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Abstract

We present Foice, a novel deepfake attack against voice au-
thentication systems. Foice generates a synthetic voice of the
victim from just a single image of the victim’s face, without
requiring any voice sample. This synthetic voice is realis-
tic enough to fool commercial authentication systems. Since
face images are generally easier to obtain than voice sam-
ples, Foice effectively makes it easier for an attacker to mount
large-scale attacks. The key idea lies in learning the partial
correlation between face and voice features, and adding to
that a face-independent voice feature sampled from a Gaus-
sian distribution. We demonstrate the effectiveness of Foice
with a comprehensive set of real-world experiments involving
ten offline participants and an online dataset of 1,029 unique
individuals. By evaluating eight state-of-the-art systems, in-
cluding WeChat’s Voiceprint and Microsoft Azure, we show
that all these systems are vulnerable to Foice attack.

1 Introduction

Voice authentication is being adopted more widely as an al-
ternative to traditional password-based security measures for
social media platforms [13], telebanking [6], and personal
smart devices [2,9, 10]. However, recent advancements in
voice deepfake techniques have enabled the generation of syn-
thetic voices that are sufficiently convincing to bypass even
the most advanced voice authentication systems. For exam-
ple, recent deepfake attacks have reportedly compromised the
voice authentication systems of platforms such as WeChat,
Microsoft Azure’s voice authentication API, and Amazon
Alexa [16,57].

The state-of-the-art voice deepfake attacks, however, typi-
cally necessitate the attackers to obtain voice recordings of
the victim. This assumption inherently limits and confines
the pervasiveness of these attacks. As a result, targets are
often limited to celebrities whose voice samples are widely
available online. However, there have been minimal efforts to
enhance the pervasiveness of the voice deepfake attacks to a
wider range of victims.
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Figure 1: Figure depicts an example attack scenario of Foice.
The attacker (1) obtains the victim’s photo along with the
corresponding phone number (often used as WeChat ID) from
online social media such as LinkedIn; (2) attempts to log in to
victim’s WeChat via Voiceprint (voice authentication) system
on the attacker’s device; (3) inputs the victim’s photo and
WeChat’s provided digits to Foice to generate N synthetic
voice recordings where the speaker is speaking the provided
digits; and (4) manages to successfully authenticate and log
in as the victim on WeChat by sequentially playing each of
the N synthetic recordings through an external speaker.

In light of this, we pose the following question: is it pos-
sible to design a more pervasive voice deepfake attack that
eliminates the need for direct access to the victim’s voice
recordings, thus increasing the attack scalability by broad-
ening the target to a wider range of victims? To address this,
we propose Foice, a novel voice deepfake attack that can syn-
thesize a victim’s voice leveraging only a single photograph
(i.e., face image) without requiring voice recordings of the
individual. Such images are easily accessible, especially with
the proliferation of social media platforms such as Instagram,
Facebook, and LinkedIn. The feasibility of Foice stems from
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the inherent biological correlation between facial attributes
(e.g., gender, age, facial bone structure, mouth, and lips) and
voice features (e.g., volume, pitch, timbre, pace, and vocal
range). This correlation becomes clear when we intuitively
gauge an individual’s voice from their physical appearance
— for instance, predicting a deeper tone from a more robust
individual while expecting a higher pitch from someone with
a slender build. Figure 1 illustrates how Foice launches an
attack on WeChat’s Voiceprint, namely its voice authentica-
tion system, by leveraging the biological correlation. The
attacker (1) obtains the victim’s photo along with the cor-
responding phone number (often used as WeChat ID) from
online social media such as LinkedIn; (2) attempts to log in to
the victim’s WeChat via the Voiceprint (voice authentication)
system on the attacker’s device; (3) uses the victim’s photo
and WeChat’s provided digits to generate N synthetic voice
recordings where the victim is speaking the provided digits;
and (4) manages to successfully authenticate and log in as
the victim on WeChat by sequentially playing each of the N
synthetic recordings through a speaker.

Designing Foice presents significant challenges, primarily
due to the intricate relationships between facial and voice
features. Specifically, facial features influence only a portion
of voice features (e.g., pitch), while the remaining (e.g., tim-
bre) are influenced by internal physiological structures, like
the vocal cords, which are not discernible from facial appear-
ance (see §2.3). To bridge this gap, we design a generative
deep-learning model to generate a search space containing
all the potential voice features that cannot be derived from
the face image. To launch the attack on the victim, Foice
extracts a portion of voice features from the victim’s face
image (i.e., face-dependent features). The attacker then takes
N samples of face-independent features from the search space
and combines them with the face-dependent features to ob-
tain N synthetic voice recordings. By increasing the number
N, the attacker has a higher chance of obtaining a synthetic
recording that sounds similar to the victim, hence successfully
compromising the voice authentication systems.

We evaluate Foice to demonstrate its feasibility through
comprehensive real-world experiments. We evaluate Foice’s
attack performance on authentication systems of commodity
products, including WeChat’s Voiceprint as well as smart as-
sistants such as Siri [9], Google Assistant [10], and Bixby [2],
by inviting ten participants. We also evaluate Foice on the
state-of-the-art cloud services, including Microsoft Azure [8],
iFlyteck [7], VGGVox [43], and DeepSpeaker [35], with a
public dataset of 1,029 unique individuals. Our results demon-
strate that all the tested authentication systems and voice
assistants are vulnerable to Foice attack. In particular, Foice
successfully bypasses all ten invited participants’ WeChat
Voiceprint system. On average, about 30% of the synthetic
recordings for each participant are successful in the attack. In
addition to demonstrating the effectiveness of Foice attack, we
quantify how a face image contributes to the success of Foice

attack. Finally, we evaluate the feasibility of augmenting the
conventional voice deepfake attack with Foice. Our results
demonstrate that Foice significantly improves the attack’s
performance by threefold.

These findings highlight the urgent need for heightened
awareness to safeguard against novel voice deepfake attacks,
such as Foice. Through this study, we also hint at a new avenue
of information leakage, namely how a person’s face poten-
tially reveals how they sound. We hope that this paper would
stimulate further exploration within the security community
regarding the threats posed by the correlation of biometric
information.

2 Background

We introduce the background of voice deepfake, voice authen-
tication systems, and the correlation between a speaker’s face
and voice.

2.1 Voice Deepfakes

The state-of-the-art voice deepfake utilizes a short voice
recording of the victim to synthesize another recording with
a similar vocal style but with new content. A typical example
of a voice deepfake circulating on social media is to manipu-
late the content of the U.S. president’s speech while keeping
a similar vocal style. Figure 2 depicts an overview of how
the state-of-the-art voice deepfake operates. Specifically, the
voice deepfake produces a new voice recording in two steps.
(1) Voice Feature Extraction. Given a voice recording, the
voice deepfake first extracts a voice feature vector, which
captures and numerically represents the speaker’s unique
voice features, such as pitch, timbre, and pronunciation. In-
tuitively, when we listen to two different speakers saying the
same sentence (e.g., "Hello, how are you?" as depicted in
Figure 2(a)), we can easily differentiate between them due
to their unique voice features. The voice deepfake utilizes a
deep-learning model, namely the Speaker Encoder to extract
the voice feature vector, which captures relevant voice fea-
tures of the speaker that can distinguish him/her from other
speakers, regardless of the speech content.
(2) Voice Synthesis. Subsequently, the voice deepfake synthe-
sizes a new voice recording with the extracted voice feature
vector and a text input (e.g., "Hey, Google!" as depicted in Fig-
ure 2(b)). The voice deepfake utilizes another deep-learning
model, namely the Synthesizer, to perform this task. Specif-
ically, the Synthesizer first generates audio signals whose
waveform is primarily determined by the text input. It then
modifies the audio signals based on the voice features de-
scribed in the voice feature vectors.

Different from the state-of-the-art voice deepfake, Foice
only utilizes a face image of the speaker to generate the voice
feature vectors (see §4.3 and §4.4). We observe that both Foice

1046 33rd USENIX Security Symposium

USENIX Association



(a) Voice Feature Extraction

[Hello, how are you?|
Speaker
T N

Input: Victim’s Voice Output: Voice Feature
Recording Vector
(b) Voice Synthesis T
Voice F T i xe
- o %;zecf:;u e P Syntheslzer -}
nput: + Output: Synthesized

Hey, Google!

