possible architec-
tures. This expansion of the search space of an architecture
extraction approach improves its applicability to different,
possibly unknown, architectures. Therefore, relaxing assump-
tions about deployed architectures can help approaches intro-
duced by, e.g., Hu, et al. [56] or Maia, et al. [81], to extract
architectures that deviate from common configurations.

5.3 Conclusion on Architecture Extraction
Current approaches to architecture extraction extensively
use hyperparameter-search-space limiting assumptions. Even
though these assumptions are well grounded, it may be the
case that the deployed model lies beyond the defined search
space for hyperparameters. Due to high similarity between
traces, it may be the case that the adversary incorrectly deter-
mines hyperparameters, resulting in an inaccurate architecture
being extracted. However, we demonstrate that investing in
expansion of the search space for hyperparameters could de-
crease this misclassification.

6 Parameter Extraction

With the trained parameters of the network, an adversary
has all the information necessary to deploy an exact copy of
the network. This could give the adversary both monetary
and intellectual benefits. For instance, when an adversary
possesses the trained parameters of ChatGPT-4 [96], he or she
does not need to pay the subscription fee and can let others
use the extracted model. Therefore, the trained parameters
represent the most valuable part of a DNN, and hence an
interesting target for an adversary.

In addition to the generic capabilities G1-G3 described
in Section 4.1, the adversary has more knowledge about the
deployed network when extracting the trained parameters. In
particular, for parameter-recovery, the adversary knows the
input to the model (P1), and knows the architecture of the
deployed DNN (P2). For P1, it is a standard assumption in
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Figure 3: Averaged EM traces of convolutional layers with different 2D kernel sizes, taking 224×224 grayscale images as inputs.
The top trace shows the execution of a convolutional layer with a 1×4 kernel, while the bottom trace uses a 2×2 kernel.
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Figure 4: Averaged EM traces of convolutional layers with
different 2D kernel sizes, taking 28×28 grayscale images as
inputs. The top trace shows the execution of a convolutional
layer with a 3×4 kernel, while the bottom trace uses a 4×3
kernel.

physical SCA attacks that the adversary knows the inputs [83].
For P2, we show that extraction of the architecture is possible
with physical SCA approaches.

6.1 Current Approaches of Parameter Extrac-
tion

6.1.1 Differential Power Analysis

To extract the parameters of FC and convolutional layers, all
current approaches towards parameter extraction in Table 1
use DPA to correlate measurements with the power consump-
tion of hypothetical sensitive intermediate values, indicated
by 3 in Figure 2. Since FC and convolutional layers are
usually implemented as matrix multiplication operations [21],
an adversary can target the multiplications and partial sums
to extract the parameters.

In a 2D convolutional layer, with kernel size kh × kw, the
convolution result cres between a kernel (w) and a piece of

input x can be unrolled like

cres = x∗w =
kh·kw

∑
i=1

wi · xi = w1 · x1 + · · ·+wkh·kw · xkh·kw . (4)

The sensitive intermediate values in the unrolled convolution
are the partial sums c j = ∑

j
i=1 wi · xi ( j = 1..kh · kw) that are

updated with the result of the multiplication of an input xi and
weight wi.

Since the inputs are known, the attacker can compute the
Pearson correlation between the traces (T ), and the leakage
model (L) of the ith intermediate value ρ(T,L(ci)) for every
parameter candidate, where the candidate parameter for which
ρ(T,L(ci)) is the highest is considered to be the correct value
for the targeted parameter [11, 29, 41, 51, 63, 75, 82, 133, 134].
Typically, due to the inter-dependency of the parameters,
shown in eq. (4), the DPA approach recovers the weights
one-by-one starting from w1 until wkh·kw . However, convolu-
tion is a linear operation where multiple weight candidates
can give the same hypothetical power consumption values
which makes the DPA attack harder. Therefore, applying the
HD leakage model, to model the behavior when a partial sum
is updated can give better results [41, 51].

