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Abstract
Implementing cryptographic standards is a critical process for
the cryptographic ecosystem. Cryptographic standards aim
to support developers and engineers in implementing cryp-
tographic primitives and protocols. However, past security
incidents suggest that implementing cryptographic standards
can be challenging and might jeopardize software and hard-
ware security. We need to understand and mitigate the pain
points of those implementing cryptographic standards to sup-
port them better.

To shed light on the challenges and obstacles of imple-
menting cryptographic standards, we conducted 20 semi-
structured interviews with experienced cryptographers and
cryptographic software engineers. We identify common prac-
tices when implementing standards, including the criticality
of reference and third-party implementations, test vectors to
verify implementations, and the open standard community as
central support for questions and reviews of implementations.

Based on our findings, we recommend transparent stan-
dardization processes, strong (ideally formal) verification, im-
proved support for comparing implementations, and covering
updates and error handling in the standardization process.

1 Introduction

Cryptography is one of the pillars of modern information
security. Many software and hardware products implement
cryptographic primitives, algorithms, and protocols to pro-
tect data in transit and at rest. For example, Transport Layer
Security (TLS) [65] is used to protect the vast majority of
network traffic on the Internet [17] and end-to-end encryption
in messaging apps such as WhatsApp [41] or Signal [68]
protects billions of messages and users every day. However,
as demonstrated by previous work, deploying and using these
important cryptographic standards can be a difficult and labo-
rious process [40, 61, 24, 73, 16].

A critical and particularly challenging step in the deploy-
ment path is the implementation of cryptographic standards.

Standardization organizations such as the Internet Engineer-
ing Task Force (IETF) [30] and the U.S. National Institute of
Standards and Technology (NIST) [49] publish standard doc-
uments that aim to serve as a blueprint for implementations
that are secure and provide inter-compatibility. Cryptographic
standards often include details of primitives and protocols,
mathematical information for secure implementations, ref-
erences to research papers, and other documents meant to
support the implementation of primitives, algorithms, and pro-
tocols. In other cases, details are missing or vague, resulting
in gaps in the standard that increase the risk of implementa-
tion mistakes and require extensive cryptographic knowledge.
Incidents illustrate potential consequences:

MITRE’s CWE-1240 list of common weakness enumera-
tions (CWE) provides an overview of risky implementations
of cryptographic primitives [33]. An example is the widely
used OpenSSL library, which included a vulnerable imple-
mentation of the ChaCha cipher, used in TLS 1.2 onwards
(see Request for Comment (RFC) 7905 [36]). Even though
RFC 7539 [50] includes a specific byte size interval, the im-
plementation allowed using a byte size outside the interval.
This deviation from the standard resulted in a vulnerability
that enabled attacks on confidentiality and integrity [66].

Similar to standard documents, reference implementations,
and other third-party implementations are critical pieces in
cryptographic standardization processes. For example, the
IETF provides the Secure Shell (SSH) protocol [42], which
is used in the OpenSSH implementation [62]. As this im-
plementation is commonly used as a reference and provides
options not included in the SSH protocol [42], it is a de facto
extension to the standard that is not governed by the IETF.
The above examples illustrate some challenges when imple-
menting cryptographic standards.

While previous work investigated end-user challenges us-
ing cryptography [35, 71, 5], developers struggling with the
correct use of cryptographic APIs [19, 31, 1, 16], and the
use of cryptography in industry contexts [21], an in-depth
understanding of the experiences and challenges when imple-
menting cryptographic standards is missing in the literature.
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Previous research on cryptographic standards focused on
vulnerabilities in standards or faulty implementations [74,
12, 15, 61, 24], but did not consider the implementation pro-
cess itself. We present and discuss in-depth insights from 20
semi-structured interviews with experienced implementers of
cryptographic standards. We illustrate the challenges they en-
counter from the perspective of new and veteran developers in
the cryptographic community and from an industry, academic,
and hobbyist view. We hope our findings can contribute to
easier-to-implement future cryptographic standards.

Research Questions. In this work, we address the following
research questions:

RQ1: Which are developers’ practices when implementing
cryptographic standards? Implementing cryptographic
standards is essential to deploy cryptography from re-
search into products. We are interested in better un-
derstanding developers’ implementation practices and
requirements for cryptographic standards.

RQ2: What are the challenges of implementing crypto-
graphic standards? Cryptographic standards are com-
plex and require a high level of expertise to understand
and follow. We aim to understand the challenges of
writing cryptographic software following standards.

RQ3: How can future cryptographic standards be improved
to better support implementations? The correct and se-
cure implementation of cryptographic standards is cru-
cial for overall software security. We aim to understand
better how future cryptographic standards can be im-
proved to support cryptographic software developers
and implementations.

We interviewed 20 implementers of cryptographic standards.
Most of them had more than ten years of experience and
worked in academia or industry on application areas of cryp-
tography ranging from PGP, TLS, elliptic curve cryptography
(ECC), and post-quantum cryptography (PQC). All had criti-
cal roles in their projects. Participants illustrated the criticality
of reference and third-party implementations, formal verifi-
cation, and test vectors when implementing cryptographic
standards. They reported that managing standard updates,
multiple variations and complexity of standards, error and
typo handling, and patents are major challenges during im-
plementation. Participants expressed a strong preference for
transparent and open standardization processes and a need for
improved communication in the community.

To support the transparency and replicability of our work,
we make all non-identifying research artifacts available, in-
cluding our semi-structured interview guide, the codebook,
and the invitation emails in the Availability section. Further-
more, we provide a background on cryptographic standard-
ization processes in Appendix A.

2 Related Work

We discuss related work in two key areas: the security of
cryptographic standards, and challenges regarding adoption
and implementation of cryptography.
Security of Cryptographic Standards. Cryptographic soft-
ware is commonly based on public standards, typically pro-
vided by standardization bodies such as NIST or IETF. Hence,
the quality of cryptographic software is strongly connected
to the quality of the cryptographic standards they implement.
Due to this, previous work on standards’ security often fo-
cuses on the quality of the cryptographic standardization pro-
cess and standard candidates. Kannwischer et al. examined
submissions to the official NIST PQC standard effort, and
found that almost all the required implementations were vul-
nerable despite passing all stages of the standardization pro-
cess [32]. Similarly, Mouha et al. discovered a vulnerable
standard implementation that reached the final round of the
NIST SHA-3 competition in 2011 [48]. Hao evaluated the
IETF standard selection process and discussed principles to
improve future security standardization processes [22].

Security flaws can also be present in established standards.
For example, Woodage et al. analyzed the NIST SP 800-90A
standard. After finding some security flaws, they stress the
criticality of the underlying algorithms and that algorithms
should not be standardized until their security was proven [74].
Do et al. found vulnerabilities in the official W3C Web Pay-
ments API [12]. Feng et al. detected logical contradictions
in several CoAP RFCs on a statement level. Here, quality
problems did not arise within the implementation, but the
description scope [15]. Other affected standards include the
PGP protocol. Halpin analyzed it, investigating and demon-
strating the central design flaws that make it difficult to adapt
PGP to modern requirements or to deprecate older, less secure
versions [20]. To remediate these issues, Almeida et al. pro-
posed a framework for automatically generating functionally
correct reference implementations from cryptographic stan-
dard specifications [2]. Mohajerani et al. presented a frame-
work to evaluate the side-channel resistance of Lightweight
Cryptography for the Standardization Process [46].

