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Abstract
As control-flow hijacking is getting harder due to increasingly
sophisticated CFI solutions, recent work has instead focused
on automatically building data-only attacks, typically using
symbolic execution, simplifying assumptions that do not al-
ways match the attacker’s goals, manual gadget chaining, or
all of the above. As a result, the practical adoption of such
methods is minimal. In this work, we abstract away unneces-
sary complexities and instead use a lightweight approach that
targets the vulnerabilities that are both the most tractable for
analysis, and the most promising for an attacker.

In particular, we present EINSTEIN, a data-only attack ex-
ploitation pipeline that uses dynamic taint analysis policies to:
(i) scan for chains of vulnerable system calls (e.g., to execute
code or corrupt the filesystem), and (ii) generate exploits for
those that take unmodified attacker data as input. EINSTEIN
discovers thousands of vulnerable syscalls in common server
applications—well beyond the reach of existing approaches.
Moreover, using nginx as a case study, we use EINSTEIN to
generate 944 exploits, and we discuss two such exploits that
bypass state-of-the-art mitigations.

1 Introduction
“Everything should be made as simple as possible,
but not simpler.” – attributed to Albert Einstein

Since control-flow hijacking attacks came to the fore over
three decades ago [81], attacks and defenses have battled over
“control” of a program’s control flow. Such attacks follow the
general steps listed in Figure 1a: they overwrite certain control
data of a program; force it to execute attacker-specified code
snippets, i.e., gadgets; and may even chain enough of these
gadgets together to achieve arbitrary computation, i.e., Turing
completeness [19, 20, 24, 49, 71, 77]. This escalated into an
arms race—between attacks exploiting some control flow,
and defenses restricting that control flow—until the wide
deployment of control-flow integrity (CFI) [11, 86, 87, 89,
96], which made exploitation of a program’s control flow
increasingly difficult.

The promise of data-only attacks. In response, attackers
turned to data-only attacks, which promised to exploit a pro-
gram’s (massive) set of data flows (i.e., any program data
being used in any operation). Yet, although these attacks tech-
nically exploited non-control data, many of them still relied
on exploiting control-adjacent data (e.g., branch conditions)
to perform “legal” control-flow hijacking. In effect, they were
still exploiting the (tiny) residual attack surface of a program’s
control flow. Hence, to identify data-only attacks from such a
small attack surface, these approaches employed heavyweight
analyses (e.g., symbolic execution) to reason about numerous
complex constraints.

In reality, however, it is extremely difficult, if not impossi-
ble, to solve all constraints in bounded time for a sufficiently
complex program. The problem space—i.e., overwriting any
possible data to any possible value, using it in any poten-
tial gadget, from every possible program point, to achieve
arbitrary computation—is too large. Hence, in order to scale,
these approaches are forced to make several simplifying as-
sumptions, e.g., that: (1) an attack must only overwrite specific
parts of memory, or (2) an attacker must use another exploit
to reach the gadget’s entrypoint, or (3) an attacker must man-
ually chain together gadgets to build an exploit. While these
assumptions make exploit generation a tractable problem,
they unfortunately either dramatically limit the scope of the
resulting exploits, or leave parts of it to future or manual work.
In short, the overarching complexity of these approaches pre-
vents them from achieving all the goals listed in Figure 1b,
thereby limiting their practical adoption.

A lightweight approach. In this paper, we investigate a novel
lightweight technique to build data-only attacks. Our ap-
proach relies on four key insights that dramatically reduce
the problem space. First, not unlike Newton’s approach in
the related domain of control-flow hijacking [88], we observe
that dynamic taint analysis simplifies away many complex
constraints for data-only attacks. In other words, rather than
trying to reason about vast swathes of unknowns, we can
simply reason about the concrete data used in a concrete
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Step 1: Exploit a memory write vulnerability.
Step 2: Steer the execution to a gadget’s entry point.
Step 3: Execute some payload via a gadget chain.

(a) Steps in any non-control (or control) data attack.

Goal 1: Automatically model an arbitrary memory write vulnerability.
Goal 2: Automatically identify an arbitrary gadget entry point.
Goal 3: Automatically produce a full gadget chain.

(b) Goals for automating data-only attacks.
Figure 1: Data-only attacks: steps and goals.

program execution. Second, we observe that expressiveness
(and especially Turing completeness) is not necessary. Rather,
attackers simply want to achieve specific goals, such as run-
ning code via execve, or writing to a file via write. Third, we
observe that manipulating a program’s intended path is not
necessary. In reality, programs will invoke execve, write or
other interesting system calls all by themselves, without any
additional interference from an attacker. Finally, we observe
that after initialization, a program treats many types of data as
immutable, and hence, that data has few (if any) constraints.
By targeting these straightforward “identity” dataflows, we
can corrupt data (e.g., a filename) at one program point and
expect it to remain unchanged all the way to another program
point (e.g., the filename getting passed to execve)—all the
while without performing any heavyweight constraint solving.
Using these insights, we make the problem tractable, even for
lightweight analysis.

We present EINSTEIN, a data-only attack exploitation
pipeline. EINSTEIN uses custom taint policies (rather than
constraint solving) to identify attacker-controllable syscalls
(rather than Turing completeness) along a program’s (already
valid) runtime path, generating exploits for syscall arguments
that have an identity dataflow (rather than a complex dataflow)
from attacker data. Given a vulnerable target program as in-
put, it instruments the code to model and track each step of
an attack, allowing it to identify gadget chains at runtime.

Specifically, we first taint any data that could be overwritten
by an attacker with a unique color. Then, we track the flow
of taint into security-sensitive system calls [29, 32, 40, 64,
87]. Moreover, we track the flow of taint into certain library
state that is shared across system calls. If this state can be
controlled by one system call, and used by another, we have
evidence that an attacker can exploit it to chain together two
otherwise safe system calls in a data-only attack. Finally, we
generate exploits that corrupt the identified syscall arguments
with attacker data, and confirm the exploits’ effectiveness by
running them on the target application.

EINSTEIN’s low complexity approach allows it to iden-
tify thousands of vulnerable gadgets. Taking the popular
web server nginx as a case study, we use EINSTEIN to gen-
erate 944 exploits, including 1 CODE-EXECUTION primi-
tive, 17 WRITE-WHAT-WHERE primitives, and 41 SEND-
WHAT-WHERE primitives. Moreover, many of these ex-
ploits bypass state-of-the-art mitigations, e.g., syscall filter-
ing [34, 35, 44, 67] and selective DFI [44, 79].

As case studies, we discuss the CODE-EXECUTION exploit,
as well as one of the WRITE-WHAT-WHERE exploits. The
former demonstrates the rich attack surface that data-only ap-

proaches offer, with plenty of low-hanging fruit available to an
attacker. It exploits an execve syscall that takes its pathname

and argv parameters directly from a global variable, allow-
ing an attacker to trivially execute arbitrary code. The latter
demonstrates the power of syscall chaining, which further
expands the available attack surface. It exploits the pathname

parameter of an open syscall and the fd and buf parameters
of an unrelated write syscall, allowing an attacker to corrupt
the server’s filesystem.

Contributions. We make the following contributions:

• We present a practical approach to building data-only
attacks in complex programs.

• We develop EINSTEIN, an open-source1 data-only ex-
ploitation pipeline.

• We evaluate EINSTEIN on popular server applications
to identify thousands of previously unknown vulnera-
ble syscalls and use nginx as a case study to generate
hundreds of working exploits.

2 Background & Related Work
2.1 Data-Only Attacks & Defenses
Young and McHugh presented one of the first examples of a
data-only attack in 1987 [95], and subsequent work suggested
their viability in practice [30, 84, 91]. Then, Chen et al. pre-
sented the first extensive look of such attacks on real-world
programs in 2005 [26].

Running example. Figure 2 outlines one of the classic data-
only attacks described in the literature [26]. In this example,
the server uses the sort-script program to sort numbers spec-
ified by a client. In the benign case, a client first sends a POST

/sort-script request to the server with the unsorted numbers
in the request body, which the server feeds to /sort-script

in the the CGI-BIN directory. Finally, the program returns
the sorted numbers to the server, and the server passes them
on to the client. However, a memory write vulnerability in
the Null HTTPD web server allows attackers to overwrite the
CGI-BIN path, for instance by setting it to /bin. When the
attacker now sends a POST /sh request to the server, it will
execute the shell commands contained in the request body.