6.1.2 Developments of Parameter Extraction

All parameter extraction approaches in Table 1 leverage DPA,
however the approaches can still be distinguished from each
other based on the precision of the parameters and the perfor-
mance of the approach. An example can be seen in Yoshida,
et al. [133], Yoshida, et al. [134], and Li, et al. [75], where
all of them leverage DPA to recover 8-bit integer parameters
from MLPs deployed on FPGAs. Yoshida, et al., Yoshida, et
al., and Li, et al. all face the same issues whilst extracting
parameters through DPA: the parameters are inter-dependent,
as shown in eq. (4). Each of these approaches cope with this
inter-dependency in their own way, always improving on the
latest research.
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Figure 5: The classification accuracy of ResNet-18, ResNet-
50, and ResNet-152 trained on CIFAR-10, plotted against
the Pearson correlation between the original and transformed
parameters. With the same architecture, models with more
layers are more sensitive to measurement inaccuracy.

6.1.3 Assumptions on Parameter Extraction

In order to extract the parameters, current approaches need to
access the exact inputs and the architecture of the deployed
model [11, 29, 51, 63, 75, 82, 132–134]. Otherwise, accurate
calculation of sensitive intermediate values is not possible,
and the DPA attack will not be successful. In addition, the
search space for the parameters is often limited to a range with
certain precision [11, 51, 63, 82]. This allows an adversary to
significantly reduce the number of candidates in DPA attack,
especially if the parameters in the models use single-precision
or double-precision data format. Furthermore, some attacks
require that the inputs to the DNNs are carefully chosen but
this assumes a stronger attacker that is able to control the
inputs [41]. In addition, even if the victim’s model parameters
are updated after extraction, the adversary can still retrieve a
functioning model that can be further trained with their data.

6.2 Discussion on Parameter Extraction
The DPA method described in Section 6.1 is a general solution
that works across platforms and different data types to extract
the parameters of a DNN. For BNNs, the accuracy of the
extracted parameters through DPA even goes to 100% for the
best method [132], and 99.99% for other methods [29]. How-
ever, as the data format of the parameters includes more bits,
the more difficult it becomes to extract the correct parameters,
and there can be errors in the recovered parameters [11].

There are two major limitations related to the state-of-
the-art extraction of the parameters in DNNs: parameter-
extraction error propagation and complexity. Firstly, it is yet
unclear how the inaccurate extraction of parameters in one
layer impacts the extraction of parameters in subsequent lay-
ers. Currently, none of the papers address this issue for large
DNNs. Secondly, extracting all the parameters in DNNs is
expensive. All papers note that the extraction of the parame-
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Figure 6: The classification accuracy of MobileNet, DenseNet-
121, MobileNetv2, and ResNet-50, trained on CIFAR-10, plot-
ted against the Pearson correlation between the original and
transformed parameters. Here, sampled noises from Gaussian
distribution are added to the kernels to simulate hardware-
based environmental noise.

ters is an expensive operation, however the consequences for
the extraction method are only slightly touched upon and no-
tions of complexity are often missing. In this section, we will
elaborate on the limitations present in the current extraction
methods of DNN parameters.

6.2.1 Error Propagation of Parameter Extraction

Except for SCA attacks on BNNs [104, 132, 135], most pre-
vious works focus on extracting the parameters of the first
layer in DNNs. Previous works hypothesize that it is feasible
to reverse engineer entire DNNs by showing the successful
extraction of the parameters of the first layer with a low error
rate [11]. We seek to evaluate this hypothesis critically by
detailed analysis and simulations in comparable scenarios.

