
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

UBA-Inf: Unlearning Activated Backdoor Attack
with Influence-Driven Camouflage

Zirui Huang, Yunlong Mao, and Sheng Zhong, Nanjing University
https://www.usenix.org/conference/usenixsecurity24/presentation/huang-zirui

UBA-Inf: Unlearning Activated Backdoor Attack with Influence-Driven Camouflage

Zirui Huang
Nanjing University

Yunlong Mao∗

Nanjing University
Sheng Zhong

Nanjing University

Abstract

Machine-Learning-as-a-Service (MLaaS) is an emerging
product to meet the market demand. However, end users are re-
quired to upload data to the remote server when using MLaaS,
raising privacy concerns. Since the right to be forgotten came
into effect, data unlearning has been widely supported in on-
cloud products for removing users’ private data from remote
datasets and machine learning models. Plenty of machine
unlearning methods have been proposed recently to erase
the influence of forgotten data. Unfortunately, we find that
machine unlearning makes the on-cloud model highly vul-
nerable to backdoor attacks. In this paper, we report a new
threat against models with unlearning enabled and implement
an Unlearning Activated Backdoor Attack with Influence-
driven camouflage (UBA-Inf). Unlike conventional backdoor
attacks, UBA-Inf provides a new backdoor approach for effec-
tiveness and stealthiness by activating the camouflaged back-
door through machine unlearning. The proposed approach
can be implemented using off-the-shelf backdoor generating
algorithms. Moreover, UBA-Inf is an “on-demand” attack,
offering fine-grained control of backdoor activation through
unlearning requests, overcoming backdoor vanishing and ex-
posure problems. By extensively evaluating UBA-Inf, we
conclude that UBA-Inf is a powerful backdoor approach that
improves stealthiness, robustness, and persistence.

1 Introduction
Emerging large deep models like GPT [56] and ViT [17]

have exacerbated the tension between the rapid growth of data
and the relative lack of computing resources, making it diffi-
cult for individual users and small companies to deploy large
models locally [57]. To ease resource constraints and data
barriers, vendors like Google and Microsoft have moved deep
models onto cloud platforms as API services for advantages
like accessibility, cost-effectiveness, and scalability [7]. Such
a Machine-learning-as-a-Service (MLaaS) trend has gained
significant momentum in recent years [20]. MLaaS service

∗Corresponding author, email: maoyl@nju.edu.cn.

providers (SPs) establish cloud platforms for data collection,
model training, and inference service provision. The MLaaS
of Google AI [1], Microsoft Azure AI [2], and Amazon Sage-
Maker [4] have made successful cases.

MLaaS users are commonly required to upload data to
the remote server for training or inferring on-cloud models,
raising serious privacy concerns [11, 30]. With users’ private
data learned by on-cloud models, MLaaS is at risk of vari-
ous threats like inference attacks [31, 77], data reconstruction
attacks [47, 55], and poisoning attacks [48, 64]. Besides, pri-
vacy regulations like the European GDPR [7] allow users to
revoke their personal data from learning models as part of the
right to be forgotten. In such circumstances, machine unlearn-
ing [8, 22, 71] emerges as a promising solution for addressing
the privacy concerns of MLaaS users [29, 72]. For instance,
Google Analytics 4 facilitates the utilization of the User Dele-
tion API [6]. Other companies like OpenAI and Meta also
allow data deletion requests in their AI products [3, 5]. How-
ever, some factual cases [24,42] indicate that influence caused
by learning may persist in the model, like backdoors.

Figure 1: Differences between conventional backdoor and unlearning
activated backdoor approaches.

Backdoor attacks [18,44,51,61] compromise the deep mod-
els by embedding adversary-specified hidden triggers during
the learning process. The adversary can exploit embedded
backdoors in on-cloud models to manipulate the predictions
by putting pre-defined triggers in input data, posing a security
risk to MLaaS. Fortunately, feasible defense methods have
been widely studied since backdoor threats against MLaaS
were identified. Model scanners reveal potential backdoors

USENIX Association 33rd USENIX Security Symposium 4211

Figure 2: Attack workflow of our unlearning activated backdoor attack.

through reverse engineering [62, 67]. Outlier filters cast mali-
cious samples out from the training dataset [13, 25]. Model
reconstructors modify model weights directly to eliminate
backdoor threats [40, 81]. Besides, backdoor attacks also suf-
fer from natural flaws like the vanishing problem [59, 80].

On the other hand, recent works have exposed potential vul-
nerabilities in machine unlearning, like over-unlearning [29],
slow-down unlearning [49], and camouflage attacks [16, 78].
Camouflage attacks inspire an unlearning activated backdoor
attack (UBA), enhancing the stealthiness of data poisoning,
which is illustrated in Figure 1. However, backdooring MLaaS
with camouflage attacks is rather challenging considering
complicated conditions like continuous learning and restricted
data access strategy of unlearning. Recent camouflage attacks
either require strong assumptions with a white box setting [16]
or suffer from limitations in flexibility and effectiveness [78].
The existing work also overlooks the diversity of unlearning
algorithms. In light of these limitations, we take a step for-
ward and propose an alternative backdoor approach through
unlearning with an enhanced camouflage algorithm based on
data influence [33].

Rethinking the frustrations of backdoor attacks, we summa-
rize the challenges of UBA. 1⃝ Existing backdoor approaches
lack fine-grained control, as on-cloud models are poisoned
in offline training but exploited in online inference, leading
to unstable conditions of the injected backdoor. 2⃝ Back-
door cannot persist in continuous learning. When MLaaS en-
ables continuous learning, the injected backdoor faces a catas-
trophic forgetting problem. 3⃝ Backdoor should be stealthy
and robust enough to defeat defenses like scanning, filtering,
and reconstruction. 4⃝ UBA should be practical and effec-
tive, requiring the ability to construct camouflage with limited
knowledge and adaptability to different backdoor generating
algorithms and machine unlearning algorithms.

Our contributions. It is rather tricky to design a satisfy-
ing backdoor approach considering the challenges 1⃝ and 2⃝
mentioned above. Because conventional backdoor approaches
have natural drawbacks. Having observed vulnerabilities in-
troduced by machine unlearning in MLaaS, we propose lever-
aging unlearning requests to develop an unlearning activated
backdoor attack. Our attack involves concealing backdoor
traces in the learning process and activating the backdoor
on-demand by unlearning requests. Since machine unlearning

removes camouflage representations from the original model,
the backdoor activated in this way persists much longer than
conventional backdoors (obtaining 4x improvement in the
evaluation). To meet the challenge 3⃝ and 4⃝, we propose
an influence [33] driven camouflage sample generation al-
gorithm, which covers backdoor traces effectively (the ratio
of camouflage sample amount to backdoor sample amount
reaches 1:4). Additionally, the camouflage can evade existing
defenses including detectors and filters, and withstand model
transformations. It is also compatible with various backdoor
generating algorithms and machine unlearning algorithms.
Putting them together, we offer an unlearning activated back-
door attack with influence-driven camouflage (UBA-Inf). The
attack workflow is illustrated in Figure 2.

In conclusion, we have made the following contributions:
• We introduce a new backdoor approach named UBA-Inf,

which provides fine-grained control and better persis-
tence of the backdoor through machine unlearning.

• We implement UBA-Inf for different MLaaS scenarios,
including one-time learning and continuous learning,
with both exact and approximate unlearning strategies.

• UBA-Inf is compatible with existing backdoor generat-
ing algorithms, enhancing them in MLaaS scenarios.

• UBA-Inf has been evaluated comprehensively. Evalua-
tion results show that UBA-Inf achieves 4x persistence
improvement with limited poisoning samples (2% of
the total training samples). The resistance to different
defense methods has also been verified.

2 Preliminaries
This section will review essential concepts appearing

throughout the literature, including MLaaS, machine unlearn-
ing, and backdoor attacks.

2.1 MLaaS
In recent years, cloud computing service providers have

begun to launch on-cloud machine learning services with pub-
lic APIs [20, 44], known as Machine-Learning-as-a-Service
(MLaaS). For conciseness, we consider two parties in MLaaS,
i.e., the service provider (SP) who provides the service, and
the users who use the service [29].

Let X denote the input feature space and Y denote the
output space. A data point is an element of Z = X ×Y and

4212 33rd USENIX Security Symposium USENIX Association

we denote Z∗ as the universal space of the dataset. SP com-
monly builds training dataset Dtrn ∈ Z∗ by adopting third-
party datasets or directly collecting from users [44,52]. In this
paper, users’ adding training data into the on-cloud model is
represented as an update request Updadd(D),D ∈ Z∗ [29,57].
Generally, SP trains a model θ∗ ∈Θ on training data Dtrn with
a deep learning algorithm A : Z∗→ Θ, aiming to minimize
the empirical loss ℓ ∈ L : Z×Θ→ R + on Dtrn by solving an
optimizing problem: θ∗ = argmin

θ

1
|Dtrn| ∑zi∈Dtrn ℓ(zi,θ). After

training, SP deploys the well-trained model θ∗ with a set of
service APIs ψ for users to invoke.

If SP supports users’ data updating through Updadd , we
call the service Continuous-Training MLaaS (CT-MLaaS),
updating the model on an input data stream [52,59]. Once the
amount of data collected reaches a predefined threshold c, SP
updates the model by θ∗ = Act(θ

∗,Dtsk), where Dtsk ∈ Z∗ is
the newly incoming dataset with size c and Act : Θ×Z∗→Θ

is a continuous learning algorithm. We call a cycle of data
collection, model updating, and deployment a task. If we
denote by Dtsk,i, i ∈ [1,n] the dataset collected in the i-th task
from the very beginning, the training dataset can be seen as a
superset of all task datasets, i.e., Dtrn =

⋃n
i=1 Dtsk,i.

Table 1: The category of different MLaaS.
Categories of MLaaS

Does MLaaS employ continuous learning?
YES Continual Training MLaaS (CT-MLaaS)
NO One-time-Training MLaaS (OT-MLaaS)
Does MLaaS have full access to Dtrn during unlearning process?
YES Full Access MLaaS (FA-MLaaS)
NO Restricted Access MLaaS (RA-MLaaS)

We assume task datasets in CT-MLaaS are from either a
similar distribution [52, 59], or different domains in which
each task has the same data label space but different feature
distributions, also known as Domain-Incremental-Learning
[68]. Instead of CT-MLaaS, One-time-Training MLaaS (OT-
MLaaS) is another approach commonly used with only one-
time data collection and model training [57], which will be
also studied in our work. Table 1 demonstrates the details of
various MLaaS.

2.2 Machine Unlearning
Given a subset Drm ∈ Z∗ to be unlearned, accessible re-

maining data D′trn ∈ Z∗, and the original model θ∗ ∈ Θ, the
unlearning algorithm U : Z∗×Z∗×Θ→ Θ erases the in-
fluence of Drm from θ∗ and returns the model θ∗u ∈ Θ after
unlearning. The objective of unlearning is to minimize the
empirical loss 1

|Dtrn−Drm| ∑zi∈Dtrn−Drm ℓ(zi,θ
∗
u) just like Drm

has not shown ever. In other words, the model after unlearn-
ing should be indistinguishable from the model trained with
Dtrn−Drm from scratch. The accessible remaining data D′trn
of unlearning in MLaaS can vary from an /0 to Dtrn, depending
on the data access policy of the SP [29].

For brevity, let Full-Access MLaaS (FA-MLaaS) refer to

MLaaS where the SP is always granted full access to the orig-
inal training data [9, 16] and Restricted-Access MLaaS (RA-
MLaaS) refer to MLaaS where the SP cannot access to the
original training dataset once the model is well-trained [29].
Similar to the learning request, the unlearning request can
be defined as Upddel(Drm),Drm ∈ Z∗ for unlearning service
in MLaaS [57, 72]. The SP is supposed to respond to un-
learning request Upddel by running a specific unlearning al-
gorithm. Generally, unlearning algorithms can be divided into
two types: exact unlearning and approximate unlearning, the
former of which employs caching and re-scheduling to en-
hance efficiency [9, 72], and the latter of which removes data
influence through mathematical tools like inverse hessian ma-
trix [33, 69, 70], gradient-based model optimization through
tailored loss functions [63, 69, 74].

Table 2: A comparison of commonly used unlearning algorithms.
Need For Dtrn FA-MLaaS RA-MLaaS CT-MLaaS

Exact Unlearning
full retrain ✓ - -

SISA [9] ✓ - -
Approximate Unlearning
PUMA [70] ✓ - -
GBU [69] # ✓ ✓ ✓
LIRF [74] # - - ✓

As shown in Table 2, some unlearning algorithms are de-
signed for FA-MLaaS so that D′trn = Dtrn [9, 70]. Most exact
unlearning algorithms like SISA [9] and some approximate
algorithms that calculate the Hessian matrix [70] belong to
this type. Some other approximate algorithms like first-order
gradients based method [69, 74] can unlearn with D′trn = /0.
In this paper, we will consider both exact unlearning and ap-
proximate unlearning under the most commonly discussed
unlearning circumstance, i.e., unlearning by samples [72].

2.3 Backdoor Attacks
The backdoor attack on deep learning is an emerging attack

where the adversary embeds a backdoor into the victim model
by injecting maliciously crafted samples into the training
dataset [21,44]. Backdoor attacks are highly threatening since
any legal MLaaS user can be the adversary, tempering the
model with training data through data updating. The backdoor
procedure B : Z → Z induces the victim model θ∗v to mis-
classify all samples with the backdoor trigger into a target
class ytgt . Generally, B consists of a feature transformation
BX : X → X and a label transformation BY : Y → Y .