Practical vs. comprehensive defenses. Mitigations for these
attacks generally attempt to prevent one of two operations:
(1) the definition (i.e., def ) of malicious data, i.e., the memory

1EINSTEIN is available at https://github.com/vusec/einstein.
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Example

POST /sort-script HTTP/1.1
Content-Type: text/plain
Content-Length: 5

2 1 3

Server

handle_request();

server_init(); HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 5

1 2 3

(Request that 
exploits a write 
vulnerability)

cgi_bin_path = “/usr/local/server/cgi-bin”;

execute(“/usr/local/server/cgi-bin/sort-script”, stdin=“2 1 3”);
response(“1 2 3”);

wait_for_request();

handle_request();cgi_bin_path = “/bin”;

wait_for_request();

handle_request();

wait_for_request();

POST /sh HTTP/1.1
Content-Length: 37
Content-Type: text/plain

touch /tmp/attacker-was-here
execute(“/bin/sh”, stdin=“touch /tmp/attacker-was-here”);

Attacker executes arbitrary shell commands on server

Benign client

Malicious clientAttacker exploits a memory write vulnerability to overwrite CGI-BIN path

Server is started

Server sets the CGI-BIN path from configuration

Figure 2: The data-only attack presented by Chen et al. [26] (with minor modifications for clarity). Despite its discovery almost
two decades ago, EINSTEIN still identifies similar gadgets that exploit the CGI-BIN path of popular web servers.

write vulnerability; or (2) the use of malicious data, e.g., pass-
ing malicious data to execve. Unfortunately, comprehensive
solutions to prevent the def of malicious data (e.g., memory
safety [13, 14, 22, 45, 56, 57, 94], data space randomization
(DSR) [16, 17, 21, 68]) or to prevent its use (e.g., dataflow
integrity (DFI) [23, 51, 80]) either incur poor performance or
require onerous changes in the software or hardware, thereby
limiting their adoption in practice. On the other hand, practi-
cal measures against the def of malicious data (e.g., memory
error scanning [12, 36, 75, 76, 83], selective DSR [62, 63])
or against its use (e.g., selective DFI [44, 79], syscall filter-
ing [34, 35, 44, 67]) are non-comprehensive, because they
leave a significant portion of the attack surface vulnerable to
attacks.2

2.2 Automated Data-Only Attacks
Despite the discovery of data-only attacks such as the one in
Figure 2 almost two decades ago and the lack of practical,
comprehensive mitigations, automatic solutions to building at-
tacks are still limited in a few ways: they are limited in scope,
require significant manual effort, or make unrealistic assump-
tions. These limitations often relate to the inherent complex-
ity and poor scalability of the concolic/symbolic execution
that underlies most of these solutions, but sometimes their
objectives are also different. For instance, some approaches
strive for Turing completeness, which is interesting from an
academic viewpoint, but not so relevant for attackers. In the
remainder of this section, we break down various ways in
which previous approaches fall short (see also Table 1).

Vulnerability-dependent analysis. While preventing the
use of malicious data requires a comprehensive attack sur-
face analysis: the identification (and elimination) of any
dangerous data flow, regardless of its origin, previous ap-
proaches [39, 41, 66] have a narrower scope, limiting them-
selves to specific memory write vulnerabilities rather than
generic primitives. In other words, the attacks they generate
are only applicable to the specific vulnerability supplied by
the user, including the specific addresses and values it may
write. A partial exception is Limbo [73], which models arbi-

2We refer the interested reader to previous surveys of data-only at-
tacks [27, 28] and memory corruption defenses [85].

trary stack overflows, although that is still a long way from
general memory corruption. In contrast, EINSTEIN starts its
analysis from generic attacker capabilities (e.g., an arbitrary
read/write primitive), regardless of the specific vulnerability.

Predetermined gadget entry point. Next, previous ap-
proaches may require the user to predefine the gadget entry
point [43, 66]. In other words, in order to build attacks, they
need the user to already know how to exploit the program
in a way that steers its execution to the first gadget. This
is the typical model of any “weird compiler” whose goal is
to chain together Turing-complete gadget chains (e.g., ROP
compilers [72], which assume the user can already exploit
one return instruction), and it is also the model for data-only
gadget compilers [43,66]. However, identifying an entry point
can be a non-trivial task, because it often requires a user to
develop a separate exploit that just forces the program’s ex-
ecution to reach the first gadget (e.g., by “legally” diverting
control flow). Previous approaches may partially model the
entry point by either being incomplete (e.g., due to the poor
coverage of concolic execution [39, 73]) or unsound (e.g., by
assuming any loop executed after a memory error could be a
gadget dispatcher [41]).

Manual gadget chaining. Finally, previous approaches may
require the user to manually chain gadgets [41]. However,
chaining is often a non-trivial task, as CFI limits which gad-
gets may be chained together and gadgets may be “volatile”
(i.e., selecting one gadget in a chain may rule out the selec-
tion of other gadgets in that chain [43]). Several previous
approaches do not handle chaining at all, while all others
do so only partially (e.g., due to concolic execution’s poor
coverage [39, 73], or the problem being NP-hard [43]).

3 Threat Model
We assume mostly the same threat model as previous
work [39, 41, 43, 66, 73]. In particular, we consider a tar-
get program that: (1) has a memory corruption vulnerabil-
ity [1, 3–6]; and (2) is protected with DEP [15], ASLR [65],
state-of-the-art control-flow hijacking defenses (e.g., CFI [11,
86,87,89,96]), and strong stack protections (e.g., perfect stack
canaries, shadow stacks [31]). This differs slightly from pre-
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Table 1: Overview of approaches to building data-only attacks and how they model the steps in Figure 1a. Specifically, whether
they: can model an attack step ( ), can partially model an attack step ( ), or require an attack step to be defined by the user ( ).

Approach Design Models this attack step? Is practical?

Name Year Type of dataflow analysis Goal Memory write
vulnerability

Gadget
entry

Gadget
chaining

Models all
primitives

Models primitive
completely

FlowStitch [39] 2015 Concolic execution Attacker-centric 7 7

MinDOP [41] 2016 Static taint analysis Turing-complete 7 7

BOPC [43] 2018 Symbolic execution Turing-complete 7 3

Steroids [66] 2019 Static constraint solving Turing-complete 7 3

Limbo [73] 2020 Concolic execution Attacker-centric 3 7

EINSTEIN - Dynamic taint analysis Attacker-centric 3 3

vious work [39, 41, 43, 66, 73], which do not assume strong
stack protections. For simplicity, we focus specifically on
popular server programs, similar to much prior work in the
area [18, 52, 59, 60, 74, 87–89].

Moreover, we assume that an attacker: (1) has access to
a binary equivalent of the one deployed by their prospective
victim; (2) can legitimately interact with the target program
(e.g., by sending requests to a target web server); (3) can
bypass ASLR via an information leak [33, 37, 42, 70, 78];
(4) can exploit the memory corruption vulnerability for an
arbitrary write primitive from a quiescent program state, as
in previous work [60, 88]; and (5) aims to force the target
program to invoke system calls with attacker-controlled pa-
rameters [29, 32, 40, 64, 87]. This differs from previous work,
which assumes: (1) an attacker can carry out the arbitrary
write primitive from an arbitrary program state [43], rather
than a quiescent state; and (2) an attacker that aims for Turing
completeness [41, 43, 66], rather than an attacker that aims
for security-sensitive controllable system calls (which we
introduce later, see Table 2).

4 Overview of EINSTEIN in Action

Before we discuss our design in detail, we walk through EIN-
STEIN’s operation with our running example. We consider a
target program, e.g., the web server, to have three application-
dependent phases of execution: (i) an initialization phase,
where the program starts and initializes long-lived data, e.g.,
configuration data; (ii) a quiescent phase, where the program
waits for user interaction, e.g., by idly waiting for new client
requests, at which point an attacker may exploit the memory
write vulnerability; and (iii) a processing phase, where the
program handles user interaction, e.g., by invoking execve.

To guide our explanation of EINSTEIN’s operation, we refer
the reader to Figure 3, which shows the main components
at the top and the main analysis steps at the bottom. Next,
we explain how EINSTEIN identifies (Steps 1–4) and builds
(Steps 5–6) the attack of Figure 2. We defer the more complex
aspects of EINSTEIN, such as the exact taint policies and
chaining, until later.

Step 1. We use a program driver (e.g., a test suite) to run
the victim program with EINSTEIN instrumentation. As in
previous work [60,88], EINSTEIN begins its analysis with the
program in a quiescent state, by which time, all initialization
(e.g., of cgi_bin_path), has completed.

Step 2. EINSTEIN then models an arbitrary memory write
vulnerability by tainting all data that could be affected by
it (again, including cgi_bin_path string), thereby fulfilling
Goal 1 of Figure 1b. This is the first of our taint policies.
Additionally, it records the tainted data in a memory snapshot.

Step 3. To uncover gadgets, the driver sends standard requests
to the server (e.g., the POST /sort-script request from the ex-
ample), while the taint engine propagates the flow of attacker
data through the target server’s execution.

Step 4. As the server handles the example POST request, it
invokes execve with attacker-tainted arguments. Recognizing
the system call as sensitive, EINSTEIN’s second taint policy
identifies it as a candidate gadget, fulfilling Goal 2. Addi-
tionally, it records information about the syscall, such as its
arguments and their taintedness.