Figure 2: Figure depicts an overview of how voice deepfake
operates. (a) depicts the Voice Feature Extraction step, where
the Speaker Encoder extracts the voice feature vector from a
voice recording. (b) depicts the Voice Synthesis step, where
the Synthesizer uses the voice feature vector and a text input
to synthesize a new voice recording.

Voice Recording

and the voice deepfake yield similar vocal styles when using
the face images and voice recordings, respectively (see §5.2).

2.2 Voice Authentication

Voice authentication is often incorporated into many online
applications, such as social media platforms (e.g., WeChat),
and telebanking, as an authentication method. Modern voice
assistants, such as Siri, Google Assistant, and Bixby, also re-
quire voice authentication when they are activated by the user
(e.g., "Hey, Google" when activating Google Assistant). In
general, existing voice authentication solutions consist of two
phases, namely the Enrollment Phase and the Authentication
Phase. During the Enrollment Phase, the system provides
several digits or sentences and enrolls the user’s voice. In
the Authentication Phase, the system records the user’s voice
again and compares the recorded voice with the enrolled voice
to obtain a similarity score. The authentication is successful
when the score is above a certain threshold.

However, we notice that the existing systems are vulnerable
to voice deepfake attacks due to two reasons.
(1) Low Threshold. For the user’s convenience, voice au-
thentication systems usually configure a considerably low
threshold of around 0.5 to 0.6 (e.g., Microsoft and iFlytek
APIs) [7,8]. This is to ensure that users can successfully au-
thenticate themselves in noisy environments, such as restau-
rants and cafes, with background noises (e.g., speech from
other people).
(2) Unlimited Number of Attempts. Many voice authenti-
cation systems do not restrict the number of authentication
attempts for the user’s convenience. For example, WeChat
does not limit the number of unsuccessful login attempts.
However, there is a limitation on the number of successful
daily logins [13].

Foice exploits the aforementioned vulnerability to success-
fully bypass real-world voice authentication systems even
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Figure 3: Figure depicts an example of the voice feature vector
extracted from a voice recording, which captures the speaker’s
voice features. Based on our modeling, the voice feature vec-
tor consists of face-dependent and face-independent features,
which are affected by the speaker’s facial appearance or inner
body structure, respectively.

with a single face image from the victim.

2.3 Correlation Between Face and Voice

Recall that existing voice deepfake utilizes the voice fea-
ture vector to capture and numerically represent voice fea-
tures, including volume, pitch, timbre, pace, and vocal range,
all of which constitute the uniqueness of the person’s voice
(see §2.1). Importantly, a subset of values in the voice feature
vector is correlated with the person’s facial appearance [47]
(i.e., face-dependent features). The remaining feature val-
ues are largely affected by the person’s inner body structure
that produces the sound [49] (i.e., face-independent features).
Figure 3 illustrates our modeling of face-dependent and face-
independent features and their correlations with the speaker’s
facial appearance and inner body structure, respectively.

Facial Appearance. Facial appearance, including gender, age,
the shape of the mouth, facial bone structure, and thin or full
lips, may affect how the person’s voice sounds (i.e., the face-
dependent features) [47]. We present three examples as de-
picted in Figure 3 (Facial Appearance). () Gender: Males
typically have a more prominent eyebrow ridge and broad
jawline compared to females while having a lower voice pitch.
This is because hormone levels (i.e., the major factor determin-
ing gender) during puberty affect both face morphology and
voice pitch [55]. @) Age: Age significantly affects a person’s
face and voice due to physiological and structural changes that
occur over time. As people age, we can observe wrinkles and
fine lines, especially around the eyes, forehead, and mouth. At
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the same time, their vocal cords (i.e., a pair of muscular struc-
tures located in the voice box within the human throat) may
become less flexible and thinner, resulting in a higher pitch in
both men and women [42]. ) Facial bones, mouth, and lips:
Facial bone structure, the shape of the mouth, and thin or full
lips may interfere with the sound wave propagating from the
vocal cords to the mouth [23]. For example, people with thin
lips may find it more challenging to articulate labial sounds
(i.e., sounds like ‘p’, ‘b’, ‘m’, and ‘w’ involving movement
of lips). It is because they have less lip tissue to create the
necessary closure or friction [15].

Inner Body Structure However, a significant portion of the
voice feature vector is not correlated with the face (i.e., the
face-independent features). Instead, it is largely affected by
the inner body structure, such as the nasal cavity, oral cavity,
and larynx. Figure 3 (Inner Body Structure) depicts two exam-
ples. (D The nasal cavity and oral cavity: The nasal and oral
cavities are hollow spaces or passages in the head that extend
from the nose or mouth, respectively, to the back of the throat.
The shape and size of these cavities affect how the sound
waves resonate and are modified, which, in turn, influences
the timbre or quality of a person’s voice [27]. @) The larynx:
The larynx, commonly known as the voice box, plays a vital
role in speech production. It is located in the neck. The larynx
contains the vocal cords, which are two pairs of folds made
up of muscle and tissue. The shape, size, and tension of the
vocal cords significantly affect the timbre of the voice [51].
Key Takeaway. The voice feature vector describing a person’s
voice consists of the face-dependent (i.e., correlated with
face) and face-independent (i.e., not correlated with face) fea-
tures. Leveraging this observation, Foice first utilizes informa-
tion in the face image to extract the face-dependent features
(see §4.3). However, as the face image provides almost no in-
sight into the inner body structure, it is challenging for Foice
to obtain the face-independent features. To overcome this
challenge, Foice designs a deep-learning model to generate
a search space containing all the possible face-independent
features subject to different inner body structures (see §4.4).

3 Threat Model

We highlight the attacker’s goals and capabilities and further
present Foice’s assumptions. The goal of the attacker is to
compromise voice authentication in order to gain unautho-
rized access to the victim’s accounts on platforms such as
social media or gain access to personal voice assistants like
Siri or Bixby. To achieve this goal, the attacker possesses the
capability to acquire at least one facial image of the victim
along with their credentials (such as email addresses, often
used as account IDs). This information is extracted from pub-
licly available data on online platforms such as Instagram,
Facebook, and LinkedIn. Moreover, we assume that the at-
tacker is capable of crawling through multiple online plat-
forms to gather information from a broad cross-section of

potential victims, making Foice a scalable attack. To execute
the attack successfully, the attacker is also capable of col-
lecting a large training dataset. This dataset includes a large
collection of facial images of different speakers paired with
their corresponding ground truth voice data (see §4.1).

4 System Design

We now present an overview of Foice’s design in §4.1, fol-
lowed by details of each module from §4.2 to §4.5.

4.1 System Overview

Foice produces a set of synthetic voice recordings of the victim
from a single face image leveraging the biological correla-
tion between facial appearance and voice features (see §2.3).
The attacker could iterate through all synthetic recordings to
authenticate and log in as the victim to voice authentication
systems. As depicted in Figure 4, Foice is divided into the
Training and Attack phases.

OTraining Phase. The Training Phase is a one-time phase
where the attacker utilizes online public datasets, containing
face images and corresponding voice recordings, to train deep-
learning models to learn the correlation. Specifically, Foice
first processes the online public dataset in the Data Process-
ing module (§4.2) to remove noise in face images, such as
head orientations and background scenes, and extract ground
truth voice feature vectors from voice recordings. Recall from
§2.3 that the voice feature vector consists of face-dependent
(i.e., correlated with face) and face-independent (i.e., not cor-
related with face) features. For clarity, we use Fyep and Fiygep
for these two kinds of features. In the Face-dependent Voice
Feature Extractor module (§4.3), Foice utilizes processed
face images and the ground truth voice feature vector to learn
the relationship between Fy,, and facial appearances. Sub-
sequently, in the Face-independent Voice Feature Generator
module (§4.4), Foice learns to identify Fj,4., by removing
Fy.p, from the ground truth voice feature vector. It then gener-
ates a search space enumerating all possibilities of Fgep.
OAttack Phase. Subsequently, in the Artack Phase, the at-
tacker inputs one face image of the victim and takes N random
samples from the search space to obtain N synthetic voice
recordings, which are played iteratively to the authentication
system until gaining access. Specifically, Foice first processes
the face image in the Face Processing module (§4.2.1). Foice
then utilizes the trained model in the Face-dependent Voice
Feature Extractor module (§4.3) to extract Fy,, of the vic-
tim from the processed face image. In the Face-independent
Voice Feature Generator module (§4.4), Foice combines N
samples from the search space with Fy,, to reconstruct a
set of N voice feature vectors of the victim. Finally, Foice
converts N reconstructed vectors and a text input into N syn-
thetic voice recordings, respectively, in the Voice Synthesizer
module (§4.5).
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Figure 4: Figure depicts Foice’s system design. Foice is divided into Training Phase and Attack Phase. During the Training
Phase, the attacker utilizes online public face images and corresponding ground truth voice recordings to train deep-learning
models in the Face-dependent Voice Feature Extractor (§4.3) and Face-independent Voice Feature Generator (§4.4). During the
Attack Phase, the attacker inputs the victim’s face image to Foice to synthesize N number of voice recordings of the text that the
attacker chooses (e.g., "Hey, Google!") in an attempt to bypass the victim’s voice authentication or voice assistant systems (e.g.,
Google Assistant). The attacker iterates through the N synthetic voice recordings until gaining access.