The feature transformation BX takes as input a clean exam-
ple and embeds the pre-designed backdoor trigger. A satis-
fying backdoor trigger should be imperceptible but mislead
model predictions with a small portion of data poisoned, satis-
fying stealthiness and effectiveness [14, 37, 44]. The adversar-
ial capability of backdoor attacks varies in data accessibility
and model accessibility. Some studies assume that the adver-
sary has full access to the victim model and data in a white-
box setting [32, 50], while others use input and output pairs
in a black-box setting [43, 75]. Some additional assumptions

USENIX Association 33rd USENIX Security Symposium 4213

like auxiliary datasets and surrogate models [43, 50, 75] are
also commonly used for improving the attack performance.

The label transformation BY differs in dirty-label and clean-
label attacks [44, 75]. In dirty-label attacks [14, 21, 37], the
adversary sets labels of backdoor samples to ytgt . In clean-
label attacks [65, 66, 75], poisoning examples are directly
selected from class ytgt and maintain their original labels.

For backdoor attack evaluation, a high benign accuracy
(BA) on benign samples and a high attack success rate (ASR)
on target samples with triggers are desired simultaneously.
Furthermore, for the stealthiness concern, the trigger’s pertur-
bation and the poisoning data amount are also critical metrics.

3 Problem Formalization and Threat Model
MLaaS offers online services where SP receives requests

from users and updates the model when needed. We consider
both OT-MLaaS and CT-MLaaS. OT-MLaaS gathers data
once before training, while CT-MLaaS supports continual
learning and updates the model even after release. Both cases
can support machine unlearning, enforcing the right to be for-
gotten. MLaaS allows users to revoke specific data on demand
and updates the on-cloud model. Therefore, an MLaaS user
can send data adding request Updadd(D) and data deleting
request Upddel(D), D ∈ Z∗. Any legal MLaaS user can be a
UBA attacker, capable of sending requests of learning and
unlearning. This threat model is widely used in existing back-
door attacks [32,48,64] and unlearning attacks [16,29,54,78].
Please note that CT-MLaaS commonly supports unlimited
adding and deleting requests, while OT-MLaaS only supports
one-time adding and limited deleting requests.

The UBA can be defined as a composition of four stages as
indicated in Figure 2, including camouflage generation, trig-
ger injection, backdoor activation, and backdoor exploitation.

1. The camouflage generation stage is a key improvement
of UBA. In conventional backdoor attacks, only back-
door samples are generated. In UBA, camouflage sam-
ples are crafted along with backdoor samples for fine-
grained activation control and stealthiness purposes.

2. The trigger injection stage is the same as conventional
backdoor attacks. Backdoor samples are fed into the
target model through data uploading or learning requests,
i.e., Updadd(D) in our definition.

3. Different from the existing backdoor attacks on MLaaS,
UBA uses an explicit backdoor activation stage to enable
the backdoor instead of assuming the backdoor is alive
all the time. In this stage, the adversary uses unlearning
requests to remove the camouflage, i.e., Upddel(D) in
our definition.

4. The backdoor exploitation stage is the same as conven-
tional backdoor attacks. Samples with triggers can ex-
ploit the backdoor simply by querying the model through
users’ interface ψ.

Adversarial goal. Unlike conventional backdoor attacks,
whose goal is to maintain the backdoor’s availability all the
time, the adversarial goal of UBA is to activate the backdoor
at the right time while keeping it imperceptible before the
activation. If we interpret the adversarial goal in evaluation
metrics, conventional backdoor attacks’ goal is to keep a high
ASR and a high BA at the same time. Instead, UBA’s goal
is to keep the ASR as low as possible for stealthiness before
launching the attack. When the injected backdoor is activated,
UBA has the same requirements for ASR and BA as usual.

Adversarial capability. We assume that the adversary
can pose as a legitimate MLaaS user to manipulate the vic-
tim model θ∗v . The adversary can poison the training data
of SP through data collection or continual learning requests.
In OT-MLaaS, the adversary injects poisoning samples into
the training dataset at once. In CT-MLaaS, the adversary can
adaptively inject poisoning samples during continual learn-
ing. Besides, the adversary can influence the victim model by
unlearning specific samples through unlearning requests.

We assume that the SP has collected a clean dataset Dcl in
MLaaS and θ∗v ∈ Θ is the victim model learned on Dcl . The
adversary has adequate background knowledge of the learning
task so that an auxiliary dataset Datk ∼ Dcl can be sampled
from public datasets of the same learning task, e.g., image
classification or object detection. Furthermore, the adversary
can construct a surrogate model θ∗s using auxiliary data and
methods like inference attack, model inversion attack, and
some backdoor attacks [28,66,75,79]. For example, the victim
model θ∗v is trained on CIFAR-10 [35] while θ∗s is pre-trained
on ImageNet [15]. Besides, the on-cloud model of MLaaS can
be seen as a blackbox to the adversary. Please note that UBA’s
adversary capability is the same as the existing backdoor
attacks [66, 75]. No additional assumptions are made.

Defense and evaluation. Nowadays, MLaaS is commonly
protected by backdoor defense methods. It is critical to take
into account UBA performance under available defense strate-
gies, including model sanitizing and input detection. Defense
solutions for MLaaS are widely studied in different types
of MLaaS. Meanwhile, when SP adopts defense solutions,
the cost introduced should also be considered for practical
concerns. Therefore, we assume that the SP will deploy de-
fense solutions for MLaaS regarding different types of MLaaS.
In OT-MLaaS, the SP can extensively apply backdoor de-
fenses to eliminate the backdoor before the service is online.
However, in CT-MLaaS, defenses applied in each task are
unnecessary and time-consuming because the model is con-
tinuously updated. The SP could deploy backdoor defenses
like anomaly detection before responding to learning and
unlearning requests in CT-MLaaS.

UBA will be evaluated in multiple metrics, including back-
door effectiveness, stealthiness, persistence, and resistance
to defenses. From the effectiveness perspective, UBA is ex-
pected to be immediately activated by unlearning, achieving a

4214 33rd USENIX Security Symposium USENIX Association

high ASR and a high BA. For stealthiness, UBA should have
a low ASR while keeping a high BA. Besides, both camou-
flage and backdoor samples can deceive detection methods.
From the persistence perspective, the adversary expects the
backdoor to stay alive as long as possible after it is activated,
which suffers from catastrophic forgetting previously. As for
resistance to defenses, the backdoor injected should not be
eliminated by model sanitizing or transforming in MLaaS.

4 Unlearning Activated Backdoor Attack
Motivated by the backdoor vanishing phenomenon in

MLaaS, we have intensively investigated available approaches
to maintaining or recovering the backdoor’s influence. Be-
sides, on-demand attacks need the backdoor to be activated at
the right time. Fortunately, machine unlearning emerges and
gives us inspiration. If the adversary injects an inactivated
backdoor into the MLaaS model and activates it when neces-
sary, the adversary will be capable of attacking the on-cloud
model stealthily in fine-grained control, acquiring activation
control and the resistance to backdoor vanishing. We note that
there is concurrent work of Unlearning-activated Backdoor
Attacks (UBAs) [78]. However, we are the first to formalize
the definition of UBA with a well-defined threat model. Fur-
thermore, our attack achieves a new state-of-the-art result on
CIFAR-10, acquiring 93.26% BA and 100% ASR through un-
learning 200 camouflage samples after 400 backdoor samples
are injected in total.

4.1 UBA-Inf Design Rationale
Before proposing a UBA design, it is essential to be aware

of the underlying challenges of UBA designs. 1⃝ Similar
to conventional backdoor attacks, there is a natural trade-
off between acquiring effectiveness and stealthiness in UBA
designs. 2⃝ Since MLaaS provides online learning and un-
learning requests, it is difficult to ensure the robustness and
persistence of the backdoor after model updating and sani-
tizing. 3⃝ Various defensive strategies have been proposed
to mitigate the backdoor’s influence in MLaaS. Proposing a
UBA design with resistance to multiple defensive strategies
will be rather challenging.

To address these challenges, we propose a camouflage-
aided backdoor attack. The intuition is straightforward: in ad-
dition to injecting backdoor samples, the attacker introduces
carefully crafted camouflage samples into the victim model.
Hence, an important stage of UBA is to generate proper cam-
ouflage samples. Our approach is inspired by [16], which em-
ploys gradient matching during victim model training for data
poisoning camouflage. We extend this concept to backdoor
attacks on MLaaS, adhering to strict adversary constraints
in a practical black-box setting. Please also note there is a
concurrent study [78] that applies camouflage idea [16] to
BadNets [21]. Unlike dedicating to retraining-based unlearn-
ing [78], UBA-Inf is designed for various backdoor generating
algorithms and different unlearning strategies. To enhance

the UBA attack further, we derive two techniques from ma-
chine learning, i.e., the label correction [67] and influence
function [33]. By adopting these two techniques, UBA-Inf
achieves better stealthiness and attack performance than [78].

We note that our UBA-Inf has its limitations. The fine-
grained backdoor control is provided by unlearning. If the SP
does not provide an unlearning function, UBA-Inf cannot be
implemented. Our work focuses on the mechanism design of
unlearning-enabled backdoor attacks. Backdoor sample gen-
erating algorithms are orthogonal to our work, and we will
show that UBA-Inf is effective with different backdoor gen-
erating algorithms. Advanced backdoor generating methods
can also improve UBA-Inf performance. Meanwhile, natural
flaws (like visual anomaly) of backdoor generating methods
cannot be fixed by UBA-Inf. We also note these limitations
are interesting topics to study further.

4.2 Camouflage Generation
The critical part of UBA-Inf is the camouflage generation.

Inspired by label correction [67] and influence function [33]
techniques in machine learning, we propose an iterative opti-
mization method for searching satisfying camouflage samples.
In backdoor defense studies, a reverse-engineering method
is used to extract adversarial perturbations, recovering back-
door samples [67]. After that, the defender updates the victim
model by tuning with correctly labeled backdoor samples that
have been recovered. Having noticed this label correction
method can not only sanitize the victim model but also miti-
gate the backdoor’s influence, we use it in a totally different
way for camouflage effects in UBA-Inf.

Firstly, the adversary selects from the auxiliary dataset Datk
and clean samples Dcm,cl ⊂Datk that don’t belong to the target
class ytgt , such that

Dcm,cl =
{
(x,y)

∣∣(x,y) ∈ Datk ∧ y ̸= ytgt
}
, (1)

and transforms them using the backdoor generation function
B(·) : Z→ Z but remains their correct labels, i.e.,

Dcm,0 =
{
(BX (x),y)

∣∣(x,y) ∈ Dcm,cl
}
, (2)

in which BX (·) : X → X adds the backdoor trigger to the im-
age. Meanwhile, backdoor samples are generated beforehand
for trigger injection as

Dbd =
{

B((x,y))
∣∣(x,y) ∈ Z

}
. (3)

The adversary then combines the auxiliary dataset with cam-
ouflage and backdoor samples as

Datk,0 = (Datk \Dcm,cl)∪Dcm,0∪Dbd . (4)

Next, the adversary iteratively optimizes the camouflage ef-
fect of Dcm through surrogate model fine-tuning and influence-
driven camouflage perturbation. The influence function is a
method calculating the influence on a statistical model when a

USENIX Association 33rd USENIX Security Symposium 4215

specific sample is up-weighted or perturbed. Although the the-
ory behind influence functions may not hold for non-convex
and non-differentiable models, approximations of influence
functions can still offer valuable insights to analyze the di-
rection of camouflage perturbation that makes the model as
unresponsive as possible to the backdoor trigger [33]. Influ-
ence can be computed in a complete black-box setting using a
surrogate model, making UBA-Inf more feasible than the gra-
dient matching based approach [16], which demands an exact
white-box setting. We note that our influence-enhanced cam-
ouflage generation algorithm can improve the UBA from two
perspectives: concealing the backdoor effectively in training
and recovering the backdoor by unlearning very few samples,
which considerably outweigh related work [78].

The influence function reveals how the perturbation δ on a
certain training data point z ∈ Z would impact the prediction
of a specific samples z′ ∈ Z such that

Ipert,loss(z,z′)
de f
= ∇δℓ(z

′,θzδ,−z)

=−∇θℓ(z′,θ)⊤(
1
|Dtrn|

|Dtrn|

∑
i=1

∇
2
θℓ(zi,θ))

−1
∇x∇θℓ(z,θ)),

(5)

where ℓ denotes the loss function, z = (x,y) denotes the origi-
nal training point, δ denotes a small perturbation on the im-
age x, and θzδ,−z denotes parameters trained on the dataset
that replaces z with the perturbed one zδ = (x+ δ,y). Thus,
[Ipert,loss(z,z′)]δ tells us the approximate effect caused by re-
placing z with zδ on the loss at the test point z′. By setting
δ in the direction of Ipert,loss(z,z′), we can construct local
perturbations of z that maximize the loss at z′. In our design,
we let z′ ∈ Dbd for trigger injection and then perturb samples
in Dcm to maximize the loss at backdoor samples based on
influence functions for inactivation in the training process.

To this end, the adversary first fine-tunes the surrogate
model θ∗s with auxiliary clean samples Datk, since θ∗s may be
trained on public data from different distributions,

θ
∗
s,0 = f inetune(θ∗s ,Datk), (6)

where f inetune : Θ×Z∗→Θ refers to the fine-tuning func-
tion that adjusts the last fully connected layers of the model.
In the i-th tuning epoch, i ∈ [1,N], the adversary fine-tunes
θ∗s,0 with the auxiliary dataset Datk,i−1, and gets θ∗s,i.

