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Abstract

Artificial Intelligence (AI) techniques have advanced to
generate face images of nonexistent yet photorealistic per-
sons. Despite positive applications, Al-synthesized faces have
been increasingly abused to deceive users and manipulate
opinions, such as Al-generated profile photos for fake ac-
counts. Deception using generated realistic-appearing images
raises severe trust and security concerns. So far, techniques
to analyze and recognize Al-synthesized face images are lim-
ited, mainly relying on off-the-shelf classification methods or
heuristics of researchers’ individual perceptions.

As a complement to existing analysis techniques, we de-
velop a novel approach that leverages crowdsourcing annota-
tions to analyze and defend against Al-synthesized face im-
ages. We aggregate and characterize Al-synthesis artifacts an-
notated by multiple users (instead of by individual researchers
or automated systems). Our quantitative findings systemat-
ically identify where the synthesis artifacts are likely to be
located and what characteristics the synthesis patterns have.
We further incorporate user annotated regions into an attention
learning approach to detect Al-synthesized faces. Our work
sheds light on involving human factors to enhance defense
against Al-synthesized face images.

1 Introduction

Recent advances in deep neural networks have significantly
improved Al synthesis techniques such as Generative Adver-
sarial Networks (GANs) that automatically produce realistic-
appearing images [1, 2, 3]. Despite positive applications [4,
5, 6], increasingly realistic models are being abused in on-
line fraud and mischief, which causes severe trust and secu-
rity threats. Especially, the abuses of Al-synthesis techniques
generate images of nonexistent yet photorealistic persons to
deceive users or spread propaganda.

Deceptive content historically used low-quality content or
plagiarized others’ images, whose origins are easier to iden-
tify (such as by reverse image search [7]). But Al-synthesis

techniques allow miscreants to circumvent existing defenses
by generating realistic-appearing and unique face images. Re-
cently, we have witnessed a surge in real-world incidents. For
example, an Al-synthesized photo was used in a suspected
spy’s LinkedIn profile as part of espionage efforts [8], a fake
political candidate on Twitter (set up by a high school student)
was created with the portrait image of a nonexistent person
that AT algorithms produced [9], and groups of Al-generated
profile photos of fake accounts were found on Facebook dis-
tributing polarization [10].
Challenges. Unfortunately, so far, techniques to counter Al-
synthesized facial images are limited. Existing detection ap-
proaches [11, 12, 13, 14, 15] mostly train off-the-shelf classi-
fiers, susceptible to the risk of picking superficial features [16].
While some research [17, 18] suggested specific facial parts
as detection features, the features were based on the heuristics
of individual researchers, limited to the individual percep-
tion or assumptions. We lack a systematic understanding of
what detectable Al artifacts are more prevalent quantitatively
in such images, specifically what regions are suspicious and
what specific patterns resemble synthesis.
Our approaches and findings. In this paper, we develop a
complementary novel approach that uses crowdsourcing in-
telligence to characterize and defend against Al-synthesized
face images. We derive and analyze Al-synthesis artifacts an-
notated by multiple users (instead of by individual researchers
or automated systems), which provides new insights to investi-
gate and identify Al-synthesized images. While an individual
user has limited capability, the annotations of multiple users
will aggregate in finding constantly marked artifact regions
(example user annotations in Figure 1, where heat color in-
dicates the number of annotations aggregated for a position).
We focus on human face synthesis, as this poses high practical
threats in social engineering attacks [10, 19, 20]. Research
in neuropsychology has shown that the human visual system
is sensitive to face perception [21, 22], which has natural
advantages for the analysis of face images.

Our work systematically identifies where the synthesis ar-
tifacts are likely to be located and what characteristics the
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synthesis patterns have. We design a user study that prompts
users to visually draw suspicious regions on Al-synthesized
face images, and input text to describe annotated regions.
While prior work [23, 24, 25] has explored crowdsourcing
studies to analyze Al-synthesized images, these studies used
designs limited to only binary questions or rating questions.
Instead, our design (drawing regions and inputting text to de-
scribe suspicious regions) allows deep quantitative analysis of
what specific artifacts often occur in Al-synthesized images
and how these results can be leveraged for detection.

Our analysis compares and quantifies 15 different regions,
including facial and non-facial regions. For comparative anal-
ysis, we include a control group of real images in experiments.
For Al-synthesized images, we use the images generated by
StyleGAN?2 [3] and StyleGAN3 [26], which are widely used
in practice [27, 28] and have been reported in real-world
incidents [29, 9]. We discover what synthesis artifacts are
prevalent and distinct from real images as opposed to prior
work which only suggested the existence of artifacts [18, 17].
We summarize our main findings on Al-synthesized face im-
ages. (1) Facial regions show various degrees of artifacts
despite exhibiting Al synthesis defects. Ear and hair regions
in synthesized images are more likely to exhibit defects that
users discern, ranging from 2.3 to 4.3 times higher likelihood
compared to the control group of real images. On the other
hand, other regions, such as nose and eye, present less ef-
fectual artifacts to distinguish synthesized images without
showing statistical significance. In general, we observe that
the facial regions distant from the central face area lead to
increasing levels of distinguishable artifacts. (2) Non-facial
regions show consistently high likelihoods of Al synthesis ar-
tifacts. Non-facial objects of hat, earring, eyeglass, or clothes
are frequently annotated as suspicious regions in synthesized
images, with an overall 6.6 times higher likelihood compared
to the control group of real images. We find that non-facial
regions have higher probabilities to exhibit synthesis artifacts
compared to facial regions. (3) The prevalent pattern of arti-
facts in synthesized images is blur, e.g., correlated with ear,
eyeglass, and clothes regions. Additionally, the facial and
non-facial regions show other unique patterns, such as skin
anomalies in facial regions and unknown objects in non-facial
regions. The patterns in suspicious regions in synthesized
images are generally different from the control group of real
images. Our findings provide new insights into synthesis ar-
tifacts to characterize and recognize Al-synthesized faces.
Based on the results, we compile actionable suggestions for
content moderators to screen Al-synthesized images empiri-
cally.

Furthermore, with the intelligence of user annotations, we
investigate the potential of enhancing the detection of Al-
synthesized faces. We adopt an attention learning approach,
which guides inference to the regions of interest. The artifact
regions from crowdsourcing annotations provide attention
guidance during the training of the detection model. We in-

Figure 1: Examples of user annotations on Al-synthesized
face images. Multiple users draw bounding boxes to locate
suspicious regions. We use heat color to indicate the number
of annotations aggregated for a position (red color parts have
high annotation numbers). The aggregation of multiple user
annotations focuses on key artifact regions.

clude eight synthesis models in detection experiments, span-
ning GAN, autoencoder, and diffusion models. The evaluation
on Al-synthesized faces shows that the detection guided by
user annotations outperforms the state-of-the-art detection
approaches [30, 15, 17], and achieves comparatively high
generalization performance. We further evaluate common
evasions on the synthesized images, and observe that the de-
tection with user annotations retains high robustness against
evasions.

To summarize, we make the following contributions in this

paper.

* We take a novel analysis perspective and perform an em-
pirical study to characterize artifacts that users commonly
perceive in Al-synthesized face images. We develop a
crowdsourcing annotation approach to systematically ag-
gregate multiple user annotations that locate suspicious
regions and extract artifact patterns.

* We characterize what synthesis artifacts and patterns are
prevalent in Al-synthesized face images. We find that fa-
cial regions distant from the center (such as ear and hair)
are more likely to exhibit synthesis artifacts, and non-facial
regions consistently show high likelihoods of defects (com-
pared to facial regions). The prevalent pattern of artifacts in
synthesized images is blur. Our findings provide empirical
insights to recognize Al-synthesized faces.

