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Abstract
Machine learning is a rapidly evolving technology with

manifold benefits. At its core lies the mapping between sam-
ples and corresponding target labels (SL-Mappings). Such
mappings can originate from labeled dataset samples or from
prediction generated during model inference. The correctness
of SL-Mappings is crucial, both during training and for model
predictions, especially when considering poisoning attacks.

Existing standalone works from the dataset cleaning and
prediction confidence scoring domains lack a dual-use tool of-
fering an SL-Mappings score, which is impractical. Moreover,
these works have drawbacks, e.g., dependence on specific
model architectures and reliance on large datasets, which may
not be accessible, or lack a meaningful confidence score.

In this paper, we introduce LabelTrust, a versatile tool de-
signed to generate confidence scores for SL-Mappings. We
propose pipelines facilitating dataset cleaning and confidence
scoring, mitigating the limitations of existing standalone ap-
proaches from each domain. Thereby, LabelTrust leverages
a Siamese network trained via few-shot learning, requiring
minimal clean samples and is agnostic to datasets and model
architectures. We demonstrate LabelTrust’s efficacy in detect-
ing poisoning attacks within samples and predictions alike,
with a modest one-time training overhead of 34.56 seconds
and an evaluation time of less than 1 second per SL-Mapping.

1 Introduction

Machine learning (ML) is a rapidly evolving technology
with many benefits, e.g., in task automation [6], decision-
making [5], and recommendation systems [8]. These systems
rely on large datasets, often employing Deep Neural Net-
works for pattern extraction during training. Supervised learn-
ing [31], the prevalent ML approach, involves data samples
labeled with ground truth, allowing models to learn patterns
for accurate predictions. Following training, models utilize
these learned patterns to infer predictions for new data.

At the heart of an ML system lies the mapping between a
sample and its label, which we term Sample Label Mapping

(SL-Mapping). The correctness of this mapping is crucial re-
gardless of its origin, e.g., from domain experts in the dataset
labeling phase or from predictions by a trained model during
inference. Quality in both, the sample and the assigned target
label is imperative. For labeled train datasets, the efficacy of a
trained model depends heavily on the quality of samples and
assigned labels. Conversely, during model inference, trust-
worthy and accurate predictions are important, as erroneous
predictions could have significant consequences, particularly
in applications like autonomous driving systems [6].

Problem Statement. The challenge of SL-Mappings, preva-
lent in training datasets but also during model inference, stems
from potential mismatches, e.g., false labels. These discrepan-
cies may arise from various sources, including unintentional
errors and deliberate false mappings. In labeled datasets, er-
rors can occur due to mistakes by experts or manipulation by
adversaries, who may poison benign datasets with incorrect
SL-Mappings [7,13,26,27,40]. Similarly, during model infer-
ence, models may exhibit low prediction performance or be
trained on poisoned datasets, leading to erroneous predictions.
Regardless of the source and effects of these inaccuracies,
there is a clear need for a system capable of detecting invalid
or erroneous mappings and providing corresponding notifi-
cations. Existing works tackling similar challenges primarily
fall within dataset cleaning or prediction confidence scoring.

Existing SL-Mapping Verification Methods. Dataset clean-
ing [12, 17, 33, 35–38, 47] aims to identify low-quality or
poisoned samples within a dataset, separating them from
clean data to ensure untainted training. However, existing
approaches [12, 35, 38] often involve intensive computations
on the entire dataset, such as training auxiliary models, or
rely on a sizable fraction of clean samples, which may not al-
ways be available. The closest work to ours from this domain,
Huang et al. [17], relies on a specific model architecture and
is designed for a particular pre-trained model instance. Hence,
if the existing trained model is upgraded, e.g., with a more
efficient model architecture, the system must be retrained to
accommodate the new architecture. Retraining requires 1%
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clean data, which can pose challenges with larger datasets as
obtaining this portion may require substantial human effort.

Confidence scoring [9, 19, 28] evaluates the trustworthi-
ness of predictions made by pre-trained models. However,
existing works [9, 19, 28] do not consider poisoning attacks.
Moreover, these methods depend on the entire untrusted train
set, making it challenging to ensure the absence of poison-
ings, potentially compromising their reliability. The closest
related work, Corbière et al. [9], employs a secondary model
to generate confidence scores for predictions and relies on
intermediate layer outputs from a pre-trained primary model,
thereby being dependent on a specific trained model.

In general those standalone methods are specifically tai-
lored to one specific domain, necessitating the implementation
of separate tools with distinct assumptions, prerequisites, and
performance characteristics in different use cases. Moreover,
dataset cleaning may not achieve complete effectiveness, po-
tentially leaving leftover poisoned samples in the cleaned
training dataset, thus underscoring the importance of generat-
ing trust scores for predictions during inference.

Desired System. Hence, there is a need for a system capable
of both, dataset cleaning and confidence scoring. As both sce-
narios evaluate SL-Mappings, the system should be a general
tool providing high flexibility in terms of use cases. This sys-
tem should only rely on a small fraction of clean samples from
the train set and should be independent of a specific trained
model or it’s architectures, while detecting false ST-Mappings
and yielding a meaningful confidence score.

Approach. We introduce LabelTrust, a scoring system de-
signed for SL-Mappings, that bridges the gap in the absence
of a general tool for SL-Mapping quality assessment. Serving
multiple purposes in dataset cleaning and prediction confi-
dence scoring, LabelTrust can be applied to multiple use-
cases simultaneously without dual effort. Furthermore, it ad-
dresses limitations of existing dataset cleaning and confidence
scoring methods, mainly the dependence on specific model
instances or architectures as well as the reliance on extensive
datasets. LabelTrust yields a meaningful confidence score for
the label associated with a sample, essentially providing a
measure of trust for the SL-Mapping. Thereby, LabelTrust is
efficient in identifying low-quality samples but also poison-
ings stemming form, for instance, poisoning attacks.

Contributions. This paper makes the following contributions:

• We propose LabelTrust, a general tool to generate a con-
fidence score for an SL-Mapping. Rooted in a Siamese
network [25] architecture, LabelTrust discerns whether
two samples originate from the same label class. By
employing few-shot learning, LabelTrust only requires
a minimal number of clean samples for operation. The
system’s architecture includes a refeed loop, facilitating
continuous performance enhancement.

• We suggest LabelTrust for dataset cleaning to effectively

filtering samples from datasets. This use case aids ex-
perts in identifying not only poisoned samples but also
low-quality or underrepresented ones, significantly re-
ducing the time required for dataset examination.

• We propose using LabelTrust for prediction confidence
scoring. LabelTrust provides trust scores for predictions
made by trained models during inference, enabling users
to determine the reliability of predictions or to initiate
further examination by human experts.

• We conduct a comprehensive study demonstrating the
robust performance of LabelTrust. Our findings indicate
that LabelTrust can detect poisoning attacks in both the
dataset cleaning and the confidence scoring domain. No-
tably, LabelTrust successfully detected four different poi-
soning attacks and exhibits independence from datasets
and model architectures, requiring minimal clean sam-
ples, between 2 to 35 samples per label class in this paper.
We found that, equipped with LabelTrust, a domain ex-
pert only needs to manually inspect around 0.0058%
of the data for cleaning 83.73% of a dataset. The run-
time overhead of LabelTrust is also manageable, with
a one-time effort of 34.56 seconds required to train the
Siamese network and a negligible processing time of
below 1 second for evaluation of one SL-Mapping.

In summary, this paper presents LabelTrust, a general tool
designed to generate confidence scores for SL-Mappings, ap-
plicable to both dataset cleaning and prediction confidence
assessment. Leveraging few-shot learning with a Siamese
network and a limited set of clean samples, LabelTrust’s per-
formance can be enhanced over time through a refeed loop.
Addressing shortcomings of existing methods, LabelTrust
overcomes challenges related to dataset size, model depen-
dencies, lack of meaningful confidence scores, and missing
consideration of poisoning attacks.
Outline. In Sect. 2, we first provide background information,
before we present our approach in Sect. 3, followed by a evalu-
ation study in Sect. 4. Sect. 5 discusses aspects of LabelTrust
and Sect. 6 delimits LabelTrust from related works, before
Sect. 7 concludes the paper.

2 Background

This section provides background information that is neces-
sary to understand our approach.
Samples in Machine Learning. In the context of machine
learning (ML), a sample, such as an image in an image classi-
fication [5] task, is treated as an input to the ML model. For
supervised ML [31], a respective dataset comprises samples
associated with target labels, representing the ground truth
assigned by a domain expert. In this paper, we refer to this as-
signment as Sample Label Mapping (SL-Mapping). The term
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"sample" often implicitly encompasses the associated label in
the training context. However, during inference, the sample
refers exclusively to the input data (e.g., the image), as the
model is expected to generate the corresponding prediction or
class label without direct access to the ground truth. Note, that
we also refer to the sample with the prediction assigned by the
model as an ST-Mapping. It is noteworthy that a sample may
not be limited to a single data record; for instance, Siamese
networks [25], which we will introduce below, require two
data records, e.g., two images, simultaneously, forming a com-
posite sample for the network, as illustrated in Fig. 1.

