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Abstract
Private Set Union (PSU) protocol allows parties, each hold-
ing an input set, to jointly compute the union of the sets
without revealing anything else. In the literature, scalable
PSU protocols follow the “split-execute-assemble” paradigm
(Kolesnikov et al., ASIACRYPT 2019); in addition, those fast
protocols often use Oblivious Transfer as building blocks.
Kolesnikov et al. (ASIACRYPT 2019) and Jia et al. (USENIX
Security 2022), pointed out that certain security issues can
be introduced in the “split-execute-assemble” paradigm. In
this work, surprisingly, we observe that the typical way of
invoking Oblivious Transfer also causes unnecessary leakage,
and only the PSU protocols based on additively homomor-
phic encryption (AHE) can avoid the leakage. However, the
AHE-based PSU protocols are far from being practical.

To bridge the gap, we also design a new PSU protocol
that can avoid the unnecessary leakage. Unlike the AHE-
based PSU protocols, our new construction only relies on
symmetric-key operations other than base OTs, thereby being
much more scalable. The experimental results demonstrate
that our protocol can obtain at least 873.74× speedup over
the best-performing AHE-based scheme. Moreover, our per-
formance is comparable to that of the state-of-the-art PSU
protocol (Chen et al., USENIX Security 2023), which also
suffers from the unnecessary leakage.

1 Introduction

In a Private Set Union (PSU) protocol, two players, a sender
and a receiver, holding input sets X and Y , respectively, can
jointly compute the union X ∪Y as output. To ensure the joint
computation is private, any additional information except
the union X ∪Y , is not allowed to be learned by the players.
Especially, information about the items in the intersection set
X ∩Y should not be learned by the players. Often we consider
a simplified version of PSU: Instead of having both players

∗Part of the work was done at Shanghai Jiao Tong University.
†Corresponding author.

to obtain the same output X ∪Y , in the simplified version of
PSU, only the receiver obtains the output X ∪Y .

Symmetric Key-based PSU protocols. Kolesnikov et al. [21]
is the first to only leverage symmetric key techniques to design
a PSU protocol, such that their protocol is truly practical and
scalable. Multiple followup results then are developed [1,8,13,
19,29,31]. In this work, we observe that all of these symmetric
key-based protocols suffer from unnecessary leakage.

Kolesnikov et al.’s “split-execute-assemble” based PSU.
Kolesnikov et al. [21] introduce for the first time the
“split-execute-assemble” paradigm into the design of scal-
able PSU protocols: First, the pair of input sets X and Y
are split into multiple much smaller pairs of subsets, i.e.,
{(X1,Y1),(X2,Y2), · · · ,(Xβ,Yβ)}, where β ∈ N; Here, |X | =
N1 and |Y | = N2; for all i ∈ [β], |Xi| ≪ N1 and |Yi| ≪ N2.
Then, the two parties execute β number of PSU protocol in-
stances, as subroutine, and each instance is on pair of subsets
(Xi,Yi). The receiver obtains Zi = Xi∪Yi. Finally, the receiver
assembles the outputs of all subroutine protocol instances,
and obtains the output Z = Z1∪Z2∪·· ·∪Zβ.

Security concerns in the “split-execute-assemble” based
PSU. Applying the above paradigm to the PSU design
is a natural and interesting idea. However, as discussed
by Kolesnikov et al. [21], in the “split-execute-assemble”
paradigm, the receiver can learn if a subset Yi includes items
that are in the intersection X ∩Y , which is not allowed in PSU.
In order to eliminate the information leakage, Kolesnikov
et al. developed a careful padding strategy in [21]. Unfortu-
nately, Jia et al. [19] pointed out that this padding strategy is
insufficient to eliminate the leakage: Roughly, whenever the
output Zi = Xi∪Yi is equal to Yi for the i-th PSU sub-protocol
instance, the receiver will be aware that the i-th subset Yi in-
cludes the items in X ∩Y with an overwhelming probability
(see Section 3.1 and Appendix A for more details).

In our work, we observe that the leakage pointed out by
Jia et al. [19] can actually be deduced from the output X ∪Y .
In other words, as long as the receiver obtains the output
X ∪Y , he can learn the leakage. At first glance, the protocol
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by Kolesnikov et al. [21] seems to be secure enough. However,
we find that the receiver in Kolesnikov et al. [21] can learn the
leakage during the execution, rather than after receiving the
output, and we call this leakage as “during-execution leakage”.
Unlike obtaining leakage only after protocol execution is
completed, during-execution leakage may lead the receiver to
terminate the protocol upon learning sufficient leakage1.

OT-based PSU, and its security concerns. The subsequent
works [1, 8, 13, 19, 29, 31] do not leverage the “split-execute-
assemble” paradigm, but we find that these solutions still suf-
fer from the during-execution leakage. More specifically, for
each item in the input set X , the receiver first learns whether it
is a member of the set Y , and then obtains the output Z =X∪Y
by invoking the underlying Oblivious Transfer (OT) instances
with the membership information. In other words, the OT-
based PSU protocols leaks the membership information be-
fore the execution of the protocol is completed.

AHE-based PSU. The during-execution leakage is not neces-
sary for a PSU protocol, as we observe that the AHE-based
protocols can avoid it. Using additively homomorphic encryp-
tion (AHE), Frikken et al. [12] construct the first efficient PSU
protocols. Later Davidson et al. [10] improve the performance
along this line. More concretely, the receiver generates a rep-
resentation P(·) of his set Y such that if x ∈ Y , then P(x) = 0,
and sends Enc(P(·)) to the sender. Then, for each x ∈ X , the
sender calculates a ciphertext based on Enc(P(·)). Finally,
the receiver can obtain the items in X \Y by decrypting the
ciphertexts without needing extra information in advance.
However, the AHE-based PSU protocols are still far from
being practical and scalable.

Main question. Based on the discussions so far, we can see
that existing provably secure PSU protocols:
(1) either avoid the during-execution leakage but are not

scalable, as in AHE-based PSU protocols;
(2) or are scalable but suffer from the during-execution leak-

age, as in symmetric key-based PSU protocols.
It will be desirable to achieve the “best of the two worlds”.
Therefore, we have the following research question: Is it
possible to design a provably secure scalable PSU that does
NOT suffer from the leakage?

1.1 Our results
In this paper, we give an affirmative answer to the above
question through the following results.

Revisiting the existing PSU protocols. In Section 3, we
investigate existing PSU protocols, and find that scalable
symmetric key-based PSU protocols suffer from the during-
execution leakage, but non-scalable AHE-based PSU proto-
cols do not. To provide a formal analysis, we define a new

1In practice, the receiver may be required to pay a fee to the sender after
completing the execution. If the execution is terminated, the receiver may
not be obligated to pay the fee.

enhanced ideal functionality for PSU, denoted as F n1,n2
ePSU in

Section 4, that does not allow the leakage during the execution.
The formal analysis is provided in Section 6.

A new PSU protocol. In Section 5, we provide the first PSU
protocol which achieves both scalability and the enhanced
PSU functionality F n1,n2

ePSU simultaneously.

Our design: The main difference between the OT-based and
the AHE-based PSU lies in the method the receiver uses to
obtain items in X \Y . In the AHE-based PSU, the receiver
obtains the items in X \Y via decryption, without knowing any
membership information in advance. Whereas, the receiver in
the OT-based PSU needs to use the membership information
to obtain the items in X \Y through OTs. To achieve the
enhanced PSU functionality F n1,n2

ePSU as in the AHE-based PSU,
our core idea is to “mimic” the decryption process in the AHE-
based PSU: For each item x∈ X , the sender randomly chooses
a secret key r and sends the ciphertext c = x⊕r to the receiver.
Then, if x /∈ Y , the receiver obtains the identical secret key
r; otherwise, the receiver obtains a distinct secret key r′ ̸= r.
This way enables the receiver to obtain x by calculating c⊕ r′

only when x /∈ Y .

To this end, we employ the following two steps. First, we
transform the problem of “determining whether an item x
belongs to a set Y ” into the problem of “evaluating the equality
of two strings, using Oblivious Programmable PRF (OPPRF).”
More concretely, if x ∈ Y , the PRF value t obtained by the
sender will be equal to the receiver’s PRF value t ′. Then, we
propose a novel building block, called “Equality-Conditional
Random Generation (ECRG)”, where the sender inputs (t,r)
and the receiver inputs t ′, then the receiver obtains r′ = r if
t ′ ̸= t, or another random string r′ ̸= r otherwise. Obviously,
through ECRG, the receiver can obtain x only when x /∈ Y .

A straightforward way to support the general case, where
the sender holds multiple items, is to repeat the above process
while using a batched ECRG (bECRG). However, this will
incur a quadratic cost. To reduce the cost, we use Cuckoo
hashing, and the leakage incurred by Cuckoo hashing can be
avoided by leveraging Permute+Share. As in the OT-based
PSU, our new PSU construction only relies on symmetric-key
operations other than base OTs, and is thus significantly more
scalable than AHE-based PSU.

Performance comparision: We implement our protocol in
C++. The experimental results in Table 2 (see Section 5.5)
show that our protocol can obtain at least 873.74× speedup
over the latest AHE-based scheme [10] in a LAN setting, and
our communication cost is 5× less than theirs. Moreover, the
performance of our protocol is comparable to that of the state-
of-the-art PSU protocol [31] for large balanced sets, in a LAN
setting; Note that the PSU protocol in [31] cannot achieve
F n1,n2
ePSU due to the during-execution leakage.
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2 Preliminaries

In this section, we briefly recall “generalized Reversed Private
Membership Test (g-RPMT)”, “Oblivious Transfer (OT)”,
“Oblivious Programmable PRF (OPPRF)”, “Private Equal-
ity Test (PET)”, “Permute+Share (PS)”, simple hashing and
Cuckoo hashing.
Generalized Reversed Private Membership Test. Reversed
Private Membership Test (RPMT) was first proposed and
formalized in [21]. More concretely, the sender P0 holding an
item x and the receiver P1 holding a set Y . Then, the receiver
P1 can learn a bit b without obtaining any information else
about item x; if x ∈ Y , b = 1, otherwise, b = 0. Meanwhile,
the sender P0 knows nothing about P1’s set Y . Based on the
RPMT, a generalized RPMT was proposed in [19] where the
sender P0 inputs a set X , rather than an item x. We give the
functionality Fg-RPMT in Figure 1.

Parameters:

• Two parties: sender S and receiver R ;

• Set size for sender S is n1, set size for receiver R is n2.

Functionality:

1. Wait for input X = {x1, · · · ,xn1} from S , abort if
|X | ̸= n1;

2. Wait for input Y = {y1, · · · ,yn2} from R , abort if
|Y | ̸= n2;

3. For each i ∈ [n1], if X [i] ∈ Y , set bi = 1, otherwise,
bi = 0;

4. Send ⟨Request⟩ to the simulator Sim;

5. Upon receiving ⟨Response,OK⟩ from Sim, send
{b1, · · · ,bn1} to R ;

Functionality Fg-RPMT

Figure 1: Generalized Reversed Private Membership Test
Functionality.