While related work often focuses on the theoretical issues
of cryptographic standards, our interview study investigates
the practical experiences with and perceptions of standards
from cryptographic software implementers. We aim to under-
stand the impact of cryptographic standards on the security
of cryptographic software to recommend improving future
cryptographic standards and standardization.
Cryptographic Adoption & Implementation Challenges.
When standards lack necessary support and information, de-
velopers can face difficulties implementing these standards.
These adoption issues and overall cryptographic misuse can
lead to severe security issues. For example, Li et al. found
that two thirds of Apple iOS apps contained security flaws
caused by cryptography misuse [40]. Similarly, Oltrogge et al.
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scanned 1.3 million apps from Google Play, identifying over
a thousand candidates with vulnerable certificate validations.
Despite providing secure defaults, standard definitions stated
optional or adjustable parameters that provoked implemen-
tation vulnerabilities due to inadequate documentation and
developer usability [61]. Hebrok et al. found vulnerable im-
plementations of the optional non-standard TLS session ticket
mechanism. Respective implementers could not construct
secure keys and assess potential risks of reusing keys [24].
After investigating vulnerabilities in TLS-DH(E), Merget et
al. reached similar conclusions and found that secret con-
struction and forward secrecy are not sufficiently secure [45].
Valenta et al. found in an internet-wide scan that ECC im-
plementations often deviated from the respective standard
definitions. Among other problems, these implementations
lacked validity checks given by the standards [73].

A systematic review by Lazar et al. examined 269 entries
on software vulnerabilities from the CVE database. They
found that 17% of the issues were located in cryptographic
libraries [38]. To discover vulnerabilities in implementing
security measures, Rahaman et al. presented rules for source
code analysis that effectively perform vulnerability checks at
compile time [64]. Gorski et al. explored the use of crypto-
graphic APIs. To create recommendations to increase security,
a focus group study (n = 25) explored feedback to develop-
ers and review what types of security information are help-
ful [19]. Another study by Jancar et al. invited 44 developers
of cryptographic libraries to participate in a survey and found
differences between academic knowledge and cryptographic
engineering. Finally, they provide recommendations on how
developers can prevent timing attacks [31]. Close to this work,
Haney et al. interviewed developers to gain insights on using
cryptographic measures. They suggest assessing the usability
of standard documents regarding the resulting cryptographic
quality of real-world implementations [21]. Finally, Fischer et
al. presented an interview study with cryptographic experts re-
garding the application of cryptographic research. They iden-
tified key challenges in adapting the results of cryptographic
research, notably identifying conflicting goals between the
different stakeholders of the cryptographic ecosystem [16].

Adding to this body of research, we contribute insights
on the interactions between standards and standardization
bodies, and the developers implementing them. We are specif-
ically interested in what makes a good cryptographic standard
for cryptographic software developers. We further examine
the obstacles these developers face with the ecosystem and
resources around cryptographic standards. As a result, we
identify core challenges they face and provide a set of recom-
mendations for writing standards, reference implementations
and other resources.

3 Methodology

Using semi-structured interviews, we collect insights into
various workflows from developers who directly interact with,
read, and implement cryptographic standards. In this section,
we illustrate our study’s design and recruitment process. We
provide an overview of our methodology in Table 1.

Table 1: Overview of our methodology, including interview
guide design, data collection, and analysis.

Stage Additional Information

1. Interview Guide
Interview Design Feedback round with multiple experts
Piloting 2 pilots interviews
Recruitment Projects, mailing lists, snowball sampling

2. Interviews
Interviewers 1 (+1 shadow) interviewer
Participants 20, avg. 78 minutes
Structure S1: Projects and Demographics

S2: Process of Implementing Standards
S3: Challenges of Implementing Standards
S4: Perception of Cryptographic Standards
S5: Problems of Current and Future Standards

3. Data Analysis
Transcripts Amberscript [4]
Methodology Thematic Analysis [10]
Coding 5 coders, 2 per transcript

3.1 Interview Design
To draft an initial interview guide, all authors collaboratively
discussed relevant interview topics, obtaining a few high-
level leading questions to ask participants. We supplied
each of those questions with more profound, conditional sub-
questions to collect in-depth insights during the interviews
and prepare for various topics that might emerge during in-
terviews. During and after both of these phases, we obtained
additional feedback from co-workers and students and inter-
nally tested the interview guide to arrive at a final internal
draft.

In the next step, the interview guide draft was reviewed
by different experts that were either cryptographic practition-
ers or experienced with qualitative research. We iteratively
improved the interview guide based on the experts’ feedback.

3.2 Interview Guide
After completion of our guide, we arrived at five general
topics, described below. The complete interview guide is
available in our replication package (cf. Availability section).
Intro and Consent. We start with a brief introduction of
ourselves, our research field and the interview motivation. We
explained that we do not judge any answers, that all ques-
tions can be skipped, and that the interview can be ended at
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any time. Furthermore, we explained how we process and
anonymize the interview answers to protect participants’ iden-
tity. Finally, we asked participants for their consent to an
audio recording of the interview, and gave them the opportu-
nity to drop out and have their data deleted at any time.

S1: Projects and Demographics. We asked general ques-
tions about participants’ experiences, projects, and standards
to get started. For example, we asked about their back-
ground and education in cryptography, and the purpose of
their projects. We also asked how they got started working
with standards.

S2: Processes of Implementing Standards. Next, we fo-
cused on the considered resources and processes. We also
asked about internal and external testing, and reviewing of
implementations.

S3: Challenges of Implementing Standards. In this section,
we asked participants about challenges, including legislation
and updates to standards.

S4: Perception of Cryptographic Standards. This inter-
view section covered the experience and perception of stan-
dard documents and bodies. We asked participants about
specific standards and organizations they worked with in the
past, and what makes a good standard document for them.

S5: Problems of Current and Future Standards. Finally,
we cover the wishes and needs of participants regarding cur-
rent and future standards. We presented an example scenario
surrounding legislation and their opinion on that, and we
asked about any remaining problems they encountered with
standards. Finally, we asked them about their trust in current
implementations and their wishes for standards in general.

Outro/Debriefing. After the interview, we asked them if
they had any additional remarks, thanked them, and stopped
recording. To conclude, we asked for potential followup
candidates they knew as part of our snowball sampling.

3.3 Recruitment
Due to the small population of experienced cryptographic
practitioners who qualified for our study, recruiting suitable
participants was challenging. To find potential participants,
we identified open-source projects implementing cryptogra-
phy. A project was included if (i) it implements a crypto-
graphic function, and (ii) if the last commit was not older than
two years. We examined the top 120 viable projects in the
GitHub topic cryptography, sorted by stars. Furthermore, we
investigated dependencies of projects from the cryptographic
area, which led us to find and include projects outside GitHub,
including OpenSSL1 and NaCL2. We then identified and con-
tacted the developers who were among the most active in
implementing cryptographic functions. To avoid issues with

1https://www.openssl.org/ (Accessed 2024-06-14)
2https://nacl.cr.yp.to/ (Accessed 2024-06-14)

GitHub’s terms of service,3 we only contacted developers
who provided public contact channels external to GitHub, e.g.,
via personal or professional websites. To identify additional
matching projects, we also used the awesome-cryptography
list [70]. After each interview, we used snowball sampling by
asking study participants if they could recommend other po-
tential participants. Finally, as some interviewees suggested,
we sent out interview invitations to two major mailing lists
regarding cryptographic standardization, namely the NIST
pqc-forum [60] and the IETF SAAG mailing lists [29]. While
the first is used for NIST’s PQC standardization effort, the
latter reflects the Security Area Open Meeting and further
addresses participants of the IETF 118 Prague meeting [27]
that took place at the time of recruitment. This way, we
reached cryptography stakeholders outside the open-source
development space.

3.4 Qualitative Data Analysis
We audio-recorded all interviews and transcribed them using
the GDPR-compliant transcription service Amberscript [4].
We manually reviewed all transcripts for completeness and
correctness. We performed thematic analysis [10] to ana-
lyze the transcripts for common themes and topics. We first
coded the interview to derive general opinions and experi-
ences. Then, we used an iterative process to refine our codes
into generally applicable themes and topics, which were then
fit to the individual citations in each interview.

Two researchers coded each interview independently. Af-
ter individual coding, both researchers merged and discussed
their coding, agreeing on codes, and refining the codebook.
This was done for all 20 interviews, ensuring that the re-
sulting codebook captures the content of all interviews. As
every merging discussion ended with consensus (theoretical
agreement of 100%), we do not calculate inter-rater reliability
(IRR) [44]. Using the resulting codebook, we collectively
derived themes in multiple iterative sessions with four coders.
We provide the codebook as part of our replication package
(see Availability section).