A dataset typically comprises multiple samples paired with
corresponding target labels, serving as the training data for the
model. The efficacy of the trained model is heavily dependent
on the quality of the dataset [41]. Firstly, the included samples
should exhibit high quality, portraying clear scenarios without
significant noise obscuring the actual content. Secondly, the
dataset should demonstrate diversity, encompassing instances
of the same scenario from slightly varied angles or under
different circumstances. This diversity facilitates better gener-
alization by enabling the model to extract generalized features
rather than memorizing training samples. Additionally, class
balance within the dataset [16] is crucial for optimal predic-
tion performance across all classes, as an imbalanced dataset
might lead the model to focus on one class and might diminish
the model’s generalization capabilities. This consideration is
particularly pertinent for classes with diverse shapes, viewed
as subclasses within one class (e.g., various types of fonts in a
written digit dataset). Thus, achieving balance within classes
is pivotal for effective generalization. If a sample class or
subclass is underrepresented, e.g., the amount of samples for
this subclass is lower compared to others, the model might not
adequately focus on it, leading to suboptimal generalization.
In such cases, it might be beneficial to remove the samples or
add more samples of the same (sub)class.

In this paper, our solution can identify erroneous SL-
Mappings, originating from intentional poisonings, as well as
from low-quality or underrepresented samples.

Dataset Cleaning. An ST-Mapping is an integral compo-
nent of a labeled dataset created before model training in an
offline setting, which is subsequently used for model train-
ing. Typically, such datasets are curated by domain experts
who carefully examine selected samples and assign labels
to each sample individually. This assignment process can be
carried out either entirely manually or with the assistance of
a machine, such as a rule-based algorithm. The resulting ST-
Mapping essentially constitutes a labeled dataset suitable for
model training. Dataset cleaning approaches split the dataset
into two parts: The clean dataset, comprises unpoisoned sam-
ples, and filtered samples that are potentially poisoned. The
final clean dataset will then be used for subsequent model
training. Labeling mismatches may arise due to unintentional
human error, particularly when a domain expert makes an in-
valid assignment. These mismatches can also be intentional if

the domain expert is an adversary. The resulting ST-Mapping
within the labeled dataset, manipulated by a malicious expert,
can exert adverse effects during the subsequent model training
phase. This is a form of poisoning attack, which we discuss
in detail below, namely data poisoning, which represents a
method to manipulate the model training process. In this work,
we propose a general tool for ST-Mapping verification, which
can be used for dataset cleaning.

Confidence Scoring. After model training in an online set-
ting, previously unseen data samples can be input into an
already trained and deployed model, resulting in correspond-
ing predictions. The consolidation of these samples and their
respective predictions once more form an ST-Mapping. A con-
fidence scoring system should be able to provide a confidence
score for this mapping. In this context, the confidence score
serves as a direct indicator of prediction trustworthiness. This
trust score can be interpreted as a measure of reliability for
the predictions. During model inference, the accuracy of pre-
dictions is contingent upon the quality of the utilized model.
Consequently, a model with suboptimal performance, such as
one trained on a low-quality dataset, is prone to generating
more erroneous predictions compared to a model trained on
a substantially diverse and high-quality dataset. False mis-
predictions due to low model performance are a form of un-
intentional erroneous SL-Mappings. However, an adversary
can also disrupt the training process through model poisoning
attacks. In such cases, the adversary aims to create a poisoned
model that is subsequently deployed, leading to intention-
ally false SL-Mappings during inference. Both, intentional
and unintentional false mappings should be assigned with
a low confidence score, while correct SL-Mappings should
yield a high confidence score. In this paper, a general tool for
confidence scoring, is developed.

Siamese Networks. A Siamese network [11, 25] represents
a model architecture employed for assessing the similarity
between two data records, such as two images. Common appli-
cations of Siamese networks include image recognition [29],
signature verification [2], and face recognition [49], where the
objective is to compare the similarity of two records. Contrary
to traditional classification networks, which assign samples
of single data records to specific labels, a Siamese network
produces a similarity score, indicating the similarity between
two data records. Typically, one part is the record under ex-
amination, and the other one is a record from the claimed
associated label to be verified. Thereby, Siamese Networks
are based on few-shot learning [48], meaning that only a few
high-quality samples per class are necessary for training.

The fundamental concept of a Siamese network is depicted
in Fig. 1 and involves guiding the two data records through
identical networks, each sharing the same architecture and
weights - effectively functioning as "siamese twins". These
networks generate compressed representations, so-called em-
beddings, of the records, essentially forming feature vectors
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Figure 1: Visualization of a Siamese network.

and are hence named feature encoding subnetworks in Fig. 1.
These embeddings then undergo processing in a subsequent
decision subnetwork (cf. Fig. 1), which calculates the simi-
larity score between the two embeddings. The decision sub-
network can utilize the embeddings in concatenated form or
explore various combinations, including engineered features
such as employing a distance metric like cosine similarity
between the two vectors. Generally, the final decision net-
work usually comprises a few linear layers, culminating in a
singular output value, visualized as similarity score in Fig. 1.

Given that the network produces a similarity score for two
data records, its training involves data record pairs. In a typ-
ical scenario, various pairs of records from the same target
label class and records from different classes are paired to-
gether. These pairs are then labeled with 1 or 0, indicating
whether they originate from the same class or different classes,
essentially forming an input sample for the Siamese network.

For a straightforward binary classification task, a Siamese
network can be trained using the Binary Cross Entropy Loss
(BCELoss, cf. Eq. 1) processing the last layers output with a
sigmoid function beforehand to produce a score between 0
and 1. In the equation, N is the number of samples, yi is the
target label (1 or 0 indicating if the two data records belong
together or not) and p(yi) is the output of the decision network
processed by a sigmoid function, e.g., the probability that the
sample belongs to the label 1, meaning that both data records
are from the same class. Notable alternatives to BCELoss
include the Contrastive loss and the Triplet loss [25], which
we discuss in App. 7.2.

BCE =− 1
N

N

∑
i=1

yi · log(p(yi))+(1− yi) · log(1− p(yi)) (1)

In this paper, we create a Siamese network on a small exam-
ined dataset mainly trained with BCEloss, which serves as a
central part of LabelTrust to produce a confidence score for
mappings between samples and labels.
Poisoning Attacks. Poisoning attacks are strategic attempts
to undermine the predictive performance of an ML model.
Such attacks can be untargeted [27, 40] or targeted [7, 13, 26].
Untargeted attacks are designed to diminish the overall model
performance, without introducing new behaviors but rather
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Figure 2: Visualization of different backdoor attacks.

disrupting the model’s functionality. On the other hand, tar-
geted attacks, often referred to as backdoors, aim to stealthily
introduce hidden adversarial behavior to the model while
maintaining the regular model performance. In a targeted at-
tack, a backdoor comprises a trigger and a target class, both
selected by the attacker. The trigger is injected into a sam-
ple and the label is changed towards the target class, causing
the model to associate this trigger with the backdoor’s target
class, irrespective of the actual content of the sample. Conse-
quently, a trigger placed on a sample from any class during
inference would result in misclassification towards the back-
door’s target. Triggers can take various forms, such as a pixel
pattern [13], as visualized in the second line of Fig. 2, and
leads to a classification towards the backdoor’s target class
(”dog”) during inference. Another alternative backdoor would
be adding random noise across the entire image [7], to name
another example.

As visualized in the third line of Fig. 2, one of these back-
door attacks is a clean-label backdoor [44], wherein the trigger
is exclusively placed on samples from the target class, ”bird”
in this case, and the label itself is not altered. Nevertheless,
during training, the model associates the trigger with the tar-
get class and subsequently classifies any sample containing
the trigger towards that class during inference.

Poisoning attacks can be executed through either data poi-
soning or model poisoning methods. In data poisoning, the
attacker manipulates the dataset used for training by introduc-
ing triggers to samples and altering labels. In model poison-
ing, the adversary interferes with the training process itself,
altering training methods, loss functions, or hyperparameters.
Additionally, the attacker may manipulate the model parame-
ters directly, either during training or post-training.

This paper proposes a solution for the identification and
filtration of poisoned data samples during the dataset clean-
ing process. Furthermore, the solution is utilized to detect
poisoning attacks during the inference phase.