Analysis on error propagation. We first provide an anal-
ysis showing that the error in parameter extraction can be
propagated from shallow layers to deep layers in DNNs, and
the error can accumulate layer by layer. In DPA, to estimate
the parameters of a DNN, the adversary first needs to select an
intermediate value and collect the corresponding traces. Given
the search space of possible candidate values and the quality
of collected traces, it could be that a large number of traces is
required to predict the correct parameter. Even though a mas-
sive number of traces can be collected e.g., tens of millions,
there is still a probability that predicted intermediate values
deviate from the actual values due to noisy measurements,
resulting in inaccurate parameter predictions. Since the inter-
mediate values of the deeper layers of DNNs are calculated
based on the estimated parameters of the previous layers, the
error in deeper layers is amplified by inaccurate intermediate
values in shallower layers. This inaccuracy of the measured
traces is mainly due to noise induced in the measurements
originating from environmental sources and is considered to
be stationary, uncorrelated, and added to the power traces.
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Therefore, this noise can be treated as a Gaussian distribu-
tion N (0,σ2) [92]. Take, e.g., MobileNet [53] for which the
average extraction error on the first-layer feature map (i.e.,
intermediate values) is 0 with a variance σ, and assume that
the error follows a Gaussian distribution. Accordingly, the
same error applies to predictions of the first-layer convolution
kernels. Each value in the second-layer feature map depends
on the 27 convolution kernels from the first layer if we know
the activation and pooling functions. The accumulated error
propagated from the previous layers then becomes approxi-
mately N (0,27 ·σ2). Hence, error propagation will be more
influential in deeper DNNs, as shown in Figure 5 for ResNet-
18, ResNet-50, and ResNet-152, with 18, 50, and 152 layers,
respectively.

Simulation on error propagation. We provide a simula-
tion to model the influence of the error propagation on the
performance of the extracted model. We conduct experiments
by simulating extracted parameters from MobileNet [53],
MobileNetv2 [105], DenseNet-121 [58], and ResNet-50 [45]
trained on CIFAR-10 [70], and we use classification accuracy
on test data to represent the performance of the extracted
model. In particular, we sample noises from Gaussian distri-
butions which we add to the original parameters, to simulate
errors in the extracted parameters. We then describe the intro-
duced error by calculating the Pearson correlation between
the original and extracted parameters. Figure 6 demonstrates
that a high correlation may not guarantee the performance of
an image classifier. From Figure 6 it can be seen that, e.g.,
MobileNet requires the correlation to be higher than 0.9994 to
keep the classification accuracy above 77.80%. This required
99.94% extraction accuracy is above the 99.75% extraction
accuracy that can currently be achieved, making it infeasible
to accurately recover the parameters of MobileNet with the
current approaches listed in Table 1.

Figure 6 shows that the architecture determines the sensi-
tivity of the network against inaccurate measurements. If we
compare, e.g., DenseNet-121 with 121 layers, and MobileNet
with 27 layers, MobileNet requires an extraction accuracy
of 99.95% to stay above a classification accuracy of 80%
whereas DenseNet-121 only requires an extraction accuracy
of only 99.7%. This is counter-intuitive, since we argued
that more layers typically mean more error propagation and
thus, typically, a lower performance of the extracted model,
as demonstrated in Figure 5 for ResNet. Therefore, not only
the number of layers, but also the overall architecture of the
network determines the sensitivity against inaccurate mea-
surements.

6.2.2 Complexity of Parameter Extraction

All methods for parameter extraction listed in Table 1, assume
that the approaches can be used in deeper DNNs. Most of
the parameter extraction approaches listed in Table 1 demon-
strate the feasibility of their approach by only considering a

single 3×3 kernel, i.e., recovering 9 weights. However, these
approaches fail to mention how the solution can be applied to
state-of-the-art DNN architectures, which can have millions
of parameters. Therefore, the complexity of these approaches
needs to be addressed.

We address the complexity of the DPA approach towards
parameter extraction both from a measurement and an anal-
ysis point of view. First of all, during measurements, each
collected trace contains d samples that should involve only
the operations of interest, i.e., the operations where the param-
eters are involved. The larger the DNNs that are considered,
the more samples it takes to fully capture their execution in a
trace. Consider that in a convolution layer with a kernel size
k = kh · kw there are C convolutions of k multiplications, then
for a kernel of size k+n there are C ·n additional multiplica-
tions. These C ·n additional multiplications then increase the
number of samples that reside in a single trace with n ·d/k.
Therefore, trace collection has a complexity of O(n).