3.5 Ethics
Our institution’s ethical review board (ERB)4 approved this
interview study. This work follows the ethical principles
of the Menlo Report for research involving information and
communications technologies [34]. Additionally, we adhered
to the strict German and European data and privacy protec-
tion laws, including the General Data Protection Regulation
(GDPR). We audio-recorded all interviews, used a GDPR-
compliant transcription service, and deleted audio recordings

3https://docs.github.com/en/site-policy/acceptable-use
-policies/github-disrupting-the-experience-of-other-users
(Accessed 2024-06-04)

4Equivalent to an IRB.
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after their successful transcription. After the interview, we
stored transcripts in a self-hosted, secure cloud collaboration
software, encrypted all data at rest and in transit, and only
granted researchers involved in the project access to the data.
We offered participants compensation in the form of a $60
donation to an open-source project of their choice. We in-
formed participants about these conditions via a consent form
that they had to accept in the pre-survey, which was included
in the informational material provided for recruitment. They
could further discuss and ask questions about the form during
the introduction of our interview5. As interview questions
might be sensitive, we informed participants they could skip
questions or terminate the interview at any time. Finally, we
provide interviewees with a preprint to suggest changes or
veto their contribution to the camera-ready version. To pro-
tect participants’ privacy, we removed identifying information
(e.g., names, companies, project information) from any quotes
in this paper.

3.6 Limitations
This work has several limitations inherent to qualitative re-
search and interview studies, including limited generalizabil-
ity and biases such as recall and social desirability biases [39].
We accounted for these biases by interviewing a diverse sam-
ple of experts who fit our recruitment criteria. Most impor-
tantly, we focused on interviewees who had previously imple-
mented cryptographic standards.

We recruited some interviewees by purposive sampling,
using our personal and professional contacts. Hence, most in-
terviewees have a similar background and are primarily from
the US and the EU. We did not obtain a balanced or diverse
sample of participants regarding personal recruitment criteria
like gender, ethnicity, and age. This means our sample is un-
fit to provide meaningful statements about underrepresented
parts of the cryptographic community or the effect these bi-
ases may have on cryptographic discourse. However, we
recruited interviewees using snowball sampling and through
cryptographic mailing lists and forums such as the NIST pqc-
forum and the IETF SAAG mailing list. This was done to
obtain a diverse sample regarding years of experience, work
context, and project areas for our interview within the rela-
tively challenging small group of cryptographic developers
working with standards. We developed our interview guide
with these limitations in mind.

To reduce social-desirability bias, we specifically men-
tioned that we were only interested in our participants’ expe-
riences and opinions and did not judge them in any way. We
also clarified that interviewees could skip questions or end
the interview for any reason. As in any self-reporting user
study, interviewees’ over- or under-reporting experiences and
opinions could bias our results.

5The consent form is part of our replication package (see Availability
section).

4 Results

In the following, we outline results from our interviews with
20 experienced implementers of cryptographic standards. The
interviews were conducted in English, except for three con-
ducted in German based on participant preferences; quotes
from these are translated in the paper.

4.1 Interviewee Demographics
Due to the small sample size and well-connected crypto-
graphic community, we provide only aggregated demograph-
ics in Table 2 to protect the pseudonymity and privacy of our
participants.

Table 2: Demographics of our 20 participants.

Personal Project-related

Years of Experience Project Roles
Less than 5 years 4 Developer: Lead 9
5 to 20 years 9 Developer: Team member 3
More than 20 years 7 Developer: Co-leader 3

Work Context∗ Developer: Sole contributor 2
Academia 10 Other 3
Industry 10 Project Areas∗
Hobby 7 Post-Quantum Cryptography 15
Open source dev 5 Elliptic Curve Cryptography 6
Crypto side project 3 TLS, SSL 5

Education∗ PGP 5
Academic 15 Other Crypto Libraries 4
Self-taught 11 Formal Verification 3
On the job 7 SSH 1
Training course 1 Project Open or Closed Source∗

Gender Open source 18
Male 8 Closed source 2
Female 1 Other/NA 1
Non-binary 1 Recruitment Channel†
Not Shared 10 Projects 7

Snowball Sampling 7
Mailing List 6

∗ Multiple answers possible, may not sum to 100%.
† Participants may fit multiple channels, best match reported.
NA = not applicable

Overall, our participants tended to be highly experienced.
Only four participants reported having worked in cryptog-
raphy for less than five years, while 16 had at least five
years of experience, and seven participants reported more
than 20 years of experience in cryptography.

Our participants filled various roles in their projects, often
more than one, but mainly worked on implementing cryp-
tography. Among them, nine had a leading role, while three
considered themselves as co-leaders, both part of a larger
team. On the other hand, two participants reported being their
project’s main or sole contributors and only receiving minor
external help, e.g., occasional pull requests from other devel-
opers. Besides the majority of developers, three participants
mentioned different roles, including teaching and consulting
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activities, where they mainly work on prototypes or other
non-production-ready code.

Participants also mentioned multiple sources regarding
their education and training in cryptography. Most commonly,
15 participants reported academic education and university
courses; eleven mentioned being self-taught. Less common,
seven stated to have gathered cryptographic knowledge on the
job. Only one participant mentioned formal training. Ten par-
ticipants worked with cryptography in an academic context,
e.g., as a part of research or university courses. The remain-
ing ten worked in industry. Additionally, some worked on
cryptography projects in their spare time, e.g., seven reported
hobby projects, and five mentioned open-source projects. Fif-
teen participants were mainly involved in post-quantum, mir-
roring current trends in the cryptographic community. How-
ever, some also worked on, e.g., ECC, TLS, and SSL, PGP,
or other cryptographic libraries.

Eighteen participants reported working on an open-source
project, while two were part of closed-source projects. Finally,
one participant did not actively contribute to development, as
they mostly focused on teaching cryptography to students.

Furthermore, we report distribution across our recruitment
channels. As multiple may apply, for example, we might have
directly contacted somebody who also saw us on a mailing
list. We chose the channel that best applied: Snowball sam-
pling in case participants recommended or contacted other
participants; mailing list in case participants responded to
our mailing list post; projects for all other participants who
responded to our personal invite email. We recruited 7 par-
ticipants based on our list of GitHub projects. Furthermore,
6 participants signed up after we promoted our study via the
NIST pqc-forum and IETF SAAG mailing lists. We also
asked participants for potential followup contacts. In 7 cases,
the recruitment snowballed as participants explicitly recom-
mended a person to us. This led to industry contacts and
participants with little cryptographic experience, broadening
our sample.

4.2 Practices for Implementing Cryptographic
Standards

In the second interview section, we asked participants about
their preferred resources for implementing a cryptographic
standard, their implementation process, and how they test their
code or handle issues like gaps in the standards. Gaps, as we
refer to them, are any missing details in a standard needed
for the implementation, e.g., due to implicit assumptions or
lacking detailed explanations in standards. When encounter-
ing gaps, developers must decide themselves or consult other
implementations to find out how to close them, which can
lead to vulnerabilities or mistakes. The following discusses
the reported topics and practices for the cryptographic stan-
dards implementation process. Starting with this section, we
replace the participant counts with tendencies and qualifiers

to protect their identities.
Implementers Appreciate Reference Implementations.
Regarding resources, almost all participants mentioned us-
ing reference or third-party implementations as their main
resource for implementing cryptographic standards. As one
participant stated:

“Basically when software is written in a reasonable
language for cryptography, then it’s unambiguously
specifying, ‘Here’s what you’re supposed to do.’
That’s a very important resource in reference imple-
mentations that are clearly specifying something.
Sometimes the simplest reference implementations
are in C rather than Python. [. . .] A good example
is the MD5 specification. The original MD5 speci-
fication was just, "Here is software that computes
MD5.” — P3

This illustrates the appreciation of reference implementa-
tions as a blueprint for standard-conforming implementations.
Participants mentioned relying on reference implementations
to close gaps in standard documents, obtaining suggestions
for implementation details not specified in the standard, con-
ducting conformance testing, and generating test cases for test
suites. Almost all participants reported using standard doc-
uments in some form, preferably with additional resources,
such as scientific papers and reference implementation.