Step 5. Having identified the candidate gadget, it now tries
to build an exploit. First, EINSTEIN’s gadget analyzer deter-
mines that parts of execve’s pathname and argv arguments
are tainted with a color that corresponds to cgi_bin_path.
Upon further inspection, it finds that they are in fact identi-
cal to cgi_bin_path. We refer to this kind of straightforward
dataflow as an identity dataflow. EINSTEIN builds a candidate
exploit by generating (addr,val) pairs to overwrite the target
data from "/usr/local/server/cgi-bin" to "/bin" (Goal 3).

Step 6. To confirm its effectiveness, EINSTEIN’s exploitation
tooling restarts the server, overwrites the target data defined
by the (addr,val) pairs, and sends the workload to exploit the
gadget—in this case POST /sh with a shell command to create
a file in the /tmp directory. If the file is created, EINSTEIN
confirms the exploit to be successful.

For the running example, a single-blow overwrite of the ar-
guments of a single system call is sufficient for exploitation.
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(a) Architecture.

Target server

Quiescent phase
wait_for_request();

Processing phase
handle_request();

Initialization phase
server_init();

 Send workloads to 
 server

Report security-sensitive
syscalls with tainted args

Start server with 
instrumentation.

execve(pathname = “/usr/local/server/cgi-bin/sort-script”,
       argv = [“/usr/local/server/cgi-bin/sort-script”,
               NULL],
       envp = [NULL])

Take snapshot + taint   
attacker-controllable mem
   [Code]    r-x
   [RO Data]    r--
   [Data]    rw-

“/usr/local/server/cgi-bin”
(cgi_bin_path)

   --------
   [Heap]    rw-

   [Stack]    rw-

POST /sort-script HTTP/1.1
. . .
2 1 3

Exit server & analyze  
data at syscall and in 
snapshot to build the 
exploit

“/bin”

POST /sh HTTP/1.1
. . .
touch /tmp/attacker-was-here

Created file 
/tmp/attacker-was-here.

Data
char cgi_bin_path[LEN] ;

    Restart server, overwrite target data, and send modified workload to confirm exploit.

Example identification

1

2 3

4

5
6

(b) Operation: EINSTEIN identifies (Steps 1–4) and builds (Steps 5–6) the example attack in Figure 2.

Figure 3: Overview of EINSTEIN.

While simple, such cases are still common (Section 7). On
the other hand, we will show that EINSTEIN supports sys-
tem call chaining also when we discuss the complete set of
EINSTEIN’s taint policies. We demonstrate the usefulness of
chaining in our second case study (Section 8).

5 Design

In this section, we discuss EINSTEIN’s design by introducing
each of the components in Figure 3a in some detail.

5.1 Taint Engine

To track attacker-controllable data at runtime, a dynamic taint
analysis (DTA) engine models the flow of data from each
executed instruction’s inputs to its outputs. To do this, DTA
engines make use of the following constructs (which may
have different names depending on the engine): (1) a color
is some kind of program metadata, which in our case, is an
address that can be overwritten by the attacker; (2) a tag (also
called a tagset) is the set of colors corresponding to some
program data (e.g., a memory location), which in our case,
indicates that some data is attacker-controllable; and (3) the
tagmap contains the tags for all program data. This is a fairly

typical design of DTA [25, 46, 58, 69, 82, 88], and indeed our
design is inspired by a DTA engine [88] that was used by
previous work to identify control data attacks3.

However, our use case, i.e., non-control data attacks, poses
two unique challenges, which existing DTA engines cannot
solve. First, because all non-control data is a potential attack
vector, we need an approach that can uniquely track an un-
bounded number of taint colors over an unbounded amount
of data. For instance, in our example attack, we need to know
that, out of all the possible data that our exploit could over-
write, it should specifically overwrite the server’s CGI-BIN
path. Second, because programs typically invoke system calls
at complex points (e.g., a time-sensitive network write, or a
large file read), we need an approach that can scale to complex
workloads covering complex features. For instance, in our
example attack, we need to indeed be able to cover the code-
path that handles the exploit’s POST request. In contrast, we
confirmed previous similar DTA engines cannot easily scale
beyond a single default request to a server program, as the
excessive slowdowns cause complex requests to time out [88].
Hence, it is around scalability and supporting unbounded col-
ors for unbounded data that we design three fundamental

3Their approach, which was the successor to prior work named
Galileo [77] (“space”), was named Newton [88] (“absolute space and time”).
Since our approach generalizes the approach of Newton to non-control data
attacks, we name it EINSTEIN (“spacetime”).
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aspects of our DTA engine, in particular: (1) how it accesses
the tagmap, (2) how it initializes the tagmap, and (3) how it
combines tags.

Accessing the tagmap. Every time a program accesses data
(e.g., via a load or store), the DTA engine accesses its tag. The
DTA engine typically does this by taking the program data’s
address and performing some mapping to locate the corre-
sponding tag. Some DTA engines may be slow but memory-
efficient by navigating through multiple layers of a dynami-
cally managed data structure (e.g., page tables) on every ac-
cess [9, 10, 47, 88]. Others may be fast but memory-inefficient
by indexing into a statically managed data structure (e.g.,
shadow memory) on every access [8, 83].

Our approach takes the best of both worlds by combining
a fast shadow memory organization with a memory-efficient
design. Specifically, we instruct the linker to constrain the
user address space to the top 4 GB and reserve the lower part
for shadow memory. This organization yields (i) fast shadow
memory-based mappings between addresses and correspond-
ing tags (only 2 arithmetic and 1 masking operations needed)
and (ii) 64-bit user pointers easily compressible to 32 bits,
since the top 32 bits are always identical. Since we use point-
ers as taint colors, such pointer compression strategy [50] also
translates to our (32-bit) colors, thereby reducing the overall
size of the tagmap by 50%.

Initializing the tagmap. Before accessing a tainted en-
try in the tagmap, the DTA engine must first initialize the
tagmap. Some DTA engines may be fast but taint limited
data by starting with an untainted (i.e., zero-initialized)
tagmap [8–10,75,83]. Such approaches take advantage of the
fast hardware MMU, because any access to an uninitialized
tag page generates a page fault, which then automatically
maps a zero-initialized page into the tagmap. Other DTA en-
gines may be slow but taint unbounded data by starting with
a mostly-tainted tagmap [82, 88]. Such approaches require
a slow software-based MMU to check every access, so that
when an uninitialized tag page is identified, they can map a
custom-initialized page into the tagmap.

Our approach takes the best of both worlds by combining
a tagmap that can taint unbounded data while enabling fast
access checks by the hardware MMU. In particular, we use
Linux’s userfaultfd feature to: (1) quickly identify an unini-
tialized tag page via a hardware page fault, and (2) handle the
page fault in software, so our DTA engine can taint the entries
of the tagmap that represent attacker-controllable data.

Combining tags. Every time a program combines data (e.g.,
via arithmetic), the DTA engine combines their tags. The DTA
engine does this by performing a set union of the colors in one
tag with the colors in another tag. Some DTA engines may
aim to be fast but support few colors by representing a tag as
a size-limited array, with an entry allocated for every possible
color—e.g., an array containing either 1 color [10, 47, 83], 8
colors [8, 47], 256 colors [7, 9], etc. Other DTA engines may

aim to be slow but support unbounded colors by representing
a tag as an unbounded set, with an entry for each color added
at runtime [82, 88].

Our approach takes the best of both worlds by using a tagset
that supports unbounded colors, while limiting its runtime ca-
pacity in order to stay fast. In particular, our array-based tagset
contains an entry for each color added at runtime, up to some
limit N. If a tagset contains more than N colors at runtime,
then we denote the tagset as overfilled and do not combine
any more colors into it. We rely on the insight that if a tag
contains numerous colors, then it likely represents complex
data, with multiple sources (e.g., the output of a cryptographic
hash), and hence, that data would be very challenging for an
attacker to exploit than a tag with few colors. For our exper-
iments, we select N = 16 as it produces few tagset overfills
while maintaining an acceptable memory overhead.

5.2 Taint Policies
We design taint policies to model the steps of a data-only
attack listed in Figure 1a. At a high level, we initially mark
attacker-controllable regions as tainted, while EINSTEIN’s
DTA engine propagates the taint information to syscall call-
sites, and checks the tags of syscall arguments to identify
those that may be exploitable.

5.2.1 Modeling an arbitrary memory write
We model the arbitrary memory write by tainting all memory
that an attacker could overwrite. We discuss which data is
attacker-controllable, and what we taint it with.