θ
∗
s,i = f inetune(θ∗s,0,Datk,i−1), i ∈ [1,N]. (7)

Given the surrogate model θ∗s,i, camouflage samples can be
updated through the influence function Ipert,loss, increasing
their concealing effects on the backdoor. In particular, for a
camouflage sample z̃ ∈Dcm,i−1, we define Ipert,loss(z̃,Dbd) as

Ipert,loss(z̃,Dbd) = E
z′∈Dbd

(Ipert,loss(z̃,z′))

=− E
z′∈Dbd

(∇θℓ(z′,θ∗s,i)
⊤)(

1
m

m

∑
k=1

∇
2
θℓ(zk,θ

∗
s,i))

−1
∇x∇θℓ(z̃,θ∗s,i),

(8)

where m is the size of the auxiliary dataset i.e. m = |Datk,i−1|,
and zk ∈ Datk,i−1,k ∈ [1,m].

Given the influence, the adversary perturbs z̃ with
Ipert,loss(z̃,Dbd) iteratively,

z̃ j = Πε,z̃0(z̃
j−1 +αsign(Ipert,loss(z̃ j−1,Dbd))),

z̃0 := z̃ and j ∈ [1,n],
(9)

where n denotes the iteration times, α is a step size while
Π projects onto the set of valid images that share the same
8-bit representation with z̃ and ε is the offset bound such that
z̃ j− z̃0 is no larger than ε. z̃0 is the non-perturbed version from
Dcm,0 because the perturbation should not be overwhelming
to guarantee stealthiness.

At the end of the optimization, we get influence-enhanced
camouflage sample z̃n such that

z̃n =
n

Πε,z̃0
j=0

(z̃ j +αsign(Ipert,loss(z̃ j,Dbd))). (10)

By applying the algorithm to all samples in Dcm,i−1, the ad-
versary gets Dcm,i such that

Dcm,i =
{

z̃n∣∣z̃ ∈ Dcm,i−1
}
, (11)

which is the camouflage result of epoch i. The auxiliary
dataset is thus updated with Dcm,i, i.e., Datk,i = (Datk,i−1 \
Dcm,i−1)∪Dcm,i. After N epochs, the adversary generates the
final influence-enhanced camouflage samples Dcm = Dcm,N ,
where N is the total iteration epochs. The complete camou-
flage generation algorithm is summarized in Algorithm 1.

4.3 UBA-Inf Implementation
Having camouflage generation accomplished, we now intro-

duce practical UBA-Inf implementations in both OT-MLaaS
and CT-MLaaS, attacking on-cloud models with interfaces
Updadd , Upddel , and ψ. To interpret implementation differ-
ences between the conventional backdoor approach and a
UBA-Inf approach, we give demos in Figure 3 and Figure 4.

1. Camouflage generation stage. Since backdoor genera-
tion and camouflage generation are offline processes,
things are the same in both OT-MLaaS and CT-MLaaS.
The adversary generates backdoor samples Dbd with a
selected backdoor trigger and camouflage samples Dcm
through Algorithm 1 beforehand.

2. Trigger injection stage. In OT-MLaaS, the adversary up-
loads all crafted samples through Updadd(Dbd ∪Dcm)
and waits for the SP to train and deploy the victim
model θ∗v . In CT-MLaaS, the adversary can inject back-
door and camouflage samples in continuous learning
tasks. For brevity, we assume that the adversary in-
jects both backdoor and camouflage samples through

4216 33rd USENIX Security Symposium USENIX Association

Algorithm 1 IBAU Camouflage Generation Algorithm

Input: θ∗s (pre-trained surrogate model)
Dbd (backdoor samples)
Datk (auxiliary samples)
BX ,ytgt (backdoor trigger and target class)
N (total iteration epochs)
n,ε,α (adversarial perturbation parameters)

Output: Dcm (UBA-Inf camouflage samples)
1: θ∗s,0← f inetune(θ∗s ,Datk)

2: Dcm,cl ←
{
(x,y)

∣∣(x,y) ∈ Datk ∧ y ̸= ytgt
}

3: Dcm,0←
{
(BX (x),y)

∣∣(x,y) ∈ Dcm,cl
}

4: Datk,0 = (Datk \Dcm,cl)∪Dbd ∪Dcm,0
5: for each iteration i ∈ [1,N] do
6: θ∗s,i← f inetune(θ∗s,0,Datk,i−1)
7: Dcm,i← /0

8: for z̃ ∈ Dcm,i−1 do
9: z̃0← z̃

10: for each perturbation j ∈ [1,n] do
11: Ipert,loss(z̃ j−1,Dbd)← E

z′∈Dbd

(Ipert,loss(z̃ j−1,z′))

12: z̃ j←Πε,z̃0(z̃
j−1 +αsign(Ipert,loss(z̃ j−1,Dbd)))

13: end for
14: Dcm,i← Dcm,i∪{z̃n}
15: end for
16: Datk,i← (Datk,i−1 \Dcm,i−1)∪Dcm,i
17: end for
18: Dcm← Dcm,N
19: return Dcm

Updadd(Dbd,p ∪Dcm,p), i ≤ p < k, while in the subse-
quent tasks, only backdoor samples can be injected by
Updadd(Dbd,p),k ≤ p≤ j.

3. Backdoor activation stage. Having the backdoor and
camouflage samples injected, the adversary can choose
the right time to activate the backdoor by unlearning
camouflage samples. Generally, the adversary can revoke
camouflage samples through Upddel(Dcm) in both OT-
MLaaS and CT-MLaaS. However, θ∗v is continuously
updated on clean samples in CT-MLaaS. Therefore, the
adversary can observe the behavior of θ∗v through the
query API ψ and choose the activation timing, e.g., when
ASR is about to decrease below a certain threshold.

4. Backdoor exploitation stage. After the backdoor is ac-
tivated and enhanced by unlearning, the adversary can
utilize the backdoor in θ∗v at any time. The backdoor can
be simply exploited by the adversary through the query
API ψ in both OT-MLaaS and CT-MLaaS.

5 Evaluation
We will evaluate the effectiveness, stealthiness, persistence,

and resistance to defenses of UBA-Inf in different MLaaS
scenarios. Before showing the results, we will introduce the
learning setting, backdoor attacks and defenses, unlearning

Figure 3: An illustration of backdoor vanishing.

Figure 4: An overview of UBA-Inf workflow in CT-MLaaS.

algorithms, and UBA-Inf configurations.

5.1 Experiment Settings
Datasets and models. We conduct experiments on widely-
adopt image classification datasets, including CIFAR-10 [35],
GTSRB [60], MNIST [36] and Tiny-ImageNet [34] (Tiny
for short), covering a wide range of image classification with
different learning complexities. We use 3 popular deep models
for experiments, namely PreactResNet-18 [27] (PARN-18 for
short), VGG-16 [41] and ResNet-34 [26]. For the CIFAR-10
dataset, we use all three models for the experiment1, while
for MNIST, GTSRB, and Tiny, we use PARN-18 only since
all three models perform similarly on these three datasets.
Learning settings. By default, models are all trained for 120
epochs on 4 datasets using a stochastic gradient descent (SGD)
optimizer with a momentum of 0.9, an initial learning rate of
0.1, a weight decay factor of 1e-4, and a batch size of 128.
Specifically, models on Tiny are trained without optimization
techniques like data augmentation, resulting in a relatively
low BA of around 55%. As a result, the attack performance
on Tiny may not be as strong as on the other datasets, where
BA exceeds 90%.

CT-MLaaS uses a specific data setting. We assume that
data for each learning task in CT-MLaaS is 30% of the orig-
inal training set, which is uniformly and randomly sampled.
We consider domain-incremental learning for CT-MLaaS. To
form datasets for different domain-incremental tasks, we use
the random rotation transformations as Rotated-MNIST [46]
for CIFAR-10 and MNIST.
Backdoor attacks and defenses. Since UBA-Inf is orthog-
onal to backdoor generation algorithms, we will use differ-

1If not specified, PARN-18 will be used for further evaluations like de-
fense evaluations on CIFAR-10.

USENIX Association 33rd USENIX Security Symposium 4217

ent backdoor attacks for evaluation, including 2 dirty-label
attacks, namely BadNets [21] and Blended [14], and 2 clean-
label attacks, namely LC [66], and Sig [65]. In fact, UBA-Inf
can be improved by advanced backdoor generation methods
like Narcissus [75]. On the other hand, multiple backdoor de-
fenses will be used to evaluate the resistance of UBA-Inf. We
group them by defense techniques, namely anomaly detectors,
including NC [67], Pixel-Backdoor [62], and AEVA [23], out-
lier filters, including Spectre [25], ABL [38], and D-BR [13],
model reconstructors, including standard fine-tuning, Fine-
pruning [40], CLP [81], and NAD [39]. All backdoor attacks
and defenses are implemented by following the instructions
in the original papers. However, since learning settings and
scenarios are different, their performance may vary from the
original results.
Unlearning algorithms. We use 4 advanced unlearning al-
gorithms, including SISA [9], PUMA [70], GBU [69] and
LIRF [74]. Table 2 demonstrates the applicable cases of these
algorithms, which cover the most unlearning strategies and
MLaaS scenarios. For all unlearning algorithms, we use the
suggested settings in the original papers. Some unlearning
algorithms rely on empirically set unlearning rates [69,70,74]
tailored for MLaaS needs. Under these circumstances, all
unlearning rates in this work fall within the recommended
ranges from the original sources [69, 70, 74].

• SISA [9]. A popular exact unlearning algorithm based on
training data separation, known as sharding and slicing,
generates results through the aggregation of sub-models.

• PUMA [70]. An approximate unlearning algorithm
based on data removal through samples’ influence and
an optimized up-weighting strategy.

• GBU [69]. A first-order approximate unlearning algo-
rithm by leveraging irrelevant samples with perturbations
to overwrite unlearned samples.

• LIRF [74]. A recoverable unlearning algorithm specifi-
cally designed for CT-MLaaS, which fine-tunes the target
model on randomly labeled unlearned samples with a
combination of cross-entropy loss and filtered attention
distillation loss.

Recently, defense methods have been proposed for unlearn-
ing [78], We will deploy model-uncertainty (MU) for all un-
learning algorithms and sub-model similarity (SMS) for SISA
algorithms.
UBA-Inf configurations. We separate 10% of the training
dataset as an auxiliary dataset Datk, which has been widely
used in related studies [39, 40, 67]. We use ConvNeXt-tiny
[45] pre-trained on ImageNet [15] as an off-the-shelf sur-
rogate model, which is publicly available on PyTorch web-
site [53]. We set total iterations N = 8, tuning epochs E = 60,
perturbation iterations n = 40, perturbation limit ε = 2/255,
perturbation stepsize α= 0.5/255. As for backdoor configura-
tions, we assume that the total number of Dbd and Dcm is less
than 5% of the total training data, while the ratio of camou-

flage samples to backdoor samples is no greater than 2. That
means |Dcm|+ |Dbd | < 0.05 ∗ |Dtrn| and |Dcm|/|Dbd | ≤ 2 if
without any explanations. We compare UBA-Inf with related
work BAMU [78], which is implemented based on BadNets
for retraining based unlearning.

5.2 Effectiveness Evaluation
Unlike conventional backdoor attacks, UBA-Inf maintains

a low ASR in a camouflage state and is expected to activate
the backdoor by machine unlearning for fine-grained control.
In brief, camouflage samples in UBA-Inf are used to enhance
backdoor stealthiness and robustness, improve persistence in
continual learning, and provide fine-grained backdoor acti-
vation control. Therefore, we will evaluate the camouflage
effectiveness first and evaluate backdoor effectiveness in vari-
ous unlearning scenarios as shown in Table 2.

200 400 600 800 1000
number of camouflage samples

10
00

80
0

60
0

40
0

20
0

nu
m

be
r

of
 b

ac
kd

oo
r

sa
m

pl
es 31.14 19.01 14.27 12.42 10.74

28.95 18.50 10.78 8.79 10.01

21.94 10.84 11.51 7.12 6.87

17.80 8.73 5.17 6.04 3.50

6.07 3.45 4.00 3.15 2.34 5

10

15

20

25

30

200 400 600 800 1000
number of camouflage samples

10
00

80
0

60
0

40
0

20
0

nu
m

be
r

of
 b

ac
kd

oo
r

sa
m

pl
es -3.68 -2.21 -1.80 -1.17 -1.67

-1.19 -1.38 -1.42 -0.73 -1.83

-0.75 -0.69 -0.83 -1.14 -1.92

-1.27 -0.82 -1.23 -1.73 0.00

-0.62 -0.96 -1.47 -0.27 0.08
−3

−2

−1

0

Figure 5: ASR (left figure) and NC anomaly index (right figure) of
UBA-Inf for different numbers of backdoor and camouflage samples.
Backdoors are detected by NC with an anomaly index below -2 [67].

We first evaluate camouflage effectiveness by checking
the ASR of UBA-Inf with BadNets (left of Figure 5). We
train CIFAR-10 models in 25 settings (5 amounts of backdoor
samples times 5 amounts of camouflage samples). The ASR
remains at 31.94% even with 5 times more backdoor samples.
By increasing the camouflage sample amount, UBA-Inf can
achieve ASR as low as 2.34%.

NC [67] detects backdoors with an anomaly index below
-2. The right of Figure 5 shows UBA-Inf protects backdoors
from detection with enough camouflage samples. Models
with an ASR below 30% typically evade NC detection with an
anomaly index greater than -2. We can conclude that UBA-Inf
has better camouflage effectiveness and attack performance
than existing work like [78].

5.2.1 UBA-Inf Activation Effectiveness in FA-MLaaS
In FA-MLaaS, all training samples are accessible to the SP

for unlearning. As indicated in Table 2, we can evaluate UBA-
Inf through multiple unlearning algorithms in this setting,
including full retrain, SISA, and PUMA2.