3 Approach

We aim to tackle the challenge inherent in the machine learn-
ing domain, where the accurate mapping of a label to a sam-
ple (SL-Mapping) is uncertain, irrespective of the method
employed for assignment. An incorrect SL-Mapping can ei-
ther be unintentional or intentional stemming from poisoning
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Figure 3: Visualization of the considered scenarios.

attacks, as elaborated in Sect. 2. This uncertainty demands a
system that assesses the trustworthiness of SL-Mapping. The
proposed system, LabelTrust, as illustrated in the center of
Fig. 3, should yield a confidence score for an SL-Mapping,
allowing to identify false mappings. This score is relevant
in two specific scenarios, which we consider in this paper:
Dataset cleaning, as visualized in the upper half of Fig. 3,
and confidence scoring on predictions of trained models on
unseen data, as visualized in the lower half of Fig. 3.
Application Scenarios. For dataset cleaning, a labeled dataset
from an untrusted source can be obtained. Hence, it is unclear
if the dataset contains any unintentionally mislabeled or low
quality samples1, or poisoned samples, that were intentionally
mislabeled by an adversary to introduce a poisoning attack
(cf. Sect. 2). LabelTrust generates confidence scores for each
sample, enabling the creation of a "clean" subset for benign
model training. In particular, a threshold based on the de-
sired safety level can be applied to the confidence score, thus,
identifying and removing potentially poisoned or low-quality
samples.

For the confidence scoring setup, a trained and hence un-
trusted model can either be obtained from third-party sources,
or the model can be trained locally on an untrusted dataset.
Feeding unseen samples to the trained model yields a pre-
diction, essentially forming an SL-Mappings with the input
sample, which can then be assessed. LabelTrust’s generated
confidence score can then be used directly as a measure of
trust for the prediction. In essence, LabelTrust detects inten-
tional mispredictions (backdoors) and unintentional errors
due to poor model performance by assigning low trust scores.

Combining both scenarios further enhances trust in the
model. A dataset can be cleaned using LabelTrust before
training a model. Subsequently, LabelTrust can evaluate the
model’s predictions during real-time operation, adding an-
other layer of security without necessitating additional effort.
Threat Model. For dataset cleaning, we consider an adver-
sary capable of compromising a dataset intended for training
purposes. This adversary holds the capability to implement
various poisoning attacks through data poisoning, including

1Low-quality samples are correctly labeled, but can potentially be misin-
terpreted, such as a 1 that might look like 7 in MNIST [10].

targeted poisoning attacks (cf. Sect. 2). In particular, the ad-
versary might make arbitrary modifications to the dataset, e.g.,
change the samples, alter target labels, or add new samples.
Those modifications can either be intentional with the goal of
embedding a poisoning attack or unintentional due to human
error.2 To manipulate the predictions during model inference
in the domain of confidence scoring, the adversary can gen-
erate a poisoned model utilizing dataset poisoning or model
poisoning techniques. Such model manipulation takes place
before model deployment. Further, a model can also yield
false predictions due to a generally low model performance.
It is important to note that the execution of the desired system
is assumed to take place within a secure environment, thus
safeguarding it against any adversarial interactions or inter-
ference with the process. As a result, the desired system is
considered benign within this secure context.

Below, we describe the core concept of LabelTrust in detail.
Sect. 3.1 presents the inner workings of LabelTrust, followed
by two application scenarios in Sect. 3.2.

3.1 Details of LabelTrust
The general functionality of LabelTrust is to generate confi-
dence scores for mappings between samples and labels (SL-
Mappings) within a machine learning environment. Hence,
these mappings, which will be inspected, can originate from
either an existing labeled dataset created during a manual la-
beling process or from predictions made by an already trained
and deployed model when provided with an unseen sample.
The confidence score produced by LabelTrust serves as an
evaluative measure of the legitimacy of the assignment be-
tween a sample and its label, facilitating the identification of
irregular mappings indicated by low confidence scores.

To derive an SL-Mapping confidence score, LabelTrust
leverages the expertise of a domain expert who selects a small
clean subset of the dataset. For dataset cleaning, this subset
is selected from the entire set of samples to be inspected,
while for confidence scoring, the subset is selected from the
dataset used for model training. The expert selects a small
high-quality subset consisting of x samples for each of the
n label classes (l1, . . . , ln), ensuring their unpoisoned nature
and correct labeling, effectively forming a small benign SL-
Mapping as a ground truth, which we name reference dataset.

These samples are then used to train a Siamese network
via few-shot learning. The Siamese network is fed with two
samples simultaneously, and trained to discern whether they
belong to the same label class. The resulting output of the
Siamese network consists of a value between 0 and 1, where
0 indicates a low probability of belonging to the same label
class, and 1 indicates a high probability. This probability

2In the dataset cleaning scenario, our focus does not encompass clean-
label backdoor attacks. However, we tackle these attacks in the use case of
prediction confidence scoring. This however does not pose a limitation, as
our tool is crafted for dual-use in both scenarios.
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Figure 4: Detailed visualization of the six life cycle steps of LabelTrust.

serves as the confidence score. Consequently, after training
on the reference dataset, the Siamese network can verify the
labelings of SL-Mappings. Importantly, the resulting decision
is grounded in the small reference dataset that was used to
train the Siamese network. By adding more clean samples into
the reference dataset in a refeed loop over time, the quality of
the Siamese network can be increased over time.
Life-Cycle Steps of LabelTrust. Below, we explain the steps
of LabelTrust, which are visualized in Fig. 4. The initial three
steps, constituting LabelTrust’s training phase, must be exe-
cuted before applying LabelTrust for SL-Mappings analysis.
Steps 4 and 5 are the central parts for the generation of confi-
dence scores, and the concluding step 6 establishes a refeed
loop designed to enhance the performance of LabelTrust.

1. Selection of Reference Samples. The domain expert first
selects x samples for each of the n target label classes
(l1, . . . , ln) within the dataset. It is imperative that the
expert verifies the absence of poison, e.g., backdoor trig-
gers, in these samples, designating them as a small refer-
ence dataset consisting of benign data with correct target
labels, serving as the ground truth for LabelTrust.

2. Expansion of Reference Dataset. The reference dataset
undergoes expansion to construct a Siamese dataset, en-
abling the training of a Siamese network. To construct
this dataset, each sample is comprised of two instances
from the reference dataset and a corresponding label,
signifying whether the two samples originate from the
same class within the reference datasets. For example,
in Fig. 4, the first sample consists of two blue images
from the l1 class ("bird") and is thus positively labeled
as 1 indicated with a green checkmark. Conversely, the
second sample contains a blue sample from l1 and a
brown sample from l2, resulting in a negative label of 0
visualized as a red cross.

3. Training of Siamese Network. The Siamese dataset is
used to train a Siamese Network. The network learns to

generate meaningful representations (embeddings) for
both inputs and subsequently learns to classify these
embeddings toward the positive or negative label, reflect-
ing the similarity of both inputs. After this training step,
LabelTrust can be used to evaluate unseen SL-Mappings.

4. Construction of Valid Input for Siamese Network. To
assess the quality of an SL-Mapping, consisting of a
sample s and a label l, LabelTrust constructs valid inputs
for the Siamese network. This involves pairing the x sam-
ples from the label class of the SL-Mapping (e.g., l2 in
Fig. 4) from the reference dataset with the input sample s.
These pairs are similar to the ones in the Siamese dataset
from step 2. With this pairing, the Siamese network can
validate if the unseen sample s is similar to any of the
ground truth samples from the predicted class of s.

5. Calculation of Confidence Score. The constructed pairs
are fed into the Siamese network trained in step 3, yield-
ing a confidence score for each pair. A high score indi-
cates similarity to the reference dataset, while a low score
suggests that the SL-Mapping deviates unusually based
on the reference dataset.3 The final score is based on
averaging the confidence scores of all evaluated pairs.4

6. Reefeed Loop. By applying a threshold to the final con-
fidence score, all tested SL-Mappings can be catego-
rized into clean samples and leftovers, stemming from
potentially poisoned, underrepresented, or low-quality
samples. A high threshold categorizes samples as clean
only if LabelTrust is highly confident in their cleanliness.
Conversely, a low threshold can identify samples likely

3A high-quality SL-Mappings has high similarities to samples of the
respective class within this reference dataset, while low-quality SL-Mappings
are not contained in the reference dataset.

4If samples within one class significantly differ, we introduce new
(sub)classes (cf. Sect. 5). Hence, outliers are very unlikely to occur.
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to be undesired, such as potentially poisoned ones.5 Re-
gardless of the application scenario, a domain expert can
then inspect the leftovers.The expert can refeed clean
samples from the leftovers, that were not considered in
the ground truth so far into the reference dataset and
rerun the whole process, including Siamese model train-
ing and confidence scoring of the whole dataset. Our
intuition, which we verify in Sect. 4.3 is that the left-
overs will be iteratively reduced while maintaining a
high detection rate of poisonings and simultaneously
reducing the number of poisonings that are falsely iden-
tified as clean, essentially increasing the performance of
LabelTrust over time.

3.2 Application Scenarios

In the following, we will elaborate on the practical appli-
cations of LabelTrust within two distinct scenarios: dataset
cleaning and the generation of a prediction confidence scores.