* We incorporate an attention learning method with user an-
notations to detect Al-synthesized faces. The experiments
show our approach outperforms the state-of-the-art detec-
tion approaches in accuracy and remains robust against
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evasions. The results demonstrate the potential benefits
of human intelligence to defend against synthesized face
images.

2 Background

We introduce the background of Al-synthesis techniques that
automatically generate face images, and describe general hu-
man visual system which is evolved to recognize and perceive
faces.

2.1 Al-synthesis Techniques and Models

Al techniques with neural networks are used to generate
photorealistic-looking photos of people who do not exist
in reality. Among various open-source synthesis techniques,
Generative Adversarial Networks [31] (GANs) achieve the
state-of-art performance and efficient computation, in which
two neural networks compete to improve quality iteratively. A
series of GAN models are developed to achieve high synthe-
sis effects. ProGAN [1] added neural network layers and
learned progressively to generate large-resolution images.
StyleGAN [32] (based on ProGAN) introduced finer latent
representation and style information, and provided a dataset of
real human faces FFHQ which became a common training set
for later models. StyleGAN?2 [3] (based on StyleGAN) sim-
plified dataflow and overcame previously noticed weaknesses.
MSG-GAN [33] (based on StyleGAN2) was developed to im-
prove the stability of synthesizing high-resolution images.
StyleGAN3 [26] (based on StyleGAN2) used continuous
representation for detail transformation. Anyres-GAN [34]
(based on StyleGAN3) sampled patches to synthesize images
at arbitrary scales. In addition, other Al-synthesis approaches
have been developed for producing high-quality images. For
example, StarGAN v2 [35] performed an image-to-image
translation using multiple modules to generate images with di-
verse styles. Nouveau Variational Autoencoder (NVAE) [36]
learned a latent encoding through a variational autoencoder
(VAE) and generated images using the decoder. Latent Diffu-
sion Model (LDM) [37] employed a denoising autoencoder
to model images as a diffusion process from a latent vector.

In our user study (Section 4), we use face images gener-
ated from StyleGAN2 and StyleGAN3, the milestone GAN
models which have attained high popularity in practice [27,
28]. Anecdotes have shown that face images generated from
StyleGAN2 were used to deceive users [9]. The image qual-
ity of StyleGAN3 is similar with StyleGAN2 (in terms of
FID, Frechet inception distance) as presented by the original
work [26]. The difference is that StyleGAN3 has changes
in internal representations to address texture sticking and
improve the equivariance metrics. In detection experiments
(Section 6), we include more models to examine detection
generalization (including various GAN models, and autoen-
coder and diffusion models).

2.2 Human Perception Sensitivity on Faces

Humans use vision perception as a primary sensory means
and have dedicated neurobiological capability to recognize
faces. A significant amount of neural signals are for visual
information processing. Prior research has shown that human
visual system is specialized for the recognition of faces [38,
22]. For socialization, humans evolve to be capable of quickly
extracting traits of faces and identifying face differences. Hu-
mans are sensitive to processing facial information [38]. For
vision tasks, humans have advantages to achieve high-quality
results.

On the other hand, human attention is more attracted by
face images. Photographic face images promote affection and
social attraction of users [39]. Social networks and service
websites typically have user accounts to set with profile pho-
tos. Displaying profile face photos is an important factor to
influence decision making online, such as friend request ac-
ceptance [40, 41] or online purchasing [42, 43]. Therefore,
face images have become a target of attackers to manipulate
and falsely gain users’ trust to perform malicious activities.

3 Design Overview and Research Questions

Al-synthesized face images have been increasingly abused by
miscreants to falsely gain users’ trust in social engineering
attacks, such as creating fake social media profiles (real-world
incidents [8, 9, 19, 10]). Existing detection approaches mostly
rely on black-box classifiers or heuristics of researchers’ in-
dividual perception [11, 12, 13, 17, 30, 15]. In contrast, we
develop a novel method to leverage user perceptions to sys-
tematically characterize and defend against Al-synthesized
face images. We derive and analyze Al-synthesis artifacts an-
notated by multiple users (instead of by individual researchers
or automated systems). Our quantitative analysis answers the
following research questions.

RQ1. Do Al-synthesized face images contain artifacts that
users commonly perceive?

RQ2. Where in the Al-synthesized face images are the syn-
thesis artifacts located?

RQ3. What patterns do the perceived artifact regions exhibit
in Al-synthesized images?

RQ4. How can user perceptions be used to facilitate detect-
ing Al-generated face images?

Figure 2 shows the design overview of our study, and the
corresponding components that investigate the research ques-
tions. We conduct a user study that collects crowdsourcing
annotations to find and characterize commonly perceived syn-
thesis artifacts (Section 4 and Section 5). Specifically, for
each face image, users are requested to rate the face fidelity
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Figure 2: Design overview of our study. The analysis aims to answer the research questions RQ1 to RQ4 described in Section 3.

(for RQ1), draw bounding boxes to locate suspicious regions
(for RQ2), and input textual fields to describe annotated re-
gions (for RQ3). Our study design focuses on annotating and
extracting suspicious regions, which is different from prior
crowdsourcing work [23, 24, 25], since our goal is to find
and characterize suspicious regions of synthesis artifacts. As
described in Section 2.2, humans have dedicated visual ca-
pabilities of face perception [21, 22], so crowdsourcing has
advantages for analysis of face images. Note that we aggre-
gate multiple users’ annotations (not just a single user) to ex-
tract commonly perceived artifacts and prune outlier mistakes.
Based on the aggregated user annotations, we qualitatively
compare and characterize various artifacts in Al-synthesized
face images. The findings provide new insights of empirically
recognizing synthesized faces (we discuss suggestions for
content moderators in Section 7). To further leverage user an-
notations in automated detection, we incorporate an attention
learning mechanism (Section 6) to detect Al-synthesized face
images (for RQ4). While attention mechanisms traditionally
adjust network architecture to optimize feature weights [44,
45, 46], attention from input data provides guidance infor-
mation [47]. We use an attention learning approach to com-
bine the attention from human annotations and the features
learned from neural networks. The detection improvement
demonstrates the capability of user annotations to facilitate
recognizing Al-synthesized faces.

4 Methodology of Crowdsourcing Annotations

We describe the design of crowdsourcing annotations and
the user study to extract Al-synthesis artifacts recognized
by multiple users. In this work, we develop crowdsourcing
annotations to quantitatively identify and characterize artifact
regions that users commonly perceive.

4.1 User Study Settings

We conduct user study experiments on the crowdsourcing
platform, Amazon Mechanical Turk (MTurk). We develop a
web annotation interface (details in Section 4.2) which ac-
commodates MTurk participants to draw suspicious regions
on the images and describe artifact patterns. We provide an in-
struction page which only informs participants how to use the
annotation tool and explains that the images may be fake from
Al generation, rather than providing detailed instructions on

how to find synthesis artifacts or what suspicious artifacts
look like (to avoid biasing users’ own perception). Human
users are equipped with the visual system to naturally capture
abnormal regions on face images. To elicit comprehensive
analysis, we add a control group of real images in the exper-
iments (comparison results in Section 5). Each participant
will be assigned a sequence of synthesized images and real
images (as the control group) for annotations. The images
will be displayed in random order.

Face images for crowdsourcing annotations. For crowd-
sourcing annotations, we use publicly available models of
StyleGAN?2 [3] and StyleGAN3 [26], which are widely used
Al-synthesis models for human portraits and have high star
and fork rankings in practice [27, 28] (we include more syn-
thesis models for detection experiments in Section 6.2). More-
over, face images generated by StyleGAN2 and StyleGAN3
have been witnessed in real-world incidents or attacks [29,
9]. The two synthesis models facilitate comparison and un-
derstanding of how Al synthesis has improved. We randomly
generated 100 synthesized images from StyleGAN2 and 100
synthesized images from StyleGAN?3. For the control group
of real images, we randomly sampled 100 images from the
FFHQ dataset [32], as FFHQ is the basis of real images for
training most of the recent face models. The images have high
quality with 1024 x 1024 resolution. We manually examine
and present the distribution of the gender and ethnicity of the
faces in Appendix A.