Table 3 and 4 show the results of BA and ASR before and
after the camouflage samples are removed by full retraining
and SISA [9], respectively. Different backdoor attacks are
evaluated. The ASR varies from 0.02% to 29.42% when

2The injection rate of evaluations can be found in Appendix A. We
suppose all samples are exactly unlearned at once. Appendix D demonstrates
evaluations on different unlearning batch sizes.

4218 33rd USENIX Security Symposium USENIX Association

Table 3: Backdoor effectiveness evaluation for full retrain. Italic numbers with underlines indicate backdoor ASR after unlearning.

Models BadNets Blended LC Sig
BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%)

CIFAR-10

PARN-18 conceal 93.26 21.94 93.54 23.52 93.48 21.57 93.67 8.61
unlearn 93.48 100.00 93.79 91.66 93.45 91.81 93.50 89.59

ResNet-34 conceal 93.47 22.10 93.64 21.06 93.39 20.31 93.74 6.68
unlearn 94.23 100.00 94.18 95.30 94.35 94.67 94.19 91.71

VGG-16 conceal 90.71 22.24 90.54 20.52 90.41 19.60 90.59 10.37
unlearn 90.62 100.00 90.27 89.64 90.62 90.39 90.17 87.60

MNIST

PARN-18 conceal 99.50 29.42 99.74 24.78 99.64 0.13 99.63 0.23
unlearn 99.64 100.00 99.72 100.00 99.51 99.31 99.55 99.68

GTSRB

PARN-18 conceal 98.34 22.15 98.49 20.59 98.51 0.02 98.32 2.79
unlearn 97.85 99.89 98.39 96.35 98.26 5.15† 98.30 79.04

Tiny

PARN-18 conceal 55.56 16.57 55.53 18.99 56.02 2.15 55.91 10.44
unlearn 56.09 92.26 55.83 90.03 56.05 28.11† 55.69 90.72

† LC does not work properly on GTSRB and Tiny due to its limitations. To avoid such a situation, the UBA-Inf
adversary can choose a proper backdoor attack alternatively.

backdoors are concealed. After unlearning, backdoors are
activated, and ASR rises sharply to nearly 100% in most
cases.

0 10 20 30 40
Unlearning Rate (*1e-3)

0.0

0.2

0.4

0.6

0.8

1.0

A
SR

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

B
A

 (%
)

UBA-Inf BA
Rand BA
UBA-Inf ASR
Rand ASR

0 10 20 30 40
Unlearning Rate (*1e-5)

0.0

0.2

0.4

0.6

0.8

1.0

A
SR

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

B
A

 (%
)

UBA-Inf BA
Rand BA
UBA-Inf ASR
Rand ASR

Figure 6: Unlearn UBA-Inf camouflage (UBA-Inf) and Random
clean samples (Rand) by PUMA [70] (left figure) and GBU (right
figure) [69] with different unlearning rate on a CIFAR-10 model.

Co
nv
Ne
Xt

PA
RN
-18

VG
G-
16

Surrogate

Re
sn
et-
34

PA
RN
-18

VG
G-
16

V
ic
tim

22.10 26.62 17.62

21.94 18.62 20.34

22.24 28.30 16.45 20

30

40

50

Co
nv
Ne
Xt

PA
RN
-18

VG
G-
16

Surrogate

Re
sn
et-
34

PA
RN
-18

VG
G-
16

V
ic
tim

80.60 83.37 77.62

80.44 74.75 80.76

89.98 87.94 85.32

60

70

80

90

100

Figure 7: The ASR before unlearning (left figure) and after PUMA
unlearning (right figure) with different UBA-Inf surrogate models
and target models.

The evaluation results of UBA-Inf with PUMA are shown
in Table 5. We find that for all cases after unlearning, the
ASR rises above 80% with BA dropping less than 4%. This
indicates that UBA-Inf can suit PUMA very well. Unlike full
retrain and SISA, the unlearning rate in PUMA is an impor-
tant hyper-parameter since it can affect PUMA performance
significantly. Thus, we evaluate the effects of unlearning rates
on BA and ASR for PUMA in the left of Figure 6. By ob-
serving the effects on BA when unlearning clean samples, we
can tell that the unlearning rate should not exceed 3e-2, in
which case ASR can keep above 90% if camouflage samples
are unlearned.

5.2.2 UBA-Inf Activation Effectiveness in RA-MLaaS
In RA-MLaaS, the access to original training data dur-

ing unlearning is highly restricted [29], and only data to be

removed is available. In RA-MLaaS, GBU [69]3 is a gradient-
based unlearning algorithm. By adopting GBU in RA-MLaaS,
the data to be removed will be replaced by perturbed data for
unlearning. The results of UBA-Inf with GBU are shown in
Table 6. Similar to the results of UBA-Inf with PUMA, un-
learning through GBU makes ASR increase from around 22%
to above 80%, with BA dropping less than 4% in all cases.
The right of Figure 6 presents the effects of unlearning rates
for UBA-Inf with GBU. When the unlearning rate is no larger
than 1e-4, unlearning clean samples has a negligible effect on
BA, while unlearning camouflage samples can increase ASR
to around 70%.

5.2.3 Effectiveness Comparisons with BAMU
Like UBA-Inf, BAMU [78] uses unlearning camouflage

samples to activate backdoors. However, Table 7 shows UBA-
Inf surpasses BAMU in camouflage effectiveness and activa-
tion effectiveness. With the same injection rate, UBA-Inf’s
ASR is at least 10% lower than BAMU’s before unlearning,
showing that UBA-Inf can provide better camouflage effec-
tiveness. After exact unlearning like full retraining, the ASR
after unlearning largely depends on the backdoor trigger in-
stead of the camouflage-generating algorithm, so the ASR is
similar for both methods. Meanwhile, BAMU doesn’t support
approximate unlearning algorithms, so we reproduced it with
PUMA and GBU following its original idea. After unlearning
using PUMA [70] and GBU [69], UBA-Inf’s ASR is about
20% higher than BAMU’s, indicating UBA-Inf’s adaptabil-
ity and superior attack performance in different unlearning
strategies.

5.2.4 Evaluation of the Surrogate Model
We evaluate UBA-Inf with different surrogate model set-

tings. Figure 7 demonstrates attack results of UBA-Inf on
CIFAR-10 with different surrogate models and different vic-
tim models. The ASR before unlearning keeps lower than

3Here we only evaluate on the first-order GBU [69]. We further evaluate
the second-order GBU [69] in Appendix B.

USENIX Association 33rd USENIX Security Symposium 4219

Table 4: Backdoor effectiveness evaluation for SISA. Two different numbers of training data shards are considered.

Shards BadNets1 Blended2 LC3 Sig4

BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%)
CIFAR-10

shard=3 conceal 90.76 12.26 90.62 22.72 90.43 23.54 90.96 9.24
unlearn 90.65 99.98 90.26 89.92 90.30 88.65 90.95 89.42

shard=5 conceal 88.74 17.01 88.30 22.88 88.62 27.12 88.82 17.50
unlearn 88.68 99.94 88.59 91.82 88.11 88.00 88.66 96.36

MNIST

shard=3 conceal 99.58 6.58 99.70 25.03 99.66 0.28 99.63 0.38
unlearn 99.66 100.00 99.66 100.00 99.65 73.50 99.68 65.35

shard=5 conceal 99.64 1.90 99.67 18.33 99.56 0.35 99.56 0.48
unlearn 98.57 100.00 99.67 100.00 99.53 54.03† 99.49 34.66†

GTSRB

shard=3 conceal 99.59 23.31 98.36 24.32 98.23 0.03 98.32 5.48
unlearn 99.61 100.00 98.50 88.86 98.24 4.61† 98.13 72.30

shard=5 conceal 99.59 15.21 97.98 24.60 98.27 0.03 98.01 10.01
unlearn 99.58 100.00 97.96 83.24 97.41 3.15† 97.76 69.58

Tiny

shard=3 conceal 51.47 20.60 51.38 20.12 52.03 3.23 51.81 10.25
unlearn 51.40 87.73 52.15 82.27 51.45 47.35† 51.73 79.66

shard=5 conceal 48.36 24.60 47.91 16.46 48.12 5.83 48.36 9.35
unlearn 47.63 82.47 48.06 85.21 48.02 32.75† 47.45 79.23

† Similar to full retrain, LC does not work properly on GTSRB and Tiny, while Sig has problems with SISA on MNIST.
To avoid such a situation, the UBA-Inf adversary can choose a proper backdoor attack alternatively.

Table 5: Backdoor effectiveness evaluation for PUMA.

Dataset Models conceal unlearn
BA(%) ASR(%) BA (%) ASR(%)

CIFAR-10
PARN-18 93.26 21.94 89.50 80.44
ResNet-34 93.47 22.10 89.91 80.60
VGG-16 90.71 22.24 89.52 89.68

MNIST PARN-18 99.50 29.42 98.27 81.51
GTSRB PARN-18 98.34 22.15 98.19 81.46

Tiny PARN-18 55.56 16.57 50.06 71.72

Table 6: Backdoor effectiveness evaluation for GBU.

Datasets Models conceal unlearn
BA(%) ASR(%) BA(%) ASR(%)

CIFAR-10
PARN-18 93.26 21.94 90.53 83.60
ResNet-34 93.47 22.10 90.19 86.25
VGG-16 90.71 22.24 89.28 89.96

MNIST PARN-18 99.50 29.42 98.28 89.01
GTSRB PARN-18 98.34 22.15 95.18 80.20

Tiny PARN-18 55.56 16.57 49.98 64.26

Table 7: The comparison between the camouflage and activation
effectiveness of BAMU [78] and UBA-Inf.

State Method CIFAR-10 MNIST GTSRB Tiny
BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%)

before unlearn UBA-Inf 93.26 21.94 99.50 29.42 98.34 22.15 55.56 16.57
BAMU 93.19 36.71 99.47 90.14† 98.51 28.44 56.20 37.95

after full retrain UBA-Inf 93.34 100.00 99.64 100.00 97.85 99.89 56.09 92.26
BAMU 93.12 100.00 99.58 100.00† 98.23 99.63 55.90 88.73

after PUMA UBA-Inf 89.50 80.44 98.27 81.51 98.27 81.51 50.06 71.72
BAMU 89.97 50.10 98.39 99.93† 94.90 64.13 50.02 56.21

after GBU UBA-Inf 90.53 83.60 98.28 89.01 95.18 80.20 49.98 64.26
BAMU 90.11 52.53 98.47 92.49† 94.82 59.71 50.24 47.15

† BAMU fails in MNIST with ASR higher than 80%, which completely has no camouflage effect.

30% while rising to at least around 75% after PUMA unlearn-
ing, which means UBA-Inf achieves satisfactory camouflage
effectiveness and activation effectiveness under different sur-
rogate model settings. In other words, the attack performance
of UBA-Inf is not depended on a specific surrogate model
setting.

5.3 Stealthiness Evaluation
Having noticed backdoor threats, the SP deploys backdoor

defenses to protect MLaaS from suspicious backdoor samples,
including outlier filter defenses [13,25,38] and model scanner
defenses [23, 62, 67]. Furthermore, recent studies provide the

SP with defenses against UBA [78] in particular. We will
demonstrate the stealthiness of our UBA-Inf by evaluating
the deceiving result of conventional backdoor defenses and
UBA defenses in comparison with BAMU [78]. In previous
experiments, we have evaluated different backdoor generation
algorithms on multiple datasets, from which we can conclude
that BadNets is suitable for further evaluation as a typical
generation method to simplify the discussion.

5.3.1 Evaluation of Outlier Filter Defense
Outlier filters defend MLaaS against backdoor attacks by

filtering out suspicious samples in the training and infer-
ence processes. Three popular outlier filters, Spectre [25],
D-BR [13], and ABL [38], are used for evaluating the stealthi-
ness of camouflage samples in UBA-Inf. We use outlier filters
to detect suspicious samples and present the result of poison-
ing samples in Figure 8. It shows that Spectre, ABL (with
isolation rate equal to 10%), and D-BR filter about half of and
almost backdoor samples generated by naive BadNets, respec-
tively. However, only about 10% UBA-Inf backdoor samples
under camouflage are correctly detected by Spectre and ABL.
In the worst case, D-BR detects about 30% UBA-Inf backdoor
samples on GTSRB. Even so, the rest samples are enough for
the attack according to the effectiveness evaluation. We find
that UBA-Inf’s ASR is around 20% before unlearning and
rises to over 85% after unlearning under outlier filters like
Spectre and D-BR. UBA-Inf also protects more poisoning
samples from detection than BAMU [78], providing better
stealthiness.

5.3.2 Evaluation of Model Scanner Defense
Model scanners verify whether the model has potential

backdoor threats and attempt to reverse-engineer the back-
door trigger. Three popular model scanner defenses and cor-
responding anomaly indexes are used for the evaluation, i.e.,

4220 33rd USENIX Security Symposium USENIX Association

CIFAR-10 MNIST GTSRB Tiny0

500

1000

nu
m

be
rs

 o
f o

ut
lie

rs

388 351 105

625

68 37

43

97

15 49
44

42

36 52
18

44

21 32
12

30

(a) Spectre
Naive BadNets
BAMU

UBA-Inf
Camouflage Sample

CIFAR-10 MNIST GTSRB Tiny0

500

1000

nu
m

be
rs

 o
f o

ut
lie

rs

382 307

182

966

40 56

47

226

5 52

29

140

0 14
7

40

0 21
13

64

(b) ABL

CIFAR-10 MNIST GTSRB Tiny0

500

1000

nu
m

be
rs

 o
f o

ut
lie

rs

524 514

301

604

115 121

240

213

47 74

103

77

45 31
88

50

21 25
67

47

(c) D-BR

Figure 8: Filtered suspicious samples in backdoor and camouflage by
Spectre, ABL, and D-BR. Bars without and with a border represent
backdoor and camouflage samples, respectively. Bars in light and
dark colors indicate all and detected samples, respectively.