1-out-of-2 Oblivious Transfer. 1-out-of-2 oblivious transfer
(OT) is a two-party protocol, where party P0 takes as input
two strings {x0,x1}, and the other party P1 chooses a random
bit b and obtains nothing other than xb while P0 learns noth-
ing about b. The first OT protocol was proposed by Rabin
in [27]. And due to the lower bound in [16], all the OT proto-
cols require expensive public-key operations. To improve the
performance, Ishai et al. [17] introduced the concept of OT
extension that enables us to carry out many OTs based on a
small number of basic OTs. The functionality FOT is shown
in Figure 2.
Oblivious Programmable PRF. Oblivious Programmable
PRF was first proposed and formalized in [20]. Compared to
oblivious PRF (OPRF), OPPRF allows the sender P0 to addi-
tionally “program” the PRF values of some inputs, and outputs
pseudorandom PRF values everywhere else. More specifi-

Parameters:

• Two parties: P0 and P1.

Functionality:

1. Wait for input {x0,x1} from P0;

2. Wait for input b ∈ {0,1} from P1;

3. Send ⟨Request⟩ to the simulator Sim;

4. Upon receiving ⟨Response,OK⟩ from Sim, send output
xb to P1.

Functionality FOT

Figure 2: 1-out-of-2 Oblivious Transfer functionality.

cally, the sender P0 inputs T = {(xi,yi)}i∈[n], which means
that the PRF value of xi is set to be yi. The receiver P1 inputs
(q1, · · · ,qt). After the execution, the sender obtains (k,hint),
and the receiver obtains {F(k,hint,qi)}i∈[t] and hint. Note
that if q j = xi, F(k,hint,qi) = yi, otherwise, F(k,hint,qi) is
pseudorandom. The functionality FOPPRF is given in Figure 3.

Parameters:

• Two parties: P0 and P1;

• A programmable PRF F with function KeyGen(·);
• Upper bound n on the number of points to be

programmed;

• Upper bound t on the number of queries.

Functionality:

1. Wait for input T = {(x1,y1), · · · ,(xn,yn)} from P0;

2. Wait for input {q1, · · · ,qt} from P1;

3. Generate (k,hint)← KeyGen(T ) and
{F(k,hint,qi)}i∈[t];

4. Send ⟨Request⟩ to the simulator Sim;

5. Upon receiving ⟨Response,OK⟩ from Sim, send
{F(k,hint,qi)}i∈[t] and hint to P1, and (k,hint) to P0.

Functionality FOPPRF

Figure 3: Oblivious Programmable PRF Functionality.

Private Equality Test. Private Equality Test (PET) is used
to test whether two strings are equal. More concretely, the
two parties P0 and P1 hold strings x0 and x1 respectively. PET
outputs a bit b0 to P0 and b1 to P1 such that if x0 = x1, b0⊕
b1 = 0, otherwise, b0⊕b1 = 1. The existing works [6, 9, 11]
designed efficient PET protocols. We give the functionality
FPET in Figure 4.
Permute + Share. The Permute+Share functionality FPS

is defined by Chase et al. in [7]. There are two parties
P0 and P1 in this functionality, where P0 possesses a set
X = {x1, · · · ,xn} of size n and P1 picks a permutation π on
n elements. The goal of FPS is to let P0 learn the shares
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Parameters:

• Two parties: P0 and P1;

Functionality:

1. Wait for input x0 from P0;

2. Wait for input x1 from P1;

3. Generate b0 and b1 such that if x0 = x1, b0⊕b1 = 0,
otherwise b0⊕b1 = 1;

4. Send ⟨Request⟩ to the simulator Sim;

5. Upon receiving ⟨Response,OK⟩ from Sim, send b1 to
P1, and b0 to P0.

Functionality FPET

Figure 4: Private Equality Test Functionality.

{sπ(1),sπ(2), · · · ,sπ(n)} and P1 learn nothing but the other
shares {xπ(1)⊕ sπ(1),xπ(2)⊕ sπ(2), · · · ,xπ(n)⊕ sπ(n)}. As men-
tioned in [7], some earlier works [15, 23] can also be used
for securely realizing FPS. These solutions all have computa-
tion/communication complexity O(n logn). The functionality
FPS is shown in Figure 5.

Parameters:

• Two parties: P0 and P1;

• Set size n for P0;

• Length of element ℓ.

Functionality:

1. Wait for input X = {x1, · · · ,xn} from P0, abort if
|X | ̸= n, or ∃ xi ∈ X such that |xi|> ℓ;

2. Wait for input a permutation π from P1, abort if π is not
a permutation on n items;

3. Send ⟨Request⟩ to the simulator Sim;

4. Upon receiving ⟨Response,OK⟩ from Sim, give output
shuffled shares {sπ(1),sπ(2), · · · ,sπ(n)} to P0, and another
shuffled shares
{xπ(1)⊕ sπ(1),xπ(2)⊕ sπ(2), · · · ,xπ(n)⊕ sπ(n)} to P1.

Functionality FPS

Figure 5: Permute+Share functionality.

Simple Hashing. In the simple hashing scheme, there are γ

hash functions hi : {0,1}∗→ [b], where i ∈ [γ], used to map
n items into b bins B1, · · · ,Bb. An item x will be added into
Bh1(x),Bh2(x), · · · ,Bhγ(x), regardless of whether these bins are
empty. The maximum bin size ρ can be set to ensure that no
bin will contain more than ρ items except with probability
2−λ when hashing n items into b bins.
Cuckoo Hashing. Cuckoo hashing was introduced by Pagh
and Rodler in [24]. In this hashing scheme, there are γ hash
functions h1, · · · ,hγ used to map n items into b = εn bins and

Sender ( ) 

 sub-protocol

 sub-protocol

 sub-protocol

Receiver ( ) 

If the receiver does
not receive any valid
items from the sender.

then, the receiver
learns that  has
items belonging to
intersection.

Figure 6: The leakage of protocol in [21].

a stash, and we denote the i-th bin as Bi. Unlike the simple
hashing, the Cuckoo hashing can guarantee that there is only
one item in each bin, and the approach to avoid collisions is
as follows: For an item x, it can be inserted into any empty bin
of Bh1(x),Bh2(x), · · · ,Bhγ(x). If there are no empty bins in the k
bins, randomly select a bin Bhr(x) in these γ bins, and evict the
prior item y in Bhr(x) where hr(x) = hr(y) to a new bin Bhi(y)
where i ̸= r. The above procedure is repeated until no more
evictions are necessary, or until the number of evictions has
reached a threshold. In the latter case, the last item will be
put in the stash. According to the empirical analysis in [26],
we can adjust the values of γ and ε to reduce the stash size
to 0 while achieving a hashing failure probability of 2−40.
Moreover, the works [22,30] have shown that Cuckoo hashing
can theoretically achieve negligible failure probability.

3 Leakage Analysis

In this section, we thoroughly analyze the leakage in existing
PSU constructions. Specifically, we observe that the symmet-
ric key-based PSU constructions [1,8,13,19,21,29,31] suffer
from the during-execution leakage, whereas the AHE-based
PSU protocols [10, 12] can avoid it.

3.1 Revisiting the Leakage of PSU in [21]
The PSU protocol in [21] is performed in a “split-execute-
assemble” paradigm. As shown in Figure 6, the sender and
receiver map their input sets X and Y into two simple hash
tables respectively, such that the set X (resp. Y ) is divided
into subsets X1, · · · ,Xβ (resp., Y1, · · · ,Yβ). Note that each bin
of the sender is filled with a special item, and each bin of
the receiver is filled with one special item and some dummy
items. Then, for each pair of bins, the two parties execute a
PSU sub-protocol. We briefly recall the leakage pointed out
by Jia et al. [19] in Figure 6; if the receiver does not receive
any valid items from the sender in the k-th bin, the receiver
can know that there are items belonging to X ∩Y in Yk with
an overwhelming probability once the sub-protocol in this bin
is finished. Roughly speaking, there are two cases in which
the receiver does not receive any valid items; Case1 is that
Xk ̸= /0∧Xk ⊆ Yk, and Case2 is that Xk = /0. According to the
analysis in [19], the receiver can learn that Case1 happens
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Parameters:
• Set size for sender S is n1, set size for receiver R is n2.

Functionality:
1. Wait for X = {x1, · · · ,xn1} from S , abort if |X | ̸= n1;
2. Wait for Y = {y1, · · · ,yn2} from R , abort if |Y | ̸= n2;
3. Give output X ∪Y to R .

Functionality F n1,n2
PSU

Figure 7: The Original Ideal Functionality for PSU.

 

Figure 8: The receiver maps X \Y and Y into two simple hash
tables respectively.

with an overwhelming probability, which means that she can
know that there are items belonging to X ∩Y in Yk with the
same probability. Please see Appendix A for more details
about the leakage.

After reviewing the security proof in [21], we find that the
protocol in [21] can indeed securely realize F n1,n2

PSU (recalled in
Figure 7), which means that the functionality F n1,n2

PSU actually
allows the leakage. Next, we will analyze the leakage from
the perspective of ideal functionality.

3.2 Leakage Allowed in F n1,n2
PSU

According to F n1,n2
PSU , the simulator for the corrupted receiver

only obtains the output, i.e., X ∪Y , which means that the
leakage recalled above can be deduced from X ∪Y . Therefore,
in any protocols that securely realize F n1,n2

PSU , the receiver can
obtain the leaked information once receiving all the items in
X ∪Y , which will be explained by the following example:

Assuming the receiver’s set Y = {y1,y2, · · · ,y10} and
X \Y = {x7,x2,x4,x6,x8}, the receiver can map X \Y and
Y into two simple hash tables respectively as shown in Fig-
ure 8. Note that even if the PSU protocol does not use the
bucketing technique as in [21], the receiver can choose some
hash functions to perform the mapping. We can see that in the
left table, no items in X \Y are mapped to the 4th bin marked
in gray. Then, according to the analysis in [19], the receiver
can learn that items belonging to X ∩Y are in {y5,y7} with a
high probability.

3.3 Leakage Occurring in Symmetric Key-
based PSU Protocols

In this section, we further analyze the leakage of PSU pro-
tocol in [21] and the subsequent symmetric key-based PSU
protocols [1, 8, 13, 19, 29, 31].

PSU Protocol in [21]. As analyzed before, the leakage of
PSU protocol in [21] is actually allowed by the functionality
F n1,n2
PSU . However, we notice that the receiver in [21] can learn

the leakage during the execution, rather than after receiving
all the items in X ∪Y . We call the leakage occurring in [21]
as “during-execution leakage”. Recall the example shown in
Figure 6, once completing the execution in the k-th bin, the
receiver learns with an overwhelming probability that there
are intersection items in Yk.

Intuitively, the during-execution leakage in protocol [21]
is incurred by the “split-execute-assemble” paradigm. There-
fore, a natural question is “Do the subsequent OT-based PSU
protocols (including [1,8,13,19,29,31] and the basic scheme
in [21]) avoid the during-execution leakage?” While these
OT-based PSU protocols do not leverage the split-execute-
assemble paradigm, we observe the answer is still negative.