Because we consider an arbitrary memory write primitive,
we taint data in any writable memory segment. However, since
we focus on long-lived (and exclude short-lived) data corrup-
tion effected by the primitive, we exclude the stack’s segment.
(It is not a fundamental limitation, and our approach can eas-
ily accommodate tainting the long-lived data on the stack.)
Moreover, to model the effect of long-lived data corruption,
we taint memory when the program is in a quiescent state, as
done in prior work [88].

For EINSTEIN’s analysis it is vital to be able to precisely
identify the origin of every tainted byte. To track memory
dependencies at a byte granularity, we configure our DTA
engine with a unique tag for every attacker-controllable byte:
specifically, the compressed (32-bit) version of its memory
address. To track the specific value that it originates from, we
also record a memory snapshot tainting all memory. Hence,
for any tainted tag, we have its origin: its (addr,val) pair. The
source of the taint is later a candidate location for the attacker
to corrupt, control a syscall argument, and launch their attack.

5.2.2 Tracking dependencies
Traditional taint implementations [47] model taint strategies
that track direct attacker-controlled memory dependencies
(i.e., syscall argument X was read at tainted address Y ), and
ignore indirect ones (i.e., syscall argument X was read at ad-
dress Y ′ using a tainted pointer). To support the latter, we
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additionally implemented load pointer propagation (i.e., taint
every value read via a tainted pointer), allowing us to model
attackers corrupting data pointers, array indexes, etc. to indi-
rectly control syscalls arguments.

5.2.3 Modeling syscall exploitation
We model the next part of an attack, the execution of a gadget,
with taint sinks that check whether syscall arguments are
attacker-controllable. Specifically, we insert hooks before the
invocation of the security-sensitive syscalls listed in Table 2.
If we identify any attacker-tainted arguments, we generate a
syscall report that includes: (1) info about the syscall, such as
its name, arguments, arguments’ taint, and backtrace; (2) info
to distinguish it from other reports, such as the target process’s
PID and TID, and an incrementing report number; and (3) info
to help reproduce the exploit.

5.2.4 Modeling syscall chaining
We model gadget chaining with a combination of taint sources
and taint sinks. We note, however, that chaining may not even
be required for many end-to-end attacks. Namely, because
our gadgets are syscalls—rather than small snippets that e.g.,
perform arithmetic, or conditional branching. [19, 20, 24, 43,
49, 66, 71, 77]—one gadget may suffice for an entire attack.
For instance, the example attack in Figure 2 only exploits one
syscall, execve. However, if such a syscall is unavailable to
the attacker (e.g., due to mitigations), syscall chaining greatly
expands the set of available gadgets.

Chaining syscalls via file descriptors. Just like any other
gadget compiler [43,66,72], we chain syscalls by chaining the
data output by one gadget into the input of another gadget. The
syscall interface may chain together many different types of
data: process IDs (from getpid to kill), semaphore IDs (from
semget to semop), and so on. EINSTEIN chains file descriptors
(FDs), as they are used by some of the security-sensitive
syscalls that we target. An FD uniquely identities an open I/O
stream, e.g., a file or a network socket. If an attack controls
an I/O stream, then it controls where the target program sends
and receives data. We focus on output streams as they allow
attackers to effect changes, but our approach equally applies
to input streams.

Table 2 lists the syscalls that EINSTEIN targets and that are
relevant for chaining. In particular, some security-sensitive
syscalls only operate on some types of FDs (e.g., sendto only
takes a socket FD), so they can only be chained to specific FD-
creating syscalls (e.g., socket). On the other hand, write can
operate on multiple types of FDs, and hence, can be chained
with multiple types of FD-creating syscalls.

I/O streams can be either directly or indirectly controllable
by an attacker. First, an I/O stream is directly controllable if
the attacker controls how it was created, i.e., the arguments to
an FD-creating syscall, e.g., the filename argument to open.
Second, an I/O stream is indirectly controllable if the attacker
controls an FD argument to a security-sensitive syscall and

can redirect it to a directly-controllable I/O stream. For ex-
ample, by controlling the fd argument to write, the attacker
can redirect it to the aforementioned directly-controllable file.
Because an indirectly-controllable stream depends on the ex-
istence of a directly-controllable stream, we first explain how
we track directly-controllable streams, then we explain how
we identify directly- and indirectly-controllable accesses.

Tracking file descriptors. To identify directly-controllable
output streams, we add taint sinks to FD-creating syscalls
that check their arguments. First, our sinks determine whether
the created stream can indeed be an output stream. For some
syscalls, this is not necessary to check, but for others, this
is specified by the arguments (e.g., open’s flag argument
determines whether the file is writable). In such cases, we
conclude that the syscall can create an output stream if: (1) the
relevant arguments specify to create one, or (2) the relevant
arguments are attacker-tainted, and hence, an attacker can co-
erce it into creating one. Second, our sinks determine whether
an attacker can directly control “where” the output stream
will go by checking if relevant arguments are attacker-tainted,
e.g., open’s pathname or connect’s addr arguments.

Next, we need a way to track these directly-controllable
streams. Namely, the kernel maintains an FD table, which
maps FDs to their corresponding I/O streams. If attackers
control a created stream, then they control its entry in the FD
table. Hence, any future references to an attacker-controllable
stream should be treated as tainted—regardless of whether the
FD is tainted. To model this, we maintain our own controllable
FD table, which mirrors the kernel’s FD table, but with a few
differences. Specifically, our table: (1) only creates entries
for controllable output streams, (2) maps FDs to the report
number of the syscall that created it, and (3) is consulted to
taint any subsequent FD syscall argument that may refer it
(whether directly or indirectly).

Identifying accesses to controllable file descriptors. The
final question we reach in our design is: How do we identify
accesses to attacker-controllable I/O streams? The naive ap-
proach would be to use the same taint sinks described in Sec-
tion 5.2.3 to simply check whether FD arguments to security-
sensitive syscalls are tainted. However, this is imprecise be-
cause it would: (1) fail to identify many controllable accesses,
e.g., if the FD argument is untainted, but its I/O stream is
tainted; and (2) falsely identify many non-controllable ac-
cesses as controllable, e.g., if the FD argument is tainted, but
all open I/O streams are untainted. Hence, we modify our
taint sinks for FD arguments to instead check our controllable
FD table. In particular, we determine that a syscall’s FD argu-
ment is: (1) directly-controllable if it exists in our controllable
FD table; or (2) indirectly-controllable if it is tainted and our
controllable FD table contains an FD of the same type (e.g., a
socket FD, if the syscall requires a socket FD).
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Table 2: Syscalls targeted by EINSTEIN. We target a similar set of security-sensitive syscalls as previous work [29, 32, 40, 64, 87]
and a set of FD-configuring syscalls that demonstrates their feasibility. As this is not an exhaustive list of syscalls that an attacker

can exploit, EINSTEIN is easily extendable to handle more syscalls, and to target different classes of syscalls [48, 61, 90].

Type of syscall Chaining type Syscalls

Security-sensitive syscalls

Does not chain execve, execveat, mprotect, mremap, remap_file_pages

Input: File FD mmap

Input: File or socket FD pwrite64, pwritev, pwritev2, sendfile, write, writev

Input: Socket FD sendmmsg, sendmsg, sendto

FD-configuring syscalls
Output: File FD creat, open, openat, openat2

Output: File or socket FD dup, dup2, dup3

Output: Socket FD bind, connect, setsockopt, socket, socketpair

5.3 Gadget Analyzer
To build exploits for the identified gadget chains, one could
employ a heavyweight analysis that determines the exact con-
straints of all attacker dataflows e.g., via symbolic execution.
However, as EINSTEIN aims to identify low-effort attacks,
our gadget analyzer takes a lightweight approach that targets
identity dataflows, i.e., dataflows where the value at the sink is
identical to the value at the source. As we show in Section 7.1,
this already yields a rich attack surface.

In our case, a sink value is a tainted syscall argument, and
a source value is the data it originates from in the memory
snapshot. We can map sink values to their corresponding
source values by checking the sink value’s taint color, which
contains its source address in the snapshot. In other words, we
use the taint color of each reported syscall argument to identify
the value it originates from in the memory snapshot. If these
values are equivalent, then the argument has an identity flow.

Then, to exploit the identity flows, we generate (addr,val)
pairs to overwrite some source value. The specific exploit
pairs that we may generate depend on a particular attacker’s
goals and the particular target program. Hence, for simplicity,
we generate generic per-syscall exploits, e.g., with execve

creating a particular file, or write writing a particular string.
If the user wishes, the exploits may be modified from our
exploitation tooling.