NC [67], PB [62], and AEVA [23]. SP can employ model
scanners before and after unlearning. However, frequent scan-
ning after each unlearning request is overwhelmingly time-
consuming.

Figure 9 demonstrates different anomaly indexes of one
target class before unlearning. The more negative the anomaly
indexes, the more likely a class has backdoors. With naive
BadNets, all three scanners detect the backdoor in the target
class with highly negative anomaly indexes. However, with
UBA-Inf camouflage, these indexes become less negative or
even positive. Using the -2.0 threshold from [67], none of
the scanners can detect the backdoor injected by UBA-Inf,
while BAMU camouflages still get detected. We have only
listed the target class because other classes are irrelevant to
the backdoor attack. In Figure 10, we show an example of
reverse-engineering a backdoor trigger using NC, from which
we can easily conclude that UBA-Inf camouflage protects
backdoor triggers from being revered effectively compared
with naive BadNets and BAMU.

Tiny
GTSRB
MNIST
CIFAR-10

-3.58

-2.66

-2.86

-4.82

-0.8

0.48

0.18

-0.75

-2.59

-2.41

-2.64

-2.76

(a) NC

Tiny
GTSRB
MNIST
CIFAR-10

-3.2

-3.15

-1.95

-4.22

-0.5

0.47

-0.76

-0.21

-2.53

-2.85

-2.24

-2.95

(b) PB

−6 −5 −4 −3 −2 −1 0 1

Tiny
GTSRB
MNIST
CIFAR-10

-1.9

-1.35

-2.5

-3.22

0.59

0.58

0.75

0.89

0.35

-0.75

-1.88

0.79

(c) AEVA

Naive BadNets
BAMU
UBA-Inf
Detected Backdoor Boundary
Backdoor Recognized Area

Figure 9: Anomaly indexes of one class (the 6th class in all datasets)
calculated by NC, PB, and AEVA before unlearning.

When SP scans the model after unlearning, UBA-Inf with
BadNets may be detected by backdoor scanners. However,
UBA-Inf offers better flexibility with diverse backdoor gen-
erating algorithms and can evade detection by employing ap-
propriate methods like Narcissus [75]. We compared BAMU
with UBA-Inf using BadNets and UBA-Inf using Narcissus.

Figure 10: From left to right is the true trigger and the reversed
trigger of naive BadNets, BAMU [78] and UBA-Inf, respectively.
The camouflage of UBA-Inf is more effective.

Figure 11 demonstrates that BadNets-based UBA-Inf is vul-
nerable to post-unlearning defenses, UBA-Inf with Narcissus
effectively eludes these scanners with anomaly indexes above
-0.67 or even positive. This suggests UBA-Inf’s resilience
to model scanning persists even after unlearning, leveraging
suitable backdoor generating methods.

GBU
PUMA
retrain

-5.2

-5.4

-4.82

0.59

-0.15

0.02

-4.49

-4.14

-4.82

(a) NC

GBU
PUMA
retrain

-1.5

-1.72

-4.22

0.35

0.3

-0.67

-0.9

-1.58

-4.22

(b) PB

−6 −5 −4 −3 −2 −1 0 1

GBU
PUMA
retrain

-0.76

-1.5

-3.22

0.58

-0.36

0.67

-0.6

-1.44

-3.22

(c) AEVA

BAMU
UBA-Inf(BadNets)
UBA-Inf(Narcissus)
Detected Backdoor Boundary
Backdoor Recognized Area

Figure 11: Anomaly indexes of one class (the 6th class in CIFAR-10
[35]) calculated by NC, PB, and AEVA after full retrain, PUMA [70]
and GBU [69] unlearning.

5.3.3 Evaluation of UBA Defense
In a recent study [78], defenses dedicated to UBA have

been proposed. In particular, model uncertainty (MU) for
deep learning models and sub-model similarity (SMS) for
SISA models are calculated to distinguish malicious samples
from clean ones and reject suspicious unlearning requests4.
Figure 12 indicates that MU fails to distinguish UBA-Inf sam-
ples from clean samples on all 4 datasets because the Gini
impurity distribution of malicious samples generated by UBA-
Inf is very similar to that of clean samples, which makes it
impossible to define a proper threshold for identifying mali-
cious samples. Table 8 shows UBA-Inf effectiveness when
considering stealthiness under MU defense. If MU allows
10% false negative, which means 90% clean samples can pass
MU defense, a large portion of malicious samples can also
escape the defense and increase the ASR to over 80% in most
cases through unlearning. Meanwhile, MU defenses cast more
BAMU camouflage samples with the same 10% false negative.
After unlearning, BAMU reaches lower ASRs against MU
defenses, which is around 60% in most cases. This concludes
that UBA-Inf is more stealthy and effective compared with
BAMU, and MU cannot prevent UBA-Inf effectively.

Experimental results of SMS defense are given in Fig-
ure 13, showing the variance of the predicted value of SISA
sub-models. On CIFAR-10 and Tiny, the distribution of UBA-
Inf malicious samples looks very similar to the one of clean

4Here we only evaluate UBA-Inf against the MU defense and the SMS
defense. More defenses designed for other unlearning vulnerabilities are
represented in Appendix C.

USENIX Association 33rd USENIX Security Symposium 4221

0.0000 0.0025 0.0050 0.0075
Gini impurity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

 (%
)

(a) CIFAR-10 MU Gini

Clean
Camouflage

0.0000 0.0025 0.0050 0.0075
Gini impurity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

 (%
)

(b) MNIST MU Gini

Clean
Camouflage

0.00 0.25 0.50 0.75
Gini impurity

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
ty

 (%
)

(c) GTSRB MU Gini

Clean
Camouflage

0.0 0.2 0.4
Gini impurity

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

 (%
)

(d) Tiny MU Gini

Clean
Camouflage

Figure 12: MU measured by Gini impurity on different datasets.

Table 8: UBA-Inf evaluation under MU defense.

Datasets UBA-Inf without MU UBA-Inf with MU BAMU with MU
BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%)

full retrain
CIFAR-10 93.48 100.00 92.75 73.20 93.15 42.34

MNIST 99.64 100.00 99.54 90.21 99.47 90.14†

GTSRB 97.85 99.89 98.08 86.92 98.32 72.46
Tiny 56.09 92.26 55.94 81.38 55.47 62.21

PUMA
CIFAR-10 89.50 80.44 89.50 80.44 89.20 64.28

MNIST 98.27 81.51 98.27 74.59 99.47 90.14†

GTSRB 96.19 81.46 96.19 81.45 95.21 50.36
Tiny 50.06 71.72 50.14 63.22 50.15 38.56

GBU
CIFAR-10 90.03 80.04 90.33 77.00 90.12 63.47

MNIST 98.28 89.01 98.70 84.71 99.47 90.14†

GTSRB 95.18 80.20 95.96 77.54 95.25 61.93
Tiny 49.98 64.26 49.35 52.78 48.62 40.17

† Please note that BAMU does not have a masking effect on the MNIST dataset.

samples. Thus, most malicious samples generated by UBA-
Inf can escape SMS defense when considering a reasonable
false negative ratio. However, UBA-Inf malicious samples on
MNIST and GTSRB can be effectively distinguished by SMS,
which means most malicious samples generated by UBA-Inf
will be rejected by SMS. Table 9 gives UBA-Inf effectiveness
when considering stealthiness under SMS defense. The back-
door can be successfully activated and exploited on CIFAR-
10 and Tiny while probabilistically activated on MNIST and
GTSRB when using 5 shards for SISA. In the worst case,
UBA-Inf can hardly succeed on GTSRB shen using 3 shards
for SISA because most unlearning requests are rejected by
SMS. We have observed that UBA-Inf effectiveness under
SMS defense gets better when the shard number increases.
Actually, practical applications commonly use more shards
way beyond demo cases, which means UBA-Inf can cause
practical threats when SISA uses more than 5 shards.

0.0 0.2 0.4 0.6
Sub-Model Similarity

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

 (%
)

(a) CIFAR-10 SMS Index

Clean
Camouflage

0.0 0.1 0.2 0.3 0.4 0.5
Sub-Model Similarity

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

 (%
)

(b) MNIST SMS Index

Clean
Camouflage

0.0 0.1 0.2 0.3 0.4 0.5
Sub-Model Similarity

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

 (%
)

(c) GTSRB SMS Index

Clean
Camouflage

0.0 0.1 0.2 0.3 0.4 0.5
Sub-Model Similarity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
en

si
ty

 (%
)

(d) Tiny SMS Index

Clean
Camouflage

Figure 13: SMS measured by sub-model prediction variance for
3-shard SISA.

Table 9: UBA-Inf evaluation under SMS defense.

Shards CIFAR-10 MNIST GTSRB Tiny
BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%)

shard=3 without SMS 90.65 99.98 99.66 100.00 95.58 100.00 51.40 87.73
with SMS 91.55 92.09 98.28 23.00 98.68 1.68 51.67 77.23

shard=5 without SMS 88.68 99.94 98.57 100.00 99.58 100.00 47.63 82.47
with SMS 89.06 90.99 99.64 59.86 99.67 55.40 48.23 76.45

5.4 Evaluation of Resistance to Reconstruction
Model sanitizing or transforming modifies model param-

eters to eliminate potential backdoor threats. Such model
reconstruction may affect the activation of UBA-Inf. Three
model reconstructors are used for UBA-Inf resistance eval-
uation, i.e., naive fine-tuning (FT), fine-pruning (FP) [40],
and neural attention distillation (NAD) [39]. Please note that
since exact unlearning algorithms retrain model parameters
on contaminated datasets, they invalidate previous model re-
construction defenses. Thus, we will focus on the evaluation
of approximate unlearning like PUMA and GBU. Like model
scanning, SP can employ a model reconstructor before or after
model updating. However, reconstruction defenses after each
unlearning inevitably bring significant time overheads.

Table 10: UBA-Inf evaluation after model reconstruction.

Defenses before unlearn PUMA unlearn GBU unlearn
BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%)

CIFAR-10
FT 93.28 8.18 85.62 80.44 85.71 80.95
FP 93.18 5.00 85.53 72.68 86.44 83.13

NAD 92.87 14.87 86.62 70.60 88.06 87.54
MNIST

FT 99.67 11.05 99.01 77.23 99.09 89.12
FP 99.59 3.49 98.77 62.87 99.00 99.56

NAD 99.62 17.09 98.59 79.17 98.92 90.46
GTSRB

FT 98.20 11.45 95.13 76.93 95.39 71.51
FP 98.31 9.29 95.19 81.57 95.09 70.73

NAD 98.09 9.80 95.37 88.92 95.38 65.31
Tiny

FT 55.26 9.12 50.16 40.15 50.01 43.29
FP 55.14 8.54 50.02 42.15 49.95 45.16

NAD 55.25 10.25 50.11 44.74 50.03 41.63

Table 10 gives the results of UBA-Inf effectiveness after
model reconstruction before unlearning, from which we can
tell that model reconstruction certainly increases the robust-
ness of the target model, lowering ASR of UBA-Inf than
without reconstructing, as shown in Table 5 and Table 6. Even
so, UBA-Inf gives satisfying ASRs on CIFAR-10, MNIST,
and GTSRB. Even in the worst case of Tiny, the ASR of
UBA-Inf exceeds 40%, still posing high backdoor risks.
Table 11: Backdoor evaluations of BAMU, UBA-Inf(BadNets), and
UBA-Inf(Narcissus) against FT, FP, and NAD defenses after full
retrain, PUMA, GBU unlearning, respectively.

Method Unlearn
algorithm

After unlearn FT after unlearn FP after unlearn NAD after unlearn
BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%)

BAMU
full retrain 93.48 100.00 91.89 10.14 91.83 7.86 92.59 9.24

PUMA 89.50 50.10 91.88 11.49 91.58 5.02 91.81 7.74
GBU 90.11 52.53 91.90 11.71 91.56 5.16 90.89 7.52

UBA-Inf (BadNets)
full retrain 93.48 100.00 91.89 10.14 91.83 7.86 92.59 8.24

PUMA 89.50 80.44 91.88 11.63 91.34 5.25 90.71 8.02
GBU 90.53 83.60 90.74 10.24 91.05 5.19 90.92 7.93

UBA-Inf (Narcissus)
full retrain 93.43 96.29 92.84 90.45 93.01 88.80 93.34 83.50

PUMA 90.32 97.84 93.82 53.38 93.70 51.96 93.65 55.46
GBU 90.77 84.52 93.84 53.61 93.74 54.61 93.62 50.90

As discussed in model scanning, when SP will perform
defenses at any cost after unlearning, UBA-Inf using Bad-
Nets can be mitigated. In this case, UBA-Inf can use suitable
triggers like Narcissus to resist post-unlearning model recon-
struction. We compared BAMU with UBA-Inf using BadNets
and UBA-Inf using Narcissus. Table 11 shows UBA-Inf’s
resilience to defenses after unlearning. While BAMU’s ASR
drops to around 10%, UBA-Inf maintains at least 50% ASR
by switching the trigger from BadNet to Narcissus. For mod-
els with full retraining, UBA-Inf’s ASR stays above 80% with
Narcissus. This suggests that UBA-Inf can withstand model

4222 33rd USENIX Security Symposium USENIX Association

0.0

0.5

1.0

A
SR

 (%
)

(a) No Unlearn

ASR
BA

0.0

0.5

1.0

A
SR

 (%
)

(b) Unlearn with GBU
250 260 270

0.50

0.75
ASR
BA

150 200 250 300 350 400 450
Epochs

0.0

0.5

1.0

A
SR

 (%
)

(c) Unlearn with LIRF
250 260 270

0.5

1.0
ASR
BA

0.4

0.6

0.8

1.0

B
A

 (%
)

0.4

0.6

0.8

1.0

B
A

 (%
)

0.4

0.6

0.8

1.0

B
A

 (%
)

Figure 14: Persistence evaluation on CIFAR-10.