OT-based PSU Protocols. We observe that all the OT-based
PSU protocols in [1, 8, 13, 19, 29, 31] and the basic scheme
in [21] follow the design framework shown in Figure 9. Con-
cretely, the sender first randomly permute his set X . Then,
through generalized Reversed Private Membership Test (g-
RPMT), the receiver can learn a bit bi for each item in X ;
bi = 0 means xi /∈ Y , otherwise xi ∈ Y . The receiver knows
no more information about xi beyond whether it belongs to
Y , and the sender learns nothing about Y . At last, the receiver
obtains xi if bi = 0, otherwise, obtains⊥. Intuitively, in the de-
sign framework shown in Figure 9, the set Y is processed as a
whole and the receiver obtains the items in X \Y in random or-
der. Therefore, the receiver in the design framework cannot ob-
tain the leakage shown in Figure 6 during the execution. How-
ever, it can be observed that the receiver obtains {b1, · · · ,bn1}
before obtaining the output X ∪Y . In other words, even if the
receiver does not perform OTs with the sender after executing
g-RPMT, the receiver can still learn {b1, · · · ,bn1}. Therefore,
{b1, · · · ,bn1} is also during-execution leakage.

Practical Influence. If any PSU protocol can ensure that the
receiver obtains the entire output, it does not matter whether
the leakage happens after the execution or during the exe-
cution2. However, in practice, many realistic factors (e.g.,
network interruptions and server failures) may interrupt the
execution. Moreover, the receiver may refuse to finish the
execution once he obtains sufficient leakage, and leverage the
during-execution leakage to launch attacks.

More specifically, in some attacks, the attacker needs to
collect information across multiple executions. However, in
practice, victims may limit the number of executions for a

2Here, we ignore the difference in the time of obtaining the leakage.
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Sender ( ) Receiver ( )

-

OT-based 

Randomly permute 

Figure 9: OT-based solutions [1, 8, 13, 19, 21, 29, 31].

period of time, but they may allow executions to be restarted
after interruptions. Therefore, when the protocol suffers from
during-execution leakage, the attacker could utilize the during-
execution leakage: the attacker interrupts the execution once
obtaining the leakage and then initiates a new execution. In
this way, the attacker obtains more information within a cer-
tain period of time. As an example, we next explain how an
attacker can use the during-execution leakage {b1, · · · ,bn1}
in OT-based PSU to launch the attack shown in [14].

Guo et al. [14] launched attacks on protocols that aim to
hide intersections but allow leaking intersection sizes, in-
cluding Private Set Intersection Cardinality (PSI-CA), Pri-
vate Intersection-Sum with Cardinality (PSI-SUM) and PSU.
Specifically, the attacker can leverage the intersection sizes
obtained across multiple executions to infer whether some ele-
ments are in a set (that is, intersection). They implemented the
attack on practical datasets to obtain the tokens of COVID-19
patients, and the interest of the person associated with specific
personal_id. The during-execution leakage {b1, · · · ,bn1} in
OT-based PSU actually leaks intersection size. By launching
the attack in [14] on the OT-based PSU, the attacker can inter-
rupt the execution upon obtaining {b1, · · · ,bn1}; the attacker
can interact with the sender more times, thereby obtaining
more intersection sizes to infer intersections.

Guo et al. [14] also mentioned that limiting the number of
protocol invocations may be a potential defense. However,
if the targeted protocol suffers from the during-execution
leakage, only limiting the number of protocol invocations is
not enough. Being attentive to interruption events and limiting
the number of restarts after interruptions are also necessary.

Given the above example, we know that the during-
execution leakage could be exploited by attackers. Fortunately,
we observe that the during-execution leakage is unnecessary,
as the AHE-based solutions [10, 12] can avoid it.

AHE-based 

Sender ( ) Receiver ( )

Randomly permute set 

Encrypted
g-RPMT

Decrypt

iif ,

 

Figure 10: AHE-based solutions [10, 12].

3.4 AHE-based PSU Protocols avoiding the
During-Execution Leakage

Different from the symmetric key-based solutions [1,8,13,29,
31] following the design framework shown in Figure 9, the
receiver in the AHE-based solutions [10, 12] do not need to
first obtain the membership test result (i.e., {b1, · · · ,bn1}) and
then interact with the sender to obtain the items in X \Y . We
give the design framework used by the AHE-based solutions
[10, 12] in Figure 10.

More specifically, the two parties in the schemes [10,12] ac-
tually perform a encrypted g-RPMT, rather than a g-RPMT.
The “encrypted” means that from the output of encrypted g-
RPMT, the receiver can obtain a ciphertext ci for each item xi
in the set X and a decryption key sk. Then, if the receiver can
decrypt the ciphertext ci to obtain a valid item xi, this means
that the corresponding bit bi = 0, otherwise, bi = 1. Note that
in the AHE-based solutions [10, 12], the decryption key sk is
the secret key of a key pair (pk,sk) chosen by the receiver. It
can be observed that in this design framework shown in Fig-
ure 10, for an item in the set X , the receiver directly obtains
the item itself or ⊥ without needing to obtain extra informa-
tion in advance. Therefore, the AHE-based protocols [10, 12]
do not suffer from the during-execution leakage.

In summary, we discover that during-execution leakage is
prevalent in symmetric key-based PSU protocols, but can be
avoided by AHE-based PSU protocols. Given that attackers
could exploit during-execution leakage to launch attacks, it is
necessary to analyze whether a PSU protocol is susceptible
to during-execution leakage when designing it. However, as
previously analyzed, in the existing PSU functionality F n1,n2

PSU

(see Figure 7), the during-execution leakage is allowed. There-
fore, we next in Section 4 define a new PSU functionality in
which the during-execution leakage is not allowed. In addi-
tion, since that the AHE-based PSU protocols are not efficient
enough, in Section 5, we design a new symmetric key-based
PSU while avoiding the during-execution leakage.
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4 Defining a New PSU Functionality F n1,n2
ePSU

As discussed above, the previous scalable protocols [1, 8, 13,
19, 21, 29, 31] all suffer from the during-execution leakage.
However, these protocols have been proven to securely realize
the functionality F n1,n2

PSU shown in Figure 7. This means that
the functionality F n1,n2

PSU cannot capture the security without
during-execution leakage. Therefore, in Figure 11, we define
a new enhanced PSU functionality F n1,n2

ePSU that can subtly
capture the security where the receiver cannot obtain any
during-execution leakage before obtaining the output X ∪Y .

Parameters:
• The functionality interacts with two parties, the sender S

and the receiver R , and the simulator Sim;
• Set size for the sender S is n1, and the set size for the

receiver R is n2.
Functionality:

0. Initialize an ideal state stateU = /0 for party U where
U ∈ {S ,R }; if U is corrupted, the simulator Sim is
allowed to access stateU;

1. Upon receiving input X = {x1, · · · ,xn1} from the sender
S , abort if |X | ̸= n1; otherwise, update state
stateS = ⟨X⟩, and send ⟨Request,S⟩ to Sim;

2. Upon receiving input Y = {y1, · · · ,yn2} from the
receiver R , abort if |Y | ̸= n2; otherwise, update state
stateR = ⟨Y ⟩, and send ⟨Request,R ⟩ to Sim;

3. Upon receiving ⟨Response,OK⟩ from Sim, compute
Z = X ∪Y , and add ⟨Finished⟩ to the sender’s state
stateS and ⟨Z⟩ to the receiver’s state stateR ;

4. Output Z to R , and ⟨Finished⟩ to S .

Functionality F n1,n2
ePSU

Figure 11: An enhanced ideal functionality for PSU.

Differences from F n1,n2
PSU . The main difference from the origi-

nal PSU functionality F n1,n2
PSU in Figure 7 is that the enhanced

functionality F n1,n2
ePSU additionally sends an output ⟨Finished⟩

to the sender once the joint computation is completed. We
remark that returning ⟨Finished⟩ to the sender is reasonable:
in a natural real-world PSU protocol execution, the sender
should be aware if the protocol execution has been completed
or not; therefore, in the ideal world, the sender should also be
informed of the completion. In addition, in the original func-
tionality F n1,n2

PSU , the interactions between the functionality
and the simulator (i.e., ideal world adversary), are not explic-
itly described. This presentation is consistent with that in [5],
in which the simulator is in charge of the message delivery in
the ideal world execution. In this work, to address the subtle
issues in existing PSU protocols, we follow Canetti’s original
formulation [3, 4]; thus, we explicitly present the interactions
between the functionality and the simulator. For example,
when the PSU functionality receives an input, the simulator
must be notified; when a player is corrupted, the simulator
must be allowed to “see” the corresponding “ideal state”.

During-Execution Leakage Not Allowed in F n1,n2
ePSU . Next,

we take the OT-based design framework shown in Figure 9 as
an example to intuitively explain how ⟨Finished⟩ can help us
to recognize that a protocol suffers from the during-execution
leakage (i.e., a protocol with the during-execution leakage
cannot securely realize F n1,n2

ePSU ).
We assume that there is an adversary who corrupts the re-

ceiver and that at a certain moment t3, g-RPMT has finished
while OTs have not yet started. Then, the simulator needs
to simulate B = {b1, · · · ,bn1} for the adversary. The simula-
tor only has the two strategies: (1) Do send ⟨Response,OK⟩
to F n1,n2

ePSU immediately; (2) Do not send ⟨Response,OK⟩ to
F n1,n2
ePSU immediately.
Following the first strategy, the simulator can simulate

B = {b1, · · · ,bn1}, but the sender will forward ⟨Finished⟩ to
the environment in the ideal world, while the environment
in the real world will not obtain ⟨Finished⟩ since the execu-
tion has not been completed in the real world. Therefore, the
environment can distinguish the two worlds. On the other
hand, if following the second strategy, regardless of whether
in the real or ideal world, the environment will not obtain
⟨Finished⟩. However, in the real world, the number of 1 in B
is equal to |X ∩Y |. Note that the environment knows |X ∩Y |,
as X and Y are chosen by the environment. Whereas, in the
real world, the probability that the simulator does not guess
|X ∩Y | successfully is overwhelming. Therefore, the environ-
ment can still distinguish the two worlds. The idea of proof
can be naturally extended to the protocol of [21] following the
split-execute-assemble paradigm. We postpone the rigorous
proof to Section 6.1.

As for the AHE-based protocols following the design
framework shown in Figure 10, the simulator for corrupted
receiver does not need extra information before simulating
the ciphertexts of the encrypted g-RPMT. In order to simu-
late the ciphertexts, the simulator needs to obtain the output
X ∪Y from F n1,n2

ePSU , which means that the environment will
receive ⟨Finished⟩. Note that in the real world, once sending
the ciphertexts, the sender completes the execution, so the
environment can also obtain ⟨Finished⟩. Therefore, the envi-
ronment cannot distinguish the two worlds. Please refer to
Section 6.2 for more details.

5 A New PSU ΠbECRG
PSU Realizing F n1,n2

ePSU

In the previous section, we find that only the protocols fol-
lowing the AHE-based framework shown in Figure 10 can
securely realize our new enhanced PSU functionality F n1,n2

ePSU .
However, the AHE-based protocols are not efficient enough
in practice, especially for large datasets. In this section, we de-
sign a scalable PSU protocol ΠbECRG

PSU that can securely realize
F n1,n2
ePSU by using symmetric-key operations. Next, we first give

3Note that the environment can know the internal state of the adversary,
and thus know when the execution starts and when g-RPMT has finished
while OTs have not yet started.
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an overview of ΠbECRG
PSU , and then describe two new building

blocks ΠeqOTe and ΠbECRG. Finally, we explain ΠbECRG
PSU in

detail and give a performance evaluation and comparison.