Secondly, for the analysis part of the DPA approach the ob-
tained traces are correlated with all possible candidates for the
parameters, of which the candidate with the highest correla-
tion is being selected. The values for the candidate parameters
of non-binary DNNs generally reside in a range [−L/2,L/2],
with L ∈ N, and a precision p, so there are N = L/p different
candidates for each weight. Therefore, if we consider a kernel
with n different weights, theoretically, there are Nn different
combinations of candidates for the entire kernel. Nevertheless,
extracting the parameters from the partial sums as described
in Section 6.1 has a complexity of O(N ·n). Moreover, with
fixed kernel size, the complexity is linear w.r.t. the number
of weights, i.e., O(n). Therefore, the complexity of current
approaches towards parameter extraction linear for both the
trace collection and the analysis parts of the DPA approach.

6.3 Conclusion on Parameter Extraction
In conclusion, there are two fundamental issues with the cur-
rent approach to use DPA as a method towards parameter
extraction of DNNs. First of all, we showed that even the
slightest errors in the recovered parameters can result in a
non-functional model. Secondly, due to the linear complexity
of recovering the parameters, the DPA approach can become
computationally expensive for models with millions of param-
eters. Therefore, there exists a gap between the theoretical
feasibility and practical implementation of current DPA ap-
proaches towards extracting the parameters in DNNs.

7 Input Recovery

In this section, we look at input recovery from a deployed
DNN during inference. State-of-the-art CCTV cameras are
equipped with a DNN chip that allows for facial recognition,
which makes the input to the deployed DNN privacy-sensitive
information [15]. Even with physical access to the target

USENIX Association 33rd USENIX Security Symposium    3413



device, the inputs might be encrypted in transit and only de-
crypted during inference. Therefore, methods such as monitor-
ing I/O ports, network traffic, wireless communications, may
not be able to recover the inputs. Instead, an adversary could
launch an attack against DNN implementations to obtain the
input, making it an interesting target for input recovery.

For recovery of the inputs, comparable to extraction of the
parameters, the adversary has additional capabilities than the
generic capabilities G1-G3. In both input recovery methods
4a and 4b shown in Figure 2 the adversary has different

capabilities. For the DPA approach 4a , it is assumed that the
adversary knows the architecture (I2) and the parameters of
the deployed DNN (I3). For the signal analysis approach 4b ,
it is assumed that the adversary knows the architecture (I2)
but not the parameters of the DNN.

7.1 Current Approaches of Input Recovery

7.1.1 Power Analysis

As can be seen from eq. (4) in Section 6.1, the intermediate
values are not only dependent on the parameters, but also
the input values. Then, for the first multiplication step (i =
1), the intermediate value in the multiplication is the partial
sum which depends on both the input and weight. Therefore,
recovery of the input can be already done in the first layer, in
a similar manner as extraction of the parameters.

Similar to DPA for parameters, the possible input candi-
dates are being correlated to the observed traces. In contrast
to parameter extraction, the input is typically only used ex-
actly once, e.g., an input frame of a CCTV camera will never
be exactly the same as the previous one in a natural environ-
ment. Therefore, the adversary only has one shot to obtain
the traces for the input recovery, for which correlating the
entire trace to the candidates will not be sufficient to obtain
a significant correlation difference between correct and in-
correct candidates [12, 82, 125]. To cope with this limited
number of available traces, knowledge about the architecture
(I2) is leveraged to divide the traces in the corresponding
multiplication operations. The known parameters are used to
create hypotheses about possible intermediate values. These
hypotheses are then correlated against the traces of singular
multiplication operations to approximate the original values
of the input [12, 82]. Additionally, when there is no knowl-
edge about the parameters, but instead it is possible to provide
input to the target model in a profiling stage (I1), a “power
template” can be made [125]. This power template will be
built by observing power trace from the target model with
known inputs. In this way, the observed power traces from
the target model, with the target input, can be matched to the
generated power template to obtain a candidate for the input.