Dataset Cleaning. For a manual dataset-cleaning procedure
before model training (cf. Sect. 2), the conventional approach
would necessitate exhaustive individual inspection of all sam-
ples by a domain expert. Leveraging LabelTrust, the expert
can optimize this process by selecting a small representative
subset of samples for each label class as reference dataset
(step 1 in Fig. 4). Subsequently, the Siamese network trained
on these samples can be employed to check all samples from
the original dataset. Clean samples will exhibit high similarity
to the small ground-truth in the reference dataset.

Precisely, intentionally mislabeled samples, e.g, samples
with a pixel trigger [13], will not be classified toward the
attacker-chosen false label class by the Siamese Network, but
towards the benign class and hence yield a low confidence
score on the assigned false label. Similarly, unintentionally
mislabeled data, e.g., low-quality samples, will also yield a
low confidence score on the assigned label, as the samples
differ from the ground truth in the reference dataset. For both,
intentional and unintentional mislabels, the low confidence
score yielded by LabelTrust allows sample filtering, essen-
tially also detecting poisoning attacks. Unpoisoned filtered
samples are either mislabeled and thus undesirable in the
dataset or can be added to the reference dataset (step 6 in
Fig. 4) as they provide valuable insights that have not been
represented by the ground truth yet. Thus, the domain ex-
pert can resample benign sets from the filtered irregular map-
pings (leftovers in Fig. 4), and refeed them into the reference
dataset (step 6 in Fig. 4). By iteratively repeating this process,
e.g., performing multiple dataset cleaning rounds, LabelTrust
results in a significant reduction in the number of samples

5LabelTrust doesn’t rely on fixed thresholds. A high threshold will iden-
tify very trustworthy mappings while a low threshold will identify untrust-
worthy mappings in the same setting. The threshold is selected by the user
depending on his goal and not depending on the scenario itself, e.g., model
architecture or dataset.

requiring manual verification, which we show in Sect. 4.3.
Noteworthy, in a new dataset cleaning round, all samples

are reevaluated by the new Siamese network, instead of just
analyzing the leftovers. The reason for this design choice
is, that the Siamese network’s capability to distinguish clean
samples will increase with further rounds. Thus, samples that
might have been falsely categorized as clean in the first round
will be correctly classified as leftover in subsequent rounds
due to increased knowledge. Hence, we assume that the net-
works’s increased capabilities will diminish the size of the
leftover over time. We confirm this assumption through em-
pirical evaluation in Sect. 4.3.

The dataset cleaning process can be concluded either when
the expert has inspected all samples, discarding or refeeding
them, or when a predetermined fraction of filtered samples
is reached, that attains a high, yet poison-free model perfor-
mance, reflecting the compromise the domain expert is willing
to make for the sake of a clean dataset.

Confidence Scoring. The same procedure of LabelTrust is
applicable for confidence scoring of predictions of a primary
pre-trained model. In this scenario, the labels for the samples
are obtained by using the samples’ prediction yielded by the
pre-trained model. The reference dataset can be constructed in
two ways: Either access to the trainset is available, e.g., model
creators provide LabelTrust. Alternatively, model creators can
provide small clean datasets. If no data access is given, the
domain expert can observe inference samples and construct
the reference dataset (via refeed loop). Hence, LabelTrust can
work without access to trainsets. Irregular mappings, essen-
tially arising from mispredictions of the primary model, may
stem from either a low-performing or poisoned primary model.
Consequently, the confidence score derived from the Siamese
network, which is based on the clean reference dataset used
to train LabelTrust’s Siamese network, can provide insights
into the trustworthiness of the primary model’s predictions.
For samples dissimilar to reference-dataset samples, the confi-
dence score is (and should be) low. Such samples are validated
by the domain expert and can be added to the reference dataset
via refeed loop. The Siamese network does not achieve the
same classification performance as the primary model trained
on a large, untrusted dataset. Hence it cannot duplicate the
classification task but can asses the primary model’s predic-
tions. This advantage comes from training the Siamese net-
work on a smaller, carefully curated reference dataset, free
from poisoned data. Hence, both models, primary model and
Siamese network have different purposes and complement
each other.

The yielded confidence score enables an user to decide if
a model prediction is trustworthy. For a low score the user
should verify the prediction, while for a high score, the sys-
tem’s prediction is confirmed. Furthermore, the performance
of LabelTrust can also be improved in the confidence scoring
setting, as unseen new samples could be integrated into the
reference dataset after careful inspection by a domain expert
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(step 6 in Fig. 4). In particular, samples that received low con-
fidence scores are considered most useful as they differ from
the existing ground truth and lead to a more diverse Siamese
training dataset. After the integration of these samples, a new
Siamese model could be trained that replaces the existing one.
Hence, similar to dataset cleaning, LabelTrust could improve
iteratively over time with the help of a domain expert.

Summary. LabelTrust serves as a versatile tool for confi-
dence score generation that assesses the legitimacy of a label
assigned to a sample, relying on a small set of thoroughly
examined samples by an expert. The system is based on few-
shot learning, specifically using a Siamese network. A high
confidence score is indicative of a sample’s similarity to an
already examined sample and its correct label assignment.
Conversely, if a sample falls within a subset that has not yet
undergone expert examination, and hence is potentially poi-
soned or of low quality, LabelTrust will yield a low confidence
score. While LabelTrust is a general tool applicable to all use
cases with the need for SL-Mapping evaluation, we show
its utilization for dataset cleaning and prediction confidence
scoring. LabelTrust’s performance is iteratively enhanced by
refeeding negatively evaluated samples to the small reference
dataset and retraining the Siamese network. This process en-
sures the continual improvement of LabelTrust over time.

4 Evaluation

Datasets & Model Architectures. We use common datasets
mainly focusing on image classification with MNIST [10],
Fashion-MNIST (FMNIST) [50], and Intel Image Classifica-
tion (IIC) [3] trained on the ResNet-18 [15] model architec-
ture. The architecture of the feature encoding subnetwork of
the Siamese network is identical to the ResNet-18 [15], how-
ever, the last layer is removed as the network should not yield
a prediction but an embedding of size 256. Further, the first
layer is adjusted depending on the utilized dataset. We added
a decision network consisting of two linear layers equipped
with a ReLU [1] activation function. Furthermore, we evalu-
ated a second Siamese architecture that uses a smaller CNN
model as feature encoding subnetwork combined with the
same decision network. This CNN comprises two consecutive
convolutional layers, each followed by a batch normalization
layer and a ReLU [1] activation function, as well as a 2D
pooling layer. The experimental setup including hardware
specifications is reported in App. 7.1.

4.1 General Functionality

First, we show the general functionality of LabelTrust’s core,
the Siamese network. Therefore, we use MNIST [10] and the
ResNet-18 [15] architecture for the Siamese network.

Siamese Training. In step 1 of LabelTrust (cf. Sect. 3.1 and
Fig. 4), involving the selection of reference samples, we ran-

domly extract x = [2,5,10,15,20] samples for each of the
n = 10 classes from the MNIST [10] train dataset, forming a
reference dataset comprising 20, 50, 100, 150, and 200 sam-
ples for LabelTrust. To give an impression of the reference
dataset, we visualize the samples for x = 10 in App. 7.4.
Opposed to the intended use-case of experts selecting high-
quality samples, we select correctly labeled samples at ran-
dom to showcase the behavior under a semi-optimal expert.
For the subsequent expansion of the reference dataset in step
2, we utilize these samples to generate a Siamese dataset
mirroring the size of the original MNIST [10] dataset, which
comprises 60,000 samples. To achieve this, we repeat the
following process 60,000 times: We iteratively generate a
positive and negative pair. For a positive pair, we randomly
select a class and one of the x samples of this class and pair
it with a different random sample from the same class. For
a negative pair, we chose two different random classes and
one sample out of the x samples from each class to generate
the pair. For both, a positive and a negative pair, those two
selected samples serve as data records to form a new sam-
ple for the Siamese network ( cf. Sect. 2). Each new sample,
composed of two data records, is assigned a target label of 1
if the records originate from the same class and 0 otherwise.
Subsequently, this Siamese dataset is employed in step 3 of
LabelTrust to train the Siamese network. For training, we
employ the BCELoss ( cf. Sect. 2), an Adadelt [52] optimizer
with learning rate 1.0, and train one epoch with a batch size
of 64.
Evaluation Method. We use three distinct test sets with un-
seen data to evaluate the performance of the Siamese network:

1. ACC-Testset. Utilizing the MNIST [10] test set, which
are unseen data for the Siamese network, we replicate
the method outlined in LabelTrust’s step 2 to construct a
Siamese test dataset. This test dataset enables us to derive
a comprehensive measure of model performance, quan-
tified by accuracy (ACC). We present the ACC across
varying confidence score thresholds of 0.99, 0.5, and
0.01. A high threshold of 0.99 allows to identify the sam-
ples above 0.99, which have a very high similarity to the
reference dataset and hence are most likely clean. A low
threshold of 0.01 allows to identify the samples below
0.01, which yield minimal similarity to the reference
dataset and hence are not clean with a high probability.
The threshold of 0.5 reflects the most balanced trade-off
between both settings. While the threshold can be ar-
bitrarily chosen, we showcase the results for the three
thresholds, as most application scenarios would most
likely use one of these three thresholds.