0.0

0.5

1.0

A
SR

 (%
)

(a) No Unlearn

ASR
BA

0.0

0.5

1.0

A
SR

 (%
)

(b) Unlearn with GBU
270 280 290

0.5

1.0ASR
BA

150 200 250 300 350 400 450
Epochs

0.0

0.5

1.0

A
SR

 (%
)

(c) Unlearn with LIRF
270 280 290

0.5

1.0ASR
BA

0.95

1.00

B
A

 (%
)

0.95

1.00

B
A

 (%
)

0.95

1.00

B
A

 (%
)

Figure 15: Persistence evaluation on Rotated-MNIST.

reconstruction even after unlearning when leveraging proper
backdoor triggers.

5.5 Persistence Evaluation
Unlike OT-MLaaS, CT-MLaaS continuously updates the

on-cloud model with newly coming training data [58, 59].
Thus, we should consider the persistence of the injected back-
door. The adversary of UBA-Inf expects the injected backdoor
to keep away from backdoor vanishing caused by catastrophic
forgetting [68]. We will evaluate the backdoor persistence af-
ter being activated using two unlearning methods as indicated
in Table 2, i.e., GBU [69] and LIRF [74].

Assuming new training data comes in tasks, we use CIFAR-
10 for continuous learning in the same domain [52], and
Rotated-MNIST [46] for domain incremental learning where
training data in different tasks comes from different domains
[68,82]. In either case, we train a PRAN-18 model with clean
samples for 10 tasks (200 epochs) before injecting malicious
samples and with malicious samples for 2 tasks (40 epochs),
after which the model will learn continuously with only clean
samples. For naive BadNets, the adversary injects 400 back-
door samples in 2 tasks (epoch 200 to 240). As for UBA-Inf,
400 backdoor samples are injected in the same way, while
200 camouflage samples will also be injected from epoch
200 to 220. UBA-Inf achieves backdoor activation through
unlearning instead of learning. Hence, the criteria is timing
for unlearning. Better ASR is achieved with earlier unlearn-
ing before catastrophic forgetting. UBA-Inf can significantly
prolong the backdoor effect even if unlearning occurs when
the ASR drops to 50%, which corresponds to epoch 260 for
CIFAR-10 and epoch 280 for Rotated-MNIST.

The first row of Figure 14 and Figure 15 demonstrates
the ASR trends of naive BadNets in continuous learning on
CIFAR-10 and Rotated-MNIST respectively, which drop be-
low 50% in about 20 epochs after backdoor samples have
been injected. The last two rows of Figure 14 and Figure 15
show the ASR of UBA-Inf with GBU unlearning and the ASR
of UBA-Inf with LIRF unlearning, respectively. ASRs of the
last two rows share a similar dropping to below 50% before
unlearning, just like the naive BadNets. However, when the
adversary activates the backdoor through unlearning camou-

flage samples, ASRs of UBA-Inf rise to a new peak imme-
diately. Moreover, ASRs of UBA-Inf remain around 70% to
80% and drop below 50% after 80 epochs, which significantly
extends the persistence of the backdoor’s effect. Compared
with the conventional backdoor attack, UBA-Inf enhances the
backdoor persistence after activation by about 4 times.

6 Related work
6.1 Backdoor Attacks and Defenses

Neural backdoor attack embeds backdoors into DNNs to
induce twisted predictions evoked by the trigger pattern. [44].
BadNets [21] leverages a small patch as the trigger pattern.
LC [66] combines BadNets with adversarial perturbations to
perform a clean-label attack effectively. Blended [14] directly
blends a cartoon image or a random pattern with the input.
Sig [65] injects a sinusoidal signal pattern on images, which
is a strip-like pattern. Narcissus [75] optimizes the trigger
pattern in a way that points towards the inside of the target
class. More backdoor generating methods have been proposed
for better effectiveness and stealthiness [37, 76].

Recent works have shown the worrying threat of more
complicated backdoor attack workflows. For example, latent
backdoor attacks conceal backdoors initially but then activate
it with fine-tuning [50] or exact machine unlearning [78]. The
comparison between recent backdoor activation approaches is
given in Table 12. Existing approaches either require full con-
trol of the training process for poisoning [32,50] or depend on
replayed backdoor injection [82]. Meanwhile, recent works
also expose the backdoor vanishing problem in continuous
learning [32,82]. However, UBA-Inf can achieve the same ad-
versarial goals under more restrictions, including continuous
learning, making it a more disturbing attack on MLaaS.

Various defenses have been proposed against backdoor at-
tacks. Generally, backdoor defenses can be categorized as
1) model scanners [23, 62, 67], which conduct reverse engi-
neering to decide whether a certain class has been poisoned
and identify the potential backdoor triggers, 2) outlier fil-
ters [13, 25, 38], which detect malicious training data and
gives them up during training or fine-tunes the model to
mitigate backdoor after training; and 3) model reconstruc-
tors [39, 40, 81], which reconstruct the victim model through

USENIX Association 33rd USENIX Security Symposium 4223

Table 12: Different properties and applicable scenarios of existing latent backdoor approaches.
Properties Scenarios

Is it a backdoor
attack?

Does it need access to
the training process?

What is the activation
mechanism?

Edge-Device
Services

Full-Access
MLaaS

Restricted-Access
MLaaS

Continuous
Training

Hibernated Backdoor [50] ✓ ✓ Fine-tune ✓ - - -
Hidden Poison [16] - ✓ Unlearning - ✓ - -

Incremental Backdoor [32] ✓ ✓ Incremental Learning - - - ✓
BAMU [78] ✓ - Unlearning - ✓ - -

UBA-Inf (Ours) ✓ - Unlearning - ✓ ✓ ✓

methods like neuron pruning [40] or channel shuffling [81].
We will show that UBA-Inf in the camouflage state is immune
to these defense solutions, calling for more robust backdoor
defenses and more secure MLaaS mechanisms.

6.2 Machine Unlearning
Machine unlearning aims to remove sensitive samples from

the MLaaS model [72]. Intuitively, full retraining is the most
naive solution, but it costs too much time and resources [29].

Exact machine unlearning is based on model retraining.
SISA [9] reorganizes the training data in sharding and slic-
ing to reduce the execution time of retraining. It aggregates
the results of sub-models as the final result. Many exact un-
learning solutions inherit SISA. ARCANE [73] designed an
efficient architecture for exact unlearning. A study [10] intro-
duced SISA into recommendation systems. Another work [12]
adopted SISA to graph data. All of these exact unlearning
algorithms require full access to the training dataset.

Approximate unlearning algorithms exploits feasible ways
to speed up the unlearning process [72]. Some works exploit
the second-order Hessian matrix, which requires full access
to training data for unlearning. For instance, PUMA [70]
relies on influence functions [33] and re-weighting meth-
ods to remove data without compromising model perfor-
mance. Some works exploit first-order gradients [63, 69] or
tailored loss functions [74] instead. Gradient-Based Unlearn-
ing (GBU) [69] replaces a data sample with the adversarially
perturbed one through first-order or second-order gradient-
decent optimization. Fine-tuning has been widely used as an
empirical unlearning baseline in existing works [19, 63, 72].
Besides, LIRF [74] is tailored to recoverable knowledge re-
moval in continual learning. It assumes that the upper layers
have completely transferred to new knowledge and only modi-
fies the lower layers through a tailored loss function combined
with the cross-entropy loss and the filtered attention distilla-
tion loss on randomly labeled samples.

Recent studies have exposed vulnerabilities in machine
unlearning, such as slowdowns caused by malicious data
removal [49], degradation in model performance on clean
data [29,54], and latent attacks that confuse defenders [16,78].
Some solutions have been proposed to counter malicious un-
learning. For instance, Zhang et al. [78] utilized Gini impurity
and sub-model similarity to identify malicious unlearning,
assuming that malicious samples exhibit larger prediction
uncertainty and poor generalization across sub-models. Addi-

tionally, other defenses like hashing [29] or medoid optimiza-
tion [54] have been explored. However, we demonstrate that
our UBA-Inf method can bypass these defenses, underscoring
the need for more robust and effective unlearning defenses.

7 Conclusion
Our work presents a novel approach to implementing effec-

tive and stealthy backdoor attacks on MLaaS platforms using
machine unlearning. We introduce an influence-enhanced
unlearning-activated backdoor attack method, which can not
only strengthen backdoor robustness but also improve back-
door persistence in continuous learning, thus shedding light
on the vulnerabilities of current unlearning procedures in
MLaaS contexts. Through extensive evaluations, we demon-
strate UBA-Inf’s resistance to defenses across various MLaaS
scenarios, achieving high attack success rates with improved
stealthiness and robustness compared to existing approaches.

Note that our work gives an alternative backdoor approach
with fine-grained control of backdoor activation. However,
dedicated backdoor designs are orthogonal to our work, which
means this approach can also be applied to advanced back-
door triggers in the future. Meanwhile, we should also note
that novel defenses may mitigate UBA-Inf in the future. In
this case, the adversary could take novel defenses into camou-
flage optimization process as constraints if defense strategies
are known. Moreover, UBA is an example of leveraging un-
learning for attacks. Other types of attacks, like poisoning and
inference, may be of interest in future work.

Acknowledgement
The authors would like to thank the shepherd and anony-

mous reviewers for the time and efforts they have kindly made
in this paper. This work was supported in part by the National
Natural Science Foundation of China under Grants NSFC-
62272222, NSFC-61902176, NSFC-62272215, and in part
by the Jiangsu Natural Science Foundation Excellent Youth
Project under Grant BK20230080.

References
[1] Ai and machine learning - google cloud. https://cloud.google.

com/products/ai. Accessed: 2024-1-30.

[2] Azure ai services - microsoft azure. https://azure.microsoft.
com/en-us/products/ai-services. Accessed: 2024-1-30.

[3] Here’s how to stop meta from using your data for ai train-
ing. https://interestingengineering.com/culture/
heres-how-to-stop-meta-from-using-your-data-for-ai-training.
Accessed: 2024-2-3.

4224 33rd USENIX Security Symposium USENIX Association

https://cloud.google.com/products/ai
https://cloud.google.com/products/ai
https://azure.microsoft.com/en-us/products/ai-services
https://azure.microsoft.com/en-us/products/ai-services
https://interestingengineering.com/culture/heres-how-to-stop-meta-from-using-your-data-for-ai-training
https://interestingengineering.com/culture/heres-how-to-stop-meta-from-using-your-data-for-ai-training

[4] Machine learning service - amazon sagemaker. https://aws.amazon.
com/sagemaker. Accessed: 2024-1-30.

[5] Openai privacy request portal. https://privacy.openai.
com/policies?name=open-ai-privacy-request-portal#
privacy-practices. Accessed: 2024-2-3.

[6] User deletion api - overview. https://developers.google.
com/analytics/devguides/config/userdeletion/v3. Accessed:
2024-2-3.

[7] Regulation 2016/679 of the european parliament and of the council of
27 april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data.
Official Journal of the European Union 119 (2016), 1–88.

[8] BOURTOULE, L., CHANDRASEKARAN, V., CHOQUETTE-CHOO, C.,
JIA, H., TRAVERS, A., ZHANG, B., LIE, D., AND PAPERNOT, N.
Machine unlearning. In 2021 IEEE Symposium on Security and Privacy
(SP) (2021), pp. 141–159.

[9] BOURTOULE, L., CHANDRASEKARAN, V., CHOQUETTE-CHOO,
C. A., JIA, H., TRAVERS, A., ZHANG, B., LIE, D., AND PAPER-
NOT, N. Machine unlearning. In 2021 IEEE Symposium on Security
and Privacy (SP) (2021), IEEE, pp. 141–159.

[10] CHEN, C., SUN, F., ZHANG, M., AND DING, B. Recommendation
unlearning. In Proceedings of the ACM Web Conference 2022 (2022),
pp. 2768–2777.

[11] CHEN, H., CHEN, H. H., SUN, M., LI, K., CHEN, Z., AND WANG, X.
A verified confidential computing as a service framework for privacy
preservation. In 32nd USENIX Security Symposium (USENIX Security
23) (2023), pp. 4733–4750.

[12] CHEN, M., ZHANG, Z., WANG, T., BACKES, M., HUMBERT, M.,
AND ZHANG, Y. Graph unlearning. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security
(2022), pp. 499–513.

[13] CHEN, W., WU, B., AND WANG, H. Effective backdoor defense
by exploiting sensitivity of poisoned samples. Advances in Neural
Information Processing Systems 35 (2022), 9727–9737.

[14] CHEN, X., LIU, C., LI, B., LU, K., AND SONG, D. Targeted backdoor
attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[15] DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K., AND FEI-FEI, L.
Imagenet: A large-scale hierarchical image database. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2009), 248–255.

[16] DI, J. Z., DOUGLAS, J., ACHARYA, J., KAMATH, G., AND SEKHARI,
A. Hidden poison: Machine unlearning enables camouflaged poisoning
attacks. In NeurIPS ML Safety Workshop (2022).

[17] DOSOVITSKIY, A., BEYER, L., KOLESNIKOV, A., WEISSENBORN,
D., ZHAI, X., UNTERTHINER, T., DEHGHANI, M., MINDERER, M.,
HEIGOLD, G., GELLY, S., USZKOREIT, J., AND HOULSBY, N. An
image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations (2021).