“I do like standards that are written in a way that
you can match them up to. Here’s the software
that’s supposed to be matching the standards. Here
are the papers that are supposed to be matching the
standards.” — P3

More in-depth, some participants reported comprehension
challenges of standard documents due to their technical com-
plexity, length, outdated or burdensome format, and language.
They mentioned reference implementations as critical infor-
mation sources to help comprehend cryptographic standards.
Formal Verification Increases Trust in Standards and
Helps with Testing. Another topic that our participants men-
tioned is the criticality of formal verification and mechanized
proofs of standards and their implementations. Some partic-
ipants reported involving some form of formal verification
to confirm certain security properties in their cryptographic
implementations. A few participants further mentioned using
formally verified implementations to generate test vectors.
This illustrates the benefits of mechanically checked formal
correctness proofs.

About half participants described formal verification as a
criterion of quality for standards and would appreciate formal
verification to be required for future standards. While formal
verification for cryptographic standards is costly and laborious
and might be an obstacle to submission, it offers significant
advantages, as one participant puts it: “I think the highest trust
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I would now have is in these high-assurance implementations
that have been formally proven. [. . .] Even if it’s not Kyber, it
is secure with this proof.” (P17)
Standards Should Provide Test Vectors. While not offer-
ing the same security guarantees as formal verification, most
participants discussed the criticality of test vectors. Test vec-
tors are known-answer tests that associate an input value with
an expected outcome, e.g., a key and some plaintext as in-
put and ciphertext as expected output. Test vectors allow for
verification of the correctness of an implementation for the
given test vectors. They also support test-driven development,
as a few participants noted. About half of the participants
mentioned using test vectors to test their implementations
or expect them as part of a high-quality standard. As one
participant summarized it:

“Test vectors where possible. Even test vectors that
test like negative stuff, things that should not work
or behavior, let’s say, outside. I don’t know: ‘You
should not validate this point. It should not work
with your implementation.’” — P14

Generally, our participants distinguished two sources of
test vectors: (i) official test vectors provided by the standard
and (ii) unofficial test vectors from trustworthy third parties.
While many participants discussed the benefits of test vectors,
not all standards provide them: “Test vectors would be very
helpful. Test vectors everywhere, but that is not the case.
KMAC, for example, has no test vectors.” (P18). Especially
in these cases, test vectors from trustworthy third parties are
critical. For example, a participant mentioned frameworks
like Project Wycheproof [18] as a trustworthy source for test
vectors.
Trustworthy Third-Party Implementations Provide Addi-
tional Support. In addition to official reference implementa-
tions and test vectors, our participants further discussed the
benefits of trustworthy third-party implementations. For ex-
ample, they reported to have used large-scale open-source
libraries such as OpenSSL or OpenSSH for the TLS and SSH
standards, as test systems or blueprints for their implementa-
tions. One participant mentioned this as an integral part of
their implementation process: “The more implementations
the better. We use a mixture of open-source implementations,
proprietary implementations from other vendors, and then
our implementations.” (P13).

About half of our participants mentioned using third-party
implementations with widespread adoption to help ensure
new implementations’ compatibility with existing ones—
especially popular and widely used ones. Testing interaction
and compatibility with other implementations were part of
about half of participants’ workflow. One participant men-
tioned that having multiple implementations of a standard is
a sensible requirement:

“In principle, it is an IETF requirement that there
must be at least two implementations that can in-

teroperate. [. . .] this is certainly a sensible require-
ment in practice. [. . .] Because the more implemen-
tations there are, the more errors we find.” — P15

The above IETF requirement originates from the IETF Stan-
dards Process [8, 11] and aims to establish the availability of
implementations for cross-compatibility testing. Additionally,
participants mentioned that third-party implementations pro-
vided them a reference for gaps or undefined details, and help
them implement the standard correctly.

4.3 Challenges of Implementing
Cryptographic Standards

In addition to implementation practices, we asked participants
to share common challenges and obstacles when implement-
ing cryptographic standards.
Backward Compatibility are a Challenge in Standard Up-
dates. About half of the participants reported difficulties with
the adoption of standard updates. Participants were mainly
concerned about the trade-off between the improved security
of an update and the potential impact of breaking changes in
their product. Some participants even did not adopt security
updates at all: “The major killer thing about an update for us
is if you might have too much trouble with older clients.” (P5).
Participants reported deprecating outdated components of a
cryptographic standard in an implementation as a major chal-
lenge. Participants voiced varying opinions regarding updates
and deprecation. Overall, a few participants reported that
they need to consider standards updates only rarely. How-
ever, this is still a concern for some crypto developers. One
participant remarked on the rift between having to work with
long-term deployments of computer systems and the constant
developments and updates of standards:

“Then again, this is a bit of an annoyance of mine,
is that with SCADA stuff, you’re looking at lifetimes
of 10, 20, 30 years. Whereas with the crypto guys,
nothing’s ever static, nothing ever stays the same.
There’s a constant [. . .][and] pointless churn in
that a lot of stuff gets updated not because there’s
any particular reason to, but because we’ve just got
a new flashy thing and we need to update it, which
makes it incredibly difficult.” — P20

While the discovery of vulnerabilities will not wait for times-
pans this long, these types of deployments require legacy
and backward-compatibility support, which standard organi-
zations need to provide. Furthermore, participants working
on multiple standards reported that handling backward com-
patibility can be more difficult for some standards than others.
One participant gave the example that if an existing OpenPGP-
encrypted email uses an outdated cryptographic primitive that
is not supported by the recipient’s OpenPGP client, that mes-
sage becomes unreadable. Therefore, a standard update might
result in a breaking change that cannot easily be addressed.
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Algorithm Variations and Complexity. The complexity of
cryptographic standards adds further challenges for imple-
menters. Often, standards support multiple cryptographic
primitive, algorithm, or protocol variations with different
levels of security as a tradeoff for performance, storage re-
quirements, or additional, optional features. For example,
SHA-3 [57] supports different variations, such as SHA3-224,
SHA3-256, SHA3-384, and SHA3-512, providing tradeoffs
in security and performance. Some participants reported chal-
lenges when implementing all variations, often resulting in
focusing on simplicity, as one participant puts it:

“I’m trying to implement this as step two, but for
now it’s important to me that I create the things that
are considered necessary, or rather translate them,
and then add the optional components as required.”
— P2

Other participants preferred increased security and lower at-
tack surfaces in their implementations by deploying fewer
options. Some participants cited standards’ complexity in
terms of comprehensibility, length of standard documents or
contradicting documents:

“If you want to implement DNSSEC today, you
have to read 50 different RFCs that contradict each
other. If you want to implement [Hashing to El-
liptic Curves] you have one document with all the
possible curves, so it’s really inconsistent.” — P8

This also feeds into the debate of openness and review that
we explore in Section 4.4. One participant summarized their
wishes:

“[. . .] all I wanted was just something saying ’This
is the standard from now on, key exchange, let’s do
that’ and, instead, there’s just more choices being
produced, there’s less clarity around them, there
are fewer eyes on all of these candidates because
there are so many of them.” — P12

Our findings imply that multiple variants and options in cryp-
tographic standards can skew the cryptographic implementa-
tion process, reduce the efficacy of reviews, and weaken the
overall security of standards and implementations.
Handling Errors and Typos in Standards. Participants re-
ported their experiences with vulnerabilities and errors in
standards, where they usually find them, and how they pro-
ceed when finding one. About half of the participants gave
us examples of errors in standards, from typos and small con-
tradictions to insecure random number generators. Smaller
issues, such as typos, can cause problems: “We collected
quite some remarks on just typos which can be deadly in the
standard document” (P4).

Participants shared their experiences with discovering and
reporting vulnerabilities, and reported differences in feedback
of standard authors or maintainers.