2. Unpoisoned-Testset. Leveraging all samples from the
MNIST [10] test set as SL-Mappings for verification,
we expect the Siamese network to accurately assess the
assigned target labels of evaluation samples. We report
the ACC, ideally high, along with the fraction of SL-
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Table 1: Performance of the Siamese network for MNIST [10] trained on ResNet-18 [15].

Poison Type x
ACC-Testset Unpoisoned-Testset, with confidence threshold... Poison-Testset

with confidence threshold... 0.99 0.5 0.01 AVG TRR, with threshold...
0.99 0.5 0.01 ACC FRR ACC FRR ACC FRR Score 0.99 0.5 0.01

(1) Pixel [13] 2 59.56 69.65 74.45 92.52 72.98 92.34 55.16 89.60 29.90 0.0088 100.00 100.00 92.04
(2) Pixel [13] 5 72.44 79.53 81.37 95.30 41.03 95.03 28.83 92.10 19.45 0.0074 99.75 99.31 98.43
(3) Pixel [13] 10 75.50 82.43 85.03 96.29 32.07 96.18 21.45 94.01 13.84 0.0042 99.93 99.61 98.69
(4) Pixel [13] 15 80.88 88.65 91.52 97.46 22.80 97.82 12.25 96.26 6.39 0.0047 99.87 99.59 98.39
(5) Pixel [13] 20 81.74 89.17 91.91 97.36 22.94 97.74 12.88 96.52 6.59 0.0010 99.95 99.90 99.68
(6) Blend [7] 10 75.50 82.43 85.03 96.29 32.07 96.18 21.45 94.01 13.84 0.0013 99.86 98.81 95.20
(7) Clean-Label [44] 10 75.50 82.43 85.03 96.29 32.07 96.18 21.45 94.01 13.84 0.0041 99.94 99.61 98.69
(8) Random-Label [4, 21] 10 75.50 82.43 85.03 96.29 32.07 96.18 21.45 94.01 13.84 0.0179 99.52 98.37 95.32

Mappings falsely assigned with a confidence score be-
low the threshold, indicated by the False-Rejection-Rate
(FRR), again using thresholds of 0.99, 0.5, and 0.01.

3. Poison-Testset. Using the MNIST [10] test set, we intro-
duce backdoors into each sample, for instance a pixel
trigger [13], and subsequently verify the resultant SL-
Mappings. In an optimal scenario, the Siamese network
should assign low confidence scores to all poisoned sam-
ples. We present the average score over all samples in
the test set and the fraction of poisoned samples with
a confidence score above the threshold, denoted by the
True-Rejection-Rate (TRR), again employing thresholds
of 0.99, 0.5, and 0.01.

Results. The results of the experiments are listed in Tab. 1.
Lines (1) to (5) showcase the results when utilizing the pixel
trigger [13]. We begin with x = 2 samples from each class
in line (1) and progressively increase the number of sam-
ples in the reference dataset to x = 20 in line (5). Regarding
the accuracy on the Siamese test set (ACC-Testset), we ob-
serve an increase in accuracy values across all confidence
score thresholds of 0.99, 0.5, and 0.01 with a larger number
of ground truth samples. For instance, at the 0.99 threshold,
the ACC for x = 2 is merely 59.56, whereas it rises to 81.74
with x = 20 samples. This behavior aligns with our expecta-
tion that samples are assessed based on the knowledge within
the clean reference dataset, indicating that reintroducing new
samples into the reference dataset (step 6 of LabelTrust) will
enhance performance. The improvement between x = 15 and
x = 20 in lines (4) and (5) is negligible, suggesting perfor-
mance plateauing. This supports our assumptions about the
efficiency of the few-shot learning process, as apparently for
this setup no more samples than x = 15 are necessary for
optimal performance.

When evaluating the Siamese network’s performance in
verifying benign data (Unpoisoned-Testset), a similar trend is
observed across all three confidence thresholds. For instance,
at the 0.99 threshold, the ACC starts at 92.52 for x = 2 and
increases to 97.36 for x = 20. Conversely, the corresponding
FRR demonstrates the opposite trend: Initially, with x = 2,
numerous benign samples are assigned confidence scores be-
low the threshold, resulting in an FRR of 72.98 for the 0.99
threshold, essentially ensuring only samples with high sim-
ilarity to the reference dataset are considered positive. This

FRR diminishes to 22.94 for x = 20. Depending on the appli-
cation context, users may opt for a low threshold, such as 0.01,
yielding an FRR of only 6.59 for x = 20 samples, ensuring
LabelTrust identifies only significantly deviant samples from
the reference dataset.

When analyzing the detection performance on poisoned
samples (Poison-Testset), all experiments exhibit exceedingly
low average confidence scores, e.g., 0.0088 already for x = 2,
effectively countering pixel trigger backdoors. Across all
thresholds, the TRR nearly reaches 100.0.

Summary. The Siamese network of LabelTrust operates as in-
tended, demonstrating improved outcomes with an increased
number of samples within the reference dataset. While achiev-
ing favorable results across all thresholds, users have the flex-
ibility to tailor the threshold to suit specific scenarios. The
user can opt to have LabelTrust identify highly confident
SL-Mappings by setting a threshold such as 0.99, or label
mappings that are deemed highly unlikely to be correct with
a threshold like 0.01. For subsequent experiments assessing
LabelTrust’s, we maintained x = 10 samples as our initial
reference dataset size.

4.2 Generalizability
Poisoning Attack Independence. Initially, we assess
LabelTrust’s generalizability by replicating the experiment
detailed in line (3) of Tab. 1 across different poisoning attacks.
Specifically, we conduct the experiment with a Blend [7]
backdoor, followed by a Clean-Label [44] pixel trigger back-
door, and lastly, an untargeted attack, which randomly assigns
labels to samples (Random-Label) [4, 21].

The outcomes, outlined in lines (6), (7), and (8) of Tab. 1,
exhibit comparable results to line (3).6 Consequently, with de-
tection rates consistently surpassing 95.20 across all scenarios,
we affirm that LabelTrust functions independent of the poison-
ing attack in place and detects false SL-Mappings, e.g., due
to poisoning attacks, reliably. Note, that the Random-Label
attack mirrors the effect of a mislabeling due to human error.
Hence, the results also show the performance of LabelTrust
for unintentional mislabelings.

6Note, that the results for ACC-Testset and Unpoisoned-Testset are com-
pletely equal, as the same samples were picked for Siamese training due to
the same random seed and the same amount of poisoned samples. Only the
results for Poison-Testset vary depending on the new backdoor.

USENIX Association 33rd USENIX Security Symposium    2963



Table 2: Performance of the Siamese network for a pixel trigger [13] backdoor with x = 10 samples.

Dataset Model
ACC-Testset Unpoisoned-Testset, with confidence threshold... Poison-Testset

with confidence threshold... 0.99 0.5 0.01 AVG TRR, with threshold...
0.99 0.5 0.01 ACC FRR ACC FRR ACC FRR Score 0.99 0.5 0.01

(1) FMNIST [50] ResNet-18 [15] 70.79 79.29 83.01 93.71 51.60 93.50 30.42 90.11 14.69 0.0018 99.98 99.88 98.78
(2) IIC [3] ResNet-18 [15] 52.06 58.30 60.26 84.62 85.10 77.60 49.70 67.03 30.40 0.0132 99.48 98.77 96.55
(3) MNIST [10] CNN 58.98 75.71 81.73 93.60 63.58 95.80 28.79 88.73 11.06 0.0204 100.0 98.78 87.26

Dataset Independence. To demonstrate the dataset indepen-
dence of LabelTrust, we replicated the experiments outlined
in line (3) of Tab. 1 using alternative datasets: FMNIST [50],
offering different image content, and IIC [3], featuring col-
ored samples. The results, presented in lines (1) and (2)
of Tab. 2, reveal noteworthy findings. With FMNIST [50],
depicted in line (1), we observed comparable outcomes to
MNIST [10], with notably high ACC values, such as 90.11
even at the 0.01 threshold for the Unpoisoned-Testset, and
a modest FRR of 14.69. Remarkably, the detection rate for
poisonings remained consistently above 98.78 for all thresh-
olds. Conversely, the colored IIC [3] dataset posed a greater
challenge for LabelTrust due to its increased sample diversity
within each class. However, even with just x = 10 samples,
LabelTrust achieved notable results. While the accuracies
were slightly lower compared to FMNIST [50], the detec-
tion ratio for poisonings remained above 96.55 for all thresh-
olds, with an average score of 0.0132. Thus, we assert that
LabelTrust demonstrates robustness across different datasets,
suggesting its dataset independence.