5.1 Overview
We observe that the difference in the way of “transmitting”
the items in X \Y can lead to the difference in the security of
PSU. More specifically, in the OT-based PSU (see Figure 9),
the receiver “picks up” the items in X \Y from the sender’s
set X by using the information about X \Y obtained in ad-
vance. Whereas, the AHE-based PSU (see Figure 10) allows
the receiver to directly obtain the items in X \Y by decryp-
tion without knowing any information about X \Y in advance,
thus achieving F n1,n2

ePSU . However, the expensive public-key
operations result in that the AHE-based PSU is not practi-
cal. Therefore, in order to design an efficient PSU protocol
achieving F n1,n2

ePSU , a promising way is to design the “encrypted
g-RPMT” only based on symmetric-key operations.

Our core idea is to use one-time pad (OTP) to encrypt the
items in X \Y , i.e., ci = xi⊕ri where ri is the secret key. Then,
we need to guarantee that if xi ∈ X \Y , the receiver can obtain
ri and then learn xi, otherwise, the receiver will obtain another
randomness r′i ̸= ri such that the receiver cannot recover xi by
calculating ci⊕ r′i. Moreover, we need to guarantee that ri and
r′i are pseudorandom, and thus not leaking extra information.
Following the core idea, we propose a new design. For the
sake of presentation, we first consider a simple case, denoted
as (1,n)−PSU, where the sender holds an item x and the
receiver holds a set Y = (y1, · · · ,yn). The design framework
for (1,n)−PSU is shown in Figure 12a.
Simple case: (1,n)−PSU. We first transfer the problem of
testing whether x ∈ Y to the problem of testing whether two
strings t and t ′ are the same by leveraging “Oblivious Pro-
grammable PRF” (OPPRF). More specifically, in OPPRF, the
receiver can set the PRF values of all the items in set Y to
be a pseudorandom value t ′, such that the PRF value t of
the sender’s item would be equal to t ′ when x ∈ Y . Then,
we propose a new protocol called “Equality-Conditional Ran-
domness Generation” (ECRG) as a building block, such that if
t = t ′, ECRG outputs a pseudorandom string r′ to the receiver,
otherwise, outputs a string r′ that is equal to r chosen by the
sender. At last, following the above core idea, the receiver can
obtain x only when x /∈ Y .
General case: (n,n)−PSU. It is natural to repeat (1,n)−
PSU (shown in Figure 12a) n times to achieve (n,n)−PSU,
i.e., the sender’s input set is X = {x1, · · · ,xn}. However, ac-
cording to the existing OPPRF constructions [6, 25], the size
of the hint in OPPRF is O(n) and the corresponding computa-
tion cost is at least O(n). Therefore, no matter how we design
ECRG, the overall cost would be at least O(n2), which is not
acceptable for large datasets. To reduce the cost, we insert set
X and set Y into Cuckoo hashing and simple hashing with
b = εn bins respectively, by using γ hash functions, such that

Sender ( ) Receiver ( )

OPPRF

-

ECRG

If                                     ;
Else,                        ;

(a) (1,n)−PSU. Here, OPPRF and ECRG constitute the “en-
crypted g-RPMT” in Figure 10 with one element x; r′ corre-
sponds to the key sk and c = x⊕ r corresponds to the ciphertext
of x.

batched
ECRG

PS

-

Sender ( ) Receiver ( )

If                                  ,
                                        ;
Else,                                ;

(b) (n,n)−PSU. Similarly, the OPPRF (to generate ti and t ′i ,
but omitted here), the batched ECRG and PS constitute the “en-
crypted g-RPMT” in Figure 10 with input {XC[1], · · · ,XC[b]};
{s2

1, · · · ,s2
b} corresponds to the key sk and ci corresponds to the

ciphertext of XC[π(i)].

Figure 12: Our new design framework achieving the “en-
crypted g-RPMT” based on symmetric-key techniques.

OPPRF is performed on small subsets of set Y . We give the
design framework for (n,n)−PSU in Figure 12b.

More specifically, we denote the Cuckoo hash table and the
simple hash table after insertion as XC and YS, respectively.
Each bin i of the Cuckoo hash table contains only one item
XC[i], and each bin i of the simple hash table contains a subset
YS[i]. Then, we perform an OPPRF to generate (ti, t ′i) for all
i ∈ [b]. Note that there are γn items in the simple hash table,
and thus the overall cost for generating {(ti, t ′i)}i∈[b] is O(γn).
Also, we designed a batched ECRG (see Section 5.2) that can
generate {r′i}i∈[b] in a batched way and the cost is O(n). At
first glance, the sender can directly send ci = XC[i]⊕ ri for all
i∈ [b], and the receiver can recover X \Y by using {r′1, · · · ,r′b}.
However, the receiver will learn which bin each item in X \Y
is mapped to, which will leak the information about set X
(please refer to [21] for more discussions). Furthermore, like
in [21], the receiver will know which subsets of the set Y
contain items in X ∩Y . To achieve the enhanced functionality
F n1,n2
ePSU , we leverage Permute+Share (PS) to share {r′}i∈[b]

while permuting it by using a random permutation π only
known by the sender, i.e., s1

i ⊕ s2
i = r′

π(i). Finally, the sender
calculates ci = XC[π(i)]⊕ rπ(i)⊕ s1

i for all i ∈ [b], then the
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1. Wait for input {(x1,0,x1,1),(x2,0,x2,1), · · · ,(xm,0,xm,1)}
and bbb0 = (b0

1,b
0
2, · · · ,b

0
m), where b0

i ∈ {0,1} and
xi, j ∈ {0,1}ℓ from the sender P0;

2. Wait for input bbb1 = (b1
1,b

1
2, · · · ,b1

m) from the receiver P1
where b1

i ∈ {0,1};
3. Send ⟨Request⟩ to the simulator Sim;

4. Upon receiving ⟨Response,OK⟩ from Sim, output
{xi,b0

i⊕b1
i
}i∈[m] to P1, and Finished to P0.

Functionality FeqOTe

Figure 13: Equality Oblivious Transfer Extension Functional-
ity.

receiver recovers X \Y by using {s2
1, · · · ,s2

b}. Note that the
receiver can not learn the corresponding bin of each item
in X \Y without knowing the permutation π. Some earlier
works [7,15,23] can be used for securely realizing FPS. These
solutions all have computation/communication complexity
O(n logn). Therefore, after optimization, the overall cost of
our protocol is O(γn+n+n logn) = O(n logn).

We can see that the above process is actually an encrypted
g-RPMT as shown in Figure 10. Specifically, the sender uses
rπ(i)⊕ s1

i as a one-time secret key to encrypt the item XC[π(i)]
as a ciphertext ci, and the receiver can obtain s2

i that is equal
to rπ(i)⊕ s1

i only when XC[π(i)] /∈ Y , to decrypt ci.
It is worth mentioning that our protocol does not incur the

security issues as in [21], although we leverage bucketing
technique. This is because that for each pair of subsets, our
protocol just generates intermediate states not leaking extra
information, rather than executing a whole PSU sub-protocol
where a subset of union is generated.

5.2 New Building Blocks
As mentioned before, our protocol ΠbECRG

PSU is based on a new
building block called “batched Equality-Conditional Random-
ness Generation (bECRG)”. In this section, we define the
functionality of bECRG, denoted as FbECRG. To design proto-
col ΠbECRG that UC-realize FbECRG, we also propose another
new building block called “Equality Oblivious Transfer ex-
tension (eqOTe)”. Next, we first introduce eqOTe, and then
give the functionality and protocol of bECRG.
Equality Oblivious Transfer extension. “Equality Obliv-
ious Transfer extension (eqOTe)” is a variant of OT ex-
tension (OTe) [17]. Roughly speaking, the sender holds m
pairs {(xi,0,xi,1)}i∈[m] and the receiver holds m bits {b1

i }i∈[m].
Through OT extension, the receiver obtains {xi,b1

i
}i∈[m] by

using only κ base OTs, where m≫ κ. In eqOTe, the sender
additionally holds m bits {b0

i }i∈[m], and the receiver obtains
{xi,b0

i ⊕b1
i
}i∈[m]. An eqOTe can be easily obtained from an

OTe. Specifically, the sender sets ai,b0
i
= xi,0 and ai,1⊕b0

i
= xi,1.

Parameters:
• An OT extension protocol ΠOTe;

Inputs:
• The sender P0: {(x1,0,x1,1),(x2,0,x2,1), · · · ,(xm,0,xm,1)}

and bbb0 = (b0
1,b

0
2, · · · ,b

0
m) where b0

i ∈ {0,1} and
xi, j ∈ {0,1}ℓ;

• The receiver P1: bbb1 = (b1
1,b

1
2, · · · ,b1

m) where b1
i ∈ {0,1};

Protocol:
1. Sender P0 sets ai,b0

i
= xi,0 and ai,1⊕b0

i
= xi,1;

2. The parties invoke ΠOTe, where P0 acts as the sender
with input {(ai,0,ai,1)}i∈[m] and P1 acts as the receiver
with input bbb1, and P1 can obtain {ai,b1

i
}i∈[m]. (If

b0
i = b1

i , ai,b1
i
= ai,b0

i
= xi,0, else ai,b1

i
= ai,b0

i⊕1 = xi,1.)

Protocol ΠeqOTe

Figure 14: Equality Oblivious Transfer Extension Protocol.

Then, the two parties perform OTe with {(ai,0,ai,1)}i∈[m] and
{b0

i }i∈[m] as inputs, respectively. Obviously, through OTe, if
b1

i = b0
i (i.e., b0

i ⊕ b1
i = 0), the receiver can obtain ai,b1

i
=

ai,b0
i
= xi,0, otherwise (b1

i = b0
i ⊕1), the receiver can obtain

ai,b1
i
= ai,b0

i ⊕1 = xi,1. We give the functionality FeqOTe and
protocol ΠeqOTe in Figure 13 and Figure 14, respectively.

Batched Equality-Conditional Randomness Generation.
Two parties P0 and P1 input strings t and t ′, respectively, and
P0 additionally inputs r. “Equality-Conditional Randomness
Generation (ECRG)” generates another string r′ to P1 such
that if t ̸= t ′, r = r′, otherwise, r′ is a random string. In Fig-
ure 15, we give the functionality FbECRG of a batched version,
where m pairs {ti, t ′i}i∈[m] are as input, and {r′i}∈[m] are output
to P1 based on whether ti = t ′i .

We design protocol ΠbECRG (shown in Figure 16) by using
FeqOTe and FPET (see Figure 4) as building blocks. More
specifically, for each pair (ti, t ′i), the two parties P0 and P1
invoke FPET and obtain b0

i and b1
i respectively, such that if

ti = t ′i , b0
i ⊕ b1

i = 0, otherwise, b0
i ⊕ b1

i = 1. To realize the
functionality FbECRG (i.e., if ti ̸= t ′i , r′i = ri, otherwise, r′i is a
random string), P0 sets xi,0 as a random string and xi,1 = ri,
and the two parties invoke FeqOTe such that if b0

i ⊕b1
i = 0, P0

obtains xi,0 (namely, a random string), otherwise, P0 obtains
xi,1 = ri. We show the security of ΠbECRG in Theorem 5.1.