“For example, with S/MIME, again, it’s very easy,
just email the standards authors or the people in-
volved and you can get a fix done. [. . .] There
doesn’t seem to be much point in submitting any
change request to something like the TLS standards
group, because it’ll just get ignored.” — P20

As a positive example of reporting and fixing a significant
vulnerability, P9 reported:

“The first thing when talking about vulnerabilities,
one of MITRE’s things is to try and support this
CVE and CWE system to actually have public re-
porting of discovered vulnerabilities. MITRE is
certainly definitely directly interested in that and
has been even outside of [cryptographic field] for
a while.” — P9

This demonstrates trust in organizations like MITRE, which
records, reports, and publishes vulnerabilities and errors in
standards, enabling proper disclosure and handling even when
the standard organization is not open to feedback.

Laws and Patents Hinder Cryptography. Overall, partici-
pants had various concerns related to laws and patents regard-
ing standards and the adoption of cryptography.

Participants addressed regulations on the export of cryp-
tography, e.g., to foreign countries. While participants saw
issues that export laws could create, this highly depended on
each case. For public implementations, such as open source,
export laws were reported to have changed for the better:

“[Export laws] used to be a much bigger problem. [. . .] for
the last 20 years basically you can publish it [open source]
without any problems.” (P3). However, in other scenarios
export laws can be challenging, e.g., when cryptography is
part of a physical product: “Yes, crypto is still a problem for
export. We really do have to think about where can it ship our
products.” (P5). Fittingly, P17 outlined that cryptographic
code itself is not physical and the concept of exporting does
not make sense:

“They always talk about exporting a product, which
is, I think, the idea that you have a box that was
first here and that it’s there and it’s not here any-
more, and this is just not how cryptographic code,
a particular open source cryptographic code gets
developed. The concept doesn’t fit there.” — P17

About half of our participants discussed the challenges of
regulations within individual countries. Our participants also
reported challenges for implementers when governments spec-
ify atypical cryptography that must be used. For example, a
participant reported the need to support the Chinese ShangMi
(SM) cipher suites in TLS [75] to comply with Chinese laws.
As illustrated by some participants, regulations are seemingly
politically motivated:
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“Many countries want their own national cipher.
Korea has SEED. China has SM2, 3, 4. Russia
has GOST. It’s almost like a point of pride. I can
see, for example, why Russia and China histori-
cally would not want to use what the US agencies
picked. [. . .] It’d be great if we were all just one
big, international happy family.” — P16

As in the case of China, such restrictive country laws can
cause implementer concerns and insecurities: “What happens
if you ship something to China?” (P5). For all the mentioned
issues, a few participants stated that a legal team is needed
to handle laws; some reported having access to such legal
support.

Participants also mentioned a general aversion against
standard-related patents. Some participants explicitly stated
that they try to avoid any patented cryptography; as one fit-
tingly summarized: “I try to stay away from the patented
[cryptography]. I try to leave a buffer zone so that even if
courts are stretching the patents, I stay away from that.” (P3).
Overall, about most of the participants agreed that patents
are a major problem in cryptography. The most common
reason given by some participants is that patented cryptogra-
phy would not be widely used: “If you patent something in
cryptography, nobody will use it for about 20 years.” (P1). A
few participants explicit expressed their wishes for open and
free cryptography standards that are not restricted by patents.
Fittingly, the participants perceived that public and open cryp-
tographic standards have taken over and replaced proprietary
ones in the past. One participant who was involved in crypto-
graphic standardization mentioned that they purposely chose
not to patent their approach: “It was absolutely clear we
wouldn’t get any patent for this because what would happen?
People wouldn’t use it.” (P5). Additionally, a few participants
reported that the legal overhead caused by patents hinders the
implementation of cryptographic standards. A few partici-
pants further mentioned other issues regarding participants,
such as concerns about patent law infringement liabilities, or
consequences for individual open-source developers in patent
lawsuits. Participants discussed a few cases where code was
not publicly released by the person or company to avoid patent
issues. Contrary to the challenges above, a few participants
mentioned that they do not consider laws and patents at all,
and a few participants stated that patents are a non-issue in
academic open-source implementations:

“The good thing is that when you’re implementing
something in an academic context, you don’t need
to worry too much about patents. I can write code,
I can put the code online, and that’s okay.” — P17

Besides the aforementioned practical issues, two partici-
pants outlined ethical concerns of patenting cryptography, as
most cryptography would be developed by publicly-funded
researchers:

“There is one thing I think I don’t like when pub-
licly funded researchers apply for patents. I think
this is ethically more than questionable. [. . .] I
think cryptography is a science of communication
that requires interoperability and that requires that
everyone can use these things. Patents are killers
for cryptographic standards.” — P4

Despite all critiques regarding patents, one participant men-
tioned that patents are the main incentive for industry contri-
butions, but directly relativized the point by mentioning their
companies’ bad experiences with patents in the context of
cryptographic standards.

The reservations towards patents might also be caused by
accessibility issues. A few participants stated various chal-
lenges, such as finding, keeping up-to-date with, and knowing
all relevant patents—or when a patent expires. Similarly, a
few participants mentioned associated costs as a barrier to
implementing patented cryptography. Therefore, a few partic-
ipants mentioned that patents are mainly a thing that lawyers
should care about: “Actually, pretty much all people in the
industry don’t talk about patents. The first rule, I think that
they all get told like: leave that to the lawyers.” (P17).

4.4 Suggestions for More Implementation-
Friendly Standards

After discussing challenges, we asked participants for sugges-
tions to improve future cryptographic standardization.

Preference for Public or Open-Source Approaches. Our
participants mentioned the criticality and impact of openness
in cryptographic standards and the standardization process. In
our interviews, we identified four areas: openness in standard-
ization, open community around standards, mistrust through
lack of openness, and a rift between open, often academic,
standards, and closed industry use.

First, regarding openness in standardization, almost all
mentioned it as an important aspect of cryptography. Of these,
most mentioned that standardization bodies should be trans-
parent and also make standards publicly accessible. For our
participants, openness begins with the standardization process.
They appreciate open standardization processes and in par-
ticular named the NIST cryptography standard competitions
and the general standardization process of IETF as positive
and trustworthy examples, as they enable public review of
standards and therefore foster trust:

“If there’s a closed standard, I almost never look
at it. I think that’s not going to be something that
people have done any real security review. Maybe
there are ten people who looked in a room at some
ISO standard, but it’s not the same as a publicly
written, publicly developed standard. NIST has
its standards online. That’s something that makes
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them much more likely for people to look at them
and review them. I’ll look for those.” — P3

Second, when implementing standards, some actively rely
on the community around open standards, e.g., public fo-
rums of standard committees, mailing lists, and the ability
to contact standard authors and contributors with questions,
to implement their cryptography securely. One particular ad-
vantage for large implementations is the ability to implement
along released drafts and address implementation problems
during the standardization process before the standard is fi-
nalized, as illustrated by one participant regarding ECH, an
extension of TLS.

“The implementation [of ECH] started when the
spec was still relatively fluid. It was changing.
There’s a GitHub repo with the spec where there’s
a bunch of issues are processed there. There are
a bunch of issues that were processed during the
various meetings and mailing lists. The implemen-
tation [. . .] started early and [there] was feedback
between the implementations and the specification
at that point.” — P6

The ability to control and discuss changes before a version of
the standard is finalized aligns with the problems participants
reported regarding standard updates and changes (see Sec-
tion 4.3).

Third, missing openness and transparency might induce
mistrust. Almost all participants mentioned actively avoiding
paid or inaccessible standards. As one participant put it:

“I hate paid standards. I hate having to pay to
read research papers because sometimes you know
that this is something that could be useful to your
protocol or whatever you are working on, and you
just can’t access it. [. . .] If I have to pay for that,
I’m going to ignore something that I might be at
risk of and that’s not cool.” — P8

Furthermore, some participants gave specific examples of
standardization bodies they mistrust because of lacking trans-
parency in their standardization processes. Particular exam-
ples mentioned the International Organization for Standard-
ization (ISO) closed committee of decision makers and the
national fast track [25], that they provide for quicker standard-
ization requests, as sources of mistrust. They also criticized
more minor instances of lacking transparency, like NIST’s
final decision process in the selection of PQC algorithms be-
ing made behind closed doors, or IETF’s tendency to make
decisions in IETF meetings with missing documentation and
reasoning, which can exclude people from the standardization
process if they are unable to attend these meetings.