4.2 Data Processing

Data processing module processes the online public dataset
containing face images and corresponding voice recordings.
It consists of two sub-modules. First, the Face Processing sub-
module (§4.2.1) removes noise from the face image, such as
the background scene and head orientation. Second, the Voice
Processing sub-module (§4.2.2) takes as input a voice record-
ing and outputs the voice feature vector that can uniquely
identify a speaker.

4.2.1 Face Processing

Figure 5(a) illustrates the processing pipeline of this sub-
module. Foice processes face images in two steps.

Face Cropping and Normalization. In this step, Foice re-
moves background scenes and normalizes head orientations
and face sizes in the input face image. Specifically, we detect
and crop the face appearing in the image using a face detec-
tion model. Then, the cropped face is normalized to ensure
that each face has approximately the same size and is rotated
so that two eyes lie on a horizontal line.

Face Blurriness Assessment. Subsequently, Foice evaluates
the image quality of the cropped and normalized face and
discards blurry face images from the dataset. Specifically,
Foice evaluates the clarity and sharpness of the face image
by obtaining a quality score, which we compute based on
the observation that a sharp image generally contains a large
number of edges. Here, we apply the Sobel edge detection [32]
on the face to detect all the edges. Examples of images with
different quality scores are listed in Figure 14. We only keep
images with scores above a threshold (i.e., empirically set
to 100). However, we note that Foice attack is still effective

Data Processing (§4.2) |

(a) Face Processing (§4.2.1)
- i&éé 'c'n')' ping and |
ization

Input !

(b) Voice Processmg (§4.2.2)

Input Output g i
Speaker 7 Features
Il iy > {Encocer S §
diifintigtin & ” Face-indep
. . Voice Feature Features
Voice Recording Vector

Figure 5: Figure depicts the pipeline of Foice’s Data Process-
ing module (§4.2). (a) depicts the Face Processing (§4.2.1)
which removes noise like head orientations and background
scenes from the face images and filters out blurry images. (b)
depicts the Voice Processing module (§4.2.2) which extracts
the voice feature vector from the voice recording.

when taking blurry faces (i.e., those below the threshold) as
input (see §5.5.3).

4.2.2 Voice Processing

Foice only utilizes this sub-module in its Training Phase. Fig-
ure 5(b) depicts the audio processing pipeline. We leverage a
deep-learning model, namely the Speaker Encoder (see §2.1),
to extract a voice feature vector from a voice recording. The
extracted voice feature vector serves as the ground truth to fa-
cilitate the training of deep-learning models in §4.3 and §4.4.
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Figure 6: Figure depicts the pipeline of the Face-dependent
Voice Feature Extractor module (§4.3). Specifically, it extracts
relevant facial features from the processed face images and
then converts them to face-dependent features in the voice
feature vector.

4.3 Face-dependent Voice Feature Extractor

In this module, Foice aims to extract the face-dependent fea-
tures, Fyep, from a processed face image. Figure 6 depicts the
module pipeline in the Training and Attack phases.
Training Phase. In this phase, Foice trains a deep-learning
model using processed face images, Img fqce, and correspond-
ing ground truth voice feature vectors, Fr, from online public
datasets (i.e., training dataset). The training objective is first
to identify the facial features in face images that are corre-
lated to the voice of the speaker, and then convert the relevant
facial features to partial voice features, namely Fy,,, as the
model output. Figure 6(a) depicts the deep-learning mod-
els, namely an Encoder, E f4c.(+), and a Converter, Cr_,(-) L
Specifically, Efac.(-) learns to identify relevant facial fea-
tures from Img 4c. leveraging convolutional neural networks
(CNN) such as ResNet [29]. Cy_,,(-) learns to convert facial
features to Fy,p.

Fface = Eface (Imgface), Fdep = Cf%v(Fface);

where Fruc. denotes the facial features extracted by E face(~).

To ensure that the extracted Fyy.. correlates with the
speaker’s voice features, we train the two models jointly. We
design the loss function to maximize the similarity (or mini-
mize the distance) between Fy,, and Fgr, such that

Eface (I'])]:ICI‘}HV(') Err(FdeP7 FGT) ’

where Err(-,-) denotes distance-based loss function. We
note that our training scheme is effective in extracting face-
dependent features with the following Observation 1. We
present an empirical analysis of this observation in §A.2.1.

ISee §A.1 for model architecture and implementation.
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Figure 7: Figure depicts the pipeline of the Face-independent
Voice Feature Generator module (§4.4). Specifically, it gen-
erates a search space of all possible face-independent fea-
tures subject to different inner body structures by analyzing
the dataset. It then combines both face-dependent and face-
independent features to reconstruct the voice feature vectors
of the victim, ultimately generating N reconstructed voice
feature vectors.

Observation 1. Following the training scheme in §4.3, Foice
can extract face-dependent voice features, such as voice gen-
der, from a single face image.

Attack Phase. The attacker inputs the victim’s face image
to the trained Encoder, Efqc.(-), and the Converter, Cy_,, (),
to extract Fy,p of the victim. Figure 6(b) depicts the pipeline.
Note that the attacker can input face images that are unseen in
the Training Phase, hence attacking a wider range of victims.

4.4 Face-independent Voice Feature Generator

In this module, Foice aims to obtain the victim’s face-
independent features, Finq.,. However, this is extremely chal-
lenging because Fi,q4., are largely affected by the victim’s
inner body structure (see §2.3) which a face image provides
almost no insight into. To overcome this challenge, the core
idea is to analyze the known ground truth voice feature vec-
tors, Fgr, of speakers in the public online dataset (i.e., training
dataset) to generate a search space which enumerates all pos-
sible Fingep. Figure 7 illustrates this core idea. To launch the
attack on the victim, the attacker can take N samples from the
search space and combine them with the face-dependent fea-
tures, Fy,p, extracted from the face image to obtain a set of N
reconstructed voice feature vectors, {Frecon, }» where i € [1,N].
By increasing N, the attacker has a higher chance of obtain-
ing a Fycon, sufficiently similar to the victim’s Fr. We now
present how Foice generates the search space in the Training
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Phase and how the attacker could use Foice’s model to attack
a victim in the Artack Phase.

Training Phase. In this phase, we train a deep-learning model,
which learns how to generate a search space from Fy,, and
Fgr of speakers in the training dataset. However, there are
two main challenges.

First, separating Fj,4ep from Fgr is non-trivial. To over-
come this challenge, we design a bottleneck in the model
(inspired by AutoVC [46]) to reduce the dimension of Fgr
until it only contains Fi,4., (i.€., with as little Fy,, as possi-
ble). The bottleneck is analogous to a “funnel” that filters out
Fy.p from Fgr. This is feasible by selecting a proper size of
the “narrow opening of the funnel”, or the dimension of the
output of the bottleneck.

Second, the Fj,4), of speakers in the training dataset form
discrete data points. It is still difficult to generalize to new
speakers who are not in the dataset. For example, a victim’s
Fingep may be different from all speakers in the dataset and
Foice’s search space should still contain it. To address this
issue, we ensure that the search space adheres to a continuous
distribution (i.e., standard Gaussian distribution). Intuitively,
we may find the victim’s Fj,4., by interpolating between
discrete data points in the dataset.