Theorem 5.1. The protocol ΠbECRG shown in Figure 16)
UC-realizes the functionality FbECRG (as in Figure 15) in
the {FPET,FeqOTe}-hybrid model, against static, semi-honest
adversaries.

Proof. We will show that for any adversary A , we can con-
struct a simulator Sim that can simulate the view of the cor-
rupted P0 and the corrupted P1, such that any PPT environment
E cannot distinguish the execution in the ideal world from
that in the real world.
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Parameters:
• The functionality interacts with two parties, P0 and P1,

and the simulator Sim;
• Let ℓ1 be the bit-length of each input items, and ℓ2 be

the bit-length of each output items;
Functionality:

0. Initialize an ideal state stateU = /0 for party U where
U ∈ {P0,P1}; if U is corrupted, the simulator Sim is
allowed to access U’s state stateU;

1. Upon receiving input {t1, · · · , tm} and {r1, · · · ,rm} from
P0 where ti ∈ {0,1}ℓ1 and ri ∈ {0,1}ℓ2 , update state
statep0 = ⟨{t1, · · · , tm},{r1, · · · ,rm}⟩, and send
⟨Request,P0⟩ to the simulator Sim;

2. Upon receiving input {t ′1, · · · , t ′m} from P1 where
t ′i ∈ {0,1}ℓ1 , update state stateP1 = ⟨{t ′1, · · · , t ′m⟩, and
send ⟨Request,P1⟩ to the simulator Sim;

3. Upon receiving ⟨Response,OK⟩ from Sim, if ti ̸= t ′i , set

r′i = ri, otherwise, randomly choose r′i
$←− {0,1}ℓ2 ;

4. Add ⟨{r′1, · · · ,r′m}⟩ to P1’s stateP1 ;
5. Output {r′1, · · · ,r′m} to P1.

Functionality FbECRG

Figure 15: Batched Equality-Conditional Randomness Gener-
ation Functionality.

Corrupted P0: Simulator Sim simulates a real execution in
which P0 is corrupted. Since A is semi-honest, Sim can ob-
tain the input {t1, · · · , tm} and {r1, · · · ,rm} of P0 directly, and
externally send {t1, · · · , tm} and {r1, · · · ,rm} to FbECRG and
then receives ⟨Request,P0⟩. When receiving ti from A , Sim

randomly selects b0
i

$←− {0,1}, and simulates the execution
of ΠPET. When receiving {(xi,0,xi,1)}i∈[m] and bbb0, the input
of ΠeqOTe, from A , Sim simulates the execution of ΠeqOTe.
Finally, Sim sends ⟨Response,OK⟩ to FbECRG.

We argue that the outputs of Sim are indistinguishable from
the real view of P0 by the following hybrids:

Hyb0: P0’s view in the real protocol.
Hyb1: Same as Hyb0 except that the output of ΠPET is re-

placed by b0
i chosen by Sim, and Sim runs the FPET simulator

to produce the simulated view for P0. The security of protocol
ΠPET guarantees the view in simulation is computationally
indistinguishable from the view in the real protocol.

Hyb2: Same as Hyb1 except that Sim runs the FeqOTe sim-
ulator to produce the simulated view for P0. The security of
protocol ΠeqOTe guarantees the view in simulation is com-
putationally indistinguishable from the view in Hyb1. The
hybrid is the view output by Sim.

Corrupted P1: Simulator Sim simulates a real execution in
which P1 is corrupted. Since A is semi-honest, Sim can ob-
tain the input {t ′1, · · · , t ′m} of P1 directly, and externally send
{t ′1, · · · , t ′m} to FbECRG and then receives ⟨Request,P1⟩. When
receiving {t ′1, · · · , t ′m} from A , Sim randomly selects b1

i , and
simulates the execution of ΠPET. Once receiving bbb1, the input

Inputs:
• P0: set {t1, · · · , tm} and set {r1, · · · ,rm} where

ti ∈ {0,1}ℓ1 and ri ∈ {0,1}ℓ2 ;
• P1: set {t ′1, · · · , t ′m}, t ′i ∈ {0,1}ℓ1 ;

Protocol:
• For i ∈ [m]:

– P0 and P1 invoke FPET (see Figure 4):
* P0 inputs ti, and P1 inputs t ′i ;
* P0 obtains b0

i , and P1 obtains b1
i ;

– P0 chooses xi,0
$←− {0,1}ℓ2 and sets xi,1 = ri;

• P0 and P1 invoke FeqOTe (see Figure 13):
– P0 inputs {(x1,0,x1,1),(x2,0,x2,1), · · · ,(xm,0,xm,1)}

and bbb0 = (b0
1,b

0
2, · · · ,b

0
m), and P1 inputs

bbb1 = (b1
1,b

1
2, · · · ,b1

m);
– P1 obtains {r′1, · · · ,r′m}, where r′i = xi,b0

i⊕b1
i
;

• P1 outputs {r′1, · · · ,r′m}.

Protocol ΠbECRG

Figure 16: Batched Equality-Conditional Randomness Gener-
ation Protocol.

of ΠeqOTe, from A , Sim sends ⟨Response,OK⟩ to FbECRG and
obtains {r′1, · · · ,r′m}. Finally, Sim simulates the execution of
ΠeqOTe with {r′1, · · · ,r′m} as output.

We argue that the outputs of Sim are indistinguishable from
the real view of P1 by the following hybrids:
Hyb0: P1’s view in the real protocol.
Hyb1: Same as Hyb0 except that the output of ΠPET is re-

placed by b1
i chosen by Sim, and Sim runs the FPET simulator

to produce the simulated view for P1. The security of protocol
ΠPET guarantees the view in simulation is computationally
indistinguishable from the view in the real protocol.

Hyb2: Same as Hyb1 except that the output of ΠeqOTe is
replaced by {r′1, · · · ,r′m} output by FbECRG and Sim runs the
FeqOTe simulator to produce the simulated view for P1. Re-
gardless of whether r′i is generated by ΠeqOTe or FbECRG, it
would be equal to ri when t ′i = ti, and be pseudorandom when
t ′i ̸= ti. The security of protocol ΠeqOTe guarantees the view
in simulation is computationally indistinguishable from the
view in Hyb1. The hybrid is the view output by Sim.

5.3 The Details of Protocol ΠbECRG
PSU

In this section, we detail our PSU protocol ΠbECRG
PSU (see Fig-

ure 17). As explained in Section 5.1, to achieve the enhanced
functionality F n1,n2

ePSU , the core idea of ΠbECRG
PSU is to design the

encrypted RPMT as in the AHE-based PSU: Each item xi ∈ X
is encrypted by a one-time secret key ri; if xi ∈ X \Y , the
receiver will obtain ri, otherwise, the receiver will obtain an-
other random string r′i ̸= r′i, and thus cannot learn xi. Due to
the fact that our ΠbECRG

PSU only relies on symmetric-key opera-
tions other than base OTs, our ΠbECRG

PSU is much more efficient
than the AHE-based PSU.
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Parameters:
• Hash functions h1, · · · ,hγ : {0,1}ℓ1 → [b];
• A Cuckoo hash table based on h1, · · · ,hγ, with b = ε ·n1

bins, stash size s = 0;
• A simple hash table based on h1, · · · ,hγ, with b = ε ·n1

bins and bin size ρ, where ρ = O(log(γn2));
Inputs:

• Sender S : set X = {x1, · · · ,xn1},xi ∈ {0,1}ℓ1 ;
• Receiver R : set Y = {y1, · · · ,yn2},yi ∈ {0,1}ℓ1 ;

Protocol:
1. S inserts set X into the Cuckoo hash table, and fills

empty bins with the dummy item d, then denotes the
filled Cuckoo hash table as XC and the item in i-th bin
as XC[i]; R inserts set Y into the simple hash table,
then denotes the set of items in the i-th bin as YS[i];

2. S randomly chooses t ′i from {0,1}ℓ2 for all i ∈ [b];
3. S and R invoke FOPPRF (see Figure 3):

– S acts as P1 with input {XC[i]}i∈[b], and R acts as
P0 with input {(YS[i][1], t ′i ), · · · ,(YS[i][ρ], t ′i )}i∈[b];

– R obtains {ki}i∈[b] and hint, and S obtains hint
and {F(ki,hint,XC[i]))}i∈[b] (note that if
XC[i] ∈ YS[i], F(ki,hint,XC[i]) = t ′i , otherwise,
F(ki,hint,XC[i]) ̸= t ′i );

4. S and R invoke FbECRG (see Figure 15):

– S randomly chooses ri
$←− {0,1}ℓ1 for i ∈ [b];

– S acts as P0 with input {F(ki,hint,XC[i])}i∈[b]
and {r1, · · · ,rb}, and R acts as P1 with input
{t ′1, · · · , t ′b};

– R obtains {r′1, · · · ,r′b} (if F(ki,hint,XC[i]) = t ′i ,
r′i ̸= ri, otherwise, r′i = ri);

5. S and R invoke FPS (see Figure 5):
– R acts as P0 with input set {r′1, · · · ,r′b}, and S

acts as P1 with a random permutation π;
– S and R obtains the shuffled share sets
{s1

1,s
1
2, · · · ,s1

b} and {s2
1,s

2
2, · · · ,s2

b} respectively,
where s1

i ⊕ s2
i = r′

π(i);
6. S performs permutation π on set
{XC[1]⊕ r1,XC[2]⊕ r2, · · · ,XC[b]⊕ rb} and obtains
{e1,e2, · · · ,eb} where ei = XC[π(i)]⊕ rπ(i);

7. For i ∈ [b]:
– S sends ci = ei⊕ s1

i to R ;
– If ci⊕ s2

i ̸= d, R sets Z = Z∪{ci⊕ s2
i };

8. R outputs Y ∪Z, and S outputs Finished;

Protocol ΠbECRG
PSU

Figure 17: A new PSU protocol that can realize F n1,n2
ePSU and

only relies on symmetric-key techniques (ignoring base OTs).

The sender and receiver first insert their sets X and Y into a
Cuckoo hash table and a simple hash table, respectively, and
the two filled tables are denoted as XC and YS. Each bin i of
the Cuckoo hash table contains only one item XC[i], whereas
each bin i of the simple hash table contains a set YS[i]. By
invoking FOPPRF, the receiver can set the PRF values of the
items in YS[i] as the same t ′i . If XC[i] ∈ YS[i], the sender will
obtain F(ki,hint,XC[i]) = t ′i , otherwise, F(ki,hint,XC[i]) ̸= t ′i .

Then, the sender randomly chooses ri that is used to encrypt
XC[i] for all i ∈ [b]. Through FbECRG, if F(ki,hint,XC[i]) ̸= t ′i
(i.e., XC[i] /∈ YS[i]), the receiver can obtain r′i = ri and thus
learning XC[i] later, otherwise, the receiver can obtain r′i ̸= ri.
By invoking FPS, {r′1, · · · ,r′b} are shuffled and shared into
{s1

1, · · · ,s1
b} and {s2

1, · · · ,s2
b} such that s1

i ⊕ s2
i = r′

π(i). Finally,
the sender sends {XC[π(i)]⊕ rπ(i)⊕ s1

i }i∈[b], and the receiver
calculates XC[π(i)]⊕ rπ(i)⊕ s1

i ⊕ s2
i for all i ∈ [b]. Obviously,

only when rπ(i) = s1
i ⊕ s2

i (i.e., XC[π(i)] /∈ YS[i]), the receiver
can obtain XC[π(i)].