4.2 Crowdsourcing Annotation Designs

We develop the annotation interface for MTurk participants
to mark and describe the artifacts that they perceive on each
image. Figure 3 shows the example annotation webpage that
we design. The annotation webpage displays the images for
annotation and contains instructions to participants. The in-
structions inform participants how to use the annotation tool
and describe the scenario rather than providing detailed in-
structions on what to look for in the Al-synthesized images,
to avoid annotation biases. The language of the instructions
is kept concise and intuitive, which allows regular users to
comprehend the task and use their own judgment to explore
suspicious regions.

In the procedure of the task, the participant first agrees
online a consent form. The participant is then guided through
an instruction page. The instruction page includes an inter-
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Please draw all regions that you feel are suspicious in the image.
Please pay attention to details and you can draw multiple boxes to locate different suspicious regions.

Step 1: Please use the mouse to draw boxes tightly/accurately around regions to locate those regions ol |
that you feel are suspicious. You can draw multiple boxes to locate different suspicious regions. The Bz comat]
drawing tool allows to move, resize, and delete the bounding boxes that are already drawn. (EEEET]

[_ClearAll_]

Step 2: Please type text below to describe at what region each bounding box is located and what
makes you think each bounding box region is suspicious. Please use succinct words or phrases.

Box 1 located at has the suspicious pattern of (which makes me think the image is suspicious).

Box 2 located at |:|has the suspicious pattern of |:|(which makes me think the image is suspicious).

Step 3: Please select an option indicating how likely you feel the image is fake.
I think the image looks VerY fake fake not sure real very real

Figure 3: The crowdsourcing annotation webpage that we develop to instruct users through the scenario and annotate the
displayed image. Step 1 requests users to draw on top of the image and carefully size and position the bounding boxes to capture
suspicious regions. Upon drawing, the boxes are assigned indexes for reference in Step 2 where users are requested to complete
the prompt on where the box is located and describe what is suspicious with the region (the rows are dynamically updated
according to the number of drawn boxes). Finally, Step 3 asks the users to select from the rating choices to indicate how fake the

image appears.

face to get familiar with the drawing tool, which requests
the participant to use the mouse to draw boxes and move or
resize the drawn boxes. This also proves the participant can
understand instructions and draw boxes through the webpage
interface. Next the participant will start the main task of an-
notating images. The annotation task of each image includes
the following three steps.

Step 1: Drawing bounding boxes to locate artifact regions.
We request participants to use their mouses to draw a set of
bounding boxes on the displayed image to mark which re-
gions they consider suspicious (such as the red boxes drawn
in Figure 3). The main purpose of drawn boxes is to visu-
ally collect and aggregate artifact regions that participants
perceive. When the cursor is moved on the image, crosshairs
with extended lines are displayed to track position and assist
drawing accuracy. The orders of the drawn boxes of each par-
ticipant are indexed (to be referred in Step 2). We do not place
any restrictions on how many boxes participants may draw
(allowing participants to draw no boxes) and how large the
boxes can be. Relaxing such constraints gives participants full
flexibility to reflect their perceived suspicious regions (more
analysis in Section 5.1). We provide a set of operations on the
webpage interface to facilitate accurate drawing, including
moving, resizing, and deleting boxes, and zooming into the
image to closely examine an area.

Step 2: Adding text to describe artifact regions. When
each bounding box is drawn, we dynamically add text fields
on the webpage and request participants to input text to
describe the box region. The main purpose of text description
is to allow participants to express how they think about
suspicious regions in fake images. We use the collected
information to characterize and derive artifact taxonomy
(more analysis in Section 5.4). To keep the task intuitive
for participants, we format the questionnaire as filling two
fields in a sentence. Figure 3 shows examples displayed to

participants: “Box 1 located at has the
suspicious pattern of which makes me
think the image is suspicious.” Participants fill text
in the two fields of Location and Pattern. The Location
field corresponds to what region/object in the image the
participants meant to mark (e.g., ear, teeth). The Pattern
field requests to describe the artifacts in the participants’ own
words. The open text fields allow participants to flexibly
explain perceived observations. When the participant draws
a box, a corresponding text question for the box will be
added on the web interface (if a bounding box is deleted by
the participant, the text question will also disappear). For
example, in Figure 3, the participant draws two bounding
boxes, and the participant will be prompted with two
questions to describe the location and pattern of the drawn
boxes respectively. For each box drawn on the image, we
mandate the participant to enter at least one character in the
corresponding description fields before allowing the task to
proceed to the next image (i.e., the button for the next image
becomes available to click after the condition is met). The
description inputs also help participants to re-examine and
justify the annotated box regions.

Step 3: Rating image fidelity. The participants are re-
quested to rate the image’s overall fakeness on a predefined
five-level Likert scale [48] of “I think the image looks
very fake”, “looks fake”, “not sure”, “looks real”,
and “looks very real”. As shown in Figure 3, the partic-
ipants click one of the radio buttons for rating (initially no
button is selected). We use the ratings to assess the users’ over-
all perception how real or fake an image appears. Selection
from descriptive ratings is explanatory to users, compared to
direct numerical ratings [48]. If a participant selects a rating
level towards fakeness, including “looks very fake” and
“looks fake”, we will mandate the participant to draw at
least one box on the image to mark suspicious regions, before
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Figure 4: Distribution of the average fakeness rating. The x-
axis is the average fakeness rating computed by converting the
five-level descriptive Likert scale to integers from -2 to 2. We
use an average score of 0 (level of “not sure”) to separate
perceptions between fake and real categories. On average over
multiple users, 89% real images are rated towards real and
65% of synthesized images are rated towards fake.

allowing the task to proceed to the next image (if the condi-
tion is not met, clicking the button for the next image will
not proceed and the webpage will display a text warning to
participants).

After a participant completes the steps as described above
for an image, the button to proceed to the next image becomes
available and the participant clicks to start annotating another
image. The top of the webpage will show the number of total
images in this task and the sequence number of the current
image, facilitating participants to track the progress of the
task. At the end of the procedure, the participant can fill in
demographic questions optionally.

Figure | shows examples of bounding boxes that partici-
pants draw by using our MTurk webpage interface to anno-
tate Al-synthesized face images. Multiple participants draw
bounding boxes to locate suspicious regions. The heat color
indicates the number of annotations aggregated for a position
(red color parts have high annotation numbers). As example
text that participants input to describe suspicious regions for
the synthesized images in Figure 1, the top left face image got
descriptions such as location “ear” with pattern “abnormal”,
the top right image was marked location “eyeglass” with
pattern “incomplete” or “bent”, the bottom left face had
“hair” annotated as “deformed”, and the bottom right image
had location “earring” described with pattern “blur”. We
perform in-depth analysis to characterize user annotations in
Section 5.

4.3 Recruitment for User Study

We recruited participants on MTurk between June and Septem-
ber 2023 for crowdsourcing annotations. Our study was con-
ducted with the approval of the institutional review board
(IRB). We did not collect any personal identifiable informa-

100———————————————————————————===

Synthesized Images
(StyleGAN2)
Synthesized Images
(StyleGAN3)
Synthesized Images
(StyleGAN2 and StyleGAN3)
= == Real Images
(FFHQ, Control Group)

40

Cumulative % of Images

0 0.5 1 15 2 2.5 3 35
Average Number of Bounding Boxes Over Users

Figure 5: Distribution of the average number of boxes drawn
by users for each image. We observe that 52% of real images
have less than one annotation drawn on average, while 94%
of synthesized images have one or more annotations.

tion (PII) from the participants. The participants first com-
pleted the consent form before starting tasks (as described
in Section 4.2). We carefully protected the anonymity of the
participants. We provided options for participants to opt out
of the experiments (we did not receive any opt-out requests).
More details on ethics considerations are in Section 7. We con-
ducted a small pilot experiment to ensure that the instructions
and interface are clear for participants. For new participants,
the first two images were used as an exercise to get familiar
with the annotation procedure and will not be counted in the
results.