Finally, a few participants also mentioned the impact of
closed environments, a rift between the open academic com-
munity working on cryptographic papers and standards, and
the more closed-off industry consumers.

“We end up in a situation where government and
academia are the creators of standards, but indus-
try, the consumer, and there’s a misalignment of
incentives. I would like there to be a way to in-
clude the actual consumers of the standards in the
feedback process more easily.” — P19

Participants reported that NDAs and closed implementations
can make obtaining feedback and voicing opinions in public
standardization forums difficult.
Communication and Social Components. Our participants
discussed the potential to improve the current state of commu-
nication within the cryptographic standard community. Some
mentioned the importance of existing explanations to some
extent. First, several participants requested that reasons and
explanations for decisions in cryptographic standards should
be provided in the standard document for both cryptographic
implementers and researchers:

“[. . .] requires a rationale for all the points. In
some cases, it helps implementers. In other cases,
for example, the opaque standards where the au-
thors could not explain why the standards did some
of these things. Some people came back and asked:

‘Why is this requirement in there?’ And the stan-
dard’s authors couldn’t explain why [. . .]. It helps
implementers, and in the case of some standards
bodies, it helps guide them in not creating standards
that have incomprehensible features.” — P20

There were also mentions that those reasons should exist,
but in a different place and not in the actual description of the
cryptographic scheme:

“A rationale that virtually no IETF standards ever
have. Because if you’ve got a standard and there’s
some ambiguous section in there and there’s a ra-
tionale, you can say, okay, they meant this. Without
a rationale, you have absolutely no idea. Which is
why I mentioned the IEEE standards earlier: be-
cause they include a rationale, so you can see what
the thinking was behind this thing.” — P20

Interviewees had opinions about the current existing “toxic”
[their wording] discourse around standards. They reported
that strong social involvement is required to push cryptog-
raphy. Simultaneously, this social component ensures that
newcomers, less involved implementers, and small groups
may be discouraged from participation:

“I would like to see a body that’s a little bit more
formal than IACR or the CFRG that represents
some kind of broader consensus of academic cryp-
tographers without a competitive nature coming
to the fore. People who are good cryptographers
somehow always have to have big egos as well.”
— P6

7258    33rd USENIX Security Symposium USENIX Association



4.5 General Trends in Cryptographic
Standards

Beyond the topics mentioned above, participants also men-
tioned several trends in cryptography. We describe them as
general tendencies among our participants for reference.

Importance of Post Quantum Cryptography. PQC is cur-
rently the strongest trend in crypto. Most participants men-
tioned working on PQC or watching the current PQC process.
This trend is likely inflated by recruiting from the NIST PQC
Forum mailing list, but since that only contributed a few par-
ticipants, the trend is still clearly visible.

Required Financial Aids. On the organizational side, a few
participants, as part of their final “wish”-question, explicitly
asked for more financing to cover issues and recommenda-
tions we have talked about throughout the interview. Exam-
ples included open standards, resolving patent and licensing
issues, and formal verification. This demonstrates the need
for proper financing to develop well-working standards with
high adoption rates and usability, and informs the priorities
of our recommendations.

5 Discussion

Below, we discuss our findings and make recommendations
for future cryptographic standards.

First, we report the wishes and needs of our interviewees
mentioned (see Section 4). We extract them from the results,
summarize them, and illustrate their criticality.

Second, we assess how current major cryptographic stan-
dards implement those wishes and needs. Therefore, we sys-
tematically analyzed the 21 openly available cryptographic
standards our participants mentioned (cf. Table 3). Addi-
tionally, they mentioned two proprietary standards, SM4
(ISO/IEC 18033-3:2010/Amd 1:2021) and IEEE 802.11. We
excluded both due to significant procurement costs and our
participants’ rejection of proprietary standards. In a system-
atic analysis of each standard document and the linked refer-
ences, we assessed how well the standards address the wishes
and needs of our participants, as we illustrate below. Two
authors analyzed all standard documents and the linked ref-
erences independently, then met to resolve disagreements.
Table 3 summarizes and illustrates the analysis findings.

Finally, we identify gaps between our participants’ wishes
and needs and the major standards, and we provide our rec-
ommendations for improving future cryptographic standards.

Reference Implementations. Our participants illustrated the
criticality of reference implementations when implementing
standards (cf. Section 4.2). As one participant explained:

“Reference implementations are great when they are readable,
written in simple language like Python. That’s super use-
ful.” (P8). Reference implementations provide examples of
implementation details that may be missing in the standard

Table 3: Summary of our assessment of how well current
major standards implement participant wishes and needs.
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X.509 (RFC) RFC 2024 ½ 0
Signal De Facto 2024 1 0
Kyber
(ML-KEM) NIST (d) 2023 2+ 2+

Sphincs+
(SLH-DSA) NIST (d) 2023 2+ 2+

AES NIST 2023 1 0
(EC/Ed)DSA NIST 2023 1 0
DNSSEC RFC 2021 0 0
GOST RFC (i) 2020 0 0
Wireguard De Facto 2020 2+ 0
OpenSSH RFC 2020 1 0
S/MIME RFC 2019 ½ 0
CHACHA20 RFC 2018 1 0
TLS 1.3 RFC 2018 1 0
TLS 1.2 RFC (o) 2018 ½ 0 x
RADIUS RFC 2017 0 0
PKCS: RSA RFC 2016 ½ 0
Keccak
(SHA-3) NIST 2015 2+ 2+ x

SHA-2 NIST 2015 0 0
MD5 RFC 2011 1 0 x
OpenPGP RFC 2009 0 0
SEED RFC (i) 2005 ½ 0

Fully applies. Partially applies. Does not apply.
x Not applicable. ½ Parts of an implementation included or linked.
2+ Multiple implementations for different audiences included or linked.
(i) Informational RFC (o) Obsolete RFC (d) NIST Standard Draft

document and a starting point for implementers. Addition-
ally, reference implementations may be formally verified.
Furthermore, participants suggested documenting reference
implementations better, adding more context and explana-
tions to make implementations easier. As mentioned by our
participants and in related work [16] this lack may hinder or
even prevent standard adoption.

Seven of the 21 standards we analyzed provided or linked
to one external reference implementation. Four included mul-
tiple reference implementations, mainly limited to modern
NIST standardization efforts and WireGuard. Five provided
only partial reference implementations. However, some stan-
dards lack reference implementations and only provide math-
ematical foundations or pseudocode. Five standards did not
provide or reference any code, including older NIST standards
such as SHA-2 [56] and DSA [53].
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Reference Implementations Should be Mandatory. We recom-
mend making reference implementations and their documentation
part of the standard drafting phase. NIST, for example, required
multiple implementations as part of its PQC and SHA-3 standard-
ization efforts and linked to them on their accompanying website.
We also recommend updating existing standards and including
links to reference implementations.

Third-Party Implementations. Similar to reference imple-
mentations, our participants highlighted the criticality of third-
party implementations. They confirm compatibility with the
general ecosystem surrounding a standard. As one participant
mentioned, implementation requirements, e.g., as realized
by the IETF, help standards to gain adoption, collect public
feedback, and provide an essential point of reference. Third-
party implementations might be a better starting point for
the industry to implement cryptographic standards than ref-
erence implementations, considering both simple reference
and formally proven implementations. For example, third-
party implementations might focus more on efficiency beyond
functionality and correctness.

Among the 21 analyzed standards, only the three NIST
standardization efforts provided third-party implementations
(see Table 3). They linked to them on each of the accompany-
ing websites that were part of the submission, including the
code and contact information.