5.4 Exploitation Tooling
Because our gadget analyzer forgoes complex constraint solv-
ing, we consider the set of (addr,val) pairs that it generates
to only make up a candidate exploit. In order to confirm it as
a working exploit, we must confirm that our exploit indeed
stems from an identify data flow not violating any program
invariants. Hence, rather than e.g., symbolically verifying all
possible constraints that our exploit may effect, we punt the
problem to the program itself—i.e., to a real, concrete exe-
cution. In particular, our exploitation tooling simply re-runs
the target program and confirms whether the exploit is indeed
successful. It does this by: (1) rewriting the data specified by
the (addr,val) pairs from the arbitrary memory write primi-
tive; then (2) sending some workload to the target program

to trigger the gadget chain; and finally (3) checking whether
the exploit achieved its desired outcome. If the exploit is
successful, then we confirm it to indeed be a working exploit.

We observe that some candidate exploits have a better
chance of being successfully confirmed than others. Fortu-
nately, because our approach casts such a wide net—e.g., by
tracking any possible attacker data to any combination of
security-sensitive syscalls—we have plenty of candidate ex-
ploits at our disposal. We prioritize those gadgets that we
consider to be more robust and stronger attack primitives, e.g.,
gadgets that (1) exploit higher-value syscalls (e.g., execve),
(2) exploit multiple syscall arguments, (3) overwrite deter-
ministic addresses (e.g., global data), and (4) exploit syscall
arguments with larger identity flows (for our experiments, we
target identity flows that span at least 4 bytes).

6 Implementation
We base the implementation of our DTA engine on libdft [47].
Like other analyses that use libdft, the runtime component
of EINSTEIN (which specifies the taint policies) is statically
linked with our libdft variant. We invoke the target program
with our tool enabled and with ASLR disabled. Although
our threat model already assumes an attacker that bypasses
ASLR, disabling ASLR for the analysis does provide a couple
of implementation-level benefits: (1) it allows us to enforce
32-bit addressing, so that we can compress our tags from 64
bits to 32 bits; and (2) it causes deterministic addresses to
stay constant across multiple runs, which, while not important
for an attacker armed with an information leak, it does sim-
plify the confirmation of candidate exploits that target such
addresses. We expand upon other parts of our implementation
in Appendix A.

7 Evaluation
We evaluate EINSTEIN in terms of attack surface and per-
formance on an AMD Ryzen 9 3950X CPU with 128GB
of RAM running Ubuntu 22.04.3 LTS (kernel v6.2). To run
Newton [88], we use an Intel Xeon Silver 4108 CPU with
32GB of RAM running Ubuntu 16.04.7 LTS (kernel v4.3).
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Table 3: Number of gadgets found per syscall and argument type.

Syscall* Total covered

Total covered where this argument has a dataflow from attacker data
and the percentage of those that are identity dataflows.

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)
mmap 787 55 (5%) 441 (8%) 55 16 (100%) 17 73
mprotect 144 97 (68%) 98 (27%) 1
mremap 11 11 7 11 - -
pwrite64 1270 1217 (3%) 741 (47%) 399 (19%) 506 (36%)
pwritev 10 10 (100%) 10 (10%) - 10 (20%)
sendfile 1 - - 1 1
sendmmsg 2 2 2 - -
sendmsg 12 5 (100%) 3 (100%) -
sendto 431 389 (7%) 410 (38%) 408 (6%) - - -
write 3083 768 (74%) 2877 (91%) 1265 (10%)
writev 754 244 (18%) 742 (76%) -

* Did not cover execveat, pwritev2, or remap_file_pages.

Table 4: Number of gadgets found and performance per target program.

Target
program

Non-control
data gadgets
(% identity
dataflow)

Control data gadgets*
(% identity dataflow)

Runtime
(h:mm:ss) Peak PSS (MB)

Code
coverage

With register
operand

With memory
operand Baseline EINSTEIN Baseline

EINSTEIN
(1 color

per tagset)

EINSTEIN
(16 colors
per tagset)

httpd 1834 (97%) 2082 (42%) 15,179 (94%) 0:04:00 0:35:08 26 1560 3129 27.3%
lighttpd 92 (98%) 50 (34%) 155 (94%) 0:00:05 0:01:51 3 176 257 27.8%
nginx 1623 (82%) 503 (60%) 564 (99%) 0:08:41 3:27:05 24 479 848 49.1%
postgres 2105 (27%) 1382 (11%) 4690 (13%) 0:00:56 1:47:27 175 1568 11,621 46.5%
redis 218 (84%) 160 (22%) 53 (100%) 0:04:01 1:01:13 191 3257 32,188 33.6%

* Mitigated by code reuse defenses.

Programs and drivers. We target the web servers httpd,
lighttpd, and nginx; and database servers postgres and
redis—all of which have been shown to be at risk of memory
write vulnerabilities [1–6]. Although we follow previous work
by targeting server applications [18, 52, 59, 60, 74, 87–89], we
note that even programs with more limited user-input interac-
tion and few obviously dangerous syscalls (like execve), may
well be at risk. Because EINSTEIN’s approach only builds on
a standard write vulnerability, it can indeed generalize to such
applications.

We use each server’s test suite to drive the analysis, since
test suites are designed to test a variety of features and there-
fore cover a diverse set of code paths. If EINSTEIN is able
to craft exploits based on simple test suites, it validates our
claim that our approach greatly simplifies data-only attacks.
Moreover, because nginx is a common target for exploitation
case studies [55, 88, 92], we use our exploitation tooling to
confirm the candidate exploits that EINSTEIN generates for
nginx.

Program phase determination. As explained in Section 4,
the phases of program execution (i.e., the initialization, quies-
cent, and processing phases) are application-dependent. Al-
though more sophisticated approaches can determine the dif-
ferent phases of execution for a program (e.g., syscall mon-
itoring [35]), all of our target servers initialize in a couple
of seconds. Thus, we simply conservatively wait 10 seconds
before establishing post-initialization quiescence.

7.1 Attack Surface Analysis

We investigate the attack surface uncovered by our approach
based on: how effectively an attacker can control security-
sensitive syscalls, and what an attacker can do with those
syscalls. In Appendix B, we also evaluate how this attack
surface compares with the attacks surface of control-flow
hijacking attacks.

As in previous work [54], we present the number of syscalls
in terms of unique backtraces since other possible metrics
are problematic: presenting the total executed syscalls would
artificially inflate the numbers (because the longer a program
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Figure 4: Percentage of all identity flows reported versus the
minimum size of reported identity flows.

runs, the more syscalls it executes); while presenting unique
callsites would artificially deflate the numbers (because a sin-
gle syscall site may be called from many parts of a program).

Controllability. To evaluate the degree to which an attacker
can control syscall arguments, we first refer to Table 3, which
presents the number of tainted syscalls arguments, and in par-
ticular, the percentage of those with an identity flow. The first
observation we make is that most arguments have an iden-
tity flow. Unsurprisingly, many of the identity flows are for
data types that are generally treated as “immutable”, e.g., the
strings used in: the pathname and argv arguments to execve

(86%); and the buf argument to write (91%) and writev

(76%). Similarly, FD arguments tend to have a high rate of
identity flow (e.g., 100% for pwritev, 100% for sendmsg, and
74% for write); this is also unsurprisingly because these FDs
are often configured by syscalls that also take string-based ar-
guments, e.g., the pathname to open and creat, and the addr to
connect (which may be a string depending on its sa_family).

The second observation we make is based on Figure 4,
which presents the lengths of the identity flows, broken down
by syscall. We observe that many of the identity flows span at
least 16 bytes, and hence, much of the data that an attacker
can corrupt remains unchanged all the way to the vulnerable
syscall. Given the prevalence of attacker data remaining un-
changed to so many syscall arguments, we conclude that our
data-only attacks are low-effort.

Syscall-based exploitation. To evaluate what an attacker can
do with these controllable syscalls, we once again refer to
Table 3 and observe that every argument can be attacker-
tainted. Even for syscall arguments that we do not expect
to be attacker-tainted (e.g., mprotect’s prot and sendmsg’s
flags arguments, which are typically compiled down into
a constant), we still encounter cases of tainted arguments.
For example, we identify a case where pthread_create calls
mprotect with a prot argument that has an identity flow from
attacker-controllable data on the heap.

Next, we refer to Table 5, which presents our confirmed
exploits for nginx, and observe that they offer many prim-
itives to an attacker. For example, a vulnerable execve

gives us a CODE-EXECUTION primitive; vulnerable file-
configuring syscalls (e.g., openat) combined with vulner-
able file-write syscalls (e.g., write) give us 17 WRITE-

Table 5: Confirmed exploits for nginx.