Each image is annotated by 15 unique participants. We
recruited U.S. workers who have successfully completed at
least 5,000 tasks and had an approval rating greater than 98%
(this setting is similar to or above the ones used in prior stud-
ies [49, 50] to recruit high-quality participants). We deployed
an attention check question to verify that participants care-
fully complete the tasks. In addition, at the instruction page
of tasks, we requested that participants completed a step to
both draw boxes on an image and then move or resize the
boxes, to verify that the participants could understand instruc-
tions and were capable to use the drawing tools. Participants
typically took 1-1.5 minutes to complete one image. We paid
the participants $0.25 for each image annotated. We designed
the experiment with a power analysis [51] with a power of
0.8 using binomial proportion tests at significance level of
0.05 and a standard effect size 0.4. In total, we recruited 185
MTurk participants to annotate images in our experiments. We
present demographic statistics optionally input by participants
in Appendix B.

5 Characterization and Findings

In this section, we present detailed analysis of the crowdsourc-
ing annotation results. We examine user perception capabili-
ties, aggregate regions commonly annotated by multiple users,
and extract artifact patterns to characterize Al-synthesized
faces (RQ1-RQ3).
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5.1 Overall Perception on Al-synthesized Im-
ages

We characterize the overall perception of human users for Al-
synthesized portraits (RQ1). For comparison (as described in
Section 4), we introduce a control group by adding real images
to each set of annotation tasks. From our annotation results,
we analyze and compare how users perceive synthesized and
real images.

Overall fidelity ratings. We request participants to rate the
fakeness level that they perceive for each image (Step 3 in
Section 4.2). We convert the five-level descriptive Likert scale
to integers from -2 to 2 (any evenly distributed numerical val-
ues will lead to the same analysis results). Figure 4 shows the
distribution of images’ average fakeness ratings. The x-axis
indicates the average fakeness level over participants for an
image. The y-axis means the cumulative percentage of the
images. By using an average score of 0 (level of “not sure”)
to separate perception between fake and real categories, we
observe that on average (over multiple participants) 89% real
images are rated towards real and 65% of synthesized im-
ages (56% for StyleGAN2 and 74% for StyleGAN?3) are rated
towards fake. The observation suggests that human visual sys-
tem genuinely recognizes differences between Al-synthesized
face images and real face images.

Bounding box numbers. We further examine the number
of bounding boxes that participants draw on the images. We
provide participants full flexibility to decide how many boxes
to annotate suspicious regions on an image (Step 1 in Sec-
tion 4.2). Figure 5 shows the distribution of the average num-
ber of boxes per image drawn by participants. The x-axis
represents the average number of boxes over participants for
an image. The y-axis displays the cumulative percentage of
the images. We observe that 52% of real images have less than
one annotation drawn on average, while 6% of synthesized
images (9% for StyleGAN2 and 3% for StyleGAN3) have
less than one annotation. Moreover, just 1% of real images
show more than two annotations on average; on the other
hand, 24.5% of synthesized images (15% for StyleGAN2 and
34% for StyleGAN3) have more than two annotations. The
results show that participants carefully examine images and
annotate more frequently in synthesized portraits than in the
control group of real portraits.

Takeaway 1: On average, users recognize the differences
in Al-synthesized face images from the control group of
real ones, and draw more boxes to annotate suspicious
regions in the synthesized images.

5.2 Extracting Aggregate Regions

In the crowdsourcing experiment, we collected boxes drawn
by users (Step 1 in Section 4.2) which indicate individual’s
perceived suspicious parts on Al-synthesized images. Fig-

Algorithm 1 Extraction of aggregate regions

Input: A list Ly, contains the bounding boxes that all users drew for an image.
Each item Mp,y in Lpgy,s is a matrix (same dimensions as the image) marking the
bounding box area denoted with 1 and all other positions with 0.

The operations +, —, and £ are point-wise matrix operations.

The procedure constants MinAgree (a minimum agreement level of a region) and
AgreePercent (a percentage used to ensure a relatively similar level agreement
across a region).

Output: The list of extracted aggregate regions Lycgions for the image.

12 Lyegions < list():
2: M ggregate < ZLba,\ex Mpox;

3: while (findMax(Mggreqare) > MinAgree ) do

4. PeakValue < findMax(Mggregare);

5: AgreeLevel < max(MinAgree, AgreePercent x PeakValue);
6: Mpask < extractGreaterOrEqual(Maggregare, AgreeLevel);
7. Leandidares < findConnectedComponents (M sk );

8. for Meandidate 0 Leandidates do

9: if findMax (M candidare) < PeakValue then

10: Leandidates < deleteUpdate(Leandidatess Meandidate)
11: end if

12: end for

13: Megion < outpmMinSizeltem(LM,,,W,”(,S)

14: Lregiuns < appendUpdate (Lreyimu 3 Mregiun ) 5
15: for My, in Lygyes do

16: if intersect(Mpox, M region) then

17: Lioes < deleteUpdate(Lpoxes; Mpox);
18: Maggregate <= Maggregare — Mpoxs

19: end if

20: end for

21: end while

22: return Lyegions:

ure | shows examples of user annotations on synthesized
face images (where the heat color indicates the number of
annotations aggregated). We focus on analyzing the regions
that are constantly marked by multiple users, to characterize
commonly recognized synthesis artifacts (in Section 5.3 and
Section 5.4). We also use the extracted regions as annotation
masks to augment detection of Al-synthesized face images
(in Section 6).

We develop Algorithm | to extract aggregate regions from
bounding boxes that multiple users draw. The input is the list
of bounding boxes submitted by users for an image, Lp,y,s-
The output is the list of extracted regions, Lyegions- The al-
gorithm iteratively extracts the top aggregate region in each
round.

1. At the beginning of the round (Line 3), we examine how
many layers of annotations are stacked across the bound-
ing boxes that multiple users drew independently (agree-
ment level). We proceed the extraction if the agreement
level in the remaining multi-layer masks is not lower
than MinAgree. We set the practical MinAgree value as
four annotations (greater than 25% of participants for
each image in our experiment).

2. We extract the region that has the most annotations for
this round (Lines 4-14).

(a) To separate regions (Lines 4-6), we require
the agreement levels of the points included are
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Figure 6: Example regions extracted by Algorithm | on
Al-synthesized face images. The bounding boxes that users
annotated on these images are shown in Figure 1.

not lower than AgreePercent of the peak value,
in addition to MinAgree. We set the practical
AgreePercent value as 50%.

(b) We use a union-find strategy [52] to extract con-
nected components based on the multi-layer masks
as candidates (Line 7). We filter the candidate re-
gions by requiring to include the peak value (Lines
8-12).

(c) To break the tie of multiple candidate regions, we
select the candidate with the smallest extracted size
(Line 13) and add it as the extracted region for this
round (Line 14). The strategy prioritizes choosing
compact regions.

3. We exclude the selected bounding boxes, which intersect
with the currently extracted region, from the aggregate
masks (Lines 15-20), to prepare for the next round ex-
traction.

Example extraction results are shown in Figure 6 (where
the original bounding boxes that users drew are shown in
Figure 1). Aggregation of multiple user annotations points to
artifact regions.