The correctness of ΠbECRG
PSU shown in Figure 17 is guaran-

teed unless collisions occur. The collisions can only come
from ΠOPPRF, i.e., XC[i] /∈ YS[i] but F(ki,hint,XC[i]) = t ′i . By
setting the output length ℓ2 of F(k, ·, ·) as λ+ log(εn1), we can
bound the probability of collision happening to 2−λ, where λ

is the statistical security parameter. Next, we state the security
of ΠbECRG

PSU in Theorem 5.2.

Theorem 5.2. The protocol ΠbECRG
PSU shown in Figure 17 UC-

realizes the functionality F n1,n2
ePSU (as in Figure 11) in the

{FOPPRF,FbECRG,FPS}-hybrid model, against static, semi-
honest adversaries.

Proof. We will show that for any adversary A , we can con-
struct a simulator Sim that can simulate the view of the cor-
rupted sender and the corrupted receiver, such that any PPT
environment E cannot distinguish the execution in the ideal
world from that in the real world.
Corrupted Sender: Simulator Sim simulates a real execution
in which the sender S is corrupted. Since A is semi-honest,
Sim can obtain the input X of S directly, and externally send
the set X to F n1,n2

ePSU and then receives ⟨Request,S⟩. When re-

ceiving XC[i] from A , Sim randomly selects ti
$←− {0,1}ℓ2 and

hint, and simulates the execution of ΠOPPRF. Once receiv-
ing {t1, · · · , tb} and {r1, · · · ,rb}, the input of ΠbECRG, from
A , Sim simulates the execution of ΠbECRG. Upon receiving
a permutation π from A , Sim checks if it is a permutation
of b items. If so, Sim randomly selects {s1

1, · · · ,s1
b} where

s1
i ∈ {0,1}ℓ1 , and simulates the execution of ΠPS. After re-

ceiving {c1, · · · ,cb}, Sim sends ⟨Response,OK⟩ to F n1,n2
ePSU .

We argue that the outputs of Sim are indistinguishable from
the real view of S by the following hybrids:

Hyb0: S ’s view in the real protocol.
Hyb1: Same as Hyb0 except that the output of ΠOPPRF is

replaced by (hint, ti) chosen by Sim, and Sim runs the FOPPRF

simulator to produce the simulated view for S . The security of
protocol ΠOPPRF guarantees the view in simulation is compu-
tationally indistinguishable from the view in the real protocol.
Hyb2: Same as Hyb1 except that Sim runs the FbECRG sim-

ulator to produce the simulated view for S . The security of
protocol ΠbECRG guarantees the view in simulation is compu-
tationally indistinguishable from the view in Hyb1.
Hyb3: Same as Hyb2 except that the output of ΠPS is re-

placed by {s1
1, · · · ,s1

b} chosen by Sim, and Sim runs the FPS
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simulator to produce the simulated view for S . The security
of protocol ΠPS guarantees the view in simulation is computa-
tionally indistinguishable from the view in Hyb2. The hybrid
is the view output by Sim.

Note that after A sends {c1, · · · ,cb}, F n1,n2
ePSU receives

⟨Response,OK⟩ from Sim and outputs X ∪Y to the receiver
R . This guarantee that the receiver R outputs X ∪Y after the
sender S sends {c1, · · · ,cb} in both worlds.

Corrupted Receiver: Simulator Sim simulates a real execu-
tion in which the receiver R is corrupted. Since A is semi-
honest, Sim can obtain the input Y of R directly, and exter-
nally send the set Y to F n1,n2

ePSU and then receives ⟨Request,R ⟩.
When receiving {(YS[i][1], t ′i), · · · ,(YS[i][ρ], t ′i)} from A , Sim
randomly selects (ki,hint), and simulates the execution of
ΠOPPRF. Once receiving {t ′1, · · · , t ′b}, the input of ΠbECRG,

from A , Sim randomly selects {r′1, · · · ,r′b} where ri
$←−

{0,1}ℓ1 and simulates the execution of ΠbECRG. Upon receiv-
ing {r′1, · · · ,r′b} from A , Sim randomly selects {s2

1, · · · ,s2
b}

where s2
i ∈ {0,1}ℓ1 , and simulates the execution ΠPS. Sim

sends ⟨Response,OK⟩ to F n1,n2
ePSU . After receiving Z = X ∪Y

from F n1,n2
ePSU , Sim calculates X ′ = X \Y = Z \Y and randomly

selects a subset S′ of {s2
1, · · · ,s2

b}, where |S′| = |X \Y |. For
each item s′i ∈ S′, Sim sets ci = X ′[i]⊕ s′i. Finally, Sim ran-

domly chooses ci
$←− {0,1}ℓ1 for i ∈ {|S′|+1, |S′|+2, · · · ,b}

and sends {c1, · · · ,cb} to A in random order.

We argue that the outputs of Sim are indistinguishable from
the real view of R by the following hybrids:

Hyb0: R ’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of ΠOPPRF

is replaced by (hint,ki) chosen by Sim, and Sim runs the
FOPPRF simulator to produce the simulated view for R . The
security of protocol ΠOPPRF guarantees the view in simulation
is computationally indistinguishable from the view in Hyb0.

Hyb2: Same as Hyb1 except that the output of ΠbECRG is
replaced by the {r′1, · · · ,r′b} chosen by Sim, and Sim runs the
FbECRG simulator to produce the simulated view for S . The
security of protocol ΠbECRG guarantees the view in simulation
is computationally indistinguishable from the view in Hyb1.

Hyb3: Same as Hyb2 except that the output of ΠPS is
replaced by {s2

1, · · · ,s2
b} chosen by Sim, and Sim runs the

FPS simulator to produce the simulated view for S . The
corresponding {c1, · · · ,cb} are also changed according to
{s2

1, · · · ,s2
b}. The security of protocol ΠPS and the random

permutation π guarantee the view in simulation is computa-
tionally indistinguishable from the view in Hyb2. The hybrid
is the view output by Sim.

Note that after A receives {s2
1, · · · ,s2

b}, F n1,n2
ePSU receives

⟨Response,OK⟩ from Sim and outputs Finished to the sender
S . This guarantees that no matter whether in the ideal world or
the real world, the sender S outputs Finished after completing
the interaction with the receiver.

Table 1: The theoretical complexities of ΠbECRG
PSU

ΠOPPRF ΠbECRG ΠPS Ciphertexts
Comp. O(γn2 + εn1) O(εn1) O(εn1 log(εn1)) O(εn1)
Comm. O(γn2) O(εn1) O(εn1 log(εn1)) O(εn1)
1. Here, n1 is the sender’s set size and n2 is the receiver’s set size.
2. The Cuckoo hash table and the simple hash table use γ hash functions

and εn1 bins.

5.4 Cost Analysis

We describe the theoretical complexities of our new construc-
tion ΠbECRG

PSU in Table 1; here, we assume that the sender’s
set size is n1 and the receiver’s set size is n2. Recall that in
ΠbECRG

PSU (see Figure 17), the sender’s set and the receiver’s
set are initially inserted into a Cuckoo hash table and a sim-
ple hash table, respectively, using γ hash functions, and the
number of bins is εn1. After insertion, the Cuckoo hash ta-
ble contains εn1 items, and the simple hash table includes
γn2 items. Then, the two parties proceed with the subsequent
steps on the two tables, which involve performing ΠOPPRF,
ΠbECRG, ΠPS, as well as computing and sending ciphertexts.

We use the batched OPPRF in [6] that can hide the number
of items in each bin, to implement ΠOPPRF. Thus, padding
each bin in the simple hash table up to the maximum bin size,
is not required. Specifically, the complexity for hint computa-
tion and communication is linear (i.e., O(γn2)) and the sender
additionally needs O(εn1) to compute the PRF values. As in
Figure 16, our ΠbECRG consists of ΠPET and ΠeqOTe, both ex-
hibiting linear complexity; thus the computation and commu-
nication costs of ΠbECRG are O(εn1). We use the construction
in [23] to implement ΠPS, leading to O(εn1 log(εn1)) costs.
Finally, the sender needs to compute and send a ciphertext
for each item in the Cuckoo hash table, and the costs are
O(εn1). Overall, the computation and communication com-
plexity of our protocol ΠbECRG

PSU is O(n1 logn1 +n2), making
ΠbECRG

PSU more suitable for balanced sets, i.e., the sizes of the
two sets are comparable.

5.5 Performance Evaluation

In this section, we experimentally evaluate our protocol
ΠbECRG

PSU and compare with the previous works.

Benchmarking Environment. We implement our proto-
col ΠbECRG

PSU in C++, which is available on GitHub: https:
//github.com/yanxue820/SecurePSU.git. Our experi-
ments are conducted on a server equipped with two Intel
Xeon Silver 4116 CPUs (2.10GHz) and 128GB RAM, run-
ning Ubuntu. We evaluate our protocol ΠbECRG

PSU in two net-
work settings, LAN network with 10Gbps bandwidth and
0.02 ms RTT and WAN network with 100Mbps and 80ms
RTT, which are emulated using Linux tc command. We lever-
age the constructions in [6] to implement ΠOPPRF and ΠPET

(the building block of ΠbECRG). We implement ΠPS using the
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Protocol
set size n

28 210 212 214 216 218 220 222

Time (s)

LAN

[10] 11.78 44.73 175.7 702.4 2836.5 11341.2 - -
[31] - - - 0.68 2.70 10.82 44.78 -

ΠbECRG
PSU

Total 1.6 1.64 1.77 2.23 4.61 12.98 49.38 202.49
w/o setup 1.04 1.08 1.2 1.61 3.73 11.12 43.49 180.55

WAN

[10] - - - - - - - -
[31] - - - 12.87 16.04 28.58 86.31 -

ΠbECRG
PSU

Total 5.31 5.86 7.06 10.22 21.07 77.56 225.32 987.945
w/o setup 2.92 3.47 4.62 7.51 16.59 71.19 200.32 889.88

Comm.(MB)
[10] 2.83 11.32 45.28 181.12 724.49 2897.97 - -
[31] - - - 6.52 26.03 103.85 414.43 -

ΠbECRG
PSU 2.03 2.88 8.59 32.92 137.42 577.73 2430.47 10204.7

Table 2: Comparisons of total runtime (in seconds) and communication (in MB) between ΠbECRG
PSU and [10] in WAN (100Mbps

bandwidth, 80 ms RTT) and LAN (10Gbps bandwidth, 0.02 ms RTT) settings, where n1 = n2 = n. The results of [10] and [31]
are both sourced from their papers. The implementation of [10] is in Go using 8 threads. The implementation of SKE-PSU [31]
is in Java using a single thread; when using the OKVS in [1], the communication and runtime can be improved 2% and 6-9%,
respectively. Our protocol ΠbECRG

PSU is implemented in C++, using a single thread. Setup in our protocol refers to base OTs and
generating triples for PET. Our ΠbECRG

PSU and [10] can achieve the enhanced functionality F n1,n2
ePSU , while SKE-PSU [31] can not.

code from [19] that is based on Oblivious Switching Network
(OSN) [23]. As for OT extension, we use libOTe library [28].