Multiple Third-Party Implementations Should be Referenced.
We recommend standardization bodies to require multiple third-
party implementations as part of their standardization effort.
However, maintaining a list of third-party implementations inside
the standard may be unsustainable. Therefore, we recommend
following the example of the NIST SHA-3 and SLH-DSA stan-
dards and providing links to third-party implementations on their
accompanying website.

Test Vectors. Our participants mentioned test vectors as an
effective tool to ensure compliance with standards. They
required test vectors to confirm the correctness of their imple-
mentations, check edge cases, and perform negative testing
for mistakes. Participants reported generating them using
reference or third-party implementations in case of missing
test vectors.

Twelve of the standards we analyzed provided test vectors
either as part of the standard or referenced in the standard doc-
ument. NIST, for example, provides test vectors for many of
their cryptographic primitives at one central location on their
websites [51]. And TLS 1.3 includes test vectors in a separate
RFC [72]. Test vectors are missing in seven other cases, in-
cluding major de facto standards like the Signal protocol and
WireGuard. However, the reference implementations seemed
sufficient to generate high-quality test vectors.

More and Negative Test Vectors. We suggest standard docu-
ments should include a set of test vectors to help developers check
functional implementation correctness. We also recommend in-

cluding negative test vectors whenever applicable to better sup-
port testing for common implementation mistakes.

Formally Verified Standards. Proofs for standards also
increase trust in standards, making their algorithms more
likely to be adopted and errors more straightforward to iden-
tify across implementations. However, as participants con-
firmed, generating proofs for standards is a complex and
time-consuming process; therefore, we want to encourage
formal verification but argue that it should not be mandatory.

Only three of the standards we assessed provided formal
verification. These are the NIST standardization efforts
SHA-3, Kyber, and Sphincs+, along with TLS 1.3, which
reference multiple research publications to prove their secu-
rity. The remaining standards lacked formal verification.

Make the Current Verification Trend a Requirement for Fu-
ture Standards. Formal verification was provided in the most
recent standards we analyzed. In line with participants’ wishes,
we recommend continuing this trend and including proofs in stan-
dard documents, reference papers, or similar publications. We
recommend considering updating highly critical existing stan-
dards to add formal verification.

Verified Implementations. Verified implementations can ex-
tend formal verification. Like the proof of security guarantees
for a standard, verified implementations prove that a specific
implementation complies with a standard. As our participants
reported, these implementations are used to test other imple-
mentations’ compatibility or to generate custom test vectors.
As the code might be difficult to read, it should not be the
only type of implementation.

Only two of the standards we assessed provided formally
verified implementations. TLS 1.3 refers to a formally verified
implementation. The WireGuard documents link to formal
verification for parts of the implementations. The remaining
standards do not provide formally verified implementations.

Offering Verified Implementations Can be Beneficial. While
providing verified implementations takes significant effort, their
benefits for implementers of cryptographic standards are high.
Some participants suggested using verified implementations as a
black box binding for other implementations, removing the need
for custom implementations from scratch. Hence, we highly
recommend verified implementations as mandatory for future
standardization processes.

Supporting Developer Choices. As participants reported,
many cryptographic standard documents are challenging to
read and comprehend, as standards are often complex, lengthy,
and not targeted towards implementers. They may encom-
pass multiple documents and provide multiple versions, e.g.,
SHA-3 has six variants [57], and SSH consists of 23 RFCs,
five drafts, and, depending on compatibility goals, additional
OpenSSH-specific protocol extensions [62]. Identifying the
critical parts for an implementation is often not straightfor-
ward and complicates the implementers’ lives even further.
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Hence, our participants expressed a high demand for better
organization of standard documents and improved readability
and comprehensibility.

Seven of the 21 standards we analyzed, mostly modern
RFC standards, were well-structured and contained helpful
summaries for implementers. NIST provides a quantifiable
security rating from one to five in their newest standards [58],
which are helpful indicators for implementers. The in-depth
breakdowns of RFC contain important hints at pitfalls in se-
curity and implementation issues. Eleven standards contained
some form of summary or overview to support implementa-
tion. They also described standards’ strengths and weaknesses
that were otherwise difficult to grasp.

Helpful Summaries and Security Tips are Highly Beneficial
for Adoption. Since cryptographic standards can quickly encom-
pass a high level of complexity that implementers cannot easily
deal with, we recommend cryptographic standard documents
transparently communicate different versions, provide actionable
hints and summaries, and illustrate strengths and weaknesses.

Provide Update Notes. For updates, participants reported
difficulties maintaining legacy support. This aligns with the
findings of related work [20] and demonstrates the need to
consider update paths as a core property of modern standards.

In our dataset, twelve standards provided easy-to-find and
explicit update notes. RFC errata and draft updates provide
changes in the style of git diffs; Eight cases, however, includ-
ing more significant changes like TLS 1.2 to 1.3 and changes
in NIST standards, focused on updates in prose.

Concise Update Notes Significantly Help Implementers. We
recommend future standards to provide diff-style update notes
when standard documents change. Update notes should address
general update information for implementers and discuss com-
mon pitfalls.

Patent and Intellectual Property Rights Disclosure. An-
other common obstacle was legal uncertainty. Participants
did not feel able to address country-specific laws adequately
in international open-source projects. Patents or intellectual
property rights (IPRs) often discouraged our participants and
were negatively associated with license fees. Modern stan-
dards tend to prefer cryptography that is not weighted down
by IPRs, as stated by NIST [59] and IETF [9] guidelines
for standard proposals. One participant put it this way: “in
general, when somebody tries to patent cryptography, it’s
actually more of a deterrent than if it was just, standardized,
made public and allowed broadly.” (P11).

In our analysis, 17 of 21 standards contained information
on patents or IPR disclosures. We noticed that Kyber contains
a patent waiver, and older standards like RSA and ECDSA
had patents applied after their standardization. IETF stan-
dards provide a collection of IPR disclosures in their data
tracker [28]. The IETF also requires patents to be disclosed
and prefers standards not encumbered by known patents. This

allows implementers to assess the patent situation around a
standard quickly.

IPR and Patents Should be Reported Alongside Standard
Documents. We notice the trend towards open standards with
no IPR rights attached and patents that apply. For IPRs in gen-
eral, we advocate reporting them in one central location, e.g., as
provided by the IETF data tracker.

Open Standardization Process. Our participants preferred
open standardization processes such as NIST and IETF with
transparent requirements, public decision-making, and in-
volvement. Our participants say open processes contribute
to more easily sustainable and trustworthy standards. Stan-
dardization processes, like for AES, were praised for their
openness, and efforts like the formal verification of TLS 1.3
increased the trust in those standards. Our participants’ sug-
gestions align with the principles laid out by Hao [22].

Analyzing the 21 standards, we found eleven standards
implemented open standardization processes. These include
NIST competitions and IETF requests for comments and draft
phases. Six de facto standards, some of which IETF and NIST
later published in open form (e.g., SHA-2, MD5, ECDSA),
had no initial open standardization processes.

Open Standards and Standardization to Create Trust. While
this is already the case for many standards, we recommend that
both the standards and the standardization process should be
open. This fosters trust and is a critical adoption factor. IETF
and NIST have made great efforts to provide open processes, and
we recommend that they be further refined.

Contact Information. Our participants illustrated the impor-
tance of contact information for standard maintainers regard-
ing implementation details or other questions. They some-
times consult experts or standard authors to help with gaps
or uncertainties in standards. Our participants also perceived
contact information as beneficial for general feedback and
bug reporting.

In our standard analysis, 20 provided contact information;
only the more legacy SHA-2 lacked them in the document.
IETF’s Datatracker [28] works well in identifying responsible
parties and offering contact information and the ability to
disclose errata for all RFCs, even though in the case of de
facto standards like OpenSSH, it may be unclear which orga-
nization between the OpenBSD project, OpenSSH authors,
or the IETF, is responsible.

Provide Clear Contacts for Standards. Future standards should
adhere to established practices in existing standards regarding
providing contact information. For example, IETF’s Datatracker
quickly allows finding contact information and prevents confu-
sion about whom to contact for which purpose.