Numbers and sizes of extracted regions. Table | presents
statistics of the extracted regions. We first examine the aver-
age number of extracted regions over images. The average
number of extracted regions on Al-synthesized images is 2.10,
and the average number of extracted regions in the control
group of real images is 0.96. The synthesized images have
extracted regions 2.19 times more on average than the control
group of real images (ratio 2.10/0.96 = 2.19). We further
analyze the average region size percentage to the full image
size. The average size of extracted regions on Al-synthesized

Table 1: Average numbers and size percentages of the regions
extracted from annotation aggregations. The rows represent
image sets. The columns indicate region statistics.

Average | Average
Image Set Region Size
Number | Percent %
. StyleGAN2 1.83 2.14
Synthesized SgleGAN3 237 2.19
Synthesized Images (StyleGAN2 and StyleGAN3) | 2.10 2.17
Real Images (FFHQ, Control Group) 0.96 2.45

images is 2.17% of the image size, and the average size of
extracted regions on the control group of real images is 2.45%
of the image size. The differences have statistical significance
with low p-value (p < 0.001). The finding shows that the an-
notation aggregation results focus on detailed regions in the
images.

Takeaway 2: The extracted regions that multiple users
annotate as suspicious in synthesized images occur with
higher incidence and focus on detailed regions.

5.3 Characterizing Artifact Locations

Based on the extracted regions (from Algorithm 1) that mul-
tiple users collectively marked, we examine Location text
input by the users (Step 2 in Section 4.2) to identify where in
the Al-synthesized face images the synthesis artifacts are lo-
cated (RQ2). We use natural language processing techniques
to analyze user input text. We apply the widely-used lexical
database WordNet [53] to parse the user location text. We
extract lexical parent categories from WordNet to filter candi-
date noun words referring to objects. The terms that specify
human body regions are grouped based on the established
categorization list [54]. We further group similar words that
have common hypernyms in WordNet for the non-body region
words. Our analysis extracts 15 categories that frequently oc-
cur in user annotations, including ten facial categories and
five non-facial categories (as the x-axis in Figure 7).

We note that some categories such as “nose” or “mouth
occur in all face images, but other categories such as
“earring” occur in only subset of the images. To account
for how often these categories appear, we manually review
images and count numbers with the accessories that occur. We
measure the conditional probability of a given location cate-
gory being marked by users (i.e., the count of being marked
divided by the count of images with the location appearing in
the images). We apply the two-sample one-sided hypothesis
testing (binomial proportion test) [55] to assess whether the
synthesized and real images exhibit statistically significant
differences for annotated locations. The difference is consid-
ered statistically significant when p-value is low (p < 0.05).
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Figure 7: Conditional probabilities of the locations marked by users. The facial categories include ear, eye, eyebrow, hair,
mouth, forehead, neck, chin, cheek, and nose. The non-facial categories include hat, earring, eyeglass, background, and clothes.
The values below the x-axis labels represent p-value. Significance level is indicated as * (p < 0.05), ** (p < 0.01), and ***

(p < 0.001).

Figure 7 shows conditional probabilities for different location
categories. The x-axis presents the location categories. The
values below the category labels represent p-value. The y-
axis shows the conditional probabilities of the categories. We
observe that the synthesized images show higher conditional
probabilities of location annotations than the control group
of real images with statistical significance (p < 0.05), which
indicates distinct artifacts in Al-synthesized images.

Facial location characterization. In Figure 7, we observe
that facial regions show diverse degrees of probabilities to
exhibit AT artifacts. Regions of “ear” and “hair” are more
likely to exhibit defects that users discern. Specifically, the
likelihood of “ear” extracted as suspicious regions in the
synthesized images is 2.32 times higher than in the control
group of real images (ratio 0.65/0.28 = 2.32, p < 0.001),
and the likelihood of “hair” in the synthesized image is 4.33
times higher than in the control group of real images (ra-
tio 0.39/0.09 = 4.33, p < 0.001). We note that these areas
distant from the central face area have high levels of distin-
guishable artifacts. On the other hand, the regions of “nose”,
“eye”, and “mouth” have relatively low probabilities of being
annotated or result in similar likelihood (without a statisti-
cally significant difference) between synthesized and real
images, though prior studies [18, 17] suggested artifacts in
such regions. In Section 5.4 we further characterize the region
patterns and find pattern differences between synthesized and
real images. The observations on facial regions show that
certain facial regions have high likelihoods with artifacts to
distinguish Al-generated images.

Takeaway 3: Facial regions show various degrees of ar-
tifacts. Regions of “ear” and “hair” are more likely to
exhibit defects in synthesized images, about 2.3 to 4.3 times
higher likelihood compared to real images. Other regions
such as “nose” and “eye” present less effectual artifacts
to distinguish synthesized images.

Non-facial location characterization. We observe in Fig-
ure 7 that non-facial objects, including “hat”, “earring”, and
“clothes”, show consistently high likelihoods of synthesis
artifacts, and annotations in the control group of real images
typically do not converge on these regions. The likelihood of
“hat” as suspicious regions from user annotations in the syn-
thesized images is 9.72 times higher than in the control group
of real images (ratio 0.69/0.071 = 9.72, p < 0.001), the like-
lihood of “earring” in the synthesized images is 15.18 times
higher than in the real images (ratio 0.85/0.056 = 15.18,
p < 0.001), and the likelihood of “clothes” in the synthe-
sized images is 11.00 times higher than in the real images
(ratio 0.33/0.03 = 11.00, p < 0.001). With the conditional
probabilities calculated over all non-facial categories, the
non-facial regions in synthesized images overall have 6.6
times higher likelihood of being annotated as suspicious com-
pared to the control group of real images. The observations
show that non-facial regions frequently contain artifacts in
Al-synthesized images, presumably due to the variety of the
locations and styles of these objects which may cause the
model to undertrain on properly rendering the regions. Ex-
amining these non-facial regions will facilitate recognition of
Al-synthesized face images.

Takeaway 4: Non-facial regions, such as “hat”,
“earring”, and “clothes”, show consistently high
likelihoods in synthesized images to contain artifacts.
Non-facial regions overall have 6.6 times higher likelihood
of being recognized as suspicious in synthesized images
compared to real images.

5.4 Characterizing Artifact Patterns

We analyze user inputs for the Pattern prompt (Step 2 in
Section 4.2) to understand what visual characteristics highly
correlate with specific regions being annotated. We seek to
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answer the question what synthesis patterns are commonly
found in Al-synthesized portraits (RQ3). We correlate the
relationship between the pattern descriptions and location
descriptions from the user annotations to characterize artifact
attributes.

We calculate the conditional probabilities of the descrip-
tion words occurring given the location tokens extracted in
Section 5.3. A high probability indicates that the token pair
has high correlation, i.e., the annotated location is frequently
described as the specific pattern. For the textual descriptions
in the Pattern fields, we remove stop words, lemmatize the
words to their canonical forms, and generate the unigram
and bigram tokens. In addition, we calculate p-value via the
two-sample one-sided hypothesis testing [55] to measure sig-
nificance of differences between synthesized images and the
control group of real images. We select the most discrimi-
native description tokens ranked by the p-value, and show
the top 10 description tokens for the location categories in
Figure 8. In each square grid of Figure 8, the bottom left tri-
angle shows the conditional probability from the synthesized
images, and the top right triangle shows the conditional proba-
bility from the control group of real images (for comparison).
The numbers in the grids represent p-value in the hypothesis
testing. The p < 0.05 indicates statistical significance, and for
ease of visualization, we show the p-value that is less than 0.1
in Figure 8. We observe that users perceive different patterns
for similar locations marked in the synthesized and real im-
ages. We separate the facial and non-facial location categories
(based on Section 5.3) for characterization.