Parameters. We set the computational security parameter
κ = 128 and the statistical security parameter λ = 40, and
item length is 128 bits. We use γ = 3 hash functions to insert
sets X and Y into the Cuckoo hash table and simple hash table,
respectively, and ε for Cuckoo hash table is set as 1.27.

Comparisons. We show performance comparisons with the
previous works [10,31] in Table 2. Before our work, only two
AHE-based schemes in [10,12] that can achieve the enhanced
PSU functionality, i.e., F n1,n2

ePSU . The design by Davidson et
al. [10] can be seen as an improvement of the one in [12].
Moreover, only Davidson et al. [10] provided experimental re-
sults. Therefore, we compare the performance of our ΠbECRG

PSU
with that of the scheme in [10] in Table 2. We can see that, for
n1 = n2 = 218, our total runtime is 873.74× faster than that
of [10] in the LAN setting, while their implementation is in 8
threads and ours is in a single thread; our total communication
cost is 5× less than theirs.

Currently, the PSU by Zhang et al. [31] is the state-of-the-
art work for large balanced sets, but it can not achieve the
enhanced PSU functionality F n1,n2

ePSU . Zhang et al. [31] gave
two designs: (i) SKE-PSU, using symmetric key techniques,
and (ii) PKE-PSU4, using public key techniques. Given that
SKE-PSU demonstrates better performance than PKE-PSU
when the Internet speed exceeds 100Mbps, we compare the
performance of our ΠbECRG

PSU with that of SKE-PSU in [31]
in Table 2. It shows that the performance of our protocol
ΠbECRG

PSU is comparable to that of SKE-PSU in the LAN set-
ting. However, the performance of SKE-PSU in the WAN
setting is better than ours, due to the less communication cost.
In addition, the new OKVS structure designed by Bienstock

4Zhang et al. [31] used PKE-PSU* to represent the version that does not
perform point compression.

et al. [1] could be used as a building block to improve the
performance of the design in [31]. Specifically, as reported
in [1], in a 1Gbps network, the combination can obtain a
16-22% improvement in communication and a 28-40% re-
duction in runtime compared to PKE-PSU; it also shows a
2% improvement in communication and a 6-9% reduction in
runtime compared to SKE-PSU. Nonetheless, it is important
to note that the designs in [31] cannot achieve the enhanced
PSU functionality F n1,n2

ePSU , whereas our ΠbECRG
PSU can.

To the best of our knowledge, the PSU protocol by Blanton
et al. [2] is the only one based on generic MPC techniques, and
it can achieve the enhanced PSU functionality F n1,n2

ePSU . Since
its security is guaranteed by the generic MPC techniques, it is
out of scope for this work. Nonetheless, here, we still compare
the performance of our protocol with that of their scheme.
Their paper provided experimental results on small input sets
in a three-party and honest majority setting for 32-bit sized
elements, using 1Gbps bandwidth. For n1 = n2 = 212, their
runtime is 24.88s, while ours is 8.42s in the WAN setting. In
addition, Kolesnikov et al. [21] calculated the communication
cost of [2] for 2PC and 128-bit items; for n1 = n2 = 218,
its communication cost would be 163208.76MB, which is
282.5× higher than ours.

6 Proofs for Previous Works

In this section, we formally show that the OT-based PSU
protocols cannot UC-realize F n1,n2

ePSU , whereas the AHE-based
PSU protocols can. The proof for OT-based protocols can be
naturally extended to the protocol [21] relying on the “split-
execute-assemble” paradigm, whose proof can be found in
full version [18]. Given that the OT-based design framework is
currently mainstream, we define a relaxed PSU functionality
F b

rPSU to capture its security.
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Inputs:
• Sender S : set X = {x1, · · · ,xn1}, where xi ∈ {0,1}ℓ
• Receiver R : set Y = {y1, · · · ,yn2}, where yi ∈ {0,1}ℓ;

Protocol:
1. The sender S randomly permutes the set X into the set

X∗;
2. The two players S and R invoke the “generalized

Reversed Private Membership Test” Fg-RPMT (see
Figure 1):

– S acts as sender with input set X∗;
– R acts as receiver with input set Y ;
– R obtains output bi for each i ∈ [n1];

3. R initializes set Z = Y ;
4. The two players S and R simultaneouslya invoke n1

number of FOT (see Figure 2) instances.
In the i-th instance, where i ∈ [n1],

– R acts as receiver with input bi;
– S acts as sender with input (X∗[i],⊥);
– If R obtains X∗[i], R sets Z = Z∪{X∗[i]};

5. R outputs Z, and S outputs Finished.

aNote that, in practice, the n1 number of OT instances can be
implemented by OT extension [17], so that the receiver can obtain
all the items in X \Y at the same time.

Protocol ΠOT
Unified

Figure 18: The design framework unifying PSU protocols
in [1,8,13,19,21,29,31]. Here, the protocol in [21] is the basic
scheme without using “split-execute-assemble” paradigm.

6.1 OT-based PSU Protocols
We unify the OT-based protocols [1, 8, 13, 21, 29, 31] into
the same framework ΠOT

Unified as shown in Figure 18. Next,
we show that the protocols unified in Figure 18 cannot UC-
realize the new enhanced PSU functionality F n1,n2

ePSU . Formally,
the security is stated in Theorem 6.1.

Theorem 6.1. The protocol following the framework ΠOT
Unified

in Figure 18 cannot UC-realize functionality F n1,n2
ePSU (as in Fig-

ure 11) in the {Fg-RPMT,FOT}-hybrid model, against static,
semi-honest adversaries.

Proof. To complete the proof, we first construct an environ-
ment E . Then we show that for any simulator Sim, this con-
structed E can tell the difference of the execution in the real
world from that in the ideal world, with non-negligible proba-
bility.

Construction of environment E . The environment E chooses
sets X and Y as the inputs of the sender and the receiver,
respectively. Since the environment E knows both X and
Y , E of course knows the size of X ∩Y , denoted as m. In
other words, the environment E knows the number of 1’s in
{b1, · · · ,bn1} is m. The environment E instructs the dummy
adversary A to corrupt the receiver at the beginning of the
protocol execution, and then chooses a time t. Finally, if the

number of 1’s in {b1, · · · ,bn1} reported by the dummy adver-
sary A is m and the message Finished has not been reported by
the honest sender S at the time t, the environment E outputs
1, otherwise, outputs 0.
The real world execution. In the real world, the ΠOT sub-
protocol instances will not be executed until the execution of
Πg-RPMT sub-protocol instance is finished. Therefore, there
is a time t when the receiver obtains {b1, · · · ,bn1} but not the
items in the set X \Y . Note that, the receiver is corrupted and
under the control by the semi-honest real world adversary A ,
the bit set {b1, · · · ,bn1} must be reported to the environment
at the time t. Note also that, the protocol execution has not
been finished, the honest sender S is not supposed to return
the message Finished to the environment E at the time t.
The ideal world execution. In the ideal world, since the
(dummy) receiver is corrupted, the simulator Sim is allowed to
access the ideal state stateR = ⟨Y ⟩. After receiving from the
functionality F n1,n2

ePSU the message ⟨Request,R ⟩, to simulate
{bideal

1 , · · · ,bideal
n1
}, the simulator Sim must face the following

two simulation strategies:
• Do send ⟨Response,OK⟩ to the functionality F n1,n2

ePSU ,
immediately. Note that, now the functionality will up-
date the ideal states into stateS = ⟨X ,Finished⟩ and
stateR = ⟨Y,Z⟩, and immediately report Finished to the
environment E .

• Do not send ⟨Response,OK⟩ to the functionality F n1,n2
ePSU ,

immediately. Note that, now the functionality will not
update the ideal states into stateS = ⟨X ,Finished⟩ and
stateR = ⟨Y,Z⟩; of course, no output Finished will be
reported to E immediately.

Security analysis. Now, we can see, if the simulator follows
the first simulation strategy, the environment will tell the dif-
ference with probability 1, since in the real world, no output
Finished will be reported while there is Finished in the ideal
world. If the simulator follows the second simulation strategy,
the probability that E outputs 1 in the real world is 1 except
negligible probability. However, in the ideal world, the simu-
lator Sim does not know m. The probability that there are m
1’s in {bideal1 , · · · ,bidealn1

} is 1/n1, which is far less than 1 when
n1 is large enough. Thus, the probability that E outputs 1 in
the ideal world is far less than 1. Therefore, E can distinguish
between the two worlds with non-negligible probability.

Note that, all simulations must follow one of the two strate-
gies. Therefore, for all simulators, our constructed environ-
ment can tell the difference between the two worlds with
non-negligible probability. This completes the proof.

We define a relaxed PSU ideal functionality F b
rPSU in Fig-

ure 19 to capture the security of OT-based design framework,
and formally show the security in Theorem 6.2.

Theorem 6.2. The protocol following the framework ΠOT
Unified

in Figure 18 UC-realizes the functionality F b
rPSU (as in Fig-

ure 19) in the {Fg-RPMT,FOT}-hybrid model, against static,
semi-honest adversaries.
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Parameters:
• The functionality interacts with two parties, the sender S

and the receiver R , and the simulator Sim;
• Set size for sender S is n1; set size for receiver R is n2.

Functionality:
0. Initialize an ideal state stateU = /0 for party U where

U ∈ {S ,R }; if U is corrupted, the simulator Sim is
allowed to access to U’s state stateU;

1. Upon receiving input X = {x1, · · · ,xn1} from the sender
S , abort if |X | ̸= n1; otherwise, update state
stateS = ⟨X⟩, and send ⟨Request,S⟩ to the simulator
Sim;

2. Upon receiving input Y = {y1, · · · ,yn2} from the
receiver R , abort if |Y | ̸= n2; otherwise, update state
stateR = ⟨Y ⟩, and send ⟨Request,R ⟩ to the simulator
Sim;

3. Upon receiving ⟨Response,OK⟩ from Sim, send
⟨Request_If⟩ to the simulator Sim;

4. Upon receiving ⟨Response_If,OK⟩ from Sim, for each
i ∈ [n1], set bi = 1 if X [i] ∈ Y , otherwise set bi = 0, then
record {b1, · · · ,bn1} to the receiver’s state stateR and
send ⟨Request_Item⟩ to Sim;

5. Upon receiving ⟨Response_Item,OK⟩ from Sim,
compute Z = X ∪Y , and record ⟨Finished⟩ and ⟨Z⟩ to
the sender’s sate stateS and the receiver’s state stateR ,
respectively;

6. Output Z to R , and Finished to S .

Functionality F b
rPSU

Figure 19: A relaxed PSU ideal functionality leaking set
membership in advance. Compared to the enhanced PSU
functionality F n1,n2

ePSU in Figure 11, F b
rPSU additionally adds

{b1, · · · ,bn1} into the receiver’s state stateR as shown in steps
3 - 4.