7.1.2 Signal Analysis

Even though it recovers exact values for the input, DPA is
very expensive and it may not always be necessary to fully
recover the input. The silhouette of an image may in some
cases already disclose sufficient information for an adver-
sary [125]. If the complete input image is not required, less
computational-intensive methods can be used.

SA is an extension to SPA, where instead of directly inter-
preting patterns in the traces, additional computations have
to be performed to extract information, e.g., interpreting bits
from obtained traces [116]. As with DPA, SA approaches
also exploit the data dependency in the power consumption
of the deployed device, but without any knowledge of the
parameters. Unlike DPA, the acquired traces can be processed
individually rather than computing the correlation with other
traces. Since the multiplications are dependent on the interme-
diate values, and hence the inputs, observing the magnitude
and timing of the traces can already reveal information about
the input, e.g., higher amplitudes or longer operations in the
traces imply more computational intensity and hence it is
most likely higher input values were used [27, 116, 125]. Sim-
ilar to DPA, knowledge about the architecture (I2) can be
used to split the observed traces in the different multiplication
operations, making SA more accurate [125].

7.1.3 Assumptions on Input Recovery

Since inputs are recovered by observing similar leakages as
for parameters, the assumptions made for input recovery are
alike. Firstly, for recovering the inputs via DPA two assump-
tions are commonly used: the assumption that the architecture
is known (I2) and the assumption that the parameters are
known (I3). The architecture of the network reveals how the
multiplications are executed and gives insight in how the
traces are built up. To improve the recovery process, it is
helpful to not only know when the multiplication operations
are executed, but also what exact values are used. Therefore,
knowing the parameters of the network could reveal more
details about the inputs of the network, hence improving the
recovery process [12, 125]. Secondly, for SA the only as-
sumption made is knowledge about the architecture. This
knowledge about the architecture is used, like for DPA, to
split up the traces into single multiplication operations.

7.2 Discussion on Input Recovery
The state-of-the-art physical-SCA-based input recovery ap-
proaches have proven to be successful with single-shot
traces [12, 116, 125]. For SA approaches, there is no strict
requirement on the knowledge of the network, but here only
attribute inversion can be performed, i.e., only partial infor-
mation can be extracted about the inputs. On the other hand,
for DPA approaches the adversary needs to know both the
architecture and the parameters of the network to make ac-
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Figure 7: Prediction confusion matrix for inference-trace-
based input prediction on 10 digits.

curate hypotheses. These strict requirements allow full input
recovery to be possible.

However, as discussed in Section 6.2, if the adversary ex-
tracts inaccurate parameters, this inaccuracy may propagate
through subsequent layers. Even though only one layer has
to be considered, this error still propagates, through the DPA
hypotheses, to recovered inputs. Therefore, if the adversary
deals with a black-box scenario and wants to perform DPA,
the adversary relies on the accuracy of extracted parameters.

To overcome the dependency on parameter extraction accu-
racy, we explore a new attack angle towards input recovery. In
particular, we relax the purpose of the attack from reconstruct-
ing the raw input. Instead, we focus on attribute inversion, i.e.
inferring sensitive attributes of the input such as the class it be-
longs to. This is similar to the “passive adversary” introduced
by Wei et al. [125]. However, unlike Wei et al., we weaken
the adversary and assume that, in addition to the exact param-
eters, also the architecture is unknown. We conduct a digit
classification task on the MNIST [72] test split, for which the
inference is implemented on a Xilinx Zynq UltraScale+ ZCU
104 board. EM traces are collected and then annotated during
the digit inference, where 90% of the acquired traces are used
to train and validate an X-vectors model [110]. Input digits
can be predicted with an accuracy of 88.60% by EM traces
during model inference, with details shown in the confusion
matrix in Figure 7. Note that the number of different MNIST
digits is not uniform, and our results are provided on the last
10% of the test split. Additionally, we attempt to distinguish
the traces for different digits using SPA. However, the traces
are indistinguishable from each other when using only SPA.