Attack primitive Count

CODE-EXECUTION 1
WRITE-WHAT-WHERE 17
WRITE-WHAT 375
WRITE-WHERE 79
SEND-WHAT-WHERE 41
SEND-WHAT 372
SEND-WHERE 59

Total 944

WHAT-WHERE primitives; vulnerable socket-configuring
syscalls (e.g., connect) combined with vulnerable socket-
write syscalls (e.g., sendmsg) give us 41 SEND-WHAT-
WHERE primitives; and vulnerable syscalls combined with
non-vulnerable syscalls give us less powerful, but still more
numerous primitives (i.e., 885 total WRITE-WHAT, WRITE-
WHERE, SEND-WHAT, and SEND-WHERE primitives). In
comparison, FlowStitch [39]—a previous approach that also
(i) generates syscall-based exploits, and (ii) assumes an arbi-
trary memory write primitive in its evaluation of nginx [2]—is
hampered by concolic execution’s poor coverage, and as a
result, only generates 2 exploits for nginx. Because EINSTEIN
identifies such a broad range of tainted arguments, and gener-
ates a variety attack primitives, we conclude that our data-only
attacks are diverse.

7.2 Performance Analysis

We investigate the performance of EINSTEIN along two di-
mensions. First, we investigate the overall performance of
EINSTEIN per target program, as shown in Table 4. The base-
line that we compare to is the vanilla target program, i.e.,
without any instrumentation.

Second, we investigate the performance of EINSTEIN’s
DTA engine. To do this, we compare the overhead of EIN-
STEIN to the overhead of Newton [88], which, in contrast
to EINSTEIN, does not have the DTA engine optimizations
described in Section 5.1. Specifically, its DTA engine: (1) ac-
cesses its tagmap via a page table walk, (2) initializes its
tagmap via a software-based MMU check, and (3) represents
tags as unbounded sets. Figure 5 presents the overheads of
Newton, EINSTEIN, and their baselines from running nginx

under a minimal configuration and processing multiple HTTP
requests. We note two issues that led to this evaluation setup:
(1) any moderately complex workload (e.g., running with a
configuration that loads more than a few modules, or process-
ing an HTTPS request) caused Newton to immediately crash,
so we only run with a minimal configuration and process sim-
ple requests; and (2) for a variety of technical reasons (e.g.,
Newton requiring an older kernel version, full 32-bit support,
etc.) we could not evaluate EINSTEIN and Newton on the
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same machine, so we present the baseline overheads on both
machines; T1 is EINSTEIN’s machine, and T2 is Newton’s
machine.

Runtime overhead. As we see in Table 4, the runtime over-
head of EINSTEIN ranges from 8x–26x. Our extensive experi-
ments, including full test suites, confirm that the DTA engine
easily scales to a complete testing campaign. Moreover, we
see in Figure 5a that EINSTEIN handles GET requests at least
two orders of magnitude faster than Newton. We attribute EIN-
STEIN’s speedup primarily to the way it accesses the tagmap:
on every access, it performs a fast shadow memory lookup,
whereas Newton navigates its page table structure. Because
our DTA engine optimizations enables a practical analysis
platform, we consider the runtime overhead acceptable.

Memory overhead. Next, we evaluate the memory overhead
of EINSTEIN when using both 1 color per tagset and when us-
ing 16 colors per tagset (i.e., the default). With 1 color/tagset,
tags are easily prone to overfill, because adding any more
than 1 color to a tagset results in it no longer tracking individ-
ual colors. Hence, this configuration cannot build candidate
exploits for many gadget chains, because many syscall argu-
ments’ tags are overfilled. Nonetheless, it still identifies all
the candidate gadget chains that the 16 colors/tagset configu-
ration identifies.

We find in Table 4 that the memory overhead of EINSTEIN
with 1 color/tagset is 9–60x relative the uninstrumented base-
line. This overhead accounts for the internal data structures of
EINSTEIN, libdft64-ng, etc.—most significant of which is
the tagmap, which contains a tagset for every byte of program
memory. If we increase the number of colors/tagset from 1 to
16, we would expect the resulting memory overhead to be 16x
in the worst case. However, we find that our target databases
have a 7.4–9.9x overhead, and our target web servers only
have a 1.6–2.0x overhead. We attribute worse overheads to
target applications having more spatially fine-grained access
patterns, because they need to page in more of the tagmap per
page of program memory.

Next, we see in Figure 5b that EINSTEIN has a con-
stant memory overhead, whereas Newton’s memory over-
head grows for each additional GET request, until it eventually
crashes from reaching the 2 GB limit for 32-bit processes. We
attribute this difference to the way the DTA engines represent
tags: whereas EINSTEIN uses bounded sets of 16 tags/set,
Newton uses unbounded sets. As a result, Newton will com-
bine any new colors with a tag until it runs out of memory.
In principle, this has a worst case O(n2) memory overhead
(where n is the total program memory), if every byte of pro-
gram data is combined with every other byte of program data.
Hence, an application such as nginx, which requires about
16 MB to run normally, would in the worst case, require 256
TB to run with Newton. In reality, however, the 2 GB limit
masks this overhead, and it simply crashes well before this
limit is reached. We conclude that because of our DTA en-
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Figure 5: Comparison of running nginx with EINSTEIN and
Newton [88] to running nginx as is (i.e., the baseline).

gine optimizations and because of its configurable number of
colors per tagset (i.e., to accommodate the tradeoff between
total available memory and number of exploits generated),
our memory overhead is acceptable.

Coverage. As with any dynamic analysis, its efficacy is depen-
dent on program coverage: poor coverage will generally yield
poor results, and vice-versa. Yet, even though the test suites
only covered 27–49% of the programs’ code, EINSTEIN still
uncovered many gadgets. Future work to increase code cov-
erage, e.g., by exploiting syscall-guard variables [93], would
undoubtedly yield more gadgets.

8 Case Studies
We have demonstrated that EINSTEIN builds diverse, low-
effort attacks for popular servers. To demonstrate that such
attacks pose a serious threat, we present two case studies of
attacks against nginx. For each case study, we will: (1) explain
how EINSTEIN identifies the gadget chain, builds a candidate
exploit for it, and confirms the exploit’s effectiveness; and
(2) discuss how the exploit bypasses state-of-the-art defenses.

Defenses targeted. In considering which defenses to center
our discussion around, we recall our explanation in Section 2
about the practical and comprehensive defenses against vul-
nerable defs and uses. Because we assume the existence of
a memory write vulnerability, any def -centric defenses (e.g.,
memory safety, DSR, and memory error scanning) are im-
plicitly out of scope. Moreover, because the comprehensive
defenses (e.g., memory safety, full DSR, and full DFI) are not
widely deployed, we also consider them out of scope. Hence,
we center our discussion around the practical use-centric
defenses, i.e., syscall filtering [34, 35, 44, 67] and selective
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Processing phase
void ngx_execute_proc(ngx_cycle_t *cycle, void *data) {
   ... // Already setup envp, called fork(), etc.
   ngx_exec_ctx_t *ctx = data;
   execve(ctx->path, ctx->argv, ctx->envp);
}

Quiescent phase
void ngx_master_process_cycle(ngx_cycle_t *cycle) {
   for ( ;; ) {
      ... // Rest of event loop
      if (ngx_change_binary)
         ngx_exec_new_binary(cycle, ngx_argv);
} }

Initialization phase
int main(int argc, char *const *argv) {
   ... // Parse config, init data structures
   ngx_save_argv(&init_cycle, argc, argv);
   ngx_master_process_cycle(cycle);
   return 0;
}

SIGUSR2 execve(pathname = “/path/to/nginx”,
       argv = 0x7fff003a5820 = [“/path/to/nginx”,

  “-p”,
                                “/tmp/nginx/”,
                                ...],
       envp = [...])

0x7fff0013e000 [Code]     r-x
0x7fff002b1000 [RO data]     r--
0x7fff00331000 [Data]     rw-
0x7fff003718c0: 0x7fff003a5820    (ngx_argv)
0x7fff0037d948: 0x00000000   (ngx_change_binary)

--------

0x7fff0037e000 [Heap]     rw-
0x7fff003a5820: {0x7fff003a6840, 0x7fff003a85b0,

  0x7fff003a67e0}   (*ngx_argv)
0x7fff003a67e0: “/tmp/nginx/”     (*ngx_argv[2])
0x7fff003a6840: “/path/to/nginx”  (*ngx_argv[0])
0x7fff003a85b0: “-p”     (*ngx_argv[1])
0x7fff003b0000: ----------------- (unused data)

--0x7ffffffff000 [Stack]     rw-

1

0x7fff003b0000

0x7fff003b0000: {0x7fff003b0018, 0x7fff003b0028, NULL}
0x7fff003b0018: “/usr/bin/touch”
0x7fff003b0028: “/tmp/attacker-was-here”

Case study 1

Created file /tmp/attacker-was-here.

Data
char **ngx_argv; sig_atomic_t ngx_change_binary;

nginx

Memory state Reported syscallsWorkload

(No workload needed)

1. Gadget chain 
identification run

2. Exploit 
confirmation run

Figure 6: An execve-based gadget in nginx that EINSTEIN identified and built an attack for.