Facial pattern characterization. We find differences in
the patterns for locations marked in the synthesized and
real images. For facial locations in Figure 8(a), we ob-
serve the prevalent description in synthesized images is
“blurry” (Ist column from left). Specifically the regions
showing “blurry” with statistical significance are “ear”
(p < 0.001) and “mouth” (p < 0.05). We also find that the
pattern “unnatural skin” (2nd column) has high correla-
tion with facial regions in synthesized images, including “ear”
(p <0.01), “neck” (p < 0.01), and “chin” (p < 0.05). The
observations demonstrate the difficulties to synthesize in-
tricate facial details. In addition, although users may mark
same regions in synthesized and real images, such as “eye”
or “mouth” (Section 5.3), we observe pattern differences be-
tween synthesized and real images (p < 0.05), e.g., “eye” in
synthesized images appears abnormal “shape” (5th column)
and “mouth” in synthesized images tends to be “blurry” (1st
column).

Non-facial pattern characterization. The correlations be-
tween non-facial regions and descriptive patterns are illus-
trated in Figure 8(b). Similar to facial regions, we find that
the main synthesis pattern is “blurry” (1st column from left)
correlated with non-facial regions, including “earring” (p <
0.01), “clothes” (p < 0.01), and “eyeglass” (p < 0.01).
We also observe specific non-facial patterns of “unknown

<0.001] _ 0.006 |j<0.001 0.003 0.056] [fo.25
Ear [k ok (M ook Hok
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0.029 0.04 0.20
Mouth * *
0.056 0.04
Hair- *
0.056] 0.078] 0.078 0.04] 0.078 0.15
Eye *
0.029 0.078
Chin *

0.078 0.10
Cheek

Nose

Forehead

Eyebrow

0.00

Blurry
Unnatural Skin
Warped

0dd Texture
Shape

Skin Texture.
Skin Fold
Weird Shape
Not Real
Irregular Shape

(a) Conditional probabilities of pattern descriptions for facial regions
(ear, eye, eyebrow, hair, mouth, forehead, neck, chin, cheek, and nose).
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(b) Conditional probabilities of pattern descriptions for non-facial
regions (hat, earring, eyeglass, background, and clothes).

Figure 8: Conditional probabilities of Pattern tokens input
by the users correlated with the Location categories. In each
square, the bottom left triangle shows the probability from the
synthesized images, and the top right triangle shows the prob-
ability from the control group of real images (for comparison).
The plots show the top correlation pairs ordered according
to p-value. Significance level is indicated as * (p < 0.05), **
(p < 0.01), and *** (p < 0.001).

object” (2nd column) with “clothes” (p < 0.05) and
“mismatched” (7th column) with “earring” (p < 0.05),
which suggests that the synthesis patterns in non-facial re-
gions at statistically significant rates do not correspond to
objects that users can recognize.

Takeaway 5: The prevalent artifact pattern in synthe-
sized images is “blurry”, e.g., correlated with “ear”,
“eyeglass”, and “clothes” regions. In addition, the fa-
cial and non-facial regions show other unique synthesis
patterns, specifically skin anomalies in facial regions and
unknown objects in non-facial regions.
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6 Detection of Al-synthesized Faces

With the intelligence of user annotations, we investigate the
potential of enhancing the detection of Al-synthesized faces.
We use an attention learning approach to incorporate user
annotated regions, and evaluate detection accuracy.

6.1 Guided Attention Method for Detection

From our user study, we gather human annotations that col-
lectively locate artifact regions in Al-synthesized face images.
We further investigate how to use annotated data to improve
detection (RQ4). Existing detection of Al-synthesized im-
ages typically trains black-box neural networks for classifica-
tion [13, 56, 57], which have the risk of selecting superficial
features. On the other hand, carefully designed heuristic ap-
proaches identify explicit features [58, 17, 59], but may suffer
from scaling or generalizing to other synthesis methods. We
aim to combine the strengths of the two sides. We use the set
of human annotated images to guide the detection model and
focus on the useful feature regions.

Using Algorithm | in Section 5.2, we extract attention
mask annotated by users on synthesized images, which en-
sures that only high agreement regions are used to guide
the model learning. As users mark suspicious regions in our
study, the extracted mask locates artifacts in Al-synthesized
images. With image dimension H x W, the pixel-level annota-
tion mask is represented as M € R7*W (normalized between
0 and 1), where each element indicates the weight of user
annotation for an image position. We adopt attention learn-
ing to integrate human annotation mask M when training the
model. Li et al. [47] developed a method to provide direct
guidance on the attention. The model attention map is cal-
culated via Grad-CAM (Gradient-weighted Class Activation
Mapping) [60] as A € R¥*W (normalized between 0 and 1),
whose values highlight the discriminative image regions that
the model has learned in training. To enforce extra attention
as guidance, a mean squared error loss between A and M is
introduced as in Equation (1).

1 H—-1W-1 2
Lextra(A7M) = H-W Z Z (Aij_Mij) (1
: i=0 j=0

This loss term Leyq(A, M) is integrated with a weighting
parameter into the final loss function for training the model.
By minimizing the loss, Equation (1) makes the learned at-
tention map A close to the user mask M, which guides the
network to pay attention to the user marked regions. We add
the loss to provide extra supervision in the training. The atten-
tion learning combines the heuristics from human annotations
and the features learned from neural networks.

6.2 Detection Experiments and Evaluation

We perform experiments to investigate the effects of adding
human annotations to guide attention and compare with other
detection methods. The classification neural network that we
use is the ConvNeXt [62]. Our training data contains 10,000
synthetic face images (5,000 from StyleGAN2 and 5,000 from
StyleGAN3) and 10,000 FFHQ real face images. To provide
the extra guidance, we include 200 user annotated images
(from our user study experiment) with masks extracted by Al-
gorithm 1. These 200 images are included to train all methods
(only our approach uses the human annotation masks). The
training data size has similar magnitude and ratio compared
to the prior attention learning framework study [47].

To evaluate detection generalization, our testing data spans
images generated from a variety of generation methods, with
publicly released image sets or pre-trained models to syn-
thesize high-quality images of 1024 x 1024 resolution. In
addition to StyleGAN2 [3] and StyleGAN?3 [26] (which also
generate the training images in our experiments), we perform
testing on earlier and later GAN models, including Style-
GAN [32] (predecessor of StyleGAN2), MSG-GAN [33]
(successor of StyleGAN2), and Anyres-GAN [34] (successor
of StyleGAN3). We also test other models, including Star-
GAN v2 [35], NVAE [36], and LDM [37]. Each testing ex-
periment consists of 1,000 synthesized face images compared
with a fixed set of 1,000 FFHQ real face images.

We run training and evaluation on a NVIDIA TITAN
RTX GPU with 24GB of RAM. All images are resized to
224 x 224, since the ConvNeXt model is pretrained on this
resolution [62] and it is close to the practical profile image
resolution on social media platforms [63, 64, 65]. In training,
we use the Adam optimizer [66] and set the weights of the
loss components as 1 for the classification loss and 5 for the
guided supervision loss.