From the proof-of-concept discussed above, it can be seen
that without any knowledge of the architecture, still attribute
inversion can be performed on the input of the network. This
opens up a new avenue of input recovery attacks, where at-
tributes of the input can be recovered through physical side-
channel attacks. Therefore, input recovery attacks may pose a
larger threat than considered today.

Table 2: Physical SCA as an intermediate step for adversarial
machine learning attacks. : Mounting existing adversarial
machine learning attacks can directly exploit or primarily
benefit from the extracted DNN information. : Potential to
benefit adversarial machine learning attacks. : Uncertain yet
whether the extracted DNN information could benefit.

Objective Evasion Poisoning Membership
Inference

Model
Inversion

Model
Stealing

Arch.
Params.
Input

7.3 Conclusion on Input Recovery
The dependency on precise model parameters makes input
recovery a less practical physical SCA. By adjusting the threat
model and relaxing the dependency on model parameters and
architecture, we demonstrate that input recovery could still
be effective without deviating from the attack objective.

8 Outlook

SCA assumptions with substantial limitations. Current re-
search makes strong assumptions about the knowledge and
capabilities of the adversary. These assumptions are rarely
subjected to comprehensive critical examination. We intro-
duce a generic threat model and systematically classify all
related existing research within this generalized framework.
Furthermore, we encourage future studies to provide discus-
sions on the constraints inherent to these assumptions.
SCA for novel neural network architectures. Regular SCA
attack scenarios assume that all the components of DNNs are
available for profiling, i.e., it is assumed that all layer types
are publicly known. When a new type of module is introduced
in the architecture and the component information is unavail-
able due to IP, profiling may fall short. As a consequence, the
model extraction or input recovery attacks may fail. Moreover,
current neural network extraction research is focused solely
on MLPs, CNNs, and BNNs, while the interest for GANs,
diffusion models, and transformers is increasing. Future re-
search could look at the extraction of previously unexplored
DNNs by either decomposing them into components [56] to
extract or categorizing them in model type level [52, 127].
DNNs of FP8 formats The usage of the 8-bit floating point
(FP8) binary interchange format in deep learning training and
inference has been advanced by NVIDIA, Arm, and Intel [87].
FP8 in deep learning indicates a smaller parameter range and,
accordingly, a smaller search space for SCA attacks. Such
a smaller search space can substantially increase the SCA
efficiency and reduce the error propagation (See Section 6).
Future studies are encouraged to evaluate and provide simula-
tion attacks against FP8 platforms.
Physical SCA as an intermediate step Physical SCA at-
tacks not only pose a threat on their own but also have the
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potential to provide information to assist algorithm-level ad-
versarial machine learning attacks. From all works discussed
Table 1, only Maia, et al. provided a discussion on the use of
their approach as an intermediate step for evasion [81]. To
facilitate future research, we, for the first time, systematically
bridge physical SCA attacks and well-established adversarial
machine attacks in Table 2.

Architecture extraction provides a solid initial step for var-
ious adversarial machine learning attacks that target DNNs.
Extracted architectures can assist the adversary in building
surrogate models that help query-based [98] and transfer-
based [26, 81] evasion attacks. Furthermore, details of the
architecture aid the model stealing attack to extract the deci-
sion boundaries [61], and there is a potential to aid poisoning.

Parameter extraction extracts a white-box DNN that bene-
fits all attacks from Table 2. Membership inference [108] and
model inversion [37] attacks can directly exploit extracted
parameters to compromise data privacy. Even with errors in
the extraction of parameters as discussed in Section 6.2.1,
parameter extraction can still assist different attacks. For eva-
sion, extracted parameters with an error or less precision may
not substantially compromise the attack performance [130].