DFI [44, 79]. As we demonstrate that such practical defenses
are fundamentally unsecure, we conclude that more compre-
hensive defenses should be deployed.4

8.1 Bypassing Syscall Filtering
This case study exploits an execve gadget in nginx’s live
binary upgrade feature, wherein nginx replaces its own run-
ning binary while maintaining all of its connections. Figure 6
walks through how we identify and exploit the gadget with
EINSTEIN.

Identification and exploitation. First, when starting up,
nginx saves its argv to the global variable ngx_argv, which
is subsequently tainted by EINSTEIN. Next, when sending
workloads to nginx, EINSTEIN sends the SIGUSR2 signal to
the nginx master process, which initiates the live binary up-
grade. This raises the ngx_change_binary condition, which
causes nginx to call ngx_exec_new_binary with ngx_argv as
an argument. Eventually, this results in nginx calling execve,
passing to it the same argv that it had initially saved during
start up. EINSTEIN identifies the attacker-tainted argument to
execve and reports it.

EINSTEIN builds an exploit for this by first identi-
fying the identity dataflow from execve’s argv argu-
ment to the ngx_argv global variable. Then, EINSTEIN
builds an “arbitrary code execution” candidate exploit
by generating (addr,val) pairs that overwrite ngx_argv

to point to an array of two strings: "/usr/bin/touch",
"/tmp/attacker-was-here", and a NULL terminator. After re-
running nginx to confirm this exploit, it indeed creates the
file /tmp/attacker-was-here, indicating that our exploit was
successful.

Because this gadget is triggered server-side (via SIGUSR2)
rather than client-side (via a network request), it would ap-
pear at first glance that a remote attacker cannot trigger it—
rather, the attacker would have to wait until the nginx process
upgrades itself. However, our exploitation tooling (which

4Indeed, developers may deploy the comprehensive (but costly) defenses
to thwart EINSTEIN’s attacks. Moreover, they may use EINSTEIN’s reports
to harden their program (e.g., by sanitizing particular syscall arguments).

parses the gadget’s backtrace) makes it immediately clear to
us that we can indeed trigger this gadget remotely. In par-
ticular, by trivially overwriting the tainted global variable
ngx_change_binary, we can force nginx to take the condi-
tional branch before ngx_exec_new_binary, and therefore call
execve. Hence, with just a bit of manual inspection, an at-
tacker can escalate non-triggerable gadgets such as this into
triggerable gadgets. We note that this approach to “legal”
control-flow hijacking differs from previous data-only ap-
proaches for a couple reasons. First, it is optional, because this
gadget can also be triggered: (1) by nginx, when it upgrades it-
self, and (2) by the attacker, by hijacking a tainted kill syscall.
Second, it is considerably lower effort, because we simply flip
a single branch that precedes our already-identified gadget,
whereas other approaches analyze all possible branches in an
attempt to identify new gadgets [41, 43, 73].

Discussion. The objective of syscall filter-based defenses [34,
35, 67] is to disable high-value syscalls, e.g., execve. How-
ever, syscalls filters are fundamentally imprecise because they
cannot disable legitimate syscalls. In other words, if nginx
can legitimately invoke execve, then a defense cannot dis-
able execve—otherwise it would break nginx. EINSTEIN ex-
ploits this imprecision because it does not divert control flow,
and hence, it only covers legitimate syscalls, thereby eliding
syscall filter-based defenses.

In principle, if a security-conscious sysadmin designed a
configuration for nginx that completely disabled all legitimate
uses of execve (e.g., by disabling CGI, live binary upgrade,
etc.), then a syscall filter could indeed disable execve, thereby
mitigating this gadget. However, in practice, this is nearly
impossible because: (1) it is not possible to disable some
features from a configuration (e.g., live binary upgrade); and
(2) it is non-trivial to determine that no possible program point
could invoke execve (e.g., due to the presence of dynamically
loaded libraries and modules). This observation is confirmed
by the evaluation of state-of-the-art syscall filters on nginx:
none of them are able to completely disable execve [34, 35,
67].
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GET /does-not-exist HTTP/1.1

Case study 2

Processing phase
void ngx_log_error_core(ngx_uint_t level, ngx_log_t *log, ...) {
   u_char  errstr[NGX_MAX_ERROR_STR];
   ... // Set: errstr = "TIME [err_levels[level]] PID#TID: MSG";
   write(log->file->fd, errstr, strlen(errstr));
}

Quiescent phase
void ngx_worker_process_cycle(ngx_cycle_t *cycle) {
   for ( ;; ) {
       ... // Rest of event loop
       ngx_process_events_and_timers(cycle);
} }

Initialization phase
int main(int argc, char *const *argv) {
   ... // Parse config, init data structures
   ngx_log_init(ngx_prefix, ngx_error_log);

   ngx_start_worker_processes();
   return 0;
}

0x7fff0013e000   [Code]    r-x
0x7fff002b1000   [RO Data]    r--
0x7fff002b2332: “error” (*err_levels[4].data)
0x7fff00331000   [Data]    rw-
0x7fff003315c0: 0x5   (err_levels[4].len)
0x7fff003315c8: 0x7fff002b2332 (err_levels[4].data)

--------

0x7fff0037e000   [Heap]    rw-
0x7fff003ac718: 0x5     (fd of error.log)
0x7fff003df5d0: “/tmp/nginx/dir/cache_”

(openat’s pathname)
0x7fff003e0000: --------------------  (unused data)

--0x7ffffffff000   [Stack]    rw-

new_str.len: 0x1e

*new_str.data: “\nHello this is the attacker!\n”

new_str.data:0x7fff003e0000 

new_pathname: “/tmp/attacker-was-here”

new_fd: 0x1a

openat(dirfd = AT_FDCWD,
       pathname = “/tmp/nginx/error.log”,
       flags = O_WRONLY|O_APPEND|O_CREAT) = 0x5

1. Gadget chain 
identification run

2. Exploit 
confirmation run

Data
typedef struct {size_t len; u_char *data;} ngx_str_t;
static ngx_str_t err_levels[] = { ..., ngx_string("crit"), ngx_string("error"), ngx_string("warn"), ... };

nginx

GET /cache HTTP/1.1

write(fd = 0x5,
      buf = “2023/01/01 09:27:51 [error] 326872#0: *1 open()

/tmp/nginx/does-not-exist failed (2: No such file or directory)”,
      count = 0x42) = 0x42

openat(dirfd = AT_FDCWD,
       pathname = “/tmp/nginx/dir/cache_”,
       flags = O_WRONLY|O_APPEND|O_CREAT) = 0xd

Created file /tmp/attacker-was-here.

Memory state Reported syscallsWorkload

“Hello this is the attacker!” written to /tmp/attacker-was-here.

Figure 7: An openat-to-write-based gadget chain in nginx that EINSTEIN identified and built an attack for.

8.2 Bypassing Selective DFI
This case study exploits an openat to write gadget chain in
nginx’s error log. Figure 7 walks through how we identify
and exploit the gadget with EINSTEIN.

Identification and exploitation. After nginx enters its qui-
escent phase, EINSTEIN taints three nginx objects in par-
ticular: (1) the err_levels[] global array, which contains
pointers to logging strings (e.g., "crit", "error", "warn") and
their lengths; (2) the pathname of a configuration-defined
cache file, which nginx opens upon requests for /cache; and
(3) the FD of nginx’s error log. Then, EINSTEIN sends re-
quests to nginx, two of which trigger the syscalls of our gad-
get chain. First, it sends a GET /cache request, which causes
nginx to open the cache file. It opens it via an openat with
a tainted pathname. EINSTEIN then adds the created file to
its directly-controllable FD table. Second, EINSTEIN sends
a GET /does-not-exist request, which causes nginx to write
an "error" message to the error log. It does this via a write

with a tainted fd, buf, and count. Because the FD argument is
tainted, and there is a file in the directly-controllable FD table,
EINSTEIN determines that the write could be redirected to
another file, thereby identifying the chain from the openat to
the write.

EINSTEIN builds an exploit for this by first identifying an
identity flow between: (1) openat’s pathname and the cache
pathname on the heap, (2) write’s fd and the error log’s FD
on the heap, and (3) write’s buf and the pointer to the "error"
string in global data. Then, EINSTEIN builds a “write-what-
where on the filesystem” candidate exploit by generating
(addr,val) pairs that overwrite: (1) the cache file’s pathname
to a file "/tmp/attacker-was-here", (2) the error log’s FD to
the cache file’s FD, and (3) the pointer to the "error" string
to a pointer to a "Hello this is the attacker" string. Next,
we re-run EINSTEIN to confirm this exploit, but unfortunately,
it only writes "Hello" to our file. Upon closer inspection as to
why, we quickly notice from the tagset of write’s count argu-
ment that it depends on the "error" string’s length—i.e., 0x5,
thereby explaining why only the first five characters of our tar-

get string were written to the file. Our analyzer did not initially
target the string length because it does not have an identity
dataflow to write’s count, since their values differ. Hence, we
modify our exploit to also overwrite the err_levels[] string
length to 0x1e, i.e., the length of our string. As a result, we
are able successfully write our entire attacker-specified string
to our attacker-specified file.