Detection accuracy. To evaluate the performance of our
method, we compare with the state-of-the-art approaches
that were recently developed on Al-generated image detec-
tion, including LGrad [30], UniversalFakeDetect [15], and an
expert-based detection [17]. The experiments were trained on
the same data as our approach. We measure detection accu-
racy using the F-score [61] and show the evaluation results
in Table 2. The rows represent detection approaches. The
columns show the evaluation results on images generated
by various synthesis models. With the evaluation on Style-
GAN2 and StyleGAN3 image sets, our approach of guided
attention achieves an F-score over 0.970, outperforming the
other approaches (and showing improvement via ablation,
more details below). To evaluate generalization across im-
ages from other synthesis models (Anyres-GAN, MSG-GAN,
StyleGAN, StarGAN v2, NVAE, LDM), our approach yields
an overall F-score of 0.927, compared to LGrad with 0.556,
UniversalFakeDetect with 0.841, and expert-based detection
with 0.835. In addition to improving detection on StyleGAN
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Table 2: Breakdown of detection accuracy across the Al-synthesized image testing datasets. The accuracy values show F-
scores [01]. Testing Setup indicates whether or not evasions were applied to the Al-generated images for testing. Training Method
denotes what type of training was used for the detection approach. Same Models as Training datasets used a train-test split across
StyleGAN2 and StyleGAN3 images. Other StyleGAN Related Models datasets were testing images generated by other models
related to StyleGAN (including both predecessor and successor models). Other Models datasets were testing images generated
by other synthesis models. The last column shows the arithmetic average across all testing datasets for each detection.

Testing Training Same Models as Training| Other StyleGAN Related Models Other Models

Setup Method StyleGAN2| StyleGAN3 |Anyres-GAN|MSG-GAN|StyleGAN|StarGAN v2|NVAE| LDM |Average

Our approach (attention) 0.973 0.970 0.894 0.939 0.938 0.916 0.937 1 0.852 | 0.927

Attention ablation 0.892 0.895 0.799 0.804 0.813 0.818 0.808 | 0.756 | 0.823

No Evasion|Expert-based detection [17]|  0.901 0.898 0.811 0.825 0.833 0.807 0.832 | 0.776 | 0.835

LGrad [30] 0.945 0.872 0.393 0.484 0.450 0.306 0.270 | 0.724 | 0.556

UniversalFakeDetect [15] 0.782 0.865 0.867 0.858 0.844 0.839 0.838 | 0.838 | 0.841

Our approach (attention) 0.973 0.970 0.893 0.930 0.938 0.891 0.927 1 0.798 | 0.915

Attention ablation 0.892 0.896 0.807 0.811 0.826 0.798 0.759 | 0.714 | 0.813

Blur |Expert-based detection 0.896 0.892 0.794 0.815 0.824 0.837 0.801 | 0.686 | 0.818

LGrad 0.913 0.829 0.303 0.322 0.275 0.138 0.021 | 0.034 | 0.354

UniversalFakeDetect 0.850 0.873 0.803 0.826 0.823 0.839 0.834 | 0.833 | 0.835

Our approach (attention) 0.974 0.968 0.886 0.938 0.939 0911 0.942 1 0.821 | 0.922

g Attention ablation 0.891 0.897 0.797 0.805 0.816 0.804 0.827 1 0.726 | 0.820

g Crop |Expert-based detection 0.899 0.898 0.812 0.825 0.835 0.818 0.852 | 0.704 | 0.830

i LGrad 0.947 0.890 0.405 0.469 0.472 0.146 0.195 | 0.012 | 0.442

UniversalFakeDetect 0.761 0.848 0.842 0.853 0.824 0.839 0.837 1 0.826 | 0.829

Our approach (attention) 0.942 0.923 0.726 0.858 0.872 0.919 0.936 | 0.829 | 0.876

Attention ablation 0.868 0.860 0.724 0.761 0.766 0.817 0.791 1 0.716 | 0.788

JPEG [Expert-based detection 0.884 0.878 0.752 0.782 0.783 0.816 0.800 | 0.691 | 0.798

LGrad 0.704 0.569 0.155 0.270 0.243 0.000 0.057 | 0.009 | 0.251

UniversalFakeDetect 0.750 0.809 0.728 0.801 0.751 0.835 0.835 ] 0.829 | 0.792

related images, our approach also generalizes to improve de-
tecting images generated by other synthesis models (Star-
GAN v2, NVAE, and LDM). Our attention approach achieves
statistically significant performance improvements over each
of the other approaches (p < 0.001 using the two-sample,
binomial proportion test). The results show that our approach
achieves high detection accuracy and competent generaliza-
tion performance.

Ablation analysis. To examine the efficacy of incorporating
user annotations in detection, we perform an ablation exper-
iment to investigate how much the annotations in training
contributes to the detection performance. For the attention
ablation setting, we remove the attention component in the
loss function and evaluate on the same image sets. Table 2 in-
cludes the F-score values of the attention ablation experiment.
Without attention in the training, the detection results show
lower accuracy, and the overall performance is 0.823. The
improvement contribution of attention based on annotations
overall is 10.4% (0.823 compared to 0.927). The attention
detection with user annotations performs better than the ab-
lation setting with statistical significance (p<0.001 using a
two-sample, binomial proportion test). The results demon-
strate that incorporating annotations considerably improves
the detection performance.

Detection robustness. We further examine robustness
and evaluate common evasions on the synthesized images,
including blurring, cropping, and JPEG compression. We
apply evasions only on the synthesized images, not on the
real images (i.e., real images are unchanged, since evasions
will only be performed by adversaries on synthesized images).
For the blurring we use a Gaussian blur with a kernel size of
13 and a standard deviation of 2. For cropping, we randomly
crop out up to 10% of the image (i.e., retaining 90% of the
image). For JPEG compression, we use a quality level of
75%. Table 2 shows the F-score accuracy under various
evasions. Our approach consistently achieves high accuracy
across evasions, compared to the other three approaches.
LGrad experiences significantly degraded performance
since it depends on the gradient pre-processing susceptible
to small changes in the pixel values. UniversalFakeDetect
uses a predefined feature space, and its accuracy under
evasions largely remains lower compared to our approach.
Expert-based detection forces the detection to focus on a fixed
region based on heuristics and the performance under evasion
is still lower than our approach. We observe that detection
guided with attention that incorporates human annotations
learns inherent features and remains robust against evasions.
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Takeaway 6: Attention-guided detection with human an-
notations achieves high accuracy compared with prior de-
tection approaches, and retains high robustness against
evasions.

7 Discussion

We provide discussion based on our findings and experiments,
including ethics considerations, suggestions to defend against
synthesized faces, and limitations and future work.

Ethics considerations. Our user study was performed with
the approval of our institutional review board (IRB). The IRB
approval established specific guidelines addressing ethical
considerations, such as collecting data securely and obtain-
ing user’s consent. We diligently adhered to these guidelines
throughout our research to protect the study participants. In
our experiments, we carefully avoided collecting any personal
identifiable information (PII) from participants and all results
are presented in aggregate statistics. We also provided partici-
pants options to opt-out of the experiments (we did not receive
any opt-out requests). We complied with established ethical
norms in our data analysis and result presentation, including
securing data storage and maintaining participant anonymity
and privacy.

We consider that the value in developing potential de-
fenses against Al-synthesized images outweighs the potential
risks, although research into the artifact characteristics of
Al-synthesized faces could be used to improve the quality
of Al synthesis techniques. Our findings provide higher ac-
tionable insights for content moderators than for miscreants.
Online moderators can easily operationalize our findings by
scrutinizing the suggested regions (more details below) or
using attention enhance detection that we describe to iden-
tify Al-synthesized images. On the other hand, our identified
synthesis artifacts are difficult to rectify for miscreants, since
the artifacts are inherent from systemic limitations in Al-
synthesized images.