Figure 7(a) depicts the details of our model design. Specif-
ically, the Bottleneck, B(-), takes Fgr as input and outputs
Fiudep that has a smaller dimension and follows the contin-
uous standard Gaussian distribution. Subsequently, the Re-
constructor, R(-,-), combines Fj,4,, and Fy,, to obtain the
reconstructed voice feature vector, Fyecon-

Findep = B(FGT)a Frecon = R(Findevadep)

We train the deep-learning model by minimizing a custom
loss function to achieve two training objectives. First, to en-
sure that the search space is continuous, we minimize the
KL-divergence loss (i.e., a standard loss often used to force
feature vectors to follow the standard Gaussian distribution).
Second, to ensure that R(-,-) can accurately reconstruct voice
features, we minimize the reconstruction error (i.e., the differ-
ence between Fgr and F...,). Hence, the custom loss func-
tion is:

B(I;flllel(l .)Err(FGT’FrECO") +KL[PEndEp(> ” N(O7I)]7

where KL(- || -) denotes the KL-divergence loss, Err(-,-) rep-
resents the reconstruction error (e.g., distance-based loss
function), and Py, (+) denotes the probability density func-
tion OfE'ndep-

Note that Foice only utilizes B(-) in the Training Phase to
obtain accurate extraction of Fj,q, from Fgr to train R(-, -).
We note that our bottleneck structure and training scheme
are effective in extracting face-independent features with the
following Observation 2, and we present an empirical analysis
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Figure 8: Figure depicts the implications of the bottleneck
dimension to Foice when it is (1) too wide, (2) optimal, and
(3) too small. Foice selects the optimal dimension.

Observation 2. By adjusting the bottleneck dimension, Foice
is able to produce face-independent voice feature vectors that
contains little face-dependent voice features.

The Rationale Behind Observation 2. Figure § depicts three
scenarios to demonstrate the implications to Foice if the bottle-
neck dimension is (1) too wide, (2) optimal, and (3) too small.
(1) Too wide: When the bottleneck dimension is too wide
(i.e., as wide as Fgr), the bottleneck tends to copy Fgr di-
rectly to its output, Fjug.p, and the reconstructor could simply
utilize Fj,gep as its output, Fyecon, to achieve a minimal recon-
struction loss (i.e., the difference between Fgr and Frecon).
However, the search space in this case is overly large (i.e., as
large as the entire voice feature vector space). (2) Optimal:
When the bottleneck dimension decreases, Fiuqe), is forced to
discard some portion of it. To minimize the reconstruction
loss, Fipgep will first discard information preserved in Fyep.
When the bottleneck dimension reaches the optimal, Fjugep
contains just the right amount of information and involves as
few face-dependent features as possible in order to minimize
the reconstruction loss. (3) Too small: When the bottleneck
dimension is too small, Fj.g., starts to lose face-independent
features in this case, leading to large reconstruction errors. As
a result, the attacker may not be able to find the voice feature
vector associated with the victim in the search space.
Attack Phase. Figure 7(b) depicts how the attacker can uti-
lize Fy,, of the victim and Foice’s trained model to obtain
a set of voice feature vectors of the victim, {Fyecon, }, where
i € [1,N]. Specifically, the attacker first samples N random
vectors as {Findep, s - - - s Findepy } from the standard Gaussian
distribution, A’(0,1). Then the attacker leverages the trained
R(-,-) to combine each Fj,q.p, With Fy,, previously extracted
from the victim’s face image (see §4.3).

E‘ndep; ~ N(O,I),

where i € [I,N]. Finally, the attacker obtains
{Frecon Lreee ,Fm-onN} and then generates N synthetic
voice recordings in the Voice Synthesizer module (§4.5).

Frecon,- = R(F;'ndepdeep)7

4.5 Voice Synthesizer

Foice now takes as input a set of N reconstructed voice fea-
ture vectors, Fr.con, and text of a given content (e.g., "Hey,
Google!"). Foice then outputs N synthetic voice recordings
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of the victim speaking the given content. Specifically, Foice
adopts the deep-learning model used in the state-of-the-art
voice deepfake system (see §2.1). Finally, the attacker enu-
merates through all synthetic voice recordings to authenticate
and log in as the victim to voice authentication systems.

5 Evaluation

Through comprehensive real-world experiments, we seek to
answer the following questions: @ Is Foice attack effective
against diverse modern implementations of speaker authenti-
cation systems and voice assistants? (see §5.2) @ Can Foice
provide more voice information other than age and gender?
(see §5.3) ® Can we combine Foice and the existing voice
deepfake system to improve the attack’s effectiveness? (see
§5.4) @ How do different experimental conditions affect the
effectiveness of Foice? (see §5.5) @ How does Foice behave
when converting facial features into voice features? (see §5.6)

5.1 Experiment Setup

We now present the experiment setup to evaluate Foice.

5.1.1 Voice Authentication System Selection

We evaluate Foice on various state-of-the-art voice authentica-
tion systems and off-the-shelf voice assistants, listed in Table
I. The list provides a representative collection of systems that
can be acquired and implemented for experiments.

Voice Authentication Systems. We select two types of voice
authentication systems for our evaluation - on-device systems
and cloud services. First, we choose commercial on-device
voice authentication systems installed on commodity smart-
phones. In addition, we experiment on commercial cloud
authentication services, such as the voice authentication API
from Microsoft and iFlytek, and deep learning models pro-
posed in academic papers, such as VGG Vox and DeepSpeaker,
which could be deployed as cloud services. We select the
official GitHub implementation of VGGVox [11] and Deep-
Speaker [3], which are pre-trained on VoxCeleb2 [21] and
LibriSpeech dataset [45], respectively. Cloud services may
exhibit superior authentication capabilities compared to on-
device systems. This is because on-device systems are de-
signed to be lightweight due to limited computing resources
on the edge device. In contrast, cloud services can utilize
large deep-learning models without such constraints.

Voice Assistants. Initially designed for automatic speech
recognition (i.e., conversion from speech recordings to writ-
ten text), voice assistants are increasingly integrating voice
authentication for personalized user services. This paper pri-
marily focuses on voice assistants incorporating voice au-
thentication. Consequently, we select and experiment with
off-the-shelf systems - e.g., Siri, Google Assistant, and Bixby.

Authentication Mechanism. The aforementioned systems
work by verifying the user’s identity. Each system has ex-
actly one enrolled speaker and checks if an input voice is
uttered by the enrolled speaker or not. Specifically, by com-
paring the enrolled voice with the input voice, the system
computes a match score to indicate how closely they match
each other. If the match score exceeds a pre-defined threshold,
then the system accepts the input as a match; otherwise, it
rejects the input voice (see §2.2). The on-device systems (i.e.,
WeChat, Siri, Google Assistant, and Bixby) have fixed thresh-
olds that users cannot modify. Cloud services are initially
configured with default thresholds, yet users can adjust the
threshold based on their specific usage scenarios. This paper
assesses cloud services across various threshold values, with
the threshold configuration discussed in §5.2.2. It is worth
taking note that while the main purpose of voice assistants
like Siri, Google Assistant, and Bixby is to recognize activa-
tion words such as “Hey, Google”, these systems also include
the above-mentioned authentication measures to verify the
speaker’s identity.

5.1.2 Benchmark Voice Deepfake System

We utilize the state-of-the-art voice deepfake system with
public code and pre-trained models as our benchmark. Specif-
ically, we select SV2TTS [31] because it outperforms other
state-of-the-art voice deepfake systems due to its outstand-
ing performance in generalizing to unseen speakers. SV2TTS
takes as input a single voice recording from the victim and out-
puts one synthetic recording. We use a well-known GitHub
implementation [1] pre-trained on the VoxCeleb and Lib-
riSpeech datasets.

5.1.3 Speaker Dataset

We use three different speaker datasets, namely Vox-
Celebl [43], VoxCeleb2 [21], and a custom dataset, that con-
tain face images and associated voice recordings for our ex-
periments. We use each speaker’s face image as the input to
Foice to produce multiple synthetic voice recordings. We also
input the corresponding voice recording to the benchmark
voice deepfake model (i.e., SV2TTS) to generate a synthetic
voice recording as the baseline.