Discussion. The objective of selective DFI is to only en-
force DFI for select def-use chains, e.g., for syscall argument
uses [44]. However, selective DFI is fundamentally imprecise
because: (1) it leaves many dataflows unsecure (i.e., it is “se-
lective”), and (2) for any complex dataflows it does attempt
to secure, it must statically over-approximate the set of legal
def s for a given use, or otherwise risk breaking the target
program. EINSTEIN exploits this imprecision because it uses
a lightweight dynamic analysis, which encounters no issues
with complex dataflows.

Specifically, if the selective DFI’s points-to analysis cannot
determine all the possible def s for some loaded data—e.g.,
due to notoriously difficult interprocedural analyses, pointer
aliasing problems, etc. [38]—then it must assume that any def
is legal. For example, in our gadget, the dataflow from the def
of the "error" string to the use of write’s buf is difficult to
resolve: err_levels[] has four address-taken locations that
may be passed interprocedurally up to five calls deep (e.g.,
to a custom implementation of the variadic sprintf). Hence,
securing every possible def for write’s buf is non-trivial, and
over-approximation would likely incur a significant perfor-
mance overhead. Unsurprisingly, recent work that applies
selective DFI to syscall arguments does not attempt to secure
writes [44]. Finally, we note that this gadget is also resis-
tant to syscall filtering because numerous legitimate program
features rely on openat and write.

9 Limitations

Coverage. The coverage of our analysis is limited for a few
reasons. First, like any dynamic analysis, our code coverage
is not complete. Nonetheless, we still find many exploits, and
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as Section 7.2 explains, further work into improving code
coverage would also identify more attacks. Second, like other
DTA engines, we do not track implicit flows. However, we
consider this acceptable, because implicit flows are less useful
to an attacker since they typically only propagate one bit of
data. Third, EINSTEIN does not build every kind of data-only
attack, e.g., those that aim for Turing-completeness. Instead,
EINSTEIN aims for a simpler, but more powerful primitive:
controllable syscalls. Identifying and eliminating these will
raise the bar for attackers significantly.

Constraints. Like other approaches that use DTA, our anal-
ysis is limited as it does not track all possible dataflow con-
straints in two ways. First, it does not track exactly how ar-
bitrary program operations (e.g., arithmetic) affects attacker
data. However, this is not an issue for us, because our iden-
tity dataflow analysis filters out these more complex gadgets,
and we are still left with plenty of candidate gadgets. Second,
it does not track exactly how attacker data affects the pro-
gram’s path. However, this is also not an issue, because our
exploit confirmation filters out these more complex candidate
exploits, and we are still left with plenty of working exploits.

10 Conclusion
We presented EINSTEIN, a lightweight approach to building
practical attacks that are out of reach of prior solutions. We
use EINSTEIN to build hundreds of data-only attacks and
present two low-effort case studies that bypass state-of-the-
art defenses. We conclude that data-only attacks are well
within reach of attackers, and hence, vendors should consider
stronger defenses such as full DFI and memory safety.
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A Implementation Digression
In this appendix, we discuss the features we added and merged
into our DTA engine to make it general-purpose and extend-
able. We base the implementation of our DTA engine on
libdft [47], a DTA engine built on top of Intel Pin [53], which
was released more than 10 years ago.

Merged features. Since libdft’s release, many forks of it have
emerged, each adding their own features to suite their own
particular analyses [25, 69, 82, 88]. Unfortunately, no single
version of libdft exists that supports all of these features, so we
merge many of them into one general-purpose DTA engine,
i.e., our libdft variant. In particular, we merge support for:
(1) 64-bit instructions; (2) load pointer propagation, i.e., on a
load instruction, propagating not only the tag of the loaded
data to the output, but also the tag of the pointer; (3) tagging
all data with its own address; (4) an interface to the process’s
memory map to e.g., check whether some memory segment
is writable; and (5) a uniform logging interface, which sup-
ports applications that are multi-threaded and applications
that redirect standard logging interfaces (e.g., nginx).

Added features. We also add several new features to libdft.
The first set of features we add provide scalability (as dis-
cussed in Section 5.1). In particular, we add: (1) userfaultfd-
based tagmap initialization, (2) bounded array-based tagsets,
and (3) a shadow memory-based tagmap.

Figure 8 describes the layout of our shadow memory im-
plementation. At a high level, the region from MAIN_START

to MAIN_END is the main address space, and the region from
SHADOW_START to SHADOW_END is the corresponding shadow
address space. Because the region from MAIN_START to
MAIN_START+RESERVED_BYTES would map into null shadow
memory, we cannot use it for program memory. Hence, we
reserve this region to store custom tags. For example, to taint
a file read (as Angora does [25]), we can create unique tags in
this reserved region for each byte of a file. Hence, by support-
ing custom, unique tags—e.g., for each byte of a file, network
read, etc.—our shadow memory provides an expressive inter-
face for other analyses.

USENIX Association 33rd USENIX Security Symposium    1417



Shadow memory layout

==== 0x000000000000: SHADOW_START

...

==== 0x000000100000: SHADOW_START+RESERVED_BYTES

...

...

...

==== 0x............: SHADOW_END, MAIN_START

...

==== 0x............: MAIN_START+RESERVED_BYTES

...

...

==== 0x7fff00101000: BIN_START

...

==== 0x800000000000: MAIN_END

Figure 8: Shadow memory layout.

The shadow memory layout assumes the target program is
an x86_64 binary built as position-independent (the default for
most compilers), so that its stack and mmap_base are at the end
of the address space. Next, the layout requires us to relink the
target program such that its base address is at BIN_START. The
value of RESERVED_BYTES and SHADOW_END depend on the tag
size—i.e., the number of colors per tagset, and the size of each
color (which depends on whether pointer tag compression is
enabled).

The second set of features we add provide other various
functionalities. First, we add support for recording memory
snapshots. We do this by invoking gcore when tainting all
memory to produce a core dump. Because the shadow mem-
ory comprises a significant portion of the address space, we
advise the kernel to not dump shadow pages so that the core
dumps are not too large. Moreover, to aid our exploitation
tooling, we use lldb to also log all runtime symbol infor-
mation when the snapshot is recorded. Second, we add an
interface to receive miscellaneous runtime info. We use this
interface to receive the most recently executed line of the
program driver, so that we can include it in the syscall reports,
thereby aiding our exploitation tooling in knowing the work-
load that covers a particular gadget chain. Third, we fix many
instruction-level taint propagation rules, e.g., by: (1) consid-
ering the byte-level semantics of masking operations (e.g.,
AND, OR); (2) adding support for various vector instructions
(e.g., VZEROUPPER, PUNPCKLQDQ); (3) correctly handling various
x86-64 quirks (e.g., zero-extending a 32-bit MOV, but not an 8-,
16-, or 64-bit MOV); etc. Fourth, we update our libdft variant to
use the newest version of Pin and to support newer syscalls
(e.g., execveat, openat2).

B Control Data Attack Surface Comparison
In this appendix, we compare our non-control data attack
surface to the control data attack surface. To do so, we re-
implement the taint policies of Newton [88] (with our taint
engine) for identifying control-flow hijacking attacks, and
re-run our evaluation. We note that our non-control data gad-
gets are inherently more powerful than control data gadgets,

because even if an attacker can divert a branch, the attacker
still needs to divert it to some target code that e.g., invokes
a syscall with controllable arguments. In contrast, our non-
control data gadgets already are syscalls with controllable
arguments.

Table 4 presents the number of non-control data gadgets
(i.e., syscalls with attacker-tainted arguments) and control
data gadgets (i.e., indirect branches with an attacker-tainted
branch target) that we identified in each target program, as
well as the percentage which have identity flows. Just as
previous work does [88], we count indirect branch sites, rather
than backtraces; however, counting backtraces give us similar
results. We distinguish control data gadgets based on the
type of branch target, i.e., whether it is a register or memory
operand.

First, we observe that control data gadget with memory
operands have higher rates of identity flows than those with
register operands. Upon closer inspection, we notice this is
because register operands tend be more constrained, as they
are typically used for branches with a bounded set of targets
(e.g., switch statements), whereas memory operands are typ-
ically used for branches with a relatively unbounded set of
targets (e.g., indirect calls). Second, we observe that the rates
of identity flows for non-control data gadgets and control data
gadgets with memory operands are roughly similar. This is un-
surprising, because a program treats many types of long-lived
data as “immutable”, regardless of whether it is control data
(e.g., function pointers), or non-control data (e.g., strings).
Hence, we conclude that our lightweight identity flow-based
analysis is applicable to domains beyond data-only attacks.
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