Input recovery directly undermines inference data privacy.
When more input samples are extracted, data distributions
of the inputs can be estimated, which could help evasion
and poisoning attacks. Furthermore, input recovery has the
potential to optimize the sampling process when querying a
black-box learning model, improving the efficiency for both
evasion and model stealing attacks [61, 97]. To better connect
the physical SCA extraction and existing threats of machine
learning systems, we refer security researchers to the general
threat matrix of machine learning systems [1, 2, 6].
Countermeasures In parallel to evolving attacks, countermea-
sures are being developed to protect against DNN extraction
attacks. These countermeasures are similar to those protecting
cryptographic implementations. Software-based countermea-
sures include, e.g., shuffling [93] and desynchronization [14]
to protect against parameter extraction. On the hardware side,
masking countermeasure is proposed to protect dense lay-
ers and the ReLU activation functions in BNNs [29]. Subse-
quently, boolean masking is proposed to protect BNNs against
parameter extraction [28, 30]. Although effective, these coun-
termeasures come at a speed and silicon area cost.

9 Related Work

Non-physical SCA. This SoK only discusses physical SCA
approaches towards model extraction and input recovery,
that measure physical quantities without inferring data di-
rectly from it. Aside from this scope, there exist SCA at-
tacks that do not rely on physical side-channel measure-
ments. First, the power consumption can be measured through
other channels, e.g., internal monitors [31, 39, 85, 86, 89, 90,
95, 99, 117, 137]. Second, DNN properties can be extracted

by observing the memory access patterns, for which meth-
ods such as Prime+Probe and Flush+Reload can be lever-
aged [10, 18, 48, 49, 55, 57, 78, 95, 99, 124, 128, 129]. Third,
the adversary could directly read information from the re-
spective buses to obtain details about the DNN [55, 56, 139].
In addition, if in-memory computing architecture is used to
implement DNNs then these are also susceptible to reverse
engineering [106]. Last, timing analysis can be performed
in software by observing the time it takes to execute a query
to the target DNN [33, 34]. Therefore, if the adversary has
more knowledge and access to the target system, other SCA
approaches could be leveraged to extract the DNN as well.
For instance, once the architecture is extracted using the meth-
ods mentioned in Section 5, software based memory access
pattern attacks [39] can be used to extract the parameters.
However, combined software and hardware approaches would
assume a much stronger attacker, that can access the same
device physically and locally. On the other hand, the results
of the combined approaches are potentially superior.
Algorithm-based model stealing. Model extraction is not
exclusively possible with SCA approaches, one could also
leverage algorithm-based stealing to extract the network [19,
20, 94, 119]. We provided connections between algorithm-
based model stealing and physical SCA attacks in Section 8.
Related surveys. No systematization paper provides a com-
prehensive overview of research on model extraction and
input recovery techniques through physical SCA. Existing
works discuss the general approach towards model extraction
and related defenses against it [61, 79, 84, 94]. However, due
to the more generic approach, these works fail to mention
the specific attack scenario and limitations other than those
noted. On the other hand, use-case-specific surveys exist that
discuss model extraction, e.g., in reinforced learning [59],
edge-deployed [60], and cloud-deployed neural networks [40].
This work extends the research field by discussing model ex-
traction and input recovery attacks, specifically for the case
in which physical SCA approaches are leveraged.

10 Conclusion

Our paper systematizes findings on physical SCA approaches
towards model extraction and input recovery, and provides a
framework that breaks down current SCA attacks into differ-
ent stages. We provide a generic and specific threat model,
and a taxonomy of relevant previous works on this topic.
We offer a detailed analysis and perform experiments to il-
lustrate potential shortcomings in common SCA practices
towards model extraction and input recovery. Future works
may benefit from the presented threat models, which increase
the generalization and robustness of SCA approaches. Further
directions could aim at making the SCA approaches more
efficient, targeting DNNs with a larger architecture and more
parameters.
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