VoxCeleb. VoxCelebl and VoxCeleb2 are public datasets con-
taining YouTube videos. In particular, VoxCelebl contains
over 100,000 videos for 1,251 celebrities, and VoxCeleb2
contains over a million videos from 6,112 celebrities. Each
speaker in the dataset has multiple face images and voice
recordings. There is no shared speaker identity between these
two datasets. Both datasets demonstrate relatively equal rep-
resentation of genders, with male gender accounting for 55%
in VoxCelebl and 61% in VoxCeleb2, respectively. How-
ever, the videos are collected in many noisy environments
—e.g., red carpets, outdoor stadiums, and lecture halls. Con-
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Eval. Param.

Overall Success Rate Average Individual

cial :

Category System SystemType |~ - qemic ! #Spk. | Threshold | SV2TTS [31]|  Foice A“(gF‘:iec';tf tsl?,;f*r;tsz;Ck s“‘i%f,ﬁiga‘e
Y wechat Authentication | Commercial | 10 - 50.0% 100% — 29.7%
0 TR @ O siri ; ; C fal | 10 — 50.0% 70.0% — 40.9%

0) > Siri Voice Assistant | Lommercia

O—Device oy Google Assistant | Voice Assistant | Commercial | 10 — 50.0% 60.0% - 10.3%
System Q Bixby Voice Assistant | Commercial | 10 — 30.0% 50.0% — 3.6%

( =- Microsoft API Authentication | Commercial | 597 0.1-0.8 0% - 86.9% | 0% -95.0% 0% - 99.6% 0% - 29.5%

Q IIII"I["’é) © iFlytek API Authentication | Commercial | 1021 | 0.1-0.8 0% -100% | 0% -100% 0% - 100% 0% - 99.5%

_____ & VggVox Authentication | Academic 1029 | 0.1-0.8 |2.9%-97.8%8.9% - 99.3% 26.1% - 99.9% 2.3% - 84.6%

Cloud Service ['eg DeepSpeaker Authentication | Academic | 1029 | 0.1-0.8 | 0.2% -99.5% | 0.5% - 100% 2.4% - 100% 1.0% - 99.4%

Table 1: Table depicts the four on-device systems and four cloud services tested in our experiment. We present the evaluation
parameters for each system, the overall success rate of SV2TTS [31], Foice, and Augmentation Attack (i.e., Foice + SV2TTS), and

the average individual success rate achieved by Foice.

sequently, voice recordings in the dataset may contain back-
ground conversations, laughter, speech overlap, and diverse
ambient noise. Similarly, face images experience variations
in pose, lighting conditions, and blurriness due to motion.
We use VoxCeleb2, a larger dataset, for training and Vox-
Celebl for evaluation of Foice on cloud-based authentication
services.

Custom Dataset. We evaluate the real-world implications of
Foice on on-device authentication systems by creating our
own dataset of ten participants with different ages (six in their
20s; two in their 30s; one in their 40s; one in their 50s) and
genders (seven male and three female). Each participant uti-
lizes the Voice Memo app on the iPad Air (4th generation) for
recording. In a quiet meeting room, they read two sentences
from the Rainbow Passage [26]. This voice recording is input
to SV2TTS to generate a synthetic voice recording, which
serves as our benchmark. We also collect a profile photo from
each participant as the input to Foice. We conduct the ex-
periments and data collection by adhering to our university’s
Institutional Review Board (IRB) approval (see §A.4). Table 3
summarises the dataset employed to train and evaluate Foice.

5.1.4 Performance Metrics

We define the following three metrics to evaluate Foice:
Overall Success Rate: Percentage of speakers with at least
one synthetic voice recording that passes the authentication
(or successfully activate the voice assistant).

Individual Success Rate: Percentage of synthetic voice
recordings of a particular person that passes the authentication
(or successfully activate the voice assistant).

Foice Individual Success Rate: Fraction of voice cloned
from a single face image that can pass the verification. A
higher individual success rate indicates that the participant is
more likely to be attack by Foice.

The overall success rate captures the general view of the
security vulnerability of the target authentication system. In
contrast, the individual success rate indicates the chances of
attacking a victim successfully.

5.2 Can Foice Attack Real-world Systems?

We present our experiment results on eight modern voice
authentication systems and voice assistants as listed in Table |

5.2.1 Analysis of On-device Systems

Users interact with on-device systems (i.e., WeChat, Siri,
Google Assistant, and Bixby) by engaging in direct conver-
sation with the device microphones. To resemble real-world
scenarios, we recruit ten participants in our experiments.
Data Preparation. We evaluate the effectiveness of Foice
and SV2TTS attacks on these systems. Specifically, we use
our custom dataset (see §5.1.3) to generate synthetic voice
recordings of each participant using both Foice and SV2TTS.
Ultimately, for each speaker, we generate 100 synthetic voice
recordings using Foice and one synthetic recording using
SV2TTS. This is due to Foice’s ability to produce multiple
synthetic voice recordings from a single face image (see §4.4),
whereas SV2TTS can generate only a single synthetic record-
ing from a single voice input (see §5.1.2).

Experiment Setup. Each participant enrolls their voice with
a dummy account on each system. Subsequently, we use a
laptop speaker to directly play the synthetic voice recordings
to the smartphone hosting the on-device system. The smart-
phone is positioned next to the laptop, with the smartphone’s
microphone facing directly towards the speaker. We consider
an attack successful if the synthetic voice recording can log
in to the WeChat account or activate the voice assistant.
Results of WeChat. As depicted in Table 1, Foice yields
an overall success rate of 100%. In other words, all the par-
ticipants have at least one Foice-generated synthetic voice
recording that can successfully log in to the WeChat account
protected by their voice. In addition, Foice achieves an aver-
age individual success rate of 29.7%. This indicates that, on
average, approximately 30 out of 100 synthetic recordings of
each participant can successfully log in to WeChat. Given that
WeChat allows unlimited login attempts, this result shows
that Foice poses a significant threat to WeChat’s Voiceprint.
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By comparison, SV2TTS only achieves an overall success
rate of 50%. This is because the synthetic voice recordings
generated by SV2TTS exhibit audible noise. Some are even
unintelligible to the human ear, rendering the authentication
impossible. It appears that SV2TTS is sensitive to noise in
the input audio. Although we recorded the input voice in a
quiet and empty meeting room (see §5.1.3), we still observed
echos in the recording, which could be the primary cause
of the noisy output. This poses a notable disadvantage for
attackers utilizing SV2TTS because noise-free audio is not
easily available. Also, removing noise from audio is still a
difficult research problem [22].

Results of Siri, Google Assistant, and Bixby. Table | sum-
marizes the overall success rate and average individual suc-
cess rate. Overall, Foice yields an overall success rate ranging
from 50% to 70% across all the three voice assistants while
the highest success rate for SV2TTS is 50%. Again, this is
due to the presence of noise in SV2TTS’ outputs, causing
the voice assistant to be unable to recognize the activation
words. In addition, we note that the voice synthesizer (see
§4.5) struggles to accurately pronounce specialized vocab-
ulary. For example, "Siri" tends to be pronounced as "sigh
ree". In turn, this impacts the success rate of both Foice and
SV2TTS. As the technology of voice synthesizers improve,
so should the performance of both Foice and SV2TTS.

5.2.2 Analysis of Cloud Services.

We also evaluate Foice on two state-of-the-art cloud-based
commercial voice authentication APIs (Microsoft and iFly-
tek) and two academic proposals (VGGVox and DeepS-
peaker). Unlike on-device systems, cloud services accept in-
puts through their software interface rather than through a
microphone. This allows us to conduct a large-scale experi-
ment using a public dataset.

Data Preparation. We experiment on the VoxCelebl dataset.
(1) Enrollment. We filter out blurry face images (see §4.2.1)
and select high-quality voice recordings using NISQA [41]
(i.e., a deep learning model evaluating the audio quality). In
total, we have a dataset with 1,029 speakers (out of a total of
1,251 speakers; see §5.1.3). Table | summarizes the number
of enrolled speakers. Not all speakers are successfully en-
rolled to Microsoft and iFlytek due to poor-quality recordings
(i.e., audio signal-to-noise ratio below 2dB). (2) Authentica-
tion. We generate synthetic voice recordings using both Foice
and SV2TTS. Foice takes as input one face image, whereas
SV2TTS uses a new voice recording (i.e., not used for enroll-
ment) as input. The generated recordings are then sent to each
cloud service for authentication.