Model Independence. To demonstrate LabelTrust’s indepen-
dence from model architecture, we replicated the experiment
outlined in line (3) of Tab. 1 using a Convolutional Neural
Network (CNN) with a simplified structure. Due to the re-
duced complexity of the network, the learning rate of the
Adadelt [52] optimizer was adjusted to 0.1. The results pre-
sented in line (3) of Tab. 2 demonstrate that comparable out-
comes were achieved, despite the simpler architecture. While
the accuracy was slightly lower compared to this attained
with the ResNet-18 [15] architecture in line (3) of Tab. 1, the
detection performance exhibited only a slight decrease, with
values remaining notably high above 87.26 for all thresholds
(reaching 100.0 for the 0.99 threshold), and an average confi-
dence score of 0.0204 compared to 0.0042 for ResNet-18 [15].
These findings underscore LabelTrust’s capability to operate
effectively across diverse model architectures, affirming its
architectural independence. It’s noteworthy that in practical
applications, such as confidence scoring of predictions of a
primary model, LabelTrust’s Siamese network and the pri-
mary model are inherently independent by design.

Summary. In summary, LabelTrust emerges as a versatile
tool, consistently demonstrating uniform and reliable behav-
ior across various configurations. Precisely, the evaluation has
shown high performance across various poisoning methods,
datasets, and Siamese architectures. Its performance remains
unaffected by the type of poisoning method employed, the
dataset’s characteristics, and the Siamese network’s architec-

ture. Consequently, LabelTrust stands as a general-purpose
solution applicable across numerous scenarios. Our subse-
quent evaluations will focus on its effectiveness in dataset
cleaning and confidence score prediction.

4.3 Offline Dataset Cleaning
Setup. To demonstrate LabelTrust’s effectiveness as an of-
fline dataset cleaning tool, we use MNIST [10] and introduced
a pixel trigger [13] backdoor, contaminating 10% of the sam-
ples in each batch resulting in 5625 poisoned samples.7 Ini-
tially, we trained a ResNet-18 [15] model on this poisoned
dataset and evaluated its accuracy on both the main task (MA)
using the MNIST [10] test set and the backdoor task (BA) on
the poisoned MNIST [10] test set. The results, presented in
the first two columns of Tab. 3, show 98.36 MA and 100.0 BA,
indicating a highly effective backdoor. Subsequently, we used
LabelTrust to clean the dataset, opting for a 0.99 threshold,
aiming to identify samples with high confidence scores while
double-checking the remainder, simulating expert validation.
Starting with a reference dataset of x = 10 randomly selected
clean samples, we trained our LabelTrust version, which uti-
lizes ResNet-18 [15] as the feature encoding subnetwork in
the Siamese network. LabelTrust then categorized samples
into clean and leftover subsets. We used the clean samples to
retrain a ResNet-18 [15] model from scratch, aiming for an
unbackdoored model. The iterative process continued with
LabelTrust’s refeeding step, where five additional randomly
chosen clean samples from the leftovers were incorporated
into the reference dataset in each subsequent round.8 The
updated reference dataset of each round is then used to retrain
the Siamese network from scratch and reevaluate the whole
dataset, resulting in a new set of clean and leftover samples.
Opposed to the intended use-case of experts selecting high-
quality samples in the refeed loop we select them at random
to showcase the behavior under a semi-optimal expert.
Results. As reported in Tab. 3, the initial round reported in
line (1) identified 37,717 clean samples and 22,283 leftovers,
distinguishing 5,616 real poisoned samples and 16,667 be-
nign samples with confidence scores below the threshold. The
seemingly low accuracy of 71.86 is caused primarily by the
unpoisoned samples falsely classified as leftovers. This effect

7We poison 10% of the 978 batches, each containing 64 samples, result-
ing in six poisonings per batch. The last batch, with 32 samples, has three
poisonings due to the total dataset size of 60,000 samples.

8Note that Siamese dataset has the same amount of samples and is con-
tinuously trained for one epoch to produce comparable results. However, one
could further enhance the training as discussed Sect. 5.
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Table 3: Dataset cleaning statistics over six refeed rounds of LabelTrust for 60,000 samples containing 5,625 poisonings.
Pre-LabelTrust Post-LabelTrust Refeed x Detection Statistics
MA BA MA BA Round clean leftovers true leftovers false leftovers TRR ACC

(1) 98.36 100.0 92.97 3.42 - 10 37,717 22,283 5,616 16,667 99.84 72.20
(2) 98.36 100.0 92.50 8.76 1 15 41,199 18,801 5,608 13,193 99.69 77.98
(3) 98.36 100.0 94.25 50.72 2 20 47,202 12,798 5,588 7,210 99.34 87.92
(4) 98.36 100.0 97.63 20.56 3 25 47,038 12,962 5,591 7,371 99.39 87.65
(5) 98.36 100.0 96.89 2.72 4 30 47,027 12,973 5,609 7,364 99.71 87.70
(6) 98.36 100.0 98.14 6.80 5 35 50,009 9,981 5,615 4,366 99.82 92.70

is caused by the high threshold of 0.99 and will diminish in
later stages. The backdoor in line (1) was successfully fil-
tered, achieving a BA of 3.42 after model retraining, with a
marginal performance loss, reaching 92.97 MA. Notably, the
TRR is 99.84, showing that LabelTrust detects a high fraction
of poisonings already in the first round. This result reassures
the results from the previous sections. In subsequent rounds
(2) and (3) in Tab. 3, a discernible trend emerged: the Siamese
network consistently identified more samples as clean, e.g.,
41,199 in line (2) and 47,202 in line (3), while maintaining a
very high TRR, indicating effective and reliable filtering of
poisonings. Consequently, false leftovers decreased to 7,210,
resulting in higher accuracies of up to 87.92 in line (3). Hence,
we can see, that the randomly selected samples in the refeed
loop increased the quality of the reference dataset, essen-
tially leading to increased Siamese performance.9 In lines
(4) and (5), we can observe, that the quality of the system
plateaued. Hence, the randomly selected clean samples from
refeed rounds three and four do not contribute to the classi-
fication performance of the Siamese network. This behavior
is expected, as the random selection (semi-optimal expert)
might have selected low-quality samples. Nevertheless, if the
process is continued, the original trend continues in line (6)
with already 50,009 clean samples and only 9,981 leftovers
reaching an accuracy of 92.70 and a TRR of 99.82. Hence,
we can reason, that the choice of the clean samples is im-
portant and affects the performance of LabelTrust in terms
of minimizing the number of rounds, but is not imperative
as the dataset cleaning process will converge over time. Our
evaluation has confirmed our assumption cf Sect. 3.2 that the
dataset cleaning process converges over time resulting in a
diminishing number of leftovers while maintaining a high
backdoor detection (TRR). Tuning the Siamese network to
better performance might yield even better results and is dis-
cussed in Sect. 5, but is out of the scope of this paper, as we
focus on comparable results over multiple experiments and
the depiction of the general functionality of LabelTrust.

Summary. In summary, LabelTrust functioned as intended,
with the refeed loop enhancing system performance over time.
Notably, even in the initial round, LabelTrust successfully
removed the backdoor, with subsequent rounds yielding re-
sults akin to those observed with increasing x values in Tab. 1.

9Note, that all samples of the dataset get reevaluated in each round by
design (cf. Sect. 3.2) to address potential mistakes made by LabelTrust in
earlier rounds, especially detecting poisoned samples falsely mapped as
clean.

Following the five refeed rounds detailed in Tab. 3, an expert
would have reviewed only 350 samples manually, a fraction of
0.0058% compared to 60.000 samples that would have been
reviewed without assistance from LabelTrust, and would only
sacrifice 9,981 samples (16,63%) as leftovers, if he stops after
refeed round five (line (6) in Tab. 3). Hence, LabelTrust effec-
tively identified 50,009 samples as clean, essentially rendering
a valuable tool for dataset-cleaning tasks.

4.4 Online Confidence Scoring

LabelTrust, by its design, is not supposed to filter out clean-
label backdoors [44] during dataset cleaning, as these attacks
rely on clean SL-Mappings during the poisoning process
(cf. Sect. 2).10 However, such attacks can be identified during
model inference, as demonstrated in line (7) of Tab. 1. This
motivates the combined usage of LabelTrust also in online
confidence scoring application scenarios in Sect. 4.4.11

Setup. To demonstrate the effectiveness of LabelTrust in
an online confidence scoring application, we trained a
ResNet-18 [15] on MNIST [10] with a pixel trigger [13] back-
door injected on 10% of the data of each batch. We then evalu-
ated the model’s performance using both the MNIST [10] test
set and a fully poisoned version of the test set, as previously
used in the experiments in Sect. 4.3. We analyzed the misclas-
sified samples from both test sets to identify instances where
predictions should not be considered trustworthy. Specifically,
we flagged samples misclassified by the model, whether due to
poor performance or the presence of a backdoor, as potential
alerts for untrustworthy predictions. We then examined the
confidence scores provided by LabelTrust for these samples.
For LabelTrust, we trained a Siamese network with x = 10,
similar to the setup reported in line (3) of Tab. 1.