[18] GONG, X., CHEN, Y., YANG, W., WANG, Q., GU, Y., HUANG, H.,
AND SHEN, C. Redeem myself: Purifying backdoors in deep learning
models using self attention distillation. In 2023 IEEE Symposium on
Security and Privacy (SP) (2023), pp. 755–772.

[19] GRAVES, L., NAGISETTY, V., AND GANESH, V. Amnesiac machine
learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence (2021), vol. 35, pp. 11516–11524.

[20] GROUP, I. Machine learning as a service (mlaas) market, 2023.

[21] GU, T., LIU, K., DOLAN-GAVITT, B., AND GARG, S. Badnets: Eval-
uating backdooring attacks on deep neural networks. IEEE Access 7
(2019), 47230–47244.

[22] GUO, C., GOLDSTEIN, T., HANNUN, A., AND VAN DER MAATEN, L.
Certified data removal from machine learning models. In Proceedings
of the 37th International Conference on Machine Learning (2020).

[23] GUO, J., LI, A., AND LIU, C. AEVA: Black-box backdoor detection
using adversarial extreme value analysis. In International Conference
on Learning Representations (2022).

[24] GUO, Y., ZHAO, Y., HOU, S., WANG, C., AND JIA, X. Verifying in
the dark: Verifiable machine unlearning by using invisible backdoor
triggers. IEEE Transactions on Information Forensics and Security
(2024).

[25] HAYASE, J., KONG, W., SOMANI, R., AND OH, S. Spectre: Defend-
ing against backdoor attacks using robust statistics. In International
Conference on Machine Learning (2021), PMLR, pp. 4129–4139.

[26] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning for
image recognition. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2016), 770–778.

[27] HE, K., ZHANG, X., REN, S., AND SUN, J. Identity mappings in
deep residual networks. In European Conference on Computer Vision
(ECCV) (2016), pp. 630–645.

[28] HU, H., SALCIC, Z., SUN, L., DOBBIE, G., YU, P. S., AND ZHANG,
X. Membership inference attacks on machine learning: A survey. ACM
Comput. Surv. 54, 11s (sep 2022).

[29] HU, H., WANG, S., CHANG, J., ZHONG, H., SUN, R., HAO, S., ZHU,
H., AND XUE, M. A duty to forget, a right to be assured? expos-
ing vulnerabilities in machine unlearning services. arXiv preprint
arXiv:2309.08230 (2023).

[30] HU, J., WANG, Z., SHEN, Y., LIN, B., SUN, P., PANG, X., LIU, J.,
AND REN, K. Shield against gradient leakage attacks: Adaptive privacy-
preserving federated learning. IEEE/ACM Transactions on Networking
(2023), 1–16.

[31] JIA, J., AND GONG, N. Z. AttriGuard: A practical defense against
attribute inference attacks via adversarial machine learning. In 27th
USENIX Security Symposium (USENIX Security 18) (2018), pp. 513–
529.

[32] JIANG, W., ZHANG, T., QIU, H., LI, H., AND XU, G. Incremental
learning, incremental backdoor threats. IEEE Transactions on Depend-
able and Secure Computing (2022), 1–11.

[33] KOH, P. W., AND LIANG, P. Understanding black-box predictions via
influence functions. In International conference on machine learning
(2017), PMLR, pp. 1885–1894.

[34] KREMER, J., SHA, F., AND IGEL, C. Robust active label correction. In
Proceedings of the Twenty-First International Conference on Artificial
Intelligence and Statistics (09–11 Apr 2018), A. Storkey and F. Perez-
Cruz, Eds., vol. 84 of Proceedings of Machine Learning Research,
PMLR, pp. 308–316.

[35] KRIZHEVSKY, A., NAIR, V., AND HINTON, G. Cifar-10 (canadian
institute for advanced research). Tech. rep., University of Toronto,
2009.

[36] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-
based learning applied to document recognition. Proceedings of the
IEEE 86, 11 (1998), 2278–2324.

[37] LI, Y., LI, Y., WU, B., LI, L., HE, R., AND LYU, S. Invisible backdoor
attack with sample-specific triggers. In Proceedings of the IEEE/CVF
international conference on computer vision (2021), pp. 16463–16472.

[38] LI, Y., LYU, X., KOREN, N., LYU, L., LI, B., AND MA, X. Anti-
backdoor learning: Training clean models on poisoned data. Advances
in Neural Information Processing Systems 34 (2021), 14900–14912.

[39] LI, Y., LYU, X., KOREN, N., LYU, L., LI, B., AND MA, X. Neu-
ral attention distillation: Erasing backdoor triggers from deep neural
networks. In International Conference on Learning Representations
(2021).

[40] LIU, K., DOLAN-GAVITT, B., AND GARG, S. Fine-pruning: Defend-
ing against backdooring attacks on deep neural networks. In Inter-
national symposium on research in attacks, intrusions, and defenses
(2018), Springer, pp. 273–294.

USENIX Association 33rd USENIX Security Symposium 4225

https://aws.amazon.com/sagemaker
https://aws.amazon.com/sagemaker
https://privacy.openai.com/policies?name=open-ai-privacy-request-portal#privacy-practices
https://privacy.openai.com/policies?name=open-ai-privacy-request-portal#privacy-practices
https://privacy.openai.com/policies?name=open-ai-privacy-request-portal#privacy-practices
https://developers.google.com/analytics/devguides/config/userdeletion/v3
https://developers.google.com/analytics/devguides/config/userdeletion/v3

[41] LIU, S., AND DENG, W. Very deep convolutional neural network
based image classification using small training sample size. In 2015
3rd IAPR Asian Conference on Pattern Recognition (ACPR) (2015),
pp. 730–734.

[42] LIU, Y., FAN, M., CHEN, C., LIU, X., MA, Z., WANG, L., AND MA,
J. Backdoor defense with machine unlearning. In IEEE INFOCOM
2022 - IEEE Conference on Computer Communications (2022).

[43] LIU, Y., MA, S., AAFER, Y., LEE, W.-C., ZHAI, J., WANG, W., AND
ZHANG, X. Trojaning attack on neural networks. In 25th Annual
Network And Distributed System Security Symposium (NDSS 2018)
(2018), Internet Soc.

[44] LIU, Y., MONDAL, A., CHAKRABORTY, A., ZUZAK, M., JACOBSEN,
N., XING, D., AND SRIVASTAVA, A. A survey on neural trojans.
In 2020 21st International Symposium on Quality Electronic Design
(ISQED) (2020), IEEE, pp. 33–39.

[45] LIU, Z., MAO, H., WU, C.-Y., FEICHTENHOFER, C., DARRELL,
T., AND XIE, S. A convnet for the 2020s. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition
(2022), pp. 11976–11986.

[46] LOPEZ-PAZ, D., AND RANZATO, M. Gradient episodic memory for
continual learning. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems (Red Hook, NY, USA,
2017), NIPS’17, Curran Associates Inc., p. 6470–6479.

[47] MAO, Y., XIN, Z., LI, Z., HONG, J., YANG, Q., AND ZHONG, S.
Secure split learning against property inference, data reconstruction,
and feature space hijacking attacks. In ESORICS (2023).

[48] MAO, Y., YUAN, X., ZHAO, X., AND ZHONG, S. Romoa: Robust
model aggregation for the resistance of federated learning to model
poisoning attacks. In ESORICS (2021).

[49] MARCHANT, N. G., RUBINSTEIN, B. I., AND ALFELD, S. Hard to
forget: Poisoning attacks on certified machine unlearning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence (2022), vol. 36,
pp. 7691–7700.

[50] NING, R., LI, J., XIN, C., WU, H., AND WANG, C. Hibernated
backdoor: A mutual information empowered backdoor attack to deep
neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence (2022), vol. 36, pp. 10309–10318.

[51] PANG, R., ZHANG, Z., GAO, X., XI, Z., JI, S., CHENG, P., LUO, X.,
AND WANG, T. Trojanzoo: Towards unified, holistic, and practical
evaluation of neural backdoors. In 2022 IEEE 7th European Symposium
on Security and Privacy (EuroS&P) (2022).

[52] PRAPAS, I., DERAKHSHAN, B., MAHDIRAJI, A. R., AND MARKL,
V. Continuous training and deployment of deep learning models.
Datenbank-Spektrum 21, 3 (2021), 203–212.

[53] PYTORCH CONTRIBUTORS. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. PyTorch, 2022.

[54] QIAN, W., ZHAO, C., LE, W., MA, M., AND HUAI, M. Towards un-
derstanding and enhancing robustness of deep learning models against
malicious unlearning attacks. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (New York,
NY, USA, 2023), KDD ’23, Association for Computing Machinery,
p. 1932–1942.

[55] QIU, P., ZHANG, X., JI, S., FU, C., YANG, X., AND WANG, T.
Hashvfl: Defending against data reconstruction attacks in vertical fed-
erated learning. IEEE Transactions on Information Forensics and
Security (2024).

[56] RAY, P. P. Chatgpt: A comprehensive review on background, applica-
tions, key challenges, bias, ethics, limitations and future scope. Internet
of Things and Cyber-Physical Systems (2023).

[57] RIBEIRO, M., GROLINGER, K., AND CAPRETZ, M. A. Mlaas: Ma-
chine learning as a service. In 2015 IEEE 14th international conference
on machine learning and applications (ICMLA) (2015), IEEE, pp. 896–
902.

[58] SEMOLA, R., LOMONACO, V., AND BACCIU, D. Continual-learning-
as-a-service (claas): On-demand efficient adaptation of predictive mod-
els. arXiv preprint arXiv:2206.06957 (2022).

[59] SOMMER, D. M., SONG, L., WAGH, S., AND MITTAL, P. Athena:
Probabilistic verification of machine unlearning. Proc. Privacy En-
hancing Technol 3 (2022), 268–290.

[60] STALLKAMP, J., SCHLIPSING, M., SALMEN, J., AND IGEL, C. The
german traffic sign recognition benchmark: A multi-class classification
competition. In International Joint Conference on Neural Networks
(IJCNN) (2011), IEEE, pp. 1453–1460.

[61] TAO, G., AN, S., CHENG, S., SHEN, G., AND ZHANG, X. Hard-label
black-box universal adversarial patch attack. In 32nd USENIX Security
Symposium (USENIX Security 23) (2023).

[62] TAO, G., SHEN, G., LIU, Y., AN, S., XU, Q., MA, S., LI, P., AND
ZHANG, X. Better trigger inversion optimization in backdoor scanning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2022), pp. 13368–13378.

[63] THUDI, A., DEZA, G., CHANDRASEKARAN, V., AND PAPERNOT,
N. Unrolling sgd: Understanding factors influencing machine unlearn-
ing. In 2022 IEEE 7th European Symposium on Security and Privacy
(EuroS&P) (2022), IEEE, pp. 303–319.

[64] TIAN, Z., CUI, L., LIANG, J., AND YU, S. A comprehensive survey
on poisoning attacks and countermeasures in machine learning. ACM
Comput. Surv. 55, 8 (2022).

[65] TRAN, B., LI, J., AND MADRY, A. Spectral signatures in backdoor
attacks. Advances in neural information processing systems 31 (2018).

[66] TURNER, A., TSIPRAS, D., AND MADRY, A. Label-consistent back-
door attacks. arXiv preprint arXiv:1912.02771 (2019).

[67] WANG, B., YAO, Y., SHAN, S., LI, H., VISWANATH, B., ZHENG, H.,
AND ZHAO, B. Y. Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks. In 2019 IEEE Symposium on Security and
Privacy (SP) (2019), IEEE, pp. 707–723.

[68] WANG, L., ZHANG, X., SU, H., AND ZHU, J. A comprehensive survey
of continual learning: Theory, method and application. arXiv preprint
arXiv:2302.00487 (2023).

[69] WARNECKE, A., PIRCH, L., WRESSNEGGER, C., AND RIECK, K.
Machine unlearning of features and labels. Annual Network And Dis-
tributed System Security Symposium (NDSS) (2021).

[70] WU, G., HASHEMI, M., AND SRINIVASA, C. Puma: Performance
unchanged model augmentation for training data removal. In Proceed-
ings of the AAAI Conference on Artificial Intelligence (2022), vol. 36,
pp. 8675–8682.

[71] XU, H., ZHU, T., ZHANG, L., ZHOU, W., AND YU, P. S. Machine
unlearning: A survey. ACM Comput. Surv. 56, 1 (2023).

[72] XU, H., ZHU, T., ZHANG, L., ZHOU, W., AND YU, P. S. Machine
unlearning: A survey. ACM Comput. Surv. 56, 1 (aug 2023).

[73] YAN, H., LI, X., GUO, Z., LI, H., LI, F., AND LIN, X. Arcane: An
efficient architecture for exact machine unlearning. In Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI-22 (2022), pp. 4006–4013.

[74] YE, J., FU, Y., SONG, J., YANG, X., LIU, S., JIN, X., SONG, M.,
AND WANG, X. Learning with recoverable forgetting. In European
Conference on Computer Vision (2022), Springer, pp. 87–103.

[75] ZENG, Y., PAN, M., JUST, H. A., LYU, L., QIU, M., AND JIA, R.
Narcissus: A practical clean-label backdoor attack with limited infor-
mation. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security (New York, NY, USA, 2023),
CCS ’23, Association for Computing Machinery, p. 771–785.

[76] ZENG, Y., PARK, W., MAO, Z. M., AND JIA, R. Rethinking the
backdoor attacks’ triggers: A frequency perspective. In Proceedings
of the IEEE/CVF international conference on computer vision (2021),
pp. 16473–16481.