Threshold. Cloud services rely on an adjustable threshold
(a numerical value between 0 and 1) to decide if two record-
ings are from the same speaker (see §2.1). Table 1 lists the
threshold values used for evaluation. Although Microsoft and
iFlytek recommend fixed thresholds for their systems, we vary
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Figure 9: (a) to (d) depict the overall success rate across
a range of thresholds from 0.1 to 0.8 for four tested cloud
services, respectively.

System Default/Optimal | Overall Success Rate | Average Individual
Threshold SV2TTS [31] Foice Success Rate
Microsoft 0.5 5.5% 0.5% 1%
iFlytek 0.6 2.0% 5.7% 3.3%
VGGVox 0.6 39.6% 67.6% 15.4%
DeepSpeaker 0.5 51% 87.7% 32.7%

Table 2: Table depicts the default/optimal thresholds of four
tested cloud services and the overall success rate of SV2TTS
and Foice, respectively. In addition, it presents the average
individual success rate achieved by Foice.

said thresholds to investigate their overall performance.
Results. Figure 9 depicts the attack success rate across a
range of thresholds from 0.1 to 0.8. Foice achieves compa-
rable results as SV2TTS in attacking Microsoft and iFlytek.
Surprisingly, Foice yields higher success rates than SV2TTS
in attacking VGG Vox and DeepSpeaker across all the thresh-
olds. We note that regardless of differences in system design
and implementation, all systems are susceptible to Foice
when the threshold is set at their default or optimal value as
summarized in Table 2. The optimal threshold of VGGVox
and DeepSpeaker is set to minimize their equal error rate. It is
possible to guard against Foice by setting a higher threshold,
but this will result in higher false rejects, impairing usability.
On the other hand, setting a lower threshold can significantly
increase Foice’s success, as Figure 9 shows. In addition, we
observe that academic models exhibit greater vulnerability
than commercial systems. This could be due to insufficient
training resources (e.g., training data, computing power) or
an inadequate optimization strategy.

5.3 Does Foice Leverage Voice Information Be-
yond Gender and Age?

Foice leverages the correlation between face and voice to ex-
tract face-dependent features, such as gender and age (see
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Dataset Details
Part of VoxCeleb2 [21]
used for training Foice
Part of VoxCeleb1 [43] used for
testing Microsoft, iFlytek,
VGGVox, and DeepSpeaker
Data from recruited participants
used for testing WeChat, Siri,
Google Assistant, and Bixby

#Speaker | #Instances

1273017

Train Set 4108

Test-1 Set 1029 1029

Test-2 Set 10 10

Table 3: Table summarises the datasets for training and test-
ing. "#Speaker" specifies the total number of speakers. "#In-
stances" specifies the total number of face images. "Details"
highlights the source and purpose of each dataset.
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Figure 10: (a) depicts the number of candidate recordings
obtained from the dataset for each participant. (b) depicts the
individual success rate of Foice and Descriptive Attack on
WeChat’s Voiceprint, respectively.

§4.3). However, apart from the face image, the attacker could
gather the victim’s gender and age from other sources (e.g.,
healthcare databases). Hence, we aim to investigate the fol-
lowing: (1) Can a voice deepfake attack be launched using
only descriptive features (e.g., gender and age)? (2) Does
Foice leverage more information other than gender and age?
Descriptive Attack. As such, we define a Descriptive Attack
that only leverages descriptive information (i.e., age and gen-
der) as a baseline. To launch the attack, the attacker searches
from a large-scale voice dataset for speakers of similar age
and the same gender as the victim. Subsequently, these speak-
ers’ voice recordings are input to voice deepfake systems (e.g.,
SV2TTS) to generate candidate synthetic voice recordings. Fi-
nally, the attacker attempts to compromise the authentication
system using all the candidate recordings.

Data Preparation. We utilize VoxCeleb2, on which Foice is
trained, as the dataset for the Descriptive Attack. We ensure
that Foice and Descriptive Attack are implemented with the
same dataset. To attack a victim, we search for voice record-
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Figure 11: Figure depicts the overall attack success rate
of Augmentation Attack (i.e, Foice + SV2TTYS), Foice, and
SV2TTS, for four tested cloud services (with the default or
optimal threshold), respectively.

ings with similar age (i.e., age difference no larger than two
years) and the same gender from VoxCeleb2. For example, if
the attacker wants to attack a 30-year-old male speaker, all
the male speakers between the ages of 28 and 32 are selected.
Figure 10(a) provides an overview of the number of candidate
recordings for each participant.

Descriptive Attack vs. Foice. We evaluate the Descriptive
Attack on WeChat with the same experiment setup in §5.2.1.
Figure 10(b) compares the individual success rate (i.e., the
success rate in attacking a specific speaker) of Foice and De-
scriptive Attack. Foice outperforms the Descriptive Attack
across all the participants. Foice yields an average individ-
ual success rate of 29.7%, and the Descriptive Attack has
an average individual success rate of 9.7%. These results in-
dicate that Foice leverages voice information beyond age
and gender for voice synthesis. Moreover, we can observe
from Figure 10(a) that even if VoxCeleb2 contains record-
ings from 6,112 speakers, each participant has less than 100
candidate synthetic recordings. On the other hand, Foice’s
capability in enumerating all the possible voice recordings is
not constrained by the training dataset.

5.4 Can Foice Augment Existing Voice Deep-
fake Systems?

Recall that existing voice deepfake systems (e.g., SV2TTS)
can only generate one synthetic recording given one voice in-
put. This section investigates if Foice can be used to augment
SV2TTS attack to improve the attack performance.
Augmentation Attack. We assume that the attacker can obtain
a short voice recording (i.e., less than a minute) and a face
image of the victim. To launch the attack, the attacker aver-
ages the voice feature vector generated by SV2TTS with each
of the N vectors produced by Foice. Then, the attacker gener-
ates N synthetic voice recordings from the averaged feature
vectors. Finally, the attacker enumerates through all synthetic
recordings to compromise the authentication system.
Evaluation of Augmentation Attack. We conduct a large-
scale experiment with commercial APIs and academic models,
utilizing the VoxCelebl dataset. We follow the same experi-
ment setup in §5.2.2, where each speaker has 100 synthetic
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Figure 12: Figure depicts the Foice’s overall success rate with
varying numbers of attacking attempts on (a) VGGVox and
(b) DeepSpeaker, respectively.

voice recordings output by the Augmentation Attack. Figure
11 depicts the overall success rate of SV2TTS and Augmenta-
tion Attack when targeting voice authentication systems using
either the default or optimal threshold. Augmentation Attack
outperforms SV2TT and Foice across all the four evaluated
systems. This finding highlights the effectiveness of Foice
in augmenting existing voice deepfake attacks.

5.5 How Robust is Foice?

We evaluate the practicality of Foice over several different
conditions. In total, our experiments target 1,029 speakers
from the VoxCeleb1 dataset (see §5.2.2 Experiment Setup) on
VGGVox and DeepSpeaker. We choose the optimal threshold
of 0.5 and 0.6 for VGGVox and DeepSpeaker, respectively.

5.5.1 Impact of Limiting Attack Attempts

Some real-world authentication systems, such as mobile bank-
ing apps, generally allow three to five login attempts for im-
proved security. We evaluate Foice and Augmentation Attack’s
performance in attacking academic models (e.g., VGGVox
and DeepSpeaker) with a maximum of five attack attempts.
Figure 12 depicts the results. The success rate grows with the
number of attempts for both VGG Vox and DeepSpeaker. With
a single face image, Foice is effective with only five attempts,
yielding a success rate of 29.4% for VGG Vox and 58.6% for
DeepSpeaker. With a face image and a short voice record-
ing, the Augmentation Attack outperforms the single-attempt
voice-only attack (e.g., SV2TTS) with less than five attempts.
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Figure 13: Figure depicts Foice’s overall success rate with
varying missing facial features in the face images on VGGVox
and DeepSpeaker, respectively.
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Figure 14: Figure depicts Foice’s overall success rate with
varying resolutions of face images on VGGVox and DeepS-
peaker, respectively.

The Augmentation Attack achieves a success rate above 50%
across both systems with only five attempts. These results
demonstrate the potential of Foice in realizing a practical
attack that limits the number of attack attempts.