Proof. To prove this theorem, we will show that for any effi-
cient adversary A , we can construct a simulator Sim to prop-
erly simulate the view of the corrupted sender and the cor-
rupted receiver, such that any PPT environment E cannot
distinguish between the execution in the ideal world from that
in the real world. In particular, according to the modular de-
sign of ΠOT

Unified from the sub-protocols Πg-RPMT and ΠOT, the
simulator Sim can be constructed by invoking the simulator
Sim′ in [1, 8, 13, 19, 21, 29, 31].
Corrupted Sender: Simulator Sim first sends the input set X
to F b

rPSU. After receiving ⟨Request_If⟩ from F b
rPSU, Sim first

invokes Sim′ to simulate the execution of the sub-protocol
Πg-RPMT. Then, Sim sends ⟨Response_If,OK⟩ to the func-
tionality F b

rPSU. Once receiving ⟨Request_Item⟩ from F b
rPSU,

Sim simulates the execution of sub-protocol ΠOT by invoking
Sim′. When A sends items in all ΠOT instances, Sim sends
⟨Response_Item,OK⟩ to F b

rPSU and then obtains ⟨Finished⟩
from the sender’s state stateS . Compared to the simulator
for corrupted sender in [21], [19], [8], [29] or [13], Sim just
additionally receives some request messages and addition-

ally sends some response messages. Moreover, due to the
request/response messages, the environment E will receive
the honest receiver’s output X ∪Y at the same time in the real
and ideal worlds. Therefore, Sim can simulate A’s view such
that E cannot distinguish the two worlds.

Corrupted Receiver: Likewise, simulator Sim first sends
the input set Y to F b

rPSU. After receiving ⟨Request_If⟩ from
F b

rPSU, Sim first invokes Sim′ to simulate the execution of
the sub-protocol Πg-RPMT except for the last step. To simu-
late the last step of Πg-RPMT, Sim sends ⟨Response_If,OK⟩
to the functionality F b

rPSU and then obtains {b1,b2, · · · ,bn1}.
Given {b1,b2, · · · ,bn1}, Sim can invoke Sim′ to simulate the
last step of Πg-RPMT. Once receiving ⟨Request_Item⟩ from
F b

rPSU, Sim invokes Sim′ to simulate the execution of the sub-
protocol ΠOT except for the last step (i.e., sending items).
Then, Sim sends ⟨Response_Item,OK⟩ to F b

rPSU and then ob-
tains set Z. By using the items in set X \Y , Sim can simulate
the last step of each ΠOT instance. Compared to the simu-
lator for corrupted receiver in [1, 8, 13, 19, 21, 29, 31], Sim
just additionally receives some request messages and addi-
tionally sends some response messages. Likewise, due to the
request/response messages, the environment E will receive
the honest sender’s output Finished at the same time in the
real and ideal worlds. Therefore, Sim can simulate A’s view
such that E cannot distinguish the two worlds.

6.2 AHE-based PSU Protocols

In Figure 20, we show more details on how to achieve en-
crypted g-RPMT in AHE-based protocols [10,12]. We can see
that if the receiver R is corrupted, the simulator does not need
to simulate anything for R before simulating {c1, · · · ,cn1}.
Therefore, the simulator does not need to obtain information
from F n1,n2

ePSU before simulating {c1, · · · ,cn1}. Intuitively, the
AHE-based protocols can UC-realize F n1,n2

ePSU . The formal se-
curity is stated in Theorem 6.3.

Theorem 6.3. Given an IND-CPA secure AHE scheme, the
protocol following the framework ΠAHE

Unified in Figure 20 UC-
realizes the functionality F n1,n2

ePSU (as in Figure 11), against
static, semi-honest adversaries.

Proof. We will show that for any adversary A , we can con-
struct a simulator Sim that can simulate the view of the cor-
rupted sender and the corrupted receiver, such that any PPT
environment E cannot distinguish the execution in the ideal
world from that in the real world.

Corrupted Sender: The simulator Sim for the corrupted
sender first sends the input set X to F n1,n2

ePSU . After receiving
⟨Request,S⟩ from F n1,n2

ePSU , Sim generates a key pair (pk,sk)
and sends pk to A . To simulate the ciphertext c from R , Sim
randomly generates a fY (·) according to the set size n2 of Y ,
then encrypts it to c by using pk and sends c to A . After A
sends back {c1, · · · ,cn1} to R , Sim sends ⟨Response,OK⟩ to
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Parameters:
• An AHE scheme includes an encryption algorithm
Encpk(·) and a decryption algorithm Decsk(·).

Inputs:
• Sender S : set X = {x1, · · · ,xn1}, where xi ∈ {0,1}ℓ
• Receiver R : set Y = {y1, · · · ,yn2}, where yi ∈ {0,1}ℓ;

Protocol:
1. The receiver R generates a key pair (pk,sk) and sends

pk to the sender S ;
2. R represents set Y as fY (·), generates c = Encpk( fY )

and then sends c to S ;
3. S randomly permutes set X to X∗;
4. R initializes set Z = /0;
5. For each i ∈ [n1], S chooses a uniformly random value

ri, then generates
ci = (Encpk(ri fY (X∗[i])),Encpk(riX∗[i] fY (X∗[i]))) based
on the additive homomorphic property;
S sends {c1, · · · ,cn1} to R ;

6. For each i ∈ [n1], R decrypts ci to get (d1
i ,d

2
i ); if

d1
i ̸= 0, R obtains X∗[i] = d2

i /d1
i and sets

Z = Z∪{X∗[i]}, otherwise R obtains nothing;
7. R outputs Z, and S outputs Finished.

Protocol ΠAHE
Unified

Figure 20: The design framework unifying PSU protocols
in [10, 12]. Note that fY (·) in [12] is a polynomial P(x) =
∏

n2
i=1(x−yi) such that P(x∗) = 0 if x∗ ∈Y , and fY (·) in [10] is

an inverted Bloom Filter B where Y is inserted by using hash
functions h1, · · · ,hγ such that ∑

γ

i=1 B[hi(x∗)] = 0 if x∗ ∈ Y
(the “inverted” means that each bit value of the Bloom Filter
containing Y is flipped).

F n1,n2
ePSU . We can see that the only difference between the ideal

world and the real world is that fY (·) is randomly generated in
the ideal world while fY (·) is generated based on Y in the real
world. The IND-CPA security of AHE scheme guarantees
that any PPT environment E cannot distinguish between the
real world from the ideal world.

Corrupted Receiver: The simulator Sim for the corrupted
receiver first sends the input set Y to F n1,n2

ePSU and then re-
ceives ⟨Request,R ⟩. Sim will receive a public key pk and
a ciphertext c from A . To simulate {c1, · · · ,cn1}, the simu-
lator sends ⟨Response,OK⟩ to F n1,n2

ePSU and obtains the union
Z = X ∪Y . Then for i ∈ {1,2, · · · , |Z \Y |}, Sim randomly
picks αi and generates ci = (Encpk(αi),Encpk(αixi)), where
xi ∈ Z \Y . After that, for all i∈ {|Z \Y |+1, · · · ,n1}, Sim gen-
erates ci = (Encpk(0),Encpk(0)) by using pk. After randomly
permuting the set {c1, · · · ,cn1}, the simulator Sim sends the
ciphertexts to A . In both the ideal world and the real world,
if xi ∈ X \Y , the corresponding ci is a pair of ciphertexts for
two messages αi and αixi, otherwise it is the encryption of 0’s.
Moreover, A receives the items in X \Y in a random order in
both worlds. Therefore, the ideal world and the real world are
indistinguishable.

7 Conclusion

In this work, we conduct a thorough analysis of the leakage
in the typical PSU protocols. We identify a prevalent form
of leakage in current PSU designs, called “during-execution
leakage”, which is implied by the output but can be obtained
before the complete output is received. In addition, we find
that the commonly used functionality F n1,n2

PSU cannot capture
the security without during-execution leakage. Therefore, we
define a new enhanced functionality F n1,n2

ePSU to capture it.
Concretely, our investigation reveals that although sym-

metric key-based PSU constructions offer scalability, they
are vulnerable to the during-execution leakage. On the other
hand, only AHE-based PSU solutions can avoid the during-
execution leakage, but their performance falls short of meeting
practical requirements. To bridge the gap, we design a new
PSU protocol ΠbECRG

PSU that is the first scalable PSU protocol to
UC-realize the enhanced PSU functionality F n1,n2

ePSU in the semi-
honest setting, by using a new building block ΠbECRG. Like
OT-based PSU protocols, our ΠbECRG

PSU only relies on symmet-
ric key operations other than base OTs, obtaining significant
performance improvement over AHE-based protocols.
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A The leakage in Kolesnikov et al.’s design [21]

In order to improve the performance, Kolesnikov et al. [21]
proposed to optimize their protocol by using the bucketing
technique, as shown in Figure 21. More specifically, the
sender and receiver in [21] first assign their items in X and
in Y , into two simple hash tables with the same number of
bins, and the maximum bin sizes are assumed to be ρ1 and
ρ2, respectively. Then they perform the (ρ1,ρ2)-PSU sub-
protocol on the items of each bin separately. As pointed out
by Kolesnikov et al. in [21], however, the bucketing technique
will leak the information “which bins contain items in X ∩Y ”
to the receiver. To avoid this leakage, in [21] the receiver is
required to put a special item ⊥ into each bin, and to pad the
bins with different dummy items d, while the sender pads
his bins with the special item ⊥. For example, in Figure 21,
the items {x6,x2,x10} of X are mapped to the first bin of the
sender’s simple hash table, and the items {y3,y8} of Y are

mapped to the first bin of the receiver’s hash table. Without
the special item ⊥, if x2 = y3, the receiver can learn that an
item belonging to X ∩Y is in {y3,y8} after executing the
(ρ1,ρ2)-PSU. By adding the special item ⊥ to both sides, if
the receiver learns that an item from the sender belongs to
{y3,⊥,y8,d}, it seems that the receiver cannot know whether
the item is a real item (namely, in X) or the special item ⊥.
Unfortunately, Jia et al. [19] pointed out that this strategy is
insufficient to avoid the leakage incurred by the bucketing
technique, and the detailed analysis is given below.

Sender ( ) 

-

-

-

-

-

pad with
special item     

add a
special

item     to
each bin

pad with different
dummy items 

Receiver ( ) 

or

Figure 21: The bucketing technique in [21].

For ease of exposition, we take the 4th (ρ1,ρ2)-PSU sub-
protocol in Figure 21 as an example to explain why the op-
timization in [21] fails to hide the intersection information.
After the execution of the sub-protocol over the 4th bins, if
the receiver does not obtain any items from the sender (that
is, all items in the sender’s 4th bin belong to the subset in
the receiver’s 4th bin i.e., {d,⊥,y5,y7}), then the receiver
could obtain additional information about the intersection.
Concretely, one of the following will occur:

• Case1: all the real items that are mapped to the sender’s
bin (say x4 in Figure 21) belong to {y5,y7};

• Case2: no real items are mapped to the sender’s bin (i.e.,
all items are special item ⊥).

The probabilities that Case1 and Case2 occur are denoted as
Pr[Case1] and Pr[Case2], respectively. Clearly, if the receiver
is able to determine that Case1 occurs with certain (high)
probability, she will know that items belonging to X ∩Y are
in {y5,y7} with the same probability. According to the pa-
rameters in [21], Jia et al. [19] estimated Pr[Case2]. Note
that Pr[Case1] = 1−Pr[Case2], and the probability Pr[Case2]
is very small. For example, when the set size is n = 220,
Pr[Case2] = 5.778×10−8. This means that when the receiver
finds that all items in a bin belong to the intersection, she can
learn that this bin has at least one real item with probability
1−5.778×10−8, and that her corresponding bin contains at
least an item in X ∩Y with the same probability. Hence, their
approach is insufficient to avoid the leakage incurred by the
bucketing technique.
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