4226 33rd USENIX Security Symposium USENIX Association

[77] ZHANG, B., LI, Z., YANG, Z., HE, X., BACKES, M., FRITZ, M., AND
ZHANG, Y. Securitynet: Assessing machine learning vulnerabilities
on public models. In 33rd USENIX Security Symposium (USENIX
Security 24) (2024).

[78] ZHANG, P., SUN, J., TAN, M., AND WANG, X. Backdoor attack
through machine unlearning. arXiv preprint arXiv:2310.10659 (2023).

[79] ZHANG, Y., JIA, R., PEI, H., WANG, W., LI, B., AND SONG, D. The
secret revealer: Generative model-inversion attacks against deep neural
networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (2020), pp. 253–261.

[80] ZHANG, Z., PANDA, A., SONG, L., YANG, Y., MAHONEY, M., MIT-
TAL, P., KANNAN, R., AND GONZALEZ, J. Neurotoxin: Durable back-
doors in federated learning. In Proceedings of the 39th International
Conference on Machine Learning (17–23 Jul 2022), K. Chaudhuri,
S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., vol. 162
of Proceedings of Machine Learning Research, PMLR, pp. 26429–
26446.

[81] ZHENG, R., TANG, R., LI, J., AND LIU, L. Data-free backdoor re-
moval based on channel lipschitzness. In European Conference on
Computer Vision (2022), Springer, pp. 175–191.

[82] ZHONG, Y., LIU, X., ZHAI, D., JIANG, J., AND JI, X. Backdoor
attacks against incremental learners: An empirical evaluation study.
arXiv preprint arXiv:2305.18384 (2023).

APPENDIX
A Discussion of Injection Ratio

Intuitively, a high injection ratio of backdoor samples to
camouflage samples brings a high ASR. However, this is bad
for backdoor stealthiness. Thus, UBA-Inf aims at low injec-
tion ratios of both backdoor samples and camouflage samples.
Table 13 gives injection ratios used in full retrain (shard=1),
SISA (shard=3,5), and approximate unlearning algorithms
(e.g., PUMA and GBU). Please note these injection ratios are
relatively lower than existing studies.

Table 13: Injection ratios of backdoor(b) and camouflage(c) samples.

Shards BadNets Blended LC Sig
b(%) c(%) b(%) c(%) b(%) c(%) b(%) c(%)

CIFAR-10
shard=1† 1.20‡ 0.40 0.50 1.00 6.00 1.00 1.20 0.40
shard=3 1.20 0.60 1.20 2.40 6.00 1.80 1.20 0.40
shard=5 2.00 1.00 2.00 4.00 10.00 3.00 3.00 1.00

MNIST
shard=1† 0.40 1.00 0.40 0.80 8.00 1.00 8.00 1.00
shard=3 0.40 1.00 0.40 0.80 8.00 1.00 8.00 1.00
shard=5 0.40 1.00 0.40 0.80 8.00 1.00 8.00 1.00

GTSRB
shard=1† 0.80 0.25 0.80 2.00 0.95 0.10 0.95 0.10
shard=3 0.80 0.25 0.80 2.00 0.95 0.10 0.95 0.10
shard=5 0.80 0.25 0.80 2.00 0.95 0.10 0.95 0.10

Tiny
shard=1† 1.00 0.50 0.80 2.00 0.50 0.50 0.50 1.00
shard=3 1.00 0.50 0.80 2.00 0.50 0.50 0.50 1.00
shard=5 1.00 0.50 0.80 2.00 0.50 0.50 0.50 1.00
† shard=1 represents injection rates for full retrain, PUMA and GBU.
‡ When BadNets attacks VGG-16 trained on CIFAR-10, backdoor ratio is

0.4% instead of 1.2%.

B Effectiveness on Second-Order GBU
In 5.2.2, we evaluate the effectiveness of UBA-Inf in RA-

MLaaS with the first-order GBU unlearning algorithm [69].
The first-order GBU uses a first-order Taylor Series of model
θ∗ to derive the gradient updates. Here, we use Drm ⊂ Dtrn
to denote the set of targeted unlearning data and D̃rm = {z̃ |

z̃ = (x+δ,y),(x,y) ∈Drm} where x+δ compose a perturbed
version for unlearning. Then the model parameters are modi-
fied as θu← θ∗−η(∑z̃∈D̃rm

∇ℓ(z̃,θ∗)−∑z∈Drm(z,θ
∗)) where

η is a pre-defined unlearning rate, ℓ is the loss function and
θu denotes the unlearned model. Meanwhile, work [69] also
proposed a second-order GBD algorithm. This second-order
method uses the inverse Hessian matrix of the second-order
partial derivatives to change the original model’s parame-
ters to obtain the unlearned model. The unlearned model
can be formulated as θu ← θ∗ − H−1

θ∗ (∑z̃∈D̃rm
∇ℓ(z̃,θ∗)−

∑z∈Drm(z,θ
∗)) where H−1

θ∗ is the inverse Hessian matrix. As
Table 6 demonstrates, Table 14 indicates second-order GBU
unlearning camouflage samples make ASR increases from
around 22% to above 80% with BA dropping less than 4% in
all cases. As a result, we claim UBA-Inf can work with both
first-order and second-order GBU algorithms.

Table 14: Backdoor effectiveness evaluation for Second-Order GBU.

Datasets Models conceal unlearn
BA(%) ASR(%) BA(%) ASR(%)

CIFAR-10
PARN-18 93.26 21.94 91.12 80.86
ResNet-34 93.47 22.10 90.70 81.25
VGG-16 90.71 22.24 89.92 85.08

MNIST PARN-18 99.50 29.42 98.25 89.10
GTSRB PARN-18 98.34 22.15 95.15 80.27

Tiny PARN-18 55.56 16.57 51.02 68.78

C Discussion of Related Unlearning Defenses
Besides UBA defenses which we discuss in Section 5.3.3,

work [29, 54, 78] also proposed possible defenses against
malicious unlearning requests. Unlike UBA defenses, which
are deliberately designed for unlearning camouflage samples,
work [29, 54] consider a similar yet different threat model,
in which the adversary perturbs some training samples and
requests to unlearn these perturbed samples to corrupt the
victim model. They reveal the risk of malicious unlearning
and propose related unlearning defenses.

The authors of work [29] suggest hashing can effectively
avoid malicious unlearning requests in their threat model be-
cause the samples for malicious unlearning are deliberately
perturbed and different from the real ones in training. SP
stores the hash value of each training sample and rejects the
malicious unlearning requests if he finds that the hash val-
ues of the unlearned sample do not match the stored hash
value. UBA-Inf can easily bypass the hashing defense be-
cause all camouflage samples the adversary needs to unlearn
are already in the training dataset.

Work [54] finds that attackers can exploit influence func-
tion [33] to maliciously perturb training samples and mislead
the victim model to make wrong predictions through unlearn-
ing. They discovered the perturbed samples for malicious
unlearning are way different from clean samples in the gradi-
ent space. Therefore, instead of directly rejecting unlearning
requests, they drop the corrected malicious samples that have
a different gradient compared to other instances in their class.
In order to find the corrected malicious samples, they can find

USENIX Association 33rd USENIX Security Symposium 4227

−60 −40 −20 0 20 40 60

−40

−20

0

20

40
Clean
Camouflage

−75 −50 −25 0 25 50 75

−75

−50

−25

0

25

50

75 Clean
Camouflage

Figure 16: The t-SNE of clean and camouflage samples in the gradi-
ent space generated by the bottom layer (left one) and the top layer
(right one) in the target model.

the medoids of each class in the gradient space. Such medoid-
based defense fails to defeat UBA-Inf because camouflage
samples share a similar gradient distribution with clean sam-
ples. Figure 16 indicates the t-SNE of clean and camouflage
samples in the gradient space generated by both the bottom
and top layers. The camouflage samples are completely mixed
with clean samples in the gradient space, and one cannot sep-
arate them for successful medoid-based defenses.

In conclusion, there are few effective defenses against UBA-
Inf, and the design of robust unlearning defenses is worryingly
difficult. Firstly, recent unlearning defenses are particularly
targeted at one specific risk, and such defenses often fail to
defeat different unlearning attacks. This emphasizes the urge
to design universal solutions to defend against various un-
learning attacks. Secondly, recent defenses rely heavily on
some important parameters like the threshold in [78] and the
number of medoids in [54]. Setting such hyper-parameters re-
quires a subtle balance between usability and security, which
requires careful parameter tuning in real practice.

D Discussion of Unlearning Batch Size
In machine unlearning services, users remove certain data

by unlearning requests. In former evaluations, we assume SP
performed unlearning completely as the adversary requested,
exactly removing all camouflage samples altogether. However,
in some cases, SP may remove samples by batches [9,72]. SP
aggregates several small requests and divides large requests
into batches for unlearning.

In exact unlearning, which is based on model re-training,
batch size has little influence on UBA-Inf effectiveness be-
cause the unlearned model is essentially trained on the dataset
with camouflage samples removed. However, different re-
moval ratio (RR) of camouflage samples affects the UBA-Inf
effectiveness. Table 15 demonstrates that when more camou-
flage samples are unlearned from the model, ASR becomes
higher. When camouflage samples are completely removed,
the ASR reaches nearly 100%. For better UBA-Inf effec-
tiveness, the adversary should remove as many camouflage
samples as possible.

In approximate unlearning like PUMA [70] and GBU [69],
batch size of unlearn requests affects the removal of camou-
flage samples. If the unlearned batch size is large, camouflage
samples are unlearned together with some extra clean samples.

Table 15: UBA-Inf effectiveness evaluation for full retrain with
different removal ratios.

Dataset CIFAR-10 [35] MNIST [36] GTSRB [60]
(|Dbd |, |Dcm|) (600,200) (240,600) (314,99)

RR BA(%) ASR(%) BA(%) ASR(%) BA(%) ASR(%)
0 93.26 21.94 99.50 22.42 99.34 18.15

0.1 93.37 18.31 99.52 23.43 98.15 29.37
0.2 93.51 24.26 99.53 28.37 98.24 35.31
0.3 93.03 26.45 99.47 34.92 98.45 37.07
0.4 93.28 29.36 99.47 47.65 98.37 40.86
0.5 93.68 32.81 99.43 58.76 98.11 46.67
0.6 93.12 36.36 99.53 63.55 98.62 57.81
0.7 93.33 52.27 99.61 64.74 98.22 61.55
0.8 93.29 70.59 99.56 72.21 98.30 77.71
0.9 93.19 86.92 99.53 88.00 98.07 86.92
1.0 93.48 100.00 99.64 100.00 97.85 99.89

Table 16 indicates the UBA-Inf effectiveness with different
unlearning batch sizes. There are 200 camouflage samples in
total, and other unlearned data are randomly sampled from
the clean samples. Statistics show that the UBA-Inf backdoor
is successfully activated by unlearning camouflage samples
mixed with some extra clean data, with ASR over 70% and
BA over 85%. However, with a larger unlearning batch size,
the ASR and BA become lower after unlearning.

Table 16: UBA-Inf effectiveness evaluation with different unlearning
batch sizes.

PUMA [70] GBU [69]
(|D_bd|, |D_cm|) (600,200) (600,200)

Unlearning batch size BA(%) ASR(%) BA(%) ASR(%)
200 89.50 80.44 90.53 83.60
400 88.71 75.59 89.25 83.50
600 88.37 75.29 88.89 80.98
800 88.41 72.75 88.96 75.42

1000 88.08 74.83 88.56 67.71
2000 88.59 72.68 86.60 53.50
5000 85.55 67.13 84.51 19.71

Table 17: UBA-Inf effectiveness evaluation for multiple unlearning
with small batch size.

GBU [69]
Unlearn times 0 1 2 3 4

BA(%) 93.26 92.76 93.28 93.31 91.20
ASR(%) 21.94 51.45 17.15 24.4 76.99

PUMA [70]
Unlearn times 0 1 2 3 4

BA(%) 93.26 93.26 92.14 88.22 90.33
ASR(%) 21.94 25.91 41.38 82.18 76.68

Meanwhile, when the unlearning batch size is too small, the
camouflage samples need to be unlearned multiple times. If
the batch size is 50, then the 200 camouflage samples should
be removed in 4 batches. We evaluate the UBA-Inf effective-
ness each time 50 camouflage samples are unlearned, and
the results are displayed in Table 17. The UBA-Inf backdoor
is activated after 4 times unlearning, with BA over 90% and
ASR over 75%. In conclusion, UBA-Inf can be activated with
different unlearning batch sizes, making it a more risky threat
in practical MLaaS applications.

4228 33rd USENIX Security Symposium USENIX Association

	Introduction
	Preliminaries
	MLaaS
	Machine Unlearning
	Backdoor Attacks

	Problem Formalization and Threat Model
	Unlearning Activated Backdoor Attack
	UBA-Inf Design Rationale
	Camouflage Generation
	UBA-Inf Implementation

	Evaluation
	Experiment Settings
	Effectiveness Evaluation
	UBA-Inf Activation Effectiveness in FA-MLaaS
	UBA-Inf Activation Effectiveness in RA-MLaaS
	Effectiveness Comparisons with BAMU
	Evaluation of the Surrogate Model

	Stealthiness Evaluation
	Evaluation of Outlier Filter Defense
	Evaluation of Model Scanner Defense
	Evaluation of UBA Defense

	Evaluation of Resistance to Reconstruction
	Persistence Evaluation

	Related work
	Backdoor Attacks and Defenses
	Machine Unlearning

	Conclusion
	Discussion of Injection Ratio
	Effectiveness on Second-Order GBU
	Discussion of Related Unlearning Defenses
	Discussion of Unlearning Batch Size