Feedback Encouragement. Our participants perceived com-
munication with standard bodies and the community as chal-
lenging. For example, organizations ignored bug reports,
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demotivating further engagement. However, participants also
mentioned the presence of solid egos and the requirement
of extensive subject knowledge that seems to reign within
standardization processes. Champions who led the discussion
emerged due to their experience and dedication to the field
of cryptography. While these champions are undoubtedly
essential to drive public standardization processes, especially
in recognizing and arguing with stakeholders like state-level
attackers attempting to weaken cryptographic standards, the
strict discourse around these standards can scare newer or less
dedicated contributors away.

14 of the 21 analyzed standards actively encouraged feed-
back from the broader community, including all IETF stan-
dards. This finding highlights the community-driven benefits
of open standardization processes. However, only the PQC
draft standards explicitly encouraged providing active feed-
back for newcomers or stakeholders outside the community.

Standards Community Should be More Open to Newcomers.
As a few participants explicitly stated, standardization efforts
should implement encouraging processes to involve newer or
smaller voices.

Bug Report Channels. Finally, participants reported issues
with reported typos or other minor mistakes that standard
maintainers did not take seriously, leading to participants not
reporting them anymore.

In our standard analysis, only three standards—OpenSSH,
Signal, and WireGuard—provided clear instructions for bug
reporting and encouraged it. These standards reference their
sources and their bug trackers as clear points for bug reporting.

Transparently Communicate Bug Reporting Instructions and
Processes is Important. We recommend transparent and open
communication channels for bug reporting. They should include
feedback error reports to support developers and encourage er-
ror reporting, particularly for newcomers or outsiders to crypto-
graphic standardization processes.

6 Conclusion

In this work, we presented and discussed the findings from
interviewing 20 cryptographic software developers regarding
the implementation process of cryptography based on stan-
dards. We inquired about their experiences and handling of
various phases of the implementation process. Overall, we
find that standards can be complex and lengthy, and they some-
times lack summaries and support that implementers prefer.
This includes official reference implementations, the avail-
ability of test vectors, and documentation. Furthermore, while
cryptographic software is largely already openly available, we
found that proprietary software or patents are often frowned
upon, even by industry participants, as they raise legal issues,
obscure standards, and hinder standard adoption.
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A Cryptographic Standardization

Cryptographic standards describe cryptographic primitives
and protocols tested and approved through a central entity, a
standardization body. This approach has become increasingly
important for cryptography [54, 57, 55]. Below, we give an
overview of classes of cryptographic standards critical for our
work and provide an overview of standardization bodies.

A.1 Cryptographic Standards

Open cryptographic standards should contain relevant imple-
mentation details, potentially different security options, the
effect of these options, and, ideally, requirements for the sys-
tems implementing these cryptographic standards. For our
work, we distinguish two cryptographic standards types:

Cryptographic Primitives. These describe the low-level
building blocks of cryptography. We generally refer to these
as the building blocks or primitives that can be used in secu-
rity protocols to secure information. Examples include hash
functions (e.g., the SHA-2 family [56]), key exchanges like
X25519 [37], and key derivation functions like PBKDF2 [47].
We also include components or processes that describe com-
binations of the primitives above to provide new capabili-
ties but still apply to the general purpose of securing infor-
mation. Examples include the AES block cipher and the
post-quantum-cryptography algorithm SPHINCS+ [6] pre-
senting an approach to enable One-Time Signatures to be
combined into a general purpose signature scheme that is
resistant against quantum attackers.
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Cryptographic Protocols. Cryptographic protocols use and
combine the primitives as mentioned above to secure specific
use cases and larger systems, and to prevent unintentional
leaks. Standardized protocols also ensure that all participants
using a protocol can securely communicate with each other,
independent of the concrete implementation a participant uses.
Examples include TLS, used to secure TCP connections or the
Web Authentication (WebAuthn) and FIDO APIs/protocols
enabling passwordless authentication via browser. Our defini-
tion of cryptographic protocols also includes many de facto
standards introduced by popular and widely available soft-
ware without an explicit standardization body beyond the
software developers. Prominent examples of these de facto
standards include OpenSSH as a secure remote shell protocol,
WireGuard [13] as a secure virtual networking layer, and the
Signal protocol [69] for end-to-end encrypted messaging.

A.2 Standardization Bodies

One particularly well-known standard body for cryptogra-
phy is NIST. They introduce Federal Information Processing
Standards (FIPS), which are a collection of public standards
that NIST developed for computer systems of (non-military)
U.S. government agencies and their contractors. For example,
FIPS standardizes the Advanced Encryption Standard (AES)
in FIPS 197 [54] and the Digital Signature Standard (DSS)
including Rivest-Shamir-Adleman cryptosystem (RSA), El-
liptic Curve Digital Signature Algorithm (ECDSA), and re-
cently Edwards-curve Digital Signature Algorithm (EdDSA)
in FIPS 186 [53].

Next is the IETF, proposing RFC as their version of stan-
dards. The goal of the IETF, according to RFC 3935 [3],
is to provide protocol standards, best practices and other in-
formation intended to influence how people design, use and
manage the internet. RFCs are formally published by the
so-called RFC Editor after a public review process. Any-
one with sufficient experience can contribute to and support
internet standards created by the IETF within their defined
processes [14], making this standardization body and its pro-
cesses open and accessible. Examples for internet standards
provided by the IETF are TLS in RFC 6353 [23] and proposed
standards like the ssh authentication protocol [43].

For the modern Internet, the most important standard body
is the World Wide Web Consortium (W3C), responsible for
the standards surrounding HTML.6 Finally, there are stan-
dard bodies like the ISO,7 the American National Standards
Institute (ANSI),8 and the International Telecommunication
Union (ITU) offering industry standards in the larger context
of IT and other aspects of cooperation worldwide.

6https://html.spec.whatwg.org/ (Accessed 2024-05-27)
7https://www.iso.org/home.html (Accessed 2024-05-27)
8https://ansi.org/ (Accessed 2024-05-27)

A.3 Standardization Process
There are various processes to standardize cryptographic prim-
itives and protocols. While creating a standard document has
been unified for each organization, deciding what to standard-
ize has changed a lot recently.
Public Standardization Effort. This first approach was re-
cently adopted by NIST for their PQC effort, SHA-3, and
AES [52]. They post public requirements for a new standard.
Then everyone can propose cryptographic primitives and pro-
tocols, out of which a few winners are chosen by a panel of
experts. Then public feedback for that selection is collected
in multiple rounds until a final standard can be drafted.
Public Comments on Standards. Here, standards are more
publicly decided on mailing lists and in public meetings. The
organization and contributors work on drafts of an open stan-
dard as part of so-called Request for Comments (RFCs) until
it reaches maturity, often starting with a suggested algorithm.
This is the common approach of IETF and W3C.
De Facto Standards. For this third approach, a protocol is
proposed and used often enough by industry or academia to
become a standard, a de facto standard. It addresses a gap in
existing standardization and becomes so successful that one of
the organization bodies later translates it into a conventional
standard. Examples of this are the Ed25519 primitive that
has been added to FIPS in 2023 [53], after being known
and used [62, 65] for multiple years. Other examples are
the OpenSSH and OpenPGP standards, standardized by the
IETF as part of open implementations of de facto standard
proprietary software [63, 67].
Standard Through Organization. Finally, there is the con-
ventional process used by ISO, ANSI, and, in earlier years, by
NIST, where a private panel of experts selected by the orga-
nization works on and later publishes a standard. Backdoors
and attacks on such standards have caused a need for publicly
evaluated and verified cryptography and communication stan-
dards. Because of this, even originally closed standards with a
large adoption in modern cryptography, like X.509 for certifi-
cates, have obtained open variants [7]. This closed approach
is also used by some government agencies for government
mandated cryptography, e.g., GOST and Seed that are then
published as informational RFCs, outside the IETF’s typical
standard efforts [26], and usually produce de facto standards
with geographically restricted use.
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