Results. In this evaluation, we focus on the detection of
false or malicious predictions and hence SL-Mappings, as
benign predictions do not pose a harmful threat to the user
and hence do not need to raise a respective alarm. Benign
predictions would yield similar results as for the Unpoisoned-
Testset in the previous experiments and are thus omitted

10We conducted a respective experiment validating this assumption leading
to a TRR of 4.64 and an ACC of 63.94.

11If LabelTrust is used with a model with high performance, e.g., 80%
ACC, the final predictions’ trustworthiness is still unclear. This can be pro-
vided with LabelTrust, which can be trained with starting from 2 samples
per class. One pre-requirement is, that the dataset for the pre-trained model
is not identical to the reference dataset, such that new insight is provided.
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here. Mispredictions from the benign test set yielded a
mean and median confidence score of 0.30 and 0.0018,
while those from the backdoored test set yielded 0.0052 and
5.83 ·10−7. We achieved similar results for experiments uti-
lizing Blend [7] and Clean-Label [44] backdoors. Further,
we use the FMNIST [50], and IIC [3] dataset and report the
results in App. 7.3. These results indicate that LabelTrust
reliably assigns low confidence scores, alerting the user by
indicating a lack of trustworthiness in the predictions, par-
ticularly for backdoored samples. Conversely, non-poisoned
samples receive more moderate negative confidence score
values.

Summary. Summarized, LabelTrust shows reliable perfor-
mance in online confidence scoring application scenarios,
providing valuable insights into prediction trustworthiness.

4.5 Runtime

In terms of runtime, we present three noteworthy findings
derived from ten runs of the experiment outlined in line (3)
of Tab. 1, with the times averaged. First, the training duration
for the Siamese network, constituting step 3 of LabelTrust,
amounted to 34.56 seconds. Subsequently, the sample pairing
process, encompassing step 4 of LabelTrust, required a mere
7.62 ·10−4 seconds. Finally, the inference process for the ten
samples in this case consumed 0.0056 seconds. Consequently,
we assert that the additional computational burden imposed
by LabelTrust is acceptable in the offline phase and negligible
in the online phase. While there may be critical considera-
tions in application scenarios such as autonomous driving, we
believe that optimization of code and utilization of specialized
hardware can reduce the overhead even more.

5 Discussion

Complicated Application Scenarios. As LabelTrust relies
on a Siamese network, it encounters similar challenges to
other few-shot learning-based networks, particularly in com-
plex application scenarios where representative samples for
all classes are required as ground truth. In instances where
subclasses exist within classes, such as different shapes of
objects like cars, it’s advisable to either designate a class for
each subclass in the Siamese network or increase the num-
ber of samples per class in the reference dataset. Moreover,
longer training periods (more epochs) are typically neces-
sary for handling more complex application scenarios and
datasets. Ultimately, the user must determine the threshold in
LabelTrust’s pipeline based on whether they aim to identify
samples likely to be clean or potentially poisoned/low-quality.
In this work, we present the general functionality and applica-
bility over multiple application scenarios and, hence, fixate
the training periods and dataset sizes to get comparable re-
sults. Further, we use experimental setups, that are useful to

see the effects of LabelTrust, e.g., for different thresholds,
rounds, input types, and other hyperparameters.

Optimizations. Further optimization of the Siamese training,
architecture, and hyperparameters might lead to even better
performance. However, we did not focus on the optimiza-
tion of few-shot learners in this work but focused on their
application of confidence scoring. We believe that optimizing
the performance of LabelTrust can be achieved through opti-
mizing the performance of the Siamese network, mainly by
four key measures. Firstly, employing a different loss func-
tion, such as Triplet Loss (cf. App. 7.2), may yield superior
performance depending on the specific application scenario.
Secondly, while LabelTrust is designed to be architecture-
agnostic, customizing the Siamese network architecture to
the specific application can enhance performance. Thirdly,
ensuring high-quality sampling by involving a knowledge-
able domain expert is crucial, as the quality of the reference
dataset significantly impacts LabelTrust’s performance. Fur-
ther, the generation mechanism for the Siamese dataset can
be optimized to generate highly effective pairs.

Adaptive Adversaries. Adapting to LabelTrust requires
knowledge of expert-selected samples, which is not given.
Neither the Siamese network nor the reference dataset is ac-
cessible to adversaries, preventing adaption, e.g., crafting ad-
versarial examples [42]. LabelTrust evaluates SL-Mappings
after poisoning attacks, such as dataset-poisoning or poisoned
model training, have already been conducted.

Dependency on Data Distributions. Conceptually, the train-
ing dataset distribution is irrelevant for LabelTrust. We as-
sume a minimal sample amount in the reference dataset, start-
ing from 2 samples per class. Certainly, the Siamese network
creator and domain expert should create a balanced dataset,
which generally yields better performance. However, within
LabelTrust, each SL-Mapping is evaluated individually with-
out dependencies on other samples or pre-trained models.

6 Related Work

The related work for this paper draws from several intercon-
nected domains. Initially, we examine research in the field of
confidence scoring. Subsequently, we delineate our investiga-
tion against methodologies for dataset cleaning. Thirdly, we
explore studies focused on mitigating data poisoning within
datasets utilized by machine learning models.

6.1 Confidence Scores

Confidence Scoring generates scores that assess the reliability
of predictions generated by a trained model.

Corbière et al. [9] employ a secondary model to generate a
confidence score for predictions, relying on intermediate layer
outputs from a pre-trained primary model. Consequently, its
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efficacy is contingent not only on a specific model architec-
ture but also on the characteristics of a particular model. This
confidence scoring model undergoes training using the en-
tire training dataset. A similar methodology is adopted by
Luo et al. [28], which introduce a novel loss function within
the same framework. LabelTrust instead is a general tool for
ST-Mapping verification and hence can be used to evaluate the
prediction outcome of any primary model, essentially being
independent of a specific model instance or architecture.

Jiang et al. [19], on the other hand, utilize the entire train-
ing dataset to construct sets of samples with high density for
each class through the nearest neighbor algorithm. For a new
prediction, the distance to these sets is computed, resulting
in a lower prediction confidence if the prediction deviates
from the nearest distance. However, as only a straightfor-
ward distance metric is employed, this approach does not
analyze the precise content of the sample, such as the scenery
depicted in an image. Additionally, the computational com-
plexity during sample evaluation increases with the number
of classes. Contrary, leveraging a Siamese network with con-
volutional layers, LabelTrust considers the specific features
of a sample’s content, rather than solely relying on distance
metrics. The features extracted by a similarity metric might
not capture the full complexity of visual information, lead-
ing to inaccurate similarity assessments. Neural networks, on
the other hand, can learn their own feature representations
directly from the image data, potentially capturing more nu-
anced relationships between images. Further, the effort to
evaluate one ST-Mapping is constant, e.g., one model infer-
ence of the Siamese network. Additionally, the efficacy of the
methods lies in analyzing the entire training dataset, assuming
the presence of clusters of benign samples, thus presupposing
a majority of clean samples. In contrast, LabelTrust relies on
a small number of clean samples, allowing it to effectively
manage datasets with a high degree of compromised data.

Moon et al. [30] propose a model-dependent scoring mech-
anism embedded during training via custom loss and does
not consider poisonings. LabelTrust instead does not interfere
with the training of the pre-trained model.

Jha et al. [18] identify important features in an input sample.
Iteratively, the approach changes those features and observes
the model output of the modified sample over multiple in-
ference rounds to yield a confidence score. As the approach
relies on a trained model, it cannot be applied to dataset clean-
ing and induces significant computational overhead, due to
multiple inference steps.

Guillory et al. [14] predict general model performances
under distribution shift instead of scoring individual samples,
which is an orthogonal problem motivating LabelTrust.

Overall, while the primary focus of most of these stud-
ies [9, 19, 28, 30] is to furnish scoring mechanisms for predic-
tions, they do not address or prioritize defense against poison-
ing attacks, such as backdoors, or introduce high overhead
during inference [18]. In contrast, LabelTrust is designed to

operate within a more realistic scenario, accounting for ad-
versarial attacks. Further, LabelTrust only needs a fraction
of the training samples for training. Hence, the confidence
score of those works is based on large untrusted datasets
as references, whereas LabelTrust’s confidence score relies
on a small subset of high-quality samples resulting in high
trustworthiness.

6.2 Dataset Cleaning

Dataset cleaning aims at identifying poisoned samples within
a dataset essentially separating poisoned from clean samples
to allow for unpoisoned training.