5.5.2 Impact of Image Occlusion

The attack performance may be constrained by image occlu-
sion — e.g., wearing sunglasses or masks. We cover critical
facial features, such as eyebrows, eyes, nose, and mouth as
depicted in Figure 13. We evaluate Foice’s performance with
five attack attempts. For both VGG Vox and DeepSpeaker, we
observe a decrease in the success rate when the eyes, eye-
brows, and nose are covered. In contrast, there is a subtle
increase in the success rate when the mouth is covered. We at-
tribute this to the varying mouth shapes in our training images
due to people speaking. Hence, mouth might be considered
by Foice as noise since the same speaker could have different
mouth shapes. With a cleaner dataset, Foice’s performance
may improve as it may utilize mouth features as well. Overall,
Foice is robust to image occlusion.

5.5.3 Impact of Image Resolution

The attacker might not always obtain high-resolution face
images of the victim. To explore the impact of image reso-
lution, we down-sample the face image evaluated in §5.2.2
to different resolutions. By assessing the resolution using
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our Face Blurriness Assessment algorithm (see §4.2.1), we
categorize images into four resolution levels: high resolution
(score > 100), borderline resolution (score ~ 100), low reso-
lution (score < 100), and extremely low resolution (score ~
0). Figure 14 shows the success rate of Foice with five attack
attempts. We observe that the success rate increases with the
image resolution. Foice achieves a surprisingly high success
rate on both systems, even when taking the extremely low-
resolution image as input. We conjecture that Foice mainly
relies on the overall face structure rather than detailed fea-
tures (e.g., texture) to derive voice features. As a result, Foice
nearly remains unaffected when we blur the face image. The
results indicate that Foice is effective even when taking the
blurry face as input.

5.6 How Do Facial Features Affect the Output?

We now investigate the behavior of Foice’s Face-dependent
Voice Feature Extractor (see §4.3) by analyzing how facial fea-
tures affect its output. Our analysis involves altering various
facial features (e.g., eyes, noses, jawlines, and lips) through en-
largement or reduction in the input face image. Subsequently,
we evaluate the resulting audio output to compare voice fea-
tures with those obtained from the ground truth audio.

Data Preparation. We select 50 speakers (25 males and 25
females) randomly from the VoxCeleb1 dataset. Using Adobe
Photoshop, we then change the size of facial features such
as eyes, noses, jawlines, and lips in each image (see Figure
15). Subsequently, we employ Foice’s Face-dependent Voice
Feature Extractor (see §4.3) and Voice Synthesizer (see §4.5)
to convert these modified images into audio outputs.

Voice Features. We calculate voice features, including pitch
(i.e., highness or lowness of a sound), formant frequency (i.e.,
timbre), spectral centroid (i.e., the brightness of a sound),
and spectral bandwidth (i.e., the sharpness of a sound), from
each generated audio file. We quantify the pitch difference
between the synthetic audio, x, and the speaker’s actual voice,
Yy, using percentage difference, PD = |Xy;y x 100%|. We then
compare PD when enlarging or reducing the size of facial fea-
tures to calculate the delta, A = |PDyiarge — PDreduce|, Which
indicates pitch sensitivity to changes in facial features. We
use Euclidean distance for the remaining voice features to
quantify the difference as they are high-dimensional.
Results. We observe notable effects on pitch and formant
frequency with modifications to facial features. However,
changes in facial features have minimal impact on other voice
attributes (i.e., spectral centroid and spectral bandwidth). Fig-
ure 15a illustrates the effect on pitch, while Figure 15b depicts
the effect on formant frequency, resulting from enlarging and
reducing facial features in the image. In Figure 15a, it is ev-
ident that Foice’s deep-learning model associates lips and
noses with pitch. For instance, enlarging and reducing noses
result in a percentage difference of 15.8% and 18.4%, respec-
tively, with the largest delta of 2.6%. Similarly, modifying
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Figure 15: Figure depicts the impact on (a) Pitch and (b)
Formant Frequency with enlarged and reduced facial features
in the face image.

lips yields the second-largest delta of 2.3%. This aligns with
the biological association between facial features and voice
features (see §2.3). In Figure 15b, we also notice a similar pat-
tern where lips emerge as the most influential facial feature,
followed by jawlines. When enlarging and reducing lips, we
observe a feature distance of 0.35 and 0.42, respectively, with
the largest delta being 0.07. Similarly, modifying jawlines
results in the second-largest delta of 0.05. Jawlines exert a
more pronounced effect on formant frequency compared to
the nose because formant frequencies represent the resonant
frequencies of the vocal tract, which can be influenced by
the width or narrowness of jawlines. Therefore, it is clear
that Foice can effectively extract pertinent facial features and
convert them into pitch and formant frequencies, which are
crucial features often used in speaker identification [48].

6 Discussion

We present relevant discussion points of Foice in this section.
Deployment Considerations. We note that there is an increas-
ing trend of incorporating voice authentication into real-world
systems [2,9,10,13]. Hence, it is not difficult to imagine voice
authentication replacing password-based authentication to
improve user experience. For example, many instant messag-
ing services, including Facebook Messenger and WhatsApp,
could employ voice authentication in the near future for in-
creased usability [12]. Furthermore, we note that existing
authentication systems may adopt multi-factor authentication
(MFA) to enhance their security. For example, voice biomet-
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rics and one-time passwords (OTP) are often used as MFA
factors for telebanking [6] and WeChat also adopts multiple
factors to protect users’ accounts. Hence, if Foice is to be
deployed to gain unauthorized access to the victim’s account,
we envision that Foice would compromise the voice factor
while leveraging additional attack methods to compromise
other factors (e.g., password and OTP) [34].

Improving Foice’s Performance. While we demonstrate
the effectiveness in launching Foice attack on commercial
systems, there is still room for improvement. First, we can
enhance Foice’s processing pipeline such as improving noise
reduction methods to normalize facial expressions and lip
movements in face images (see §4.2). Second, we can incor-
porate diverse information from the victim. For example, we
can combine face images with the victim’s voice samples
(see §5.4) or utilize 3D face photos, to capture additional de-
tails of the victim’s face structures [24,39]. Furthermore, as a
proof-of-concept, Foice only adopts a simple architecture for
the deep-learning models (see §A.1). Further optimization of
the model architecture would contribute to further improving
Foice’s performance.

Countermeasures. One simple countermeasure is to restrict
the number of login attempts to authentication systems. How-
ever, we note that the tested systems are still vulnerable to
Foice with a maximum of five login attempts (see Figure 12
in §5.5.1). Hence, we envision two potential countermea-
sures. First, integrating deepfake voice detection methods
[20, 38, 54] into authentication systems could mitigate prob-
lems that may arise from attacks like Foice. Second, authen-
tication systems could also incorporate liveness detection
methods [14,40,53] to determine the source of the input voice
signal, such as whether it originates from a human voice or
a pre-recorded voice playback. However, it is important to
note that these two directions have not been incorporated into
real-world systems. Hence, additional measures need to be
implemented and deployed to adequately safeguard against
voice deepfake attacks such as Foice.

7 Related Work

We present related works of the attacks on voice authentica-
tion systems and voice synthesis using face information.

Attacks on Voice Authentication Systems. There are two
categories of attacks compromising voice authentication sys-
tems. First, an adversarial attack exploits the vulnerabilities
of machine learning algorithms of the authentication system
to produce erratic predictions [17-19,36,52,58,60]. However,
for an adversarial attack to be successful, one must know
either the implementation details of the authentication system
or the victim’s voice samples. On the contrary, Foice does
not require this knowledge. Second, a voice deepfake attack
leverages deep learning models to generate synthetic voice

recordings that sound like the victim’s voice [50,57]. Foice

is motivated by the voice deepfake attack, but only utilizes a
single face image of the victim.

Voice Synthesis using Face Information. Recent studies in-
vestigate the correlation between face and voice. A fam-
ily of works investigates the possibility of reconstructing
voice from the associated face [28,33,37,56,59], and vice
versa [25, 30,44]. However, face images lack some essential
voice features, making accurate face-to-voice conversion ex-
tremely challenging. Previous methods mostly rely on voice
cues in the face, but we propose a new method to generate
missing voice features and our approach significantly im-
proves voice reconstruction performance compared to prior
methods (see §A.3). Furthermore, prior works fail to under-
score the security implications. For example, Face2Speech
[28], FaceVC [37], SP-FaceVC [56] and Face-TTS [33] eval-
uate audio quality of synthetic voice recordings and how well
the recordings match the corresponding face images. How-
ever, none of these works evaluates the similarity between
the speaker’s ground truth and synthesized voices while the
similarity is the key to attacking voice authentication systems.
Lastly, another family of works investigates the use of video
to generate voice recordings [59]. Foice, on the other hand,
only utilizes a single face image.