Suggestions for content moderators to recognize Al-
synthesized faces. While individual users may have limited
capability to distinguish between Al-synthesized content and
real images, aggregating across user responses allows for
clear identification and localization of artifacts. The aggre-
gated user annotations provide deeper levels of insight into the
artifacts by accumulating individual user intelligence. Based
on the crowdsourcing insights, our findings suggest regions
and patterns to identify Al-synthesized images. First, in Al-
synthesized face images, accessories such as earring and eye-
glass or specific facial details such as ear and hair likely show
anomalies. Second, anomaly patterns in Al-synthesized im-
ages are typically misshaped boundaries, unnatural skin, and
unrecognizable objects, which are different from suspicious
attributes in real images. Content moderators can focus on

these regions and patterns that we summarize when screen-
ing large numbers of suspicious images to improve the effi-
ciency of identifying Al-synthesized faces. Our findings can
also help to educate general users on typical attributes of
Al-synthesized faces to avoid being deceived.
Deployment scenarios. Our approach can be deployed in var-
ious ways to assist stakeholders defending against the abuse
of synthesized images. (1) Our work of user annotations pro-
vides quantitative findings about artifacts in Al-synthesized
images. Expert researchers can use our approach to study
quantitatively specific synthesis areas for rigorous analysis,
in addition to applying heuristics. (2) Content platforms can
deploy our approach and leverage collective annotation intel-
ligence from the moderation team to build effective detection
systems with attention learning. This will mitigate disinfor-
mation propagation and Al-based deception on the platforms.
(3) Our approach can also be incorporated with other detec-
tion approaches, to enable a multi-layered defense strategy.
Longitudinal deployment will facilitate continual analysis and
detection on Al-synthesized images.
User’s trust in real images. Traditionally, the user’s assump-
tion for facial images has been that the faces are real, but
the continued growth in Al-synthesized content threatens to
challenge users’ trust. We included a control group of real
images in our experiments. While participants can distinguish
between Al-generated content and real face images, many still
choose the level of “looks real” instead of “very real”.
By checking real images with lower trust scores, we find these
images contain less common elements such as unusual cloth-
ing, dyed hair, or out of the ordinary poses or expressions.
The decreased trust of real images with unfamiliar contents
suggests users may first begin to suspect content which does
not conform to their common definition. The findings are
in line with prior work [49, 24] on online user trust. The ef-
fect on user’s trust in real images needs additional efforts
to counter the negative impact brought by Al-synthesized
images especially for marginalized groups.
Limitations and future work. A limitation is we focus on
face images synthesized by Al techniques. Face images are of-
ten used to establish trust and abused by miscreants to deceive
users. With attacks expanding, other non-facial images may
also present potential misuse in security areas such as product
review spam or disinformation. Our approach can be adapted
to analyze other categories of synthesized images. Another
limitation is our analysis is mainly on GAN models (given its
wide abuse in practice), though we include multiple models
in the user study and detection experiments. A prospective
work direction is to expand analysis on future or more synthe-
sis techniques, as new synthesis models are developed. We
anticipate our analysis approach can be applied to find more
synthesis characteristics. A potential extension of our work is
to use our human-in-the-loop approach to continue adapting
to other modalities such as audio or video.

We acknowledge that our results may not fully transfer to
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an unprompted setting. We provided brief prompts to allow
participants to understand the task, as our goal is to use crowd-
sourcing characterizing Al-synthesis artifacts. Research to
investigate user studies identifying Al-synthesized images un-
der different types of prompting is a promising future research
area.

8 Related Work

We describe previous studies on detection of Al-synthesized
images and user studies for synthesized face images, and
highlight the differences from our work.

Detection and identified artifacts of AI-synthesized images.
Existing studies to detect Al-synthesized images and artifacts
mainly rely on two strategies, black-box classification or spe-
cific pattern heuristics. Classification-based approaches [11,
12, 67, 15] typically train another deep neural network on real
and synthesized images, which performs automated learning
for detection. A group of work [13, 68, 69, 70] attempted to
augment images with different evasions during training to
improve the classifier’s robustness. Other work investigated
using an ensemble of classifiers [14, 71] to supplement indi-
vidual model’s performance. Finally, another body of work ex-
plored other feature spaces such as different color representa-
tions [72], frequency domain [73], or gradient [30]. However,
these classification approaches for detection risks learning
superficial features [16].

Heuristic-based approaches used a wide range of specific
observations or assumptions about synthesis artifacts such
as color, frequency, or facial features, but are limited to the
individual perception or heuristics of researchers. Prior stud-
ies [59, 74, 75] examined inconsistent colors in synthesized
images. Some studies [76, 77, 78, 56, 79] derived signals from
noise patterns and frequency analysis generated by GANSs.
Another line of prior work [58, 17] suggested specific facial
parts as features to distinguish Al-synthesized face images.

In contrast, our work complements prior detection and
analysis. We use crowdsourcing intelligence to systemati-
cally find and characterize Al-synthesis artifacts annotated
by multiple users (instead of by individual researchers or au-
tomated systems). Our findings reveal new characteristics in
Al-synthesized images, and our detection with attention guid-
ance combines strengths of heuristics from human annotations
and automated detection from neural network classification.
User studies on Al-synthesized face images. Recent re-
search has conducted user studies to understand users’ be-
haviors and trust on Al-synthesized faces. Mink et al. [49]
established social network profiles with Al-synthesized por-
traits and performed user studies to investigate what factors
affect users’ trust. Guo [25] proposed alternate analysis plat-
forms for evaluating human performance on identifying Al-
synthesized faces. Other work [23, 24, 80] analyzed whether
users can distinguish between Al-synthesized and real faces.
These studies inspire our work. However, previous work has

focused on the victim’s perspective and used relatively sim-
plistic designs.

Our work, on the other hand, quantitatively examines where
and how users perceive artifacts and is the first to leverage user
perception as means to detect and characterize Al-synthesized
face images. Our user study designs to use crowdsourcing
annotations to locate and examine suspicious regions in syn-
thesized images, with the main goal to characterize artifacts
in Al-synthesized images. Based on aggregated human anno-
tations, we extract characteristics of synthesis artifacts and
demonstrate the potential of involving human factors to de-
fend against Al-synthesized faces.

9 Conclusion

In this paper, we develop a novel approach that leverages
crowdsourcing annotations to systematically characterize and
recognize Al-synthesized face images. Existing detection and
analysis mostly relies on black-box classifiers or heuristics of
researchers’ individual perception. In contrast, we design a
user study to aggregate and characterize Al-synthesis artifacts
annotated by multiple users (rather than individual researchers
or automated systems). Based on quantitative results, we find
that facial regions distant from the center (such as ear and
hair) and non-facial regions are more likely to exhibit synthe-
sis artifacts. The prevalent pattern of artifacts in synthesized
images is blur. Our findings provide empirical insights for on-
line moderators or general users to recognize Al-synthesized
faces. Furthermore, we incorporate user annotated regions
into an attention learning approach to detect Al-synthesized
faces. Evaluation comparing with prior approaches shows that
our approach achieves high detection accuracy and remains
robust under evasions. Our results demonstrate the human-in-
the-loop potential to defend against Al-synthesized images.
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A Statistics on Images

To examine the distribution of the images, we manually la-
beled the gender and ethnicity of the faces. While the images
were randomly sampled, the gender and ethnicity show similar
trend. For the gender of images, 53% of synthesized images
(54% of real images) were female and 47% of synthesized
images (46% of real images) were male. For the ethnicity of
images, 67% of synthesized images (62% of real images) were
White, 4% of synthesized images (4% of real images) were
Hispanic or Latino, 5% of synthesized images (3% of real
images) were African American, 11% of synthesized images
(20% of real images) were Asian, and 13% of synthesized
images (11% of real images) were uncertain.

B Additional Statistics on Participants

We aggregate the statistics based on participants who an-
swered demographic questions optionally. The optional de-
mographic questions include the participant’s age range, ed-
ucation, gender, and ethnicity. The ages of the participants
were in a range of 20 to 64 with a median range of 35-39.
Most participants had post-secondary education with 77%
having received a bachelor degree or above. For the gender
of participants, 44.85% were female and 55.15% were male
(we provided the non-binary option and the option was not se-
lected). For the ethnicity of participants, 79.46% were White,
2.70% were Hispanic or Latino, 2.16% were African Ameri-
can, 2.16% were Asian, and 13.52% were uncertain.
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