Huang et al. [17] utilize outputs from specific layers (acti-
vations) of clean samples to train a secondary network tasked
with scoring predictions. By relabeling and reintroducing sam-
ples based on these scores, they assert that only 1% of training
data must be clean. [17] can be considered the closest related
work to LabelTrust. However, it is reliant not only on model
architecture but also on a specifically trained model instance,
unlike LabelTrust, which remains agnostic to such constraints.
Furthermore, by leveraging a Siamese network and few-shot
learning, LabelTrust can operate with even fewer samples
than the 1% required in [17].

Paudice et al. [35] detects label-flipping attacks and simul-
taneously offers a method to adjust previously flipped labels.
Peri et al. [36] focuses on the detection of clean-label back-
doors. Both works, use a similar principle as Jiang et al. [19],
which results in the same downsides that we mentioned above.

Gao et al. [12] developed a model aimed at partitioning
a suspicious dataset into clean and poisoned subsets. The
loss generated by individual samples provides insights into
their potential contamination. Ramzi et al. [38] employ an
auto-encoder architecture to identify data poisonings, lever-
aging reconstruction errors to distinguish between clean and
contaminated samples. Pan et al. [33] introduces a sample
filtering method specially designed for backdoored samples
based on the optimization of a detection model against multi-
ple objectives. Based on a small clean dataset, which is used
for training first, the loss of samples provides insight if the
samples are poisoned. While [12, 33, 35, 38] focus solely on
offline dataset cleaning, LabelTrust simultaneously addresses
both offline dataset cleaning and online prediction scoring.

Other papers such as [22, 23, 39], focused on dataset clean-
ing, concentrate solely on identifying [22,23] and potentially
repairing [39] low-quality (dirty) training samples, without
addressing poisoned data, thus diverging from our work.

6.3 Poisoning Prevention

Poisoning prevention aims at making a model robust to the
existence of poisoned samples within a dataset, essentially
training a benign model on a poisoned dataset.
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Wang et al. [46] propose a system to safeguard the feature
extraction component of a model against backdoor feature
learning. The authors achieve this by retraining the classifica-
tion part (the final layers) on a clean dataset, constituting 10%
of the entire dataset. Thus, rather than cleaning the dataset,
the approach modifies the architecture to withstand backdoor
attacks, making it reliant on specific model architectures. In-
stead, LabelTrust is independent of the model architecture
and only needs a small fraction of data for few-shot learning.

Li et al. [24] introduce a system that detects backdoors by
identifying poisoned samples based on their loss values (simi-
lar to [33]) and assigning random labels to these samples to
disrupt the connection to the backdoor target class. Although
this system is not designed to isolate poisoned samples, it
could potentially be repurposed for this task. However, the
approach relies on an empirically determined threshold and
necessitates altering the mapping of samples, which could de-
grade the model performance similar to untargeted poisoning,
despite its effectiveness against backdoors. LabelTrust does
not negatively impact the performance of a trained model by
filtering the poisoned samples out instead of relabeling them.
Further, we provide a meaningful confidence score allowing
for versatile operation.

Building upon Li et al. [24], Ying et al. [51] propose a train-
ing pipeline incorporating unlearning for a subset of identified
poisoned samples. These samples are discerned by analyzing
prediction probabilities and applying a threshold, as poisoned
samples typically yield higher probabilities. Compared to
LabelTrust, the method can not be applied to pre-trained mod-
els and does not provide a meaningful confidence score.

Jiang et al. [20] extend the approach of Li et al. [24] by inte-
grating a small secondary head into the model. This head, uti-
lizing feature embeddings from the primary model, is trained
to recognize backdoors and subsequently relabel poisoned
samples. Hence, the method is dependent on the architecture
of the primary model, which is not the case for LabelTrust.

While the aforementioned works [20, 24, 46, 51] aim to
create benign models even when trained on poisoned datasets,
LabelTrust takes a different approach by focusing on provid-
ing a confidence score for each ST-Mapping. Unlike the loss-
based methods described above, LabelTrust can be used with
already pre-trained models, e.g., does not require changing
the training of the primary task model. Further, the confidence
score it generates offers meaningful insights, as opposed to the
threshold-based clustering of benign and malicious samples.

In summary, LabelTrust offers distinct advantages over re-
lated works from the mentioned research areas. However,
some benefits of LabelTrust are unique across all works: the
consolidation of two use cases, the minimization of the trusted
dataset by utilizing Few-Shot-Learning, and ongoing enhance-
ment facilitated by a refeed-loop mechanism overseen by a
human expert.

7 Conclusion

Assessing the quality of Sample Label Mappings (SL-
Mappings) is essential in machine learning, whether derived
from labeled datasets or inferred during model inference.
The existing solutions from the domains of dataset clean-
ing and prediction confidence scoring lack a dual-use tool
for this challenge, only providing standalone approaches with
individual downsides. Therefore, we introduce LabelTrust, a
versatile and architecture-independent tool that leverages a
Siamese network trained via few-shot learning based on a few
clean samples to provide a confidence score for SL-Mappings.
Thereby, LabelTrust effectively addresses the downsides of
existing standalone solutions, while reliably detecting poi-
sonings in both contexts. With an interactive loop for system
improvement, only 0.0058% of the dataset needs manual eval-
uation to clean 83.73% of a dataset while ensuring high model
performance without an active backdoor.
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Appendix

7.1 Hardware & Experimental Setup
Experiments were conducted using PyTorch, a leading Python-
based machine learning library [34, 43, 45], on a server with
an AMD EPYC 7413 24-Core Processor (64-bit) boasting
96 processing units and 128GB main memory. CUDA [32]
facilitated access to an NVIDIA A16 GPU with 4 virtual
GPUs, each featuring 16GB GDDR6 memory.

7.2 Siamese Loss Functions
Alternatives to BCELoss introduced in Sect. 2 include the
Contrastive loss and the Triplet loss [25]. The Contrastive loss
operates on data record pairs and aims to minimize the dis-
tance between records from the same class, while maximizing
the distance between samples from different classes towards a
predefined margin m. Thereby, a respective distance function
d(r1,r2) for the two data records r1 and r2 is applied, e.g., the
Euclidean distance. A general depiction of the corresponding
loss is illustrated in Eq. 2. yi is again the label and d(r1,r2)
calculates the distance of the embeddings e(r1) and e(r2) that
were generated by the feature embedding subnetworks.

CLoss =
1
N

N

∑
i=1

yi ·d(r1,r2)+(1− yi) ·max(0,m−d(r1,r2))

d(r1,r2) =||e(r1)− e(r2)||2

(2)
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Table 4: Mean and median scores for mispredictions from
the benign test set (Benign) and the backdoored test set
(Backdoored). The default setting is ResNet-18 [15] on
MNIST [10] with a pixel trigger [13] backdoor injected on
10% of the data of each batch.

Benign Backdoored
Mean Median Mean Median

Default 0.3006 0.0182 0.0052 5.83 ·10−7

Default + FMNIST [50] 0.3442 0.0048 0.0001 5.35 ·10−10

Default + IIC [3] 0.3419 0.0206 0.0266 1.57 ·10−6

Default + Blend [7] 0.3271 0.0246 0.0683 1.047 ·10−5

Default + Clean-Label [44] 0.3676 0.0381 0.0751 2.7423 ·10−6

On the other hand, the Triplet loss involves three data
records, forming two pairs. Initially, an anchor record a is
selected and paired with a positive record p from the same
class and a negative record n from a different class. Subse-
quently, the two pairs undergo processing, and the loss is
calculated, as outlined in Eq. 3, aiming towards the same goal
as the Contrastive Loss.

T Loss =
1
N

N

∑
i=1

max(0,d(a, p)−d(a,n)+m) (3)

LabelTrust could also be used with Contrastive or Triplet
loss, but respective experiments were omitted within this pa-
per.

7.3 Confidence Scoring Experiments
Due to space limitations of the paper, we report additional
results for the confidence scoring (cf. Sect. 4.4) use case here.
We conducted experiments with the Blend [7] and the Clean-
Label [44] backdoor, as well as with the FMNIST [50], and
IIC [3] dataset. The first line of Tab. 4 depicts the default set-
ting reported in Sect. 4.4 with ResNet-18 [15] on MNIST [10]
with a pixel trigger [13] backdoor injected on 10% of the data
of each batch. The subsequent lines of Tab. 4 report the results
when changing either the backdoor or the dataset from the
default setting. We can observe similar results for all of the
experiments.

7.4 Visualization of the Reference Dataset
To give an impression of how the reference dataset looks
like in our experiments, we visualize the reference dataset for
x = 10 samples per class. Fig. 5 shows the ten samples for
each class from the MNIST [10] dataset, which have been
randomly chosen in our experiments.

Figure 5: Visualization of the reference dataset with x = 10.
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