8 Conclusion

We present Foice, a novel pervasive and scalable voice deep-
fake attack that uniquely leverages only a single face image
of the victim. Hence, Foice addresses the limitation of state-
of-the-art voice deepfake attacks that require the victim’s
voice samples, which might not always be readily available.
By exploiting the correlation between facial and voice fea-
tures, which originate from physiological structures, we de-
sign Foice to synthesize voice recordings. We demonstrate
the feasibility of Foice through comprehensive real-world ex-
periments, involving ten offline participants and an online
dataset of 1,029 unique individuals, and testing on eight state-
of-the-art voice authentication systems, such as WeChat and
Microsoft Azure. We urge the research community and ven-
dors of voice authentication systems to be alert to this new
threat and to develop corresponding countermeasures.
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A Appendix

A.1 Implementation

We demonstrate the effectiveness of Foice in extracting voice
features from the face image via a proof-of-concept imple-
mentation. We adopt the existing Synthesizer structure and
only focus on implementing Face-dependent Voice Feature
Extractor and Face-independent Voice Feature Generator.
Figure 16 depicts Foice’s model structure. More details can
be found in the GitHub repository https://github.com/
SeCATrity/Foice.

A.2 Why does Foice Work?

In this section, we provide empirical evidence for Observa-
tion 1 and Observation 2 (see §4.3 and §4.4).

A.2.1 Observation 1: Face-dependent Features Extracted

We demonstrate the efficacy of Foice in extracting face-
dependent feature vector from a single face image. Specifi-
cally, we investigate whether this vector reveals the gender
information of the speaker. We utilize vector morphing, a com-
monly used technique to prove the existence of semantic infor-
mation in the feature vector. By interpolating face-dependent
vectors between two gender groups (i.e., male and female)
and generating corresponding synthetic recordings, we inves-
tigate the voice gender of these recordings (i.e., whether the
recording sounds like a male or a female voice).

Vector Morphing. Specifically, we take the weighted average
of a face-dependent voice feature vector V Feat,,; from the
original gender (e.g., male) and a feature vector V Feat,p,
from the opposite gender (e.g., female):

Fm()rphed = (] —(D) X Fori + @ % FOpp7

where ® € [0, 1] denotes the morphing coefficient. A higher
® pulls F,orphea closer to the opposite gender. For example,
® = 1 results in a synthetic recording that sounds like the
opposite gender, while ® = 0 results in a recording that sounds
like the original gender. Then, we utilize the state-of-the-art
voice gender classifier [5] to conduct gender classification on
the generated synthetic voice recordings.

Results. Figure 17 depicts the classification accuracy com-
puted from the original and predicted gender label across
different morphing coefficients. We observe that the accu-
racy (i.e., male, female, and overall) decreases smoothly with
the increase of ®. These results suggest that the interpolated
vector (i.e., the vector between the two gender groups) also
captures semantic voice gender information. We highlight that
we can derive voice gender information from a single face im-
age with a proof-of-concept implementation (see §A.1). More
accurate face-dependent voice features could be captured with
a carefully designed structure (see §6).
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Figure 16: Figure depicts Foice’s deep-learning models for
training. (a) depicts the Encoder and Converter. (b) depicts
the Bottleneck, and (c) depicts the Reconstructor.
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Figure 17: Figure depicts the empirical results of voice morph-
ing. Specifically, the gender classification accuracy decreases
as the morphing coefficient increases, indicating that the face-
dependent voice features contain gender information.

A.2.2 Observation 2: Adjusting Bottleneck Dimension

Recall that we can find an optimal bottleneck dimension such
that the search space contains only face-independent features
(see Figure 8). We investigate the impact of varying bottle-
neck dimensions on (1) the size of the search space and (2)
whether the search space contains a sufficiently similar face-
independent feature vector to the victim’s ground truth.
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Figure 18: (a) depicts the similarity of the voice features in
the search space across varying dimensions. (b) depicts the
voice features’ variations and the search space size across
varying dimensions.

Overall Success Rate
Method VGGVox | DeepSpeaker
Face-TTS 0.97% 3.79%
Foice w/o Generator 10.9% 29.1%
Foice 67.6% 87.7%

Table 4: Table compares the attack performance of Foice with
Face-TTS. VGGVox and DeepSpeaker are evaluated using
their optimal threshold depicted in Table 2.

Experiment Setup. We experiment on VoxCeleb2 [21]. For
each speaker in the dataset, we utilize the generated search
space and the face-dependent feature vector to reconstruct
100 voice feature vectors, {Frecon; , - - s Frecon;oo } (S€€ §4.4).
Since the face-dependent feature vector for each speaker is
fixed by the input image, the space of the reconstructed voice
feature vector exhibits the property of the search space. Then,
we compute the L1 distance between each Fr.con; and the
corresponding ground truth Fgr. For each speaker, we utilize
the minimal L1 distance to evaluate the capability of a search
space in producing a close enough Fiecyp;. To evaluate the
search space size, we use the standard deviation of the L1
distances to measure the variance of the search space.

Distyin = ) min (”Freconi _FGTHI)v
i€[1,100]

Var — 2112(1) (Frecnni - FGT)Z
100

Lower Dist,,;, means the attacker can find a voice feature
vector that closely resembles the ground truth voice feature
within 100 searching attempts. At the same time, larger Var
indicates a larger variance in the search space. Hence, more
samples are needed to find the target Fgr.

Results. Figure 18 depicts how different dimensions of the
bottleneck affect the minimal L1 distance and the variance of
the search space. We observe in Figure 18(a) that when the di-
mension increases, Dist,,;, first decreases. This is because the
search space contains more face-independent voice features

such that the attacker can find voice feature vectors increas-
ingly similar to the victim’s ground truth. However, Dist,,;,
saturates when the bottleneck dimension reaches optimal be-
cause all the face-independent features are captured. In con-
trast, Figure 18(b) depicts an increasing trend in Var when in-
creasing the dimension, indicating an increasing search space
size. We attribute this to the increasing amount of voice fea-
tures, including the face-dependent and the face-independent,
encoded in the search space. In particular, dimension 48 yields
a relatively small search space containing voice feature vec-
tors sufficiently close to the ground truth. Hence, Foice selects
the optimal dimension of 48.

A.3 Comparison with the Related Work

We compare Foice against Face-TTS [33], the latest closely
related work. Like Foice, Face-TTS takes as input a text tran-
scription and a face image, and generates a speech sample
using a diffusion model conditioned on the input face image
to model speaker characteristics. For evaluation, we utilize
the official implementation and pre-trained weights provided
by the authors [4], ensuring consistency and reproducibility
in our experiments. In addition, we evaluate Foice without the
Generator (see §4.4), which only relies on the face-dependent
features for voice synthesis, to demonstrate the effectiveness
of Foice in extracting face-dependent voice features from the
face image. In total, our experiments target 1,029 speakers
from the VoxCelebl dataset on VGGVox and DeepSpeaker.
We choose the optimal threshold of 0.5 and 0.6 for VGG Vox
and DeepSpeaker, respectively. We evaluate the attack perfor-
mance of Foice and Face-TTS using the Overall Success Rate
(see §5.1.4), which represents the proportion of speakers in
the dataset that can be attacked. We summarize the results
in Table 4. Without the Generator, Foice achieves a success
rate significantly higher, by an order of magnitude, than Face-
TTS on both VGGVox and DeepSpeaker. With the Generator,
Foice achieves an overall success rate that exceeds that of
Face-TTS by 60 times on VGGVox and 30 times on DeepS-
peaker. These results demonstrate that Foice outperforms
the state-of-the-art method by (i) extracting more relevant
and accurate face-dependent voice features from the face
image; (ii) and generating supplementary voice features
that augment the face-dependent feature.

A.4 Ethics

This study is approved by our university’s Institutional Re-
view Board (IRB). We carefully designed the experiments to
protect the privacy of our participants. The photos and voice
recordings collected are anonymized and securely stored on
our servers. We use dummy accounts and the voices enrolled
are deleted immediately after the completion of the experi-
ments. We have responsibly disclosed the identified vulnera-
bilities to the affected company to ensure timely